JP2015098008A - Catalyst material for exhaust gas purification and method of producing the same - Google Patents

Catalyst material for exhaust gas purification and method of producing the same Download PDF

Info

Publication number
JP2015098008A
JP2015098008A JP2013240161A JP2013240161A JP2015098008A JP 2015098008 A JP2015098008 A JP 2015098008A JP 2013240161 A JP2013240161 A JP 2013240161A JP 2013240161 A JP2013240161 A JP 2013240161A JP 2015098008 A JP2015098008 A JP 2015098008A
Authority
JP
Japan
Prior art keywords
composite oxide
exhaust gas
catalyst
catalyst material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013240161A
Other languages
Japanese (ja)
Other versions
JP6206116B2 (en
Inventor
益寛 松村
Masuhiro Matsumura
益寛 松村
重津 雅彦
Masahiko Shigetsu
雅彦 重津
久也 川端
Hisaya Kawabata
久也 川端
由紀 村上
Yuki Murakami
由紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2013240161A priority Critical patent/JP6206116B2/en
Priority to PCT/JP2014/005508 priority patent/WO2015075875A1/en
Priority to US15/022,956 priority patent/US20160228853A1/en
Priority to DE112014005291.4T priority patent/DE112014005291T5/en
Priority to CN201480051298.7A priority patent/CN105658328A/en
Publication of JP2015098008A publication Critical patent/JP2015098008A/en
Application granted granted Critical
Publication of JP6206116B2 publication Critical patent/JP6206116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the activity and high-temperature durability of a catalyst material for exhaust gas purification composed of Rh doped complex oxide.SOLUTION: A catalyst material for exhaust gas purification is composed of Rh doped complex oxide that comprises a rare earth metal other than Ce and Zr but does not comprise Ce, wherein as the rare earth metal, at least La and Y are comprised, and at least one of La and Y is present in higher concentration at the surface part of the complex oxide than the inside thereof.

Description

本発明は排気ガス浄化用触媒材及びその製造方法に関する。   The present invention relates to an exhaust gas purification catalyst material and a method for producing the same.

自動車の排気ガス浄化用触媒として知られている三元触媒には、従来よりRhを複合酸化物に担持してなる触媒材が利用されている。しかし、触媒が長期にわたって高温の排気ガスに晒されると、Rhが凝集してシンタリングし、触媒活性が低下するおそれがある。   As a three-way catalyst known as an automobile exhaust gas purification catalyst, a catalyst material in which Rh is supported on a composite oxide has been conventionally used. However, when the catalyst is exposed to high-temperature exhaust gas for a long period of time, Rh aggregates and sinters, which may reduce the catalytic activity.

この問題に対策する排気ガス浄化用触媒材として、特許文献1には、ジルコニアと、希土類元素、アルカリ土類元素、アルミニウムおよびケイ素からなる群から選ばれる少なくとも1つの配位元素と、貴金属とからなる複合酸化物であって、該複合酸化物の結晶構造への貴金属の固溶率を50%以上とした触媒材が記載されている。   As an exhaust gas purifying catalyst material for dealing with this problem, Patent Document 1 discloses that zirconia, at least one coordination element selected from the group consisting of rare earth elements, alkaline earth elements, aluminum and silicon, and a noble metal. And a catalyst material in which the solid solution ratio of the noble metal in the crystal structure of the composite oxide is 50% or more.

特許文献1には上記触媒材の製法の一例として共沈法が記載されている。それは、Zrおよび配位元素の塩を含む混合塩水溶液を中和剤に加えて共沈させた後、得られた共沈物を乾燥後、熱処理(1次焼成)し、これに貴金属の塩を含む溶液を混合し、得られた前駆体組成物を熱処理(2次焼成)することにより、耐熱性酸化物を得る、というものである。或いは、Zr、配位元素および貴金属の塩を含む混合塩水溶液に中和剤を加えて共沈させ、得られた前駆体組成物を乾燥後、熱処理することにより耐熱性酸化物を得る、というものである。   Patent Document 1 describes a coprecipitation method as an example of a method for producing the catalyst material. It is prepared by adding a mixed salt aqueous solution containing a salt of Zr and a coordination element to a neutralizing agent to coprecipitate, drying the obtained coprecipitate and then heat-treating (primary firing), and adding a precious metal salt thereto. A heat-resistant oxide is obtained by mixing a solution containing, and subjecting the obtained precursor composition to heat treatment (secondary firing). Alternatively, a heat-resistant oxide is obtained by adding a neutralizing agent to a mixed salt aqueous solution containing a salt of Zr, a coordination element, and a noble metal and coprecipitating the resulting precursor composition, followed by heat treatment. Is.

そのような耐熱性酸化物の例として、特許文献1には、ZrLaRh複合酸化物、ZrYRh複合酸化物、ZrNdRh複合酸化物、ZrLaNdRh複合酸化物、ZrLaSrRh複合酸化物及びZrCeLaRh複合酸化物が挙げられている。   As examples of such heat-resistant oxides, Patent Document 1 includes ZrLaRh composite oxide, ZrYRh composite oxide, ZrNdRh composite oxide, ZrLaNdRh composite oxide, ZrLaSrRh composite oxide, and ZrCeLaRh composite oxide. Yes.

特開2006−169035号公報JP 2006-169035 A

特許文献1に記載された技術は、要するに熱処理によってZr系複合酸化物の結晶構造にRhを固溶させることにより、触媒が高温条件で使用されたときのRhの粒成長を抑制するというものである。   The technique described in Patent Document 1 is to suppress Rh grain growth when the catalyst is used under high temperature conditions by, in effect, solidifying Rh in the crystal structure of the Zr-based composite oxide by heat treatment. is there.

