JP6206115B2 - Method for producing exhaust gas purification catalyst material - Google Patents

Method for producing exhaust gas purification catalyst material Download PDF

Info

Publication number
JP6206115B2
JP6206115B2 JP2013240160A JP2013240160A JP6206115B2 JP 6206115 B2 JP6206115 B2 JP 6206115B2 JP 2013240160 A JP2013240160 A JP 2013240160A JP 2013240160 A JP2013240160 A JP 2013240160A JP 6206115 B2 JP6206115 B2 JP 6206115B2
Authority
JP
Japan
Prior art keywords
composite oxide
catalyst
exhaust gas
added
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013240160A
Other languages
Japanese (ja)
Other versions
JP2015098007A (en
Inventor
益寛 松村
益寛 松村
重津 雅彦
雅彦 重津
久也 川端
久也 川端
由紀 村上
由紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2013240160A priority Critical patent/JP6206115B2/en
Priority to PCT/JP2014/005508 priority patent/WO2015075875A1/en
Priority to CN201480051298.7A priority patent/CN105658328A/en
Priority to US15/022,956 priority patent/US20160228853A1/en
Priority to DE112014005291.4T priority patent/DE112014005291T5/en
Publication of JP2015098007A publication Critical patent/JP2015098007A/en
Application granted granted Critical
Publication of JP6206115B2 publication Critical patent/JP6206115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は排気ガス浄化用触媒材の製造方法に関する。 The present invention relates to a method for producing an exhaust gas purifying catalyst material .

自動車の排気ガス浄化用触媒として知られている三元触媒には、従来よりRhを複合酸化物に担持してなる触媒材が利用されている。しかし、触媒が長期にわたって高温の排気ガスに晒されると、Rhが凝集してシンタリングし、触媒活性が低下するおそれがある。   As a three-way catalyst known as an automobile exhaust gas purification catalyst, a catalyst material in which Rh is supported on a composite oxide has been conventionally used. However, when the catalyst is exposed to high-temperature exhaust gas for a long period of time, Rh aggregates and sinters, which may reduce the catalytic activity.

この問題に対策する排気ガス浄化用触媒材として、特許文献1には、Nd・Al・Ce・Zr・La無機混合酸化物からなる担体にRhを担持させてなる触媒が記載されている。   As an exhaust gas purifying catalyst material for dealing with this problem, Patent Document 1 describes a catalyst in which Rh is supported on a carrier made of an Nd / Al / Ce / Zr / La inorganic mixed oxide.

その製法は特許文献1によれば概ね次のとおりである。硝酸アルミニウム、硝酸セリウム、オキシ硝酸ジルコニウム、硝酸ランタンを純水に溶解してなる溶液をアンモニア水に滴下し、得られた沈殿物を乾燥、焼成することにより、La添加CeO−ZrOからなる第1粒子とLa添加Alからなる第2粒子が混合、凝集した二次粒子の粉末を得る。この粉末を水溶化した硝酸ネオジムと混合、攪拌し、乾燥、焼成することにより、第1粒子及び第2粒子の表面層にNdが偏析された粉末状の無機混合酸化物を得る。この無機混合酸化物を硝酸ロジウム水溶液に浸漬し、焼成することにより、当該触媒を得る。 According to Patent Document 1, the manufacturing method is generally as follows. A solution obtained by dissolving aluminum nitrate, cerium nitrate, zirconium oxynitrate, and lanthanum nitrate in pure water is dropped into ammonia water, and the resulting precipitate is dried and fired to form La-added CeO 2 —ZrO 2. A powder of secondary particles in which the first particles and the second particles made of La-added Al 2 O 3 are mixed and aggregated is obtained. This powder is mixed with water-solubilized neodymium nitrate, stirred, dried, and fired to obtain a powdered inorganic mixed oxide in which Nd is segregated on the surface layers of the first particles and the second particles. The inorganic mixed oxide is immersed in an aqueous rhodium nitrate solution and fired to obtain the catalyst.

特許文献2には、貴金属が酸化物担体に担持された触媒であって、酸化雰囲気下において、貴金属が高酸化状態で担体の表面上に存在し、且つ担体表面の酸素を介して担体の陽イオンと結合してなる表面酸化物層を有し、還元雰囲気下において、貴金属が金属状態で担体の表面上に存在し、且つ担体の表面に露出している貴金属の量の割合が担体に担持された貴金属の全量に対して原子比率で10%以上であることが記載されている。   Patent Document 2 discloses a catalyst in which a noble metal is supported on an oxide carrier, the noble metal is present in a highly oxidized state on the surface of the carrier in an oxidizing atmosphere, and the carrier is positively bonded via oxygen on the surface of the carrier. It has a surface oxide layer combined with ions, and in a reducing atmosphere, the precious metal is present on the surface of the support in a metallic state, and the amount of the precious metal exposed on the surface of the support is supported on the support. It is described that the atomic ratio is 10% or more with respect to the total amount of the precious metal formed.