本発明は、特許文献1とは違って、Zr系複合酸化物へのRhの結合力を高めることによって、Rhの凝集・シンタリングを抑制する(触媒材の高温耐久性を高める)ことを課題とする。   Unlike Patent Document 1, the present invention has an object to suppress Rh aggregation and sintering (enhance high-temperature durability of a catalyst material) by increasing the bonding strength of Rh to a Zr-based composite oxide. And

本発明は、上記課題を解決するために、Rhが設けられてなるZr系複合酸化物の表面部にLa又はYを濃化させるようにした。   In the present invention, in order to solve the above-described problems, La or Y is concentrated on the surface portion of the Zr-based composite oxide provided with Rh.

すなわち、本発明に係る排気ガス浄化用触媒材は、Ce以外の希土類金属とZrとを含有し、Ceを含有せず、さらにRhが設けられている複合酸化物よりなり、上記希土類金属として少なくともLa及びYを含み、このLa及びYの少なくとも一方が上記複合酸化物の内部よりも表面部に高濃度に存することを特徴とする。   That is, the exhaust gas purifying catalyst material according to the present invention comprises a complex oxide containing a rare earth metal other than Ce and Zr, not containing Ce, and further provided with Rh. La and Y are included, and at least one of La and Y is present in a higher concentration in the surface portion than in the composite oxide.

ここに、La及びYの少なくとも一方が複合酸化物の内部よりも表面部に高濃度に存するとは、そのLa及びYの少なくとも一方が複合酸化物の表面部に存在し、該複合酸化物の内部にはLa及びYの少なくとも一方が実質的に存在しないケースを含む。   Here, at least one of La and Y is present at a higher concentration in the surface portion than in the inside of the complex oxide. That is, at least one of La and Y is present in the surface portion of the complex oxide, A case where at least one of La and Y does not substantially exist is included.

このような触媒であれば、複合酸化物の表面部においてRhが高濃度に存在するLa又はYにより強く固定されて分散した状態になるから、触媒の活性が高くなるとともに、触媒の高温耐久性が高くなり、高温の排気ガスに晒される使用状態が続いたときに、触媒の活性が大きく低下することが避けられる。   In such a catalyst, Rh is strongly fixed and dispersed by La or Y present at a high concentration in the surface portion of the composite oxide, so that the activity of the catalyst is increased and the high temperature durability of the catalyst is increased. And the activity of the catalyst can be avoided from greatly decreasing when it is used under exposure to high-temperature exhaust gas.

好ましいのは、上記複合酸化物が加熱還元処理されていることである。この加熱還元処理により、Rhのメタル化(金属状態になる)が進み触媒の活性が高くなる。また、当該加熱還元処理により、当該複合酸化物に埋没しているRhの複合酸化物表面部への析出が進み、該複合酸化物表面部にRhをLa又はYによって強く固定した状態で分散させることができると考えられ、触媒の活性向上及び高温耐久性の向上に有利になる。   It is preferable that the composite oxide is subjected to a heat reduction treatment. By this heat reduction treatment, Rh metallization (becomes a metallic state) proceeds and the activity of the catalyst increases. In addition, the heat reduction treatment causes precipitation of Rh embedded in the composite oxide to the surface of the composite oxide, and Rh is dispersed on the surface of the composite oxide in a strongly fixed state with La or Y. Therefore, it is advantageous for improving the activity of the catalyst and improving the high temperature durability.

上記排気ガス浄化用触媒材の好ましい製造方法は、
Zr、La、Y及びRhの各イオンを含みCeを含まない酸性溶液に塩基性溶液を添加してZr、La、Y及びRhを共沈させることにより、RhZrLaY含有共沈ゲルを生成し、
上記RhZrLaY含有共沈ゲルに、塩基性溶液を添加した後に、La又はYとRhの各イオンを含む酸性溶液を添加して混合することにより、上記RhZrLaY含有共沈ゲル上にLa又はYの水酸化物とRh水酸化物を析出沈殿させ、しかる後に焼成することを特徴とする。
A preferred method for producing the exhaust gas purification catalyst material is as follows:
A basic solution is added to an acidic solution containing each ion of Zr, La, Y, and Rh and not containing Ce to coprecipitate Zr, La, Y, and Rh, thereby generating a coprecipitation gel containing RhZrLaY,
After adding a basic solution to the RhZrLaY-containing coprecipitation gel, an acidic solution containing each ion of La or Y and Rh is added and mixed, whereby La or Y water is added onto the RhZrLaY-containing coprecipitation gel. It is characterized by precipitating and precipitating oxide and Rh hydroxide and then firing.

上記製造方法により、Zr、La、Y及びRhを含み、しかも、La又はYがRhと共に当該複合酸化物の表面部に高濃度に存する複合酸化物が得られ、触媒の活性向上及び高温耐久性の向上に有利になる。   By the above production method, a composite oxide containing Zr, La, Y and Rh, and La or Y together with Rh at a high concentration in the surface portion of the composite oxide is obtained, and the activity of the catalyst is improved and the high temperature durability is obtained. It becomes advantageous for improvement.

好ましいのは、上記焼成後に還元雰囲気で加熱することであり、これにより、Rhのメタル化(金属状態になる)が進み触媒の活性が高くなる。また、当該加熱還元処理により、当該複合酸化物に埋没しているRhの複合酸化物表面部への析出が進み、該複合酸化物表面部にRhをLa又はYによって強く固定した状態で分散させることができると考えられ、触媒の活性向上及び高温耐久性の向上に有利になる。   Preference is given to heating in a reducing atmosphere after the calcination, whereby the Rh metallization (into a metallic state) proceeds and the activity of the catalyst increases. In addition, the heat reduction treatment causes precipitation of Rh embedded in the composite oxide to the surface of the composite oxide, and Rh is dispersed on the surface of the composite oxide in a strongly fixed state with La or Y. Therefore, it is advantageous for improving the activity of the catalyst and improving the high temperature durability.

本発明に係る排気ガス浄化用触媒材によれば、Ce以外の希土類金属とZrとを含有し、Ceを含有せず、さらにRhが設けられている複合酸化物よりなり、上記希土類金属として少なくともLa及びYを含み、このLa及びYの少なくとも一方が上記複合酸化物の内部よりも表面部に高濃度に存するから、触媒の活性が高くなるとともに、触媒の高温耐久性が高くなる。   According to the exhaust gas purifying catalyst material of the present invention, the rare-earth metal other than Ce and Zr is contained, and it is made of a composite oxide not containing Ce and further provided with Rh. Since La and Y are contained and at least one of La and Y is present in the surface portion at a higher concentration than the inside of the composite oxide, the activity of the catalyst is enhanced and the high temperature durability of the catalyst is enhanced.

本発明に係る排気ガス浄化用触媒材の製造方法によれば、Zr、La、Y及びRhの各イオンを含みCeを含まない酸性溶液に塩基性溶液を添加してZr、La、Y及びRhを共沈させることにより、RhZrLaY含有共沈ゲルを生成し、
上記RhZrLaY含有共沈ゲルに、塩基性溶液を添加した後に、La又はYとRhの各イオンを含む酸性溶液を添加して混合することにより、上記RhZrLaY含有共沈ゲル上にLa又はYの水酸化物とRh水酸化物を析出沈殿させ、しかる後に焼成するから、Zr、La、Y及びRhを含み、しかも、La又はYがRhと共に当該複合酸化物の表面部に高濃度に存する複合酸化物が得られ、触媒の活性向上及び高温耐久性の向上に有利になる。
According to the method for producing an exhaust gas purifying catalyst material according to the present invention, a basic solution is added to an acidic solution containing ions of Zr, La, Y, and Rh but not containing Ce, and Zr, La, Y, and Rh are added. To produce a RhZrLaY-containing coprecipitation gel,
After adding a basic solution to the RhZrLaY-containing coprecipitation gel, an acidic solution containing each ion of La or Y and Rh is added and mixed, whereby La or Y water is added onto the RhZrLaY-containing coprecipitation gel. Oxide and Rh hydroxide are precipitated and precipitated, and then fired, so that it contains Zr, La, Y and Rh, and La or Y together with Rh is present at a high concentration on the surface of the complex oxide. This is advantageous for improving the activity of the catalyst and improving the high-temperature durability.

本発明の実施形態に係るRhドープ複合酸化物を模式的に示す図である。It is a figure which shows typically the Rh dope complex oxide which concerns on embodiment of this invention. Rhが酸素を介して複合酸化物のLa又はYに結合している状態を模式的に示す図である。It is a figure which shows typically the state which Rh couple | bonded with La or Y of complex oxide through oxygen. 実施例1に係るRhドープ複合酸化物の製造工程を示すブロック図である。6 is a block diagram illustrating a manufacturing process of an Rh-doped composite oxide according to Example 1. 実施例2に係るRhドープ複合酸化物の製造工程を示すブロック図である。6 is a block diagram showing a manufacturing process of an Rh-doped composite oxide according to Example 2. FIG. 実施例1,2及び比較例のライトオフ温度を示すグラフ図である。It is a graph which shows the light-off temperature of Examples 1, 2 and a comparative example. 実施例1,2及び比較例の高温浄化率を示すグラフ図である。It is a graph which shows the high temperature purification rate of Examples 1, 2 and a comparative example. 実施例3,4及び比較例のライトオフ温度を示すグラフ図である。It is a graph which shows the light-off temperature of Example 3, 4 and a comparative example. 実施例3,4及び比較例の高温浄化率を示すグラフ図である。It is a graph which shows the high temperature purification rate of Example 3, 4 and a comparative example. 実施例1,2,5,6及び比較例のNOx浄化率を示すグラフ図である。It is a graph which shows the NOx purification rate of Example 1, 2, 5, 6 and a comparative example. 実施例7に係るRhドープ複合酸化物の製造工程を示すブロック図である。FIG. 10 is a block diagram illustrating a manufacturing process of an Rh-doped composite oxide according to Example 7.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

<排気ガス浄化用触媒材の構成>
本発明に係る排気ガス浄化用触媒材は、自動車の排気ガスを浄化することに適した触媒材であり、図1に模式的に示すRhドープ複合酸化物粒子1よりなる。このRhドープ複合酸化物粒子1は、Zrと、Ce以外の希土類金属として少なくともLa及びYを含有し、Ceを含有しない複合酸化物にRhがドープされてなる。La及びYは当該複合酸化物を構成するLa及びYとして存在し、且つ粒子1の表面部のLa又はYの濃度が粒子内部よりも高くなっている。Rhは当該複合酸化物の結晶格子点又は格子点間に配置され、一部のRhは粒子1の表面に露出しており、粒子1の表面部のRh濃度が粒子内部よりも高くなっている。図2に示すように、粒子1の表面に露出したRhは、当該複合酸化物を構成する表面部のLaのLa又はYのYに酸素2を介して強く結合している。
<Configuration of exhaust gas purification catalyst material>
The exhaust gas purifying catalyst material according to the present invention is a catalyst material suitable for purifying automobile exhaust gas, and is composed of Rh-doped composite oxide particles 1 schematically shown in FIG. This Rh-doped composite oxide particle 1 contains Zr and at least La and Y as rare earth metals other than Ce, and Rh is doped into a composite oxide not containing Ce. La and Y exist as La 2 O 3 and Y 2 O 3 constituting the composite oxide, and the concentration of La or Y in the surface portion of the particle 1 is higher than that in the particle. Rh is arranged between crystal lattice points or between lattice points of the complex oxide, a part of Rh is exposed on the surface of the particle 1, and the Rh concentration in the surface portion of the particle 1 is higher than that in the particle. . As shown in FIG. 2, Rh exposed on the surface of the particle 1 is strongly bonded to La of La 2 O 3 or Y of Y 2 O 3 of the surface of the composite oxide via oxygen 2. Yes.