また、特許文献2には、上記酸化物担体の例として、CeO−ZrO−Y、ZrO−La、CeO−ZrO、CeO−ZrO−La−Prの各複合酸化物が記載され、触媒の製法として、複合酸化物をイオン交換水中で攪拌し、そこに硝酸ネオジムを加えてなる混合溶液を蒸発乾固させ、更に乾燥、焼成した後、硝酸ロジウム水溶液に浸漬し、濾過、洗浄した後に、乾燥、焼成して触媒を得ることが記載されている。 Patent Document 2 discloses, as examples of the oxide support, CeO 2 —ZrO 2 —Y 2 O 3 , ZrO 2 —La 2 O 3 , CeO 2 —ZrO 2 , CeO 2 —ZrO 2 —La 2 O. Each composite oxide of 3- Pr 2 O 3 is described, and as a catalyst production method, the composite oxide is stirred in ion-exchanged water, and a mixed solution obtained by adding neodymium nitrate thereto is evaporated to dryness, and further dried. It is described that after calcination, the catalyst is obtained by immersing in an aqueous rhodium nitrate solution, filtering and washing, and then drying and calcination.

特開2011−136319号公報JP 2011-136319 A 特開2007−289920号公報JP 2007-289920 A

特許文献1,2には、要するにCeZr系複合酸化物の表面にNdを担持した後、更にRhを担持することにより、NdによってRhの移動を抑制することが記載され、特許文献2には更に還元処理によってRhを金属状態にすることが記載されている。   Patent Documents 1 and 2 describe that Nd is supported on the surface of a CeZr-based composite oxide and then further Rh is supported so that the movement of Rh is suppressed by Nd. It describes that Rh is made into a metal state by reduction treatment.

本発明は、特許文献1,2とは違って、CeZr系複合酸化物にRhがドープ(RhがCe及びZrと共に複合酸化物を構成し、該複合酸化物の結晶格子点又は格子点間にRhが配置)されているRhドープ複合酸化物を対象とする。このRhドープ複合酸化物の場合、一部のRhが当該複合酸化物表面に露出し、排気ガスの浄化に働く。しかし、複合酸化物表面に露出しているRh量は少ないことから、このRhが高温の排気ガスに晒されてシンタリングすると、触媒の活性低下が大きくなる。   In the present invention, unlike Patent Documents 1 and 2, Rh is doped in a CeZr-based composite oxide (Rh constitutes a composite oxide together with Ce and Zr, and the composite oxide has crystal lattice points or between lattice points. Rh-doped composite oxide in which Rh is arranged) is an object. In the case of this Rh-doped composite oxide, a part of Rh is exposed on the surface of the composite oxide and works to purify the exhaust gas. However, since the amount of Rh exposed on the surface of the composite oxide is small, when this Rh is exposed to high-temperature exhaust gas and sintered, the catalyst activity decreases greatly.

そこで、本発明は、上記Rhドープ複合酸化物よりなる排気ガス浄化用触媒材の活性向上を図りながら、その高温耐久性を高めることを課題とする。   Then, this invention makes it a subject to improve the high temperature durability, aiming at the activity improvement of the catalyst material for exhaust gas purification which consists of said Rh dope complex oxide.

本発明は、上記課題を解決するために、RhドープCeZrNd系複合酸化物において、Ndを当該複合酸化物の表面部に濃化させるようにした。   In the present invention, in order to solve the above problems, in the Rh-doped CeZrNd-based composite oxide, Nd is concentrated on the surface portion of the composite oxide.

すなわち、本発明に係る排気ガス浄化用触媒材の製造方法は、Ce、Zr、及びCe以外の希土類金属を含有し且つRhがドープされているRhドープ複合酸化物よりなり、上記希土類金属として少なくともNdを含み、上記Ndが上記複合酸化物の内部よりも表面部に高濃度に存する排気ガス浄化用触媒材の製造方法であり、
Ce、Zr及びRhの各イオンを含む酸性溶液に塩基性溶液を添加してCe、Zr及びRhを共沈させることにより、RhCeZr含有共沈ゲルを生成し、
上記RhCeZr含有共沈ゲルに、塩基性溶液を添加した後に、Rh及びNdの各イオンを含む酸性溶液を添加して混合することにより、上記RhCeZr含有共沈ゲル上にRh水酸化物及びNd水酸化物を析出沈殿させ、しかる後に焼成することを特徴とする。
That is, the method for producing an exhaust gas purifying catalyst material according to the present invention comprises an Rh-doped composite oxide containing a rare earth metal other than Ce, Zr, and Ce and doped with Rh, and at least as the rare earth metal. A method for producing an exhaust gas purifying catalyst material containing Nd, wherein the Nd is present at a higher concentration in the surface portion than in the composite oxide ;
A basic solution is added to an acidic solution containing Ce, Zr, and Rh ions to coprecipitate Ce, Zr, and Rh, thereby producing a RhCeZr-containing coprecipitation gel.
After adding a basic solution to the RhCeZr-containing coprecipitation gel, an acidic solution containing each ion of Rh and Nd is added and mixed, whereby Rh hydroxide and Nd water are added onto the RhCeZr-containing coprecipitation gel. The oxide is precipitated and precipitated, and then fired.

ここに、上記共沈ゲルを生成するための酸性溶液はNdイオンを含むものであってもよい。   Here, the acidic solution for generating the coprecipitated gel may contain Nd ions.

上記製造方法により、Ce、Zr、Nd及びRhを含み、しかも、NdがRhと共に当該複合酸化物の表面部に高濃度に存するRhドープ複合酸化物が得られ、触媒の活性向上及び高温耐久性の向上に有利になる。   By the above production method, an Rh-doped composite oxide containing Ce, Zr, Nd, and Rh and having Nd in a high concentration on the surface of the composite oxide together with Rh is obtained, and the activity of the catalyst is improved and the high temperature durability is obtained. It becomes advantageous for improvement.