<排気ガス浄化用触媒の実施例及び比較例>
−実施例1−
図3に示すように、硫酸ランタン及び硫酸イットリウムを混合した水溶液とオキシ硝酸ジルコニル水溶液を混合し、これにさらに硝酸ロジウム水溶液を添加した。ここでの硫酸イットリウム水溶液の仕込み量は目標添加量(Rhドープ複合酸化物の構成のために予定する全量)の50%(「%」は「質量%」を意味する。以下、同じ。)となるようにした。また、ここでの硝酸ロジウム水溶液の仕込み量は目標添加量の65%とした。
<Examples and comparative examples of exhaust gas purifying catalysts>
Example 1
As shown in FIG. 3, an aqueous solution in which lanthanum sulfate and yttrium sulfate were mixed and an aqueous solution of zirconyl oxynitrate were mixed, and an aqueous rhodium nitrate solution was further added thereto. The charged amount of the yttrium sulfate aqueous solution here is 50% of the target addition amount (the total amount planned for the configuration of the Rh-doped composite oxide) (“%” means “mass%”. The same applies hereinafter). It was made to become. Further, the amount of the rhodium nitrate aqueous solution charged here was 65% of the target addition amount.

得られたZr、La、Y及びRhの混合溶液(酸性)に塩基性溶液(アンモニア水)を添加することにより、Zr、La、Y及びRhを共沈させた。得られたRhZrLaY含有共沈ゲルに塩基性溶液を添加してpHを11程度にした後、硫酸イットリウム水溶液の残量(50%)及び硝酸ロジウム水溶液の残量(35%)を添加して混合した。これにより、上記共沈ゲルの粒子上にRh水酸化物及びY水酸化物を析出沈殿させた。得られた沈殿物全体を水洗し、大気中において150℃で一昼夜乾燥させ、乾燥物を粉砕した後、大気中において520℃で2時間の焼成を行なうことにより、目的物であるRhドープ複合酸化物(RhドープZrLaY複合酸化物)を得た。   Zr, La, Y and Rh were coprecipitated by adding a basic solution (aqueous ammonia) to the obtained mixed solution (acidic) of Zr, La, Y and Rh. After adding a basic solution to the obtained RhZrLaY-containing coprecipitation gel to adjust the pH to about 11, add the remaining amount of yttrium sulfate aqueous solution (50%) and the remaining amount of rhodium nitrate aqueous solution (35%) and mix. did. Thereby, Rh hydroxide and Y hydroxide were deposited on the particles of the coprecipitated gel. The entire precipitate obtained was washed with water, dried overnight at 150 ° C. in the atmosphere, and the dried product was pulverized and then baked at 520 ° C. for 2 hours in the atmosphere to obtain the target Rh-doped composite oxidation. (Rh-doped ZrLaY composite oxide) was obtained.

Rhドープ複合酸化物のRhを除く組成は、ZrO:La:Y=84:6:10(質量比)である。Rhドープ量は総量でZrLaY複合酸化物の1質量%である。 The composition excluding Rh of the Rh-doped composite oxide is ZrO 2 : La 2 O 3 : Y 2 O 3 = 84: 6: 10 (mass ratio). The total amount of Rh doping is 1% by mass of the ZrLaY composite oxide.

上記Rhドープ複合酸化物の調製方法の特徴は、共沈時の硫酸イットリウム及び硝酸ロジウム各々の仕込み量を50%、65%とし、それぞれの残量を共沈ゲルに対して添加した点にある。   The feature of the method for preparing the Rh-doped composite oxide is that the amounts of yttrium sulfate and rhodium nitrate at the time of coprecipitation are 50% and 65%, and the respective remaining amounts are added to the coprecipitation gel. .

硫酸イットリウムの一部(50%)を共沈ゲルに添加するようにしたから、得られるRhドープ複合酸化物は、Yが当該複合酸化物の内部よりも表面部に高濃度に存することになる。硝酸ロジウムの一部(35%)を共沈ゲルに添加するようにしたから、得られるRhドープ複合酸化物は、Rhが当該複合酸化物の内部よりも表面部に高濃度に存することになる。   Since a part (50%) of yttrium sulfate is added to the coprecipitation gel, the resulting Rh-doped composite oxide has a higher concentration of Y in the surface portion than in the composite oxide. . Since a part (35%) of rhodium nitrate was added to the coprecipitation gel, the resulting Rh-doped composite oxide had a higher concentration of Rh in the surface portion than in the composite oxide. .

そうして、上記Rhドープ複合酸化物をバインダ及び水と混合してスラリーを形成し、このスラリーをハニカム担体にコーティングした。そして、大気中において500℃で2時間の焼成を行なうことによって、実施例1に係る触媒を得た。担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製ハニカム担体(容量1L)を用いた。担体1L当たりのRhドープ複合酸化物の担持量は100gである。 Then, the Rh-doped composite oxide was mixed with a binder and water to form a slurry, and this slurry was coated on the honeycomb carrier. And the catalyst which concerns on Example 1 was obtained by baking for 2 hours at 500 degreeC in air | atmosphere. As the carrier, a cordierite honeycomb carrier (capacity 1 L) having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) was used. The amount of Rh-doped composite oxide supported per liter of support is 100 g.