ここに、Ndが複合酸化物の内部よりも表面部に高濃度に存するとは、Ndが複合酸化物の表面部に存在し、該複合酸化物の内部にはNdが実質的に存在しないケースを含む。また、上記複合酸化物は、上記希土類金属として、さらにLa及びYを含むことができる。  Here, Nd is present at a higher concentration in the surface portion than in the complex oxide. Nd is present in the surface portion of the complex oxide, and Nd is not substantially present in the complex oxide. including. The complex oxide may further contain La and Y as the rare earth metal.

このような触媒であれば、当該複合酸化物にドープされているRhが、その複合酸化物の表面部において高濃度に存在するNdにより強く固定化されて分散した状態になるから、触媒の活性が高くなるとともに、触媒の高温耐久性が高くなり、高温の排気ガスに晒される使用状態が続いたときに、触媒の活性が大きく低下することが避けられる。  In such a catalyst, Rh doped in the composite oxide is strongly fixed and dispersed by Nd present at a high concentration in the surface portion of the composite oxide. And the high-temperature durability of the catalyst is increased, and it is avoided that the activity of the catalyst is greatly reduced when the catalyst is used in a state where it is exposed to high-temperature exhaust gas.

上記RhCeZr含有共沈ゲルを生成する工程では、Ce、Zr、Nd、La、Y及びRhの各イオンを含む酸性溶液に塩基性溶液を添加してCe、Zr、Nd、La、Y及びRhを共沈させるようにしてもよい。In the step of generating the RhCeZr-containing coprecipitation gel, a basic solution is added to an acidic solution containing Ce, Zr, Nd, La, Y, and Rh ions, and Ce, Zr, Nd, La, Y, and Rh are added. You may make it co-precipitate.

好ましいのは、上記焼成後に還元雰囲気で加熱することであり、これにより、Rhのメタル化(金属状態になる)が進み触媒の活性が高くなる。また、当該加熱還元処理により、当該複合酸化物に埋没しているRhの複合酸化物表面部への析出が進み、該複合酸化物表面部にRhをNdによって強く固定した状態で分散させることができると考えられ、触媒の活性向上及び高温耐久性の向上に有利になる。   Preference is given to heating in a reducing atmosphere after the calcination, whereby the Rh metallization (into a metallic state) proceeds and the activity of the catalyst increases. Further, by the heat reduction treatment, precipitation of Rh embedded in the composite oxide on the surface of the composite oxide proceeds, and Rh is strongly dispersed on the surface of the composite oxide with Nd. This is considered to be possible, and is advantageous for improving the activity of the catalyst and improving the high-temperature durability.

本発明に係る排気ガス浄化用触媒材の製造方法によれば、Ce、Zr及びRhを含む酸性溶液に塩基性溶液を添加してCe、Zr及びRhを共沈させることにより、RhCeZr含有共沈ゲルを生成し、この共沈ゲルに、塩基性溶液を添加した後に、Rh及びNdを含む酸性溶液を添加して混合することにより、上記共沈ゲル上にRh水酸化物及びNd水酸化物を析出沈殿させ、しかる後に焼成するから、Ce、Zr、Nd及びRhを含み、しかも、NdがRhと共に当該複合酸化物の表面部に高濃度に存するRhドープ複合酸化物が得られ、触媒の活性向上及び高温耐久性の向上に有利になる。 According to the method for producing an exhaust gas purifying catalyst material according to the present invention, a basic solution is added to an acidic solution containing Ce, Zr and Rh to co-precipitate Ce, Zr and Rh, thereby co-precipitation containing RhCeZr. A gel is formed, and after adding a basic solution to the co-precipitated gel, an acidic solution containing Rh and Nd is added and mixed to form a Rh hydroxide and Nd hydroxide on the co-precipitated gel. Rd-doped composite oxide containing Ce, Zr, Nd and Rh, and Nd together with Rh at a high concentration on the surface of the composite oxide is obtained. It is advantageous for improving activity and durability at high temperature.

本発明の実施形態に係るRhドープ複合酸化物を模式的に示す図である。It is a figure which shows typically the Rh dope complex oxide which concerns on embodiment of this invention. Rhが酸素を介して複合酸化物のNdに結合している状態を模式的に示す図である。It is a figure which shows typically the state which Rh couple | bonded with Nd of complex oxide through oxygen. 実施例1に係るRhドープ複合酸化物の製造工程を示すブロック図である。6 is a block diagram illustrating a manufacturing process of an Rh-doped composite oxide according to Example 1. FIG. 実施例1,2及び比較例各々のRhドープ複合酸化物の比表面積及びRh表面分散度を示すグラフ図である。It is a graph which shows the specific surface area and Rh surface dispersion degree of Rh dope complex oxide of Example 1, 2 and each comparative example. 実施例1,2及び比較例のライトオフ温度を示すグラフ図である。It is a graph which shows the light-off temperature of Examples 1, 2 and a comparative example. 実施例1,2及び比較例の高温浄化率を示すグラフ図である。It is a graph which shows the high temperature purification rate of Examples 1, 2 and a comparative example. 実施例1,2及び比較例の触媒入口ガス温度とHC浄化率の関係を示すグラフ図である。It is a graph which shows the relationship between the catalyst inlet gas temperature of Examples 1, 2, and a comparative example, and HC purification | cleaning rate. 実施例1,3及び比較例のライトオフ温度を示すグラフ図である。It is a graph which shows the light-off temperature of Example 1, 3 and a comparative example. 実施例1,2,4,5及び比較例のライトオフ温度を示すグラフ図である。It is a graph which shows the light-off temperature of Example 1, 2, 4, 5 and a comparative example.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

<排気ガス浄化用触媒材の構成>
本発明に係る排気ガス浄化用触媒材は、自動車の排気ガスを浄化することに適した触媒材であり、図1に模式的に示すRhドープ複合酸化物粒子1よりなる。このRhドープ複合酸化物粒子1は、Ce、Zr、及びCe以外の希土類金属として少なくともNdを含む複合酸化物にRhがドープされてなる。Ndは当該複合酸化物を構成するNdとして存在し、且つ粒子1の表面部のNd濃度が粒子内部よりも高くなっている。Rhは当該複合酸化物の結晶格子点又は格子点間に配置され、一部のRhは粒子1の表面に露出しており、粒子1の表面部のRh濃度が粒子内部よりも高くなっている。図2に示すように、粒子1の表面に露出したRhは、当該複合酸化物を構成する表面部のNdのNdに酸素2を介して強く結合している。
<Configuration of exhaust gas purification catalyst material>
The exhaust gas purifying catalyst material according to the present invention is a catalyst material suitable for purifying automobile exhaust gas, and is composed of Rh-doped composite oxide particles 1 schematically shown in FIG. The Rh-doped composite oxide particle 1 is formed by doping Rh with a composite oxide containing at least Nd as a rare earth metal other than Ce, Zr, and Ce. Nd exists as Nd 2 O 3 constituting the complex oxide, and the Nd concentration in the surface portion of the particle 1 is higher than that in the particle. Rh is arranged between crystal lattice points or between lattice points of the complex oxide, a part of Rh is exposed on the surface of the particle 1, and the Rh concentration in the surface portion of the particle 1 is higher than that in the particle. . As shown in FIG. 2, Rh exposed on the surface of the particles 1 is strongly bonded to Nd of Nd 2 O 3 on the surface portion constituting the composite oxide via oxygen 2.

<排気ガス浄化用触媒の実施例及び比較例>
−実施例1−
図3に示すように、硫酸セリウム、硫酸ネオジム、硫酸ランタン及び硫酸イットリウムを混合した水溶液とオキシ硝酸ジルコニル水溶液を混合し、これにさらに硝酸ロジウム水溶液を添加した。ここでの硫酸ネオジム水溶液の仕込み量は目標添加量(Rhドープ複合酸化物の構成のために予定する全量)の50%(「%」は「質量%」を意味する。以下、同じ。)となるようにした。また、ここでの硝酸ロジウム水溶液の仕込み量は目標添加量の65%とした。
<Examples and comparative examples of exhaust gas purifying catalysts>
Example 1
As shown in FIG. 3, an aqueous solution in which cerium sulfate, neodymium sulfate, lanthanum sulfate, and yttrium sulfate were mixed and an aqueous zirconyl oxynitrate solution were mixed, and an aqueous rhodium nitrate solution was further added thereto. Here, the charged amount of the aqueous neodymium sulfate solution is 50% of the target addition amount (the total amount planned for the configuration of the Rh-doped composite oxide) (“%” means “mass%”. The same applies hereinafter). It was made to become. Further, the amount of the rhodium nitrate aqueous solution charged here was 65% of the target addition amount.

得られたCe、Zr、Nd、La、Y及びRhの混合溶液(酸性)に塩基性溶液(アンモニア水)を添加することにより、Ce、Zr、Nd、La、Y及びRhを共沈させた。得られたRhCeZrNdLaY含有共沈ゲルに塩基性溶液を添加してpHを11程度にした後、硫酸ネオジム水溶液の残量(50%)及び硝酸ロジウム水溶液の残量(35%)を添加して混合した。これにより、上記共沈ゲルの粒子上にRh水酸化物及びNd水酸化物を析出沈殿させた。得られた沈殿物全体を水洗し、大気中において150℃で一昼夜乾燥させ、乾燥物を粉砕した後、大気中において520℃で2時間の焼成を行なうことにより、目的物であるRhドープ複合酸化物(RhドープCeZrNdLaY複合酸化物)を得た。   Ce, Zr, Nd, La, Y, and Rh were coprecipitated by adding a basic solution (aqueous ammonia) to the obtained mixed solution (acidic) of Ce, Zr, Nd, La, Y, and Rh. . After adding a basic solution to the obtained RhCeZrNdLaY-containing coprecipitation gel to adjust the pH to about 11, add the remaining amount of neodymium sulfate aqueous solution (50%) and the remaining amount of rhodium nitrate aqueous solution (35%) and mix did. Thereby, Rh hydroxide and Nd hydroxide were deposited on the particles of the coprecipitated gel. The entire precipitate obtained was washed with water, dried overnight at 150 ° C. in the atmosphere, and the dried product was pulverized and then baked at 520 ° C. for 2 hours in the atmosphere to obtain the target Rh-doped composite oxidation. (Rh-doped CeZrNdLaY composite oxide) was obtained.