−実施例2−
図4に示すように、実施例2は硫酸ランタンと硫酸イットリウムの仕込みが実施例1とは異なる。すなわち、共沈時の硫酸ランタンの仕込み量を50%とする一方、硫酸イットリウムの仕込み量を目標添加量全量(100%)としてRhZrLaY含有共沈ゲルを得た。そして、この共沈ゲルに対して硫酸ランタンの残量50%を添加するようにした。硝酸ロジウムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を目標添加量の65%とし、残量35%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープ複合酸化物を得た。得られたRhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして実施例2に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Example 2-
As shown in FIG. 4, Example 2 differs from Example 1 in the preparation of lanthanum sulfate and yttrium sulfate. That is, the amount of lanthanum sulfate charged during coprecipitation was set to 50%, while the amount of yttrium sulfate charged was set as the target total addition amount (100%) to obtain a RhZrLaY-containing coprecipitation gel. Then, 50% of the remaining amount of lanthanum sulfate was added to the coprecipitated gel. Regarding the preparation of rhodium nitrate, as in Example 1, the amount of charge during coprecipitation was set to 65% of the target addition amount, and the remaining amount of 35% was added to the coprecipitation gel. The others were the same as in Example 1 to obtain the target Rh-doped composite oxide. The composition of the obtained Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. This Rh-doped composite oxide was coated on the same honeycomb carrier as in Example 1 in the same manner to obtain a catalyst according to Example 2. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

実施例2においては、硫酸ランタンの一部(50%)を共沈ゲルに添加するようにしたから、得られるRhドープ複合酸化物は、Laが当該複合酸化物の内部よりも表面部に高濃度に存することになる。Rhに関しては実施例1と同じく当該複合酸化物の内部よりも表面部に高濃度に存することになる。   In Example 2, since a part (50%) of lanthanum sulfate was added to the coprecipitation gel, the resulting Rh-doped composite oxide had a higher La in the surface than in the composite oxide. It will be in the concentration. Rh is present in a higher concentration in the surface portion than in the complex oxide as in Example 1.

−実施例3−
実施例3は硝酸ロジウムの仕込みが実施例1と異なる。すなわち、硫酸イットリウムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を50%とし、残量50%を共沈ゲルに対して添加したが、硝酸ロジウムの仕込みに関しては、実施例1とは違って、共沈時の仕込み量を20%とし、残量80%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープZrLaY複合酸化物を得た。Rhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして実施例3に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
Example 3
Example 3 differs from Example 1 in the preparation of rhodium nitrate. That is, regarding the preparation of yttrium sulfate, the amount of preparation at the time of coprecipitation was set to 50% and the remaining amount of 50% was added to the coprecipitation gel as in Example 1. Unlike No. 1, the amount charged during coprecipitation was 20%, and the remaining amount of 80% was added to the coprecipitation gel. Other than that, the target Rh-doped ZrLaY composite oxide was obtained in the same manner as in Example 1. The composition of the Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. The catalyst according to Example 3 was obtained by coating this Rh-doped composite oxide on the same honeycomb carrier as in Example 1 by the same method. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

実施例3においても、実施例1と同じく、Y及びRhがRhドープ複合酸化物の内部よりも表面部に高濃度に存することになる。   In Example 3, as in Example 1, Y and Rh are present at a higher concentration in the surface portion than in the Rh-doped composite oxide.

−実施例4−
実施例4は硝酸ロジウムの仕込みが実施例2と異なる。すなわち、硫酸ランタンの仕込みに関しては、実施例2と同じく、共沈時の仕込み量を50%とし、残量50%を共沈ゲルに対して添加したが、硝酸ロジウムの仕込みに関しては、実施例2とは違って、共沈時の仕込み量を20%とし、残量80%を共沈ゲルに添加した。そして、他は実施例2と同様にして目的物であるRhドープZrLaY複合酸化物を得た。Rhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして実施例4に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
Example 4
Example 4 is different from Example 2 in the preparation of rhodium nitrate. That is, with respect to the preparation of lanthanum sulfate, as in Example 2, the preparation amount during coprecipitation was set to 50% and the remaining amount of 50% was added to the coprecipitation gel. Unlike No. 2, the amount charged during coprecipitation was 20%, and the remaining amount of 80% was added to the coprecipitation gel. The others were the same as in Example 2 to obtain the target Rh-doped ZrLaY composite oxide. The composition of the Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. The catalyst according to Example 4 was obtained by coating this Rh-doped composite oxide on the same honeycomb carrier as in Example 1 by the same method. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

実施例4においても、実施例2と同じく、La及びRhがRhドープ複合酸化物の内部よりも表面部に高濃度に存することになる。   Also in Example 4, as in Example 2, La and Rh are present in a higher concentration in the surface portion than in the Rh-doped composite oxide.

−比較例−
硫酸ランタン及び硫酸イットリウムの仕込みに関して、いずれも目標添加量の全量を共沈時に仕込み、共沈ゲルに対する硫酸ランタン及び硫酸イットリウムの添加量をゼロとした。硝酸ロジウムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を目標添加量の65%とし、残量35%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープZrLaY複合酸化物を得た。得られたRhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして比較例に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Comparative example-
Regarding the preparation of lanthanum sulfate and yttrium sulfate, all of the target addition amounts were charged at the time of coprecipitation, and the addition amounts of lanthanum sulfate and yttrium sulfate to the coprecipitation gel were set to zero. Regarding the preparation of rhodium nitrate, as in Example 1, the amount of charge during coprecipitation was set to 65% of the target addition amount, and the remaining amount of 35% was added to the coprecipitation gel. Other than that, the target Rh-doped ZrLaY composite oxide was obtained in the same manner as in Example 1. The composition of the obtained Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. This Rh-doped composite oxide was coated on the same honeycomb carrier as in Example 1 by the same method to obtain a catalyst according to a comparative example. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

比較例の場合は、硫酸ランタン及び硫酸イットリウムについては各々の全量を共沈時に仕込んだから、得られるRhドープ複合酸化物では、La及びYの濃度は複合酸化物全体にわたって略均等になっていると認められる。Rhに関しては実施例1と同じく当該複合酸化物の内部よりも表面部に高濃度に存することになる。   In the case of the comparative example, since all the amounts of lanthanum sulfate and yttrium sulfate are charged at the time of coprecipitation, in the obtained Rh-doped composite oxide, the concentrations of La and Y are substantially uniform throughout the composite oxide. Is recognized. Rh is present in a higher concentration in the surface portion than in the complex oxide as in Example 1.