Rhドープ複合酸化物のRhを除く組成は、CeO:ZrO:Nd:La:Y=10:75:5:5:5(質量比)である。Rhドープ量は総量でCeZrNdLaY複合酸化物の1質量%である。 The composition excluding Rh of the Rh-doped composite oxide is CeO 2 : ZrO 2 : Nd 2 O 3 : La 2 O 3 : Y 2 O 3 = 10: 75: 5: 5: 5 (mass ratio). The total amount of Rh doping is 1% by mass of the CeZrNdLaY composite oxide.

上記Rhドープ複合酸化物の調製方法の特徴は、共沈時の硫酸ネオジム及び硝酸ロジウム各々の仕込み量を50%、65%とし、それぞれの残量を共沈ゲルに対して添加した点にある。   The feature of the method for preparing the Rh-doped composite oxide is that the amounts of neodymium sulfate and rhodium nitrate at the time of coprecipitation are 50% and 65%, and the respective remaining amounts are added to the coprecipitation gel. .

硫酸ネオジムの一部(50%)を共沈ゲルに添加するようにしたから、得られるRhドープ複合酸化物は、Ndが当該複合酸化物の内部よりも表面部に高濃度に存することになる。硝酸ロジウムの一部(35%)を共沈ゲルに添加するようにしたから、得られるRhドープ複合酸化物は、Rhが当該複合酸化物の内部よりも表面部に高濃度に存することになる。   Since a part (50%) of neodymium sulfate is added to the coprecipitation gel, the resulting Rh-doped composite oxide has a higher concentration of Nd in the surface than in the composite oxide. . Since a part (35%) of rhodium nitrate was added to the coprecipitation gel, the resulting Rh-doped composite oxide had a higher concentration of Rh in the surface portion than in the composite oxide. .

そうして、上記Rhドープ複合酸化物をバインダ及び水と混合してスラリーを形成し、このスラリーをハニカム担体にコーティングした。そして、大気中において500℃で2時間の焼成を行なうことによって、実施例1に係る触媒を得た。担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製ハニカム担体(容量100mL)を用いた。担体1L当たりのRhドープ複合酸化物の担持量は100gである。 Then, the Rh-doped composite oxide was mixed with a binder and water to form a slurry, and this slurry was coated on the honeycomb carrier. And the catalyst which concerns on Example 1 was obtained by baking for 2 hours at 500 degreeC in air | atmosphere. As the carrier, a cordierite honeycomb carrier (capacity: 100 mL) having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) was used. The amount of Rh-doped composite oxide supported per liter of support is 100 g.

−実施例2−
硫酸ネオジムの仕込みに関し、実施例1とは違って、共沈時の仕込み量を0%としてRhCeZrLaY含有共沈ゲルを得た後、この共沈ゲルに対して硫酸ネオジムの目標添加量全量(100%)を添加するようにした。一方、硝酸ロジウムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を目標添加量の65%とし、残量35%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープ複合酸化物を得た。得られたRhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして実施例2に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Example 2-
Regarding the preparation of neodymium sulfate, unlike in Example 1, after obtaining a RhCeZrLaY-containing coprecipitation gel with the amount of preparation at the time of coprecipitation being 0%, the total target addition amount of neodymium sulfate (100 %) Was added. On the other hand, regarding the preparation of rhodium nitrate, as in Example 1, the preparation amount during coprecipitation was set to 65% of the target addition amount, and the remaining amount of 35% was added to the coprecipitation gel. The others were the same as in Example 1 to obtain the target Rh-doped composite oxide. The composition of the obtained Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. This Rh-doped composite oxide was coated on the same honeycomb carrier as in Example 1 in the same manner to obtain a catalyst according to Example 2. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

実施例2においても、硫酸ネオジムの全量を共沈ゲルに添加したから、得られるRhドープ複合酸化物は、Ndが当該複合酸化物の内部よりも表面部に高濃度に存することになる。Rhに関しては実施例1と同じく当該複合酸化物の内部よりも表面部に高濃度に存することになる。   Also in Example 2, since the entire amount of neodymium sulfate was added to the coprecipitation gel, the resulting Rh-doped composite oxide has Nd in a higher concentration in the surface portion than in the composite oxide. Rh is present in a higher concentration in the surface portion than in the complex oxide as in Example 1.

−実施例3−
硫酸ネオジムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を50%とし、残量50%を共沈ゲルに対して添加したが、硝酸ロジウムの仕込みに関しては、実施例1とは違って、共沈時の仕込み量を20%とし、残量80%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープCeZrNdLaY複合酸化物を得た。Rhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして実施例3に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Example 3-
Regarding the preparation of neodymium sulfate, the amount of preparation at the time of coprecipitation was set to 50% and the remaining amount of 50% was added to the coprecipitation gel as in Example 1, but the preparation of rhodium nitrate was the same as in Example 1. In contrast, the amount charged during coprecipitation was 20%, and the remaining amount of 80% was added to the coprecipitation gel. Other than that, the target Rh-doped CeZrNdLaY composite oxide was obtained in the same manner as in Example 1. The composition of the Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. The catalyst according to Example 3 was obtained by coating this Rh-doped composite oxide on the same honeycomb carrier as in Example 1 by the same method. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

実施例3においても、硫酸ネオジムの一部(50%)を共沈ゲルに添加したから、得られるRhドープ複合酸化物は、Ndが当該複合酸化物の内部よりも表面部に高濃度に存することになる。Rhに関しては実施例1と同じく当該複合酸化物の内部よりも表面部に高濃度に存することになる。   Also in Example 3, since a part (50%) of neodymium sulfate was added to the coprecipitation gel, the resulting Rh-doped composite oxide has a higher concentration of Nd in the surface portion than in the composite oxide. It will be. Rh is present in a higher concentration in the surface portion than in the complex oxide as in Example 1.