<高温耐久性能>
実施例1〜4及び比較例の各触媒についてベンチエージングを行なった。このベンチエージングは、触媒をエンジンの排気管に取り付け、触媒ベッド温度が900℃となるようにエンジン回転数・負荷を設定し、当該エンジンの排気ガスに触媒を50時間晒すというものである。
<High temperature durability>
Bench aging was performed for each of the catalysts of Examples 1 to 4 and Comparative Example. In this bench aging, the catalyst is attached to the exhaust pipe of the engine, the engine speed / load is set so that the catalyst bed temperature is 900 ° C., and the catalyst is exposed to the exhaust gas of the engine for 50 hours.

上記ベンチエージング後、各触媒から担体容量約25mLのコアサンプルを切り出し、モデルガス流通反応装置に取り付けた。そして、触媒に流入するモデルガスの温度を常温から漸次上昇させていき、触媒を流出するガスのHC及びCO各々の濃度変化を検出した。この検出結果に基づいて、各触媒のHC、CO及びNOxに関する触媒入口ガス温度400℃での浄化率及びライトオフ温度を求めた。ライトオフ温度は、HC、CO及びNOx各成分の浄化率が50%に達したときの触媒入口ガス温度であり、触媒の低温活性の評価指標となる。   After the bench aging, a core sample having a carrier volume of about 25 mL was cut out from each catalyst and attached to a model gas flow reactor. Then, the temperature of the model gas flowing into the catalyst was gradually increased from room temperature, and changes in the concentrations of HC and CO in the gas flowing out of the catalyst were detected. Based on this detection result, the purification rate and light-off temperature at a catalyst inlet gas temperature of 400 ° C. for HC, CO and NOx of each catalyst were determined. The light-off temperature is the catalyst inlet gas temperature when the purification rate of each component of HC, CO, and NOx reaches 50%, and serves as an evaluation index for the low-temperature activity of the catalyst.

モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表1に示す。 The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min. Table 1 shows the gas composition when A / F = 14.7, A / F = 13.8, and A / F = 15.6.

Figure 2015098008
Figure 2015098008

実施例1,2及び比較例のライトオフ温度の結果を図5に示し、触媒入口ガス温度が400℃に達した時点のHC、CO及びNOx各成分の浄化率を図6に示す。   The results of the light-off temperatures of Examples 1 and 2 and the comparative example are shown in FIG. 5, and the purification rates of the HC, CO, and NOx components when the catalyst inlet gas temperature reaches 400 ° C. are shown in FIG.

図5によれば、HC、CO及びNOxのいずれおいても、実施例1,2は比較例よりもライトオフ温度が低く、図6によれば、HC400℃浄化率は、実施例1,2は比較例とほぼ同等であるが、CO及びNOxの400℃浄化率は、実施例1,2が比較例よりも高い。この結果から、実施例1,2のように硫酸ランタン又は硫酸イットリウムの一部を共沈ゲルに添加して複合酸化物の表面部のLa又はYの濃度を高くすると、触媒の高温耐久性やライトオフ性能が高くなることがわかる。   According to FIG. 5, in any of HC, CO, and NOx, the light off temperature is lower in Examples 1 and 2 than in the comparative example, and according to FIG. Is substantially equivalent to the comparative example, but the 400 ° C. purification rate of CO and NOx is higher in Examples 1 and 2 than in the Comparative Example. From this result, when the La or Y concentration of the surface portion of the composite oxide is increased by adding a part of lanthanum sulfate or yttrium sulfate to the coprecipitation gel as in Examples 1 and 2, the high temperature durability of the catalyst and It turns out that light-off performance becomes high.

また、実施例1と実施例2の比較から、複合酸化物の表面部のY濃度を高くしたときはライトオフ温度が低くなり、つまり、触媒の低温活性の向上に有利になり、複合酸化物の表面部のLa濃度を高くしたときは触媒の高温活性の向上に有利になることがわかる。   Further, from the comparison between Example 1 and Example 2, when the Y concentration of the surface portion of the composite oxide is increased, the light-off temperature is lowered, that is, it is advantageous for improving the low-temperature activity of the catalyst. It can be seen that increasing the La concentration in the surface portion of the catalyst is advantageous for improving the high-temperature activity of the catalyst.

実施例3,4及び比較例のライトオフ温度の結果を図7に示し、触媒入口ガス温度が400℃に達した時点のHC、CO及びNOx各成分の浄化率を図8に示す。   The results of the light-off temperatures of Examples 3 and 4 and the comparative example are shown in FIG. 7, and the purification rates of the HC, CO, and NOx components when the catalyst inlet gas temperature reaches 400 ° C. are shown in FIG.