−比較例−
硫酸ネオジムの仕込みに関して、目標添加量の全量を共沈時に仕込み、共沈ゲルに対する硫酸ネオジムの添加量をゼロとした。硝酸ロジウムの仕込みに関しては、実施例1と同じく、共沈時の仕込み量を目標添加量の65%とし、残量35%を共沈ゲルに添加した。そして、他は実施例1と同様にして目的物であるRhドープCeZrNdLaY複合酸化物を得た。得られたRhドープ複合酸化物のRhを除く組成及びRhドープ量は実施例1と同じである。このRhドープ複合酸化物を実施例1と同様のハニカム担体に同様の方法でコーティングして比較例に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Comparative example-
Regarding the preparation of neodymium sulfate, the total amount of target addition was charged at the time of coprecipitation, and the amount of neodymium sulfate added to the coprecipitation gel was set to zero. Regarding the preparation of rhodium nitrate, as in Example 1, the amount of charge during coprecipitation was set to 65% of the target addition amount, and the remaining amount of 35% was added to the coprecipitation gel. Other than that, the target Rh-doped CeZrNdLaY composite oxide was obtained in the same manner as in Example 1. The composition of the obtained Rh-doped composite oxide excluding Rh and the amount of Rh doping are the same as in Example 1. This Rh-doped composite oxide was coated on the same honeycomb carrier as in Example 1 by the same method to obtain a catalyst according to a comparative example. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

比較例の場合は、硫酸ネオジムの全量を共沈時に仕込んだから、得られるRhドープ複合酸化物では、Ndの濃度は複合酸化物全体にわたって略均等になっていると認められる。Rhに関しては実施例1と同じく当該複合酸化物の内部よりも表面部に高濃度に存することになる。   In the case of the comparative example, since the entire amount of neodymium sulfate is charged at the time of coprecipitation, it is recognized that in the obtained Rh-doped composite oxide, the Nd concentration is substantially uniform throughout the composite oxide. Rh is present in a higher concentration in the surface portion than in the complex oxide as in Example 1.

<比表面積及びRhの表面分散度>
実施例1,2及び比較例Freshサンプルにおける各々のRhドープ複合酸化物の比表面積を自動比表面積/細孔分布測定装置(TiStar3000、Mircomeritics社製)によって測定し、また、Freshサンプルにおける各々のRhの複合酸化物表面への分散度をCOパルス法により、酸素吸蔵放出測定装置(All Vacuum Create社製)を用いて測定した。それら測定結果を図4に示す。なお、Rhの表面分散度とは、サンプル仕込み量から理論値として算出された担持したRh量に対する、COの吸着量から導出された複合酸化物表面の金属Rh量の割合を分散度として求めた。今回は、Rh原子1個に対して、CO原子1個が吸着すると仮定し、一定モル数のCOガスをパルスガスとして、一定間隔でサンプル中に導入し、サンプルの吸着しなかったCO量を測定することにより得られる吸着したCOの量を求めた。
<Specific surface area and surface dispersion degree of Rh>
The specific surface area of each Rh-doped composite oxide in Examples 1 and 2 and Comparative Example Fresh sample was measured by an automatic specific surface area / pore distribution measuring device (TiStar 3000, manufactured by Miracometics), and each Rh in the Fresh sample was also measured. The degree of dispersion on the surface of the composite oxide was measured by the CO pulse method using an oxygen storage / release measurement device (All Vacuum Create). The measurement results are shown in FIG. The surface dispersion degree of Rh was obtained as the degree of dispersion of the ratio of metal Rh amount on the surface of the composite oxide derived from the CO adsorption amount to the supported Rh amount calculated as a theoretical value from the sample charge amount. . This time, assuming that one CO atom is adsorbed to one Rh atom, CO gas with a fixed number of moles is introduced into the sample at regular intervals as a pulse gas, and the amount of CO not adsorbed by the sample is measured. The amount of adsorbed CO obtained by doing so was determined.

同図によれば、比表面積に関しては実施例1,2、比較例間の差は小さい。一方、Rhの表面分散度をみると、実施例1,2は比較例よりも高くなっており、特に実施例2はRhの表面分散度が非常に高くなっている。実施例1は硫酸ネオジムの目標添加量の50%量を共沈ゲルに添加したのに対して、実施例2は硫酸ネオジムの全量を共沈ゲルに添加したため、実施例1に比べてRhの表面分散度がさらに高くなっていると考えられる。   According to the figure, the difference between Examples 1 and 2 and the comparative example is small with respect to the specific surface area. On the other hand, looking at the surface dispersion degree of Rh, Examples 1 and 2 are higher than the comparative example, and in particular, Example 2 has a very high surface dispersion degree of Rh. In Example 1, 50% of the target addition amount of neodymium sulfate was added to the coprecipitation gel, whereas in Example 2, the total amount of neodymium sulfate was added to the coprecipitation gel. It is considered that the degree of surface dispersion is further increased.

<高温耐久性能>
実施例1−3及び比較例の各触媒についてベンチエージングを行なった。このベンチエージングは、触媒をエンジンの排気管に取り付け、触媒ベッド温度が900℃となるようにエンジン回転数・負荷を設定し、当該エンジンの排気ガスに触媒を50時間晒すというものである。
<High temperature durability>
Bench aging was performed on each catalyst of Examples 1-3 and Comparative Examples. In this bench aging, the catalyst is attached to the exhaust pipe of the engine, the engine speed / load is set so that the catalyst bed temperature is 900 ° C., and the catalyst is exposed to the exhaust gas of the engine for 50 hours.

上記ベンチエージング後、各触媒から担体容量約25mLのコアサンプルを切り出し、モデルガス流通反応装置に取り付けた。そして、触媒に流入するモデルガスの温度を常温から漸次上昇させていき、触媒を流出するガスのHC及びCO各々の濃度変化を検出した。この検出結果に基づいて、各触媒のHC、CO及びNOxに関する浄化率及びライトオフ温度を求めた。ライトオフ温度は、HC、CO及びNOx各成分の浄化率が50%に達したときの触媒入口ガス温度であり、触媒の低温活性の評価指標となる。   After the bench aging, a core sample having a carrier volume of about 25 mL was cut out from each catalyst and attached to a model gas flow reactor. Then, the temperature of the model gas flowing into the catalyst was gradually increased from room temperature, and changes in the concentrations of HC and CO in the gas flowing out of the catalyst were detected. Based on this detection result, the purification rate and light-off temperature for each catalyst for HC, CO, and NOx were determined. The light-off temperature is the catalyst inlet gas temperature when the purification rate of each component of HC, CO, and NOx reaches 50%, and serves as an evaluation index for the low-temperature activity of the catalyst.

モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表1に示す。 The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min. Table 1 shows the gas composition when A / F = 14.7, A / F = 13.8, and A / F = 15.6.

Figure 0006206115
Figure 0006206115

実施例1,2及び比較例のライトオフ温度の結果を図5に示し、触媒入口ガス温度が400℃に達した時点のHC、CO及びNOx各成分の浄化率を図6に示す。   The results of the light-off temperatures of Examples 1 and 2 and the comparative example are shown in FIG. 5, and the purification rates of the HC, CO, and NOx components when the catalyst inlet gas temperature reaches 400 ° C. are shown in FIG.

図5及び図6によれば、HC、CO及びNOxのいずれおいても、実施例1,2は比較例よりもライトオフ温度が低く、400℃浄化率も高い。図7は実施例1,2及び比較例の触媒入口ガス温度とHC浄化率の関係を示す。同図によれば、実施例1,2は、触媒入口ガス温度300℃から500℃にわたって、比較例よりもHC浄化率が高くなっている。   According to FIGS. 5 and 6, in any of HC, CO, and NOx, Examples 1 and 2 have lower light-off temperatures and higher 400 ° C. purification rates than Comparative Examples. FIG. 7 shows the relationship between the catalyst inlet gas temperature and the HC purification rate in Examples 1 and 2 and Comparative Example. According to the figure, Examples 1 and 2 have higher HC purification rates than the comparative example over the catalyst inlet gas temperature from 300 ° C to 500 ° C.

以上の結果から、実施例1,2のように硫酸ネオジムの一部又は全部を共沈ゲルに添加して複合酸化物の表面部のNd濃度を高くすると、触媒の高温耐久性が高くなることがわかる。また、実施例1と実施例2の比較から、複合酸化物の表面部のNd濃度が高くなるほど触媒の高温耐久性が高くなることがわかる。   From the above results, when a part or all of neodymium sulfate is added to the coprecipitation gel as in Examples 1 and 2 to increase the Nd concentration in the surface portion of the composite oxide, the high temperature durability of the catalyst is increased. I understand. Moreover, it can be seen from the comparison between Example 1 and Example 2 that the higher the Nd concentration in the surface portion of the composite oxide, the higher the high temperature durability of the catalyst.

次に実施例3のライトオフ温度を実施例1及び比較例のライトオフ温度と共に図8に示す。先に説明したように、実施例3は共沈ゲルへの硝酸ロジウムの添加量を80%として複合酸化物表面部のRh濃度を実施例1よりも高くしたケースである。同図によれば、複合酸化物表面部のRh濃度が高くなるほど触媒の低温活性が良くなることがわかる。   Next, the light-off temperature of Example 3 is shown in FIG. 8 together with the light-off temperatures of Example 1 and Comparative Example. As described above, Example 3 is a case where the amount of rhodium nitrate added to the coprecipitation gel is 80% and the Rh concentration on the surface of the composite oxide is higher than that in Example 1. According to the figure, it can be seen that the higher the Rh concentration on the surface of the complex oxide, the better the low-temperature activity of the catalyst.

<加熱還元処理の影響>
−実施例4−
実施例1のRhドープ複合酸化物にCOによる加熱還元処理を施した後、これを実施例1と同様のハニカム担体に同様の方法でコーティングして実施例4に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。加熱還元処理は、Rhドープ複合酸化物をCO濃度1%(残N)、温度600℃の還元性雰囲気に60分間おくというものである。なお、COに代えてHを用いた還元性雰囲気を採用してもよい。
<Influence of heat reduction treatment>
Example 4
The Rh-doped composite oxide of Example 1 was subjected to a heat reduction treatment with CO, and then this was coated on the same honeycomb carrier as in Example 1 by the same method to obtain a catalyst according to Example 4. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1. In the heat reduction treatment, the Rh-doped composite oxide is placed in a reducing atmosphere having a CO concentration of 1% (remaining N 2 ) and a temperature of 600 ° C. for 60 minutes. Note that a reducing atmosphere using H 2 instead of CO may be employed.