図7及び図8によれば、HC、CO及びNOxのいずれおいても、実施例3,4は比較例よりもライトオフ温度が低く、400℃浄化率も高く、硝酸ロジウムの共沈ゲルへの添加量を多くして複合酸化物表面部にRh濃度を高めた場合も、実施例1,2と同じく高温耐久性が高くなることがわかる。   According to FIGS. 7 and 8, in any of HC, CO, and NOx, Examples 3 and 4 have a lower light-off temperature than that of the comparative example, a higher 400 ° C. purification rate, and a coprecipitation gel of rhodium nitrate. It can be seen that even when the Rh concentration is increased on the surface of the composite oxide by increasing the amount of addition, the high-temperature durability is increased as in Examples 1 and 2.

<加熱還元処理の影響>
−実施例5−
実施例1のRhドープ複合酸化物にCOによる加熱還元処理を施した後、これを実施例1と同様のハニカム担体に同様の方法でコーティングして実施例5に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。加熱還元処理は、Rhドープ複合酸化物をCO濃度1%(残N)、温度600℃の還元性雰囲気に60分間おくというものである。なお、COに代えてHを用いた還元性雰囲気を採用してもよい。
<Influence of heat reduction treatment>
-Example 5
The Rh-doped composite oxide of Example 1 was subjected to a heat reduction treatment with CO, and then this was coated on the same honeycomb carrier as in Example 1 by the same method to obtain a catalyst according to Example 5. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1. In the heat reduction treatment, the Rh-doped composite oxide is placed in a reducing atmosphere having a CO concentration of 1% (remaining N 2 ) and a temperature of 600 ° C. for 60 minutes. Note that a reducing atmosphere using H 2 instead of CO may be employed.

−実施例6−
実施例2のRhドープ複合酸化物に実施例5と同様の加熱還元処理を施した後、これを実施例1と同様のハニカム担体に同様の方法でコーティングして実施例5に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Example 6
The Rh-doped composite oxide of Example 2 was subjected to the same heat reduction treatment as in Example 5 and then coated on the same honeycomb carrier as in Example 1 in the same manner to obtain the catalyst according to Example 5. It was. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

[NOx浄化性能]
実施例5,6の各触媒について、<高温耐久性能>の項で説明した方法でベンチエージングを行なった後、同様の方法で、触媒入口ガス温度400℃におけるNOx浄化率を測定した。その結果を先の実施例1,2及び比較例と共に図9に示す。実施例5,6は対応する実施例1,2よりもNOx浄化率が高くなっており、加熱還元処理によって触媒のNOx浄化性能が向上することがわかる。
[NOx purification performance]
About each catalyst of Examples 5 and 6, after performing bench aging by the method described in the section of <High Temperature Durability>, the NOx purification rate at a catalyst inlet gas temperature of 400 ° C. was measured by the same method. The results are shown in FIG. 9 together with the previous Examples 1 and 2 and the comparative example. In Examples 5 and 6, the NOx purification rate is higher than in corresponding Examples 1 and 2, and it can be seen that the NOx purification performance of the catalyst is improved by the heat reduction treatment.

−実施例7−
図10に示すように、共沈時の硫酸イットリウムの仕込み量を目標添加量全量(100%)とする一方、共沈時の硫酸ランタンの仕込み量をゼロとしてRhZrY含有共沈ゲルを得た。そして、この共沈ゲルに対して硫酸ランタンの目標添加量全量(100%)を添加するようにした。硝酸ロジウムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を目標添加量の65%とし、残量35%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープ複合酸化物を得た。得られたRhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物に実施例5と同様の加熱還元処理を施した後、これを実施例1と同様のハニカム担体に同様の方法でコーティングして実施例7に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Example 7-
As shown in FIG. 10, the amount of yttrium sulfate charged during coprecipitation was set to the total target addition amount (100%), while the amount of lanthanum sulfate charged during coprecipitation was zero to obtain a RhZrY-containing coprecipitated gel. And the target addition amount whole quantity (100%) of lanthanum sulfate was added with respect to this coprecipitation gel. Regarding the preparation of rhodium nitrate, as in Example 1, the amount of charge during coprecipitation was set to 65% of the target addition amount, and the remaining amount of 35% was added to the coprecipitation gel. The others were the same as in Example 1 to obtain the target Rh-doped composite oxide. The composition of the obtained Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. This Rh-doped composite oxide was subjected to the same heat reduction treatment as in Example 5, and then coated on the same honeycomb carrier as in Example 1 by the same method to obtain a catalyst according to Example 7. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

実施例7においては、硫酸ランタンの全量を共沈ゲルに添加するようにしたから、得られるRhドープ複合酸化物は、Laが当該複合酸化物の表面部に高濃度に存在し、内部には実質的に存在しないことになる。Rhに関しては実施例1と同じく当該複合酸化物の内部よりも表面部に高濃度に存することになる。   In Example 7, since the entire amount of lanthanum sulfate was added to the coprecipitation gel, the resulting Rh-doped composite oxide had La at a high concentration on the surface of the composite oxide, It will be virtually nonexistent. Rh is present in a higher concentration in the surface portion than in the complex oxide as in Example 1.

[ライトオフ温度]
実施例7の触媒について、<高温耐久性能>の項で説明した方法でベンチエージングを行なった後、同様の方法で、HC、CO及びNOxの浄化に関するライトオフ温度を測定した。その結果を先の比較例と共に表2に示す。
[Light-off temperature]
The catalyst of Example 7 was bench-aged by the method described in the section <High Temperature Durability>, and then the light-off temperature related to the purification of HC, CO, and NOx was measured by the same method. The results are shown in Table 2 together with the previous comparative example.

Figure 2015098008
Figure 2015098008

実施例7は、HC、CO及びNOxのいずれに関してもライトオフ温度が比較例より低くなっており、触媒の高温耐久性が高くなっていることがわかる。   In Example 7, the light-off temperature for all of HC, CO, and NOx is lower than that of the comparative example, indicating that the high-temperature durability of the catalyst is high.