−実施例5−
実施例2のRhドープ複合酸化物に実施例4と同様の加熱還元処理を施した後、これを実施例1と同様のハニカム担体に同様の方法でコーティングして実施例5に係る触媒を得た。ハニカム担体に対するRhドープ複合酸化物の担持量は実施例1と同じく100g/Lである。
-Example 5
The Rh-doped composite oxide of Example 2 was subjected to the same heat reduction treatment as in Example 4, and then coated on the same honeycomb carrier as in Example 1 by the same method to obtain the catalyst according to Example 5. It was. The amount of Rh-doped composite oxide supported on the honeycomb carrier is 100 g / L as in Example 1.

[ライトオフ温度]
実施例4,5の各触媒について、<高温耐久性能>の項で説明した方法でベンチエージングを行なった後、同様の方法で、HC、CO及びNOxの浄化に関するライトオフ温度を測定した。その結果を先の実施例1,2及び比較例と共に図9に示す。実施例4,5は対応する実施例1,2よりもライトオフ温度が低くなっており、加熱還元処理によって触媒の低温活性が向上することがわかる。
[Light-off temperature]
Each catalyst of Examples 4 and 5 was bench-aged by the method described in the section <High Temperature Durability>, and then measured for the light-off temperature related to the purification of HC, CO and NOx by the same method. The results are shown in FIG. 9 together with the previous Examples 1 and 2 and the comparative example. In Examples 4 and 5, the light-off temperature is lower than the corresponding Examples 1 and 2, and it can be seen that the low-temperature activity of the catalyst is improved by the heat reduction treatment.

1 Rhドープ複合酸化物粒子
2 酸素
1 Rh-doped composite oxide particles 2 Oxygen

Claims (3)

Ce、Zr、及びCe以外の希土類金属を含有し且つRhがドープされているRhドープ複合酸化物よりなり、上記希土類金属として少なくともNdを含み、該Ndが上記複合酸化物の内部よりも表面部に高濃度に存する排気ガス浄化用触媒材の製造方法であって、
Ce、Zr及びRhの各イオンを含む酸性溶液に塩基性溶液を添加してCe、Zr及びRhを共沈させることにより、RhCeZr含有共沈ゲルを生成し、
上記RhCeZr含有共沈ゲルに、塩基性溶液を添加した後に、Rh及びNdの各イオンを含む酸性溶液を添加して混合することにより、上記RhCeZr含有共沈ゲル上にRh水酸化物及びNd水酸化物を析出沈殿させ、しかる後に焼成することを特徴とする排気ガス浄化用触媒材の製造方法。
Rh-doped composite oxide containing rare earth metal other than Ce, Zr, and Ce and doped with Rh, and containing at least Nd as the rare earth metal, the Nd being a surface portion than the inside of the composite oxide A method for producing a catalyst material for exhaust gas purification present in a high concentration,
A basic solution is added to an acidic solution containing Ce, Zr, and Rh ions to coprecipitate Ce, Zr, and Rh, thereby producing a RhCeZr-containing coprecipitation gel.
After adding a basic solution to the RhCeZr-containing coprecipitation gel, an acidic solution containing each ion of Rh and Nd is added and mixed, whereby Rh hydroxide and Nd water are added onto the RhCeZr-containing coprecipitation gel. A method for producing an exhaust gas purifying catalyst material, characterized by depositing and precipitating an oxide, followed by firing.
請求項1において、
上記RhCeZr含有共沈ゲルを生成する工程では、Ce、Zr、Nd、La、Y及びRhの各イオンを含む酸性溶液に塩基性溶液を添加してCe、Zr、Nd、La、Y及びRhを共沈させることを特徴とする排気ガス浄化用触媒材の製造方法。
In claim 1 ,
In the step of generating the RhCeZr-containing coprecipitation gel, a basic solution is added to an acidic solution containing Ce, Zr, Nd, La, Y, and Rh ions, and Ce, Zr, Nd, La, Y, and Rh are added. A method for producing a catalyst material for exhaust gas purification, characterized by co-precipitation.
請求項1又は請求項2において、
上記焼成後に還元雰囲気で加熱することを特徴とする排気ガス浄化用触媒の製造方法。
In claim 1 or claim 2,
A method for producing an exhaust gas purifying catalyst, comprising heating in a reducing atmosphere after the firing.
JP2013240160A 2013-11-20 2013-11-20 Method for producing exhaust gas purification catalyst material Expired - Fee Related JP6206115B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013240160A JP6206115B2 (en) 2013-11-20 2013-11-20 Method for producing exhaust gas purification catalyst material
PCT/JP2014/005508 WO2015075875A1 (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing same
CN201480051298.7A CN105658328A (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing same
US15/022,956 US20160228853A1 (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing same
DE112014005291.4T DE112014005291T5 (en) 2013-11-20 2014-10-30 Catalyst material for exhaust gas purification and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240160A JP6206115B2 (en) 2013-11-20 2013-11-20 Method for producing exhaust gas purification catalyst material

Publications (2)

Publication Number Publication Date
JP2015098007A JP