1 Rhドープ複合酸化物粒子
2 酸素
1 Rh-doped composite oxide particles 2 Oxygen

Claims (4)

Ce以外の希土類金属とZrとを含有し、Ceを含有せず、さらにRhが設けられている複合酸化物よりなる排気ガス浄化用触媒材であって、
上記希土類金属として少なくともLa及びYを含み、
上記La及びYの少なくとも一方が上記複合酸化物の内部よりも表面部に高濃度に存することを特徴とする排気ガス浄化用触媒材。
A catalyst material for exhaust gas purification comprising a rare earth metal other than Ce and Zr, not containing Ce, and further comprising a composite oxide provided with Rh,
Including at least La and Y as the rare earth metal,
An exhaust gas purifying catalyst material, wherein at least one of La and Y is present at a higher concentration in the surface portion than in the composite oxide.
請求項1において、
上記複合酸化物が加熱還元処理されていることを特徴とする排気ガス浄化用触媒材。
In claim 1,
An exhaust gas purifying catalyst material, wherein the composite oxide is subjected to a heat reduction treatment.
請求項1に記載された排気ガス浄化用触媒材の製造方法であって、
Zr、La、Y及びRhの各イオンを含みCeを含まない酸性溶液に塩基性溶液を添加してZr、La、Y及びRhを共沈させることにより、RhZrLaY含有共沈ゲルを生成し、
上記RhZrLaY含有共沈ゲルに、塩基性溶液を添加した後に、La又はYとRhの各イオンを含む酸性溶液を添加して混合することにより、上記RhZrLaY含有共沈ゲル上にLa又はYの水酸化物とRh水酸化物を析出沈殿させ、しかる後に焼成することを特徴とする排気ガス浄化用触媒材の製造方法。
A method for producing an exhaust gas purifying catalyst material according to claim 1,
A basic solution is added to an acidic solution containing each ion of Zr, La, Y, and Rh and not containing Ce to coprecipitate Zr, La, Y, and Rh, thereby generating a coprecipitation gel containing RhZrLaY,
After adding a basic solution to the RhZrLaY-containing coprecipitation gel, an acidic solution containing each ion of La or Y and Rh is added and mixed, whereby La or Y water is added onto the RhZrLaY-containing coprecipitation gel. A method for producing a catalyst material for purifying exhaust gas, characterized by depositing and precipitating an oxide and an Rh hydroxide and then firing the precipitate.
請求項3において、
上記焼成後に還元雰囲気で加熱することを特徴とする排気ガス浄化用触媒の製造方法。
In claim 3,
A method for producing an exhaust gas purifying catalyst, comprising heating in a reducing atmosphere after the firing.
JP2013240161A 2013-11-20 2013-11-20 Exhaust gas purification catalyst material and method for producing the same Expired - Fee Related JP6206116B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013240161A JP6206116B2 (en) 2013-11-20 2013-11-20 Exhaust gas purification catalyst material and method for producing the same
PCT/JP2014/005508 WO2015075875A1 (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing same
US15/022,956 US20160228853A1 (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing same
DE112014005291.4T DE112014005291T5 (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing the same
CN201480051298.7A CN105658328A (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240161A JP6206116B2 (en) 2013-11-20 2013-11-20 Exhaust gas purification catalyst material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015098008A true JP2015098008A (en) 2015-05-28
JP6206116B2 JP6206116B2 (en) 2017-10-04

Family

ID=53375014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240161A Expired - Fee Related JP6206116B2 (en) 2013-11-20 2013-11-20 Exhaust gas purification catalyst material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6206116B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2004174490A (en) * 2002-11-14 2004-06-24 Mazda Motor Corp Catalyst material and method for manufacturing the same
JP2012096158A (en) * 2010-11-01 2012-05-24 Mazda Motor Corp Exhaust gas purification catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2004174490A (en) * 2002-11-14 2004-06-24 Mazda Motor Corp Catalyst material and method for manufacturing the same
JP2012096158A (en) * 2010-11-01 2012-05-24 Mazda Motor Corp Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP6206116B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
WO2015075875A1 (en) Catalyst material for exhaust gas purification and method for producing same
JP4959129B2 (en) Exhaust gas purification catalyst
WO2007111004A1 (en) Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas
JP2012086199A (en) Exhaust purifying catalyst
WO2016163488A1 (en) Purification catalyst for internal combustion engine exhaust gases and exhaust gas purification method using said catalyst
EP1722889A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JP2021507804A (en) Exhaust gas purification catalyst
JP5488214B2 (en) Exhaust gas purification catalyst
JP2006055836A (en) Inorganic oxide, catalyst carrier for purifying exhaust, and catalyst for purifying exhaust
JP2007289920A (en) Exhaust-gas cleaning catalyst, its regeneration method, exhaust-gas cleaning apparatus and exhaust-gas cleaning method using it
JP5777690B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007185588A (en) Catalyst for exhaust gas purification
JP6146436B2 (en) Exhaust gas purification catalyst
JP2007069076A (en) Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst
JP6598972B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5488215B2 (en) Exhaust gas purification catalyst
JP5531567B2 (en) Exhaust gas purification catalyst
JP6206115B2 (en) Method for producing exhaust gas purification catalyst material
JP2006298759A (en) Catalyst for use in purification of exhaust gas
JP6206116B2 (en) Exhaust gas purification catalyst material and method for producing the same
JP2012245452A (en) Exhaust gas purification catalyst and production method thereof
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP4577408B2 (en) Exhaust gas purification catalyst
JP6611623B2 (en) Exhaust gas purification catalyst
JP2012179573A (en) Catalyst for purifying exhaust gas, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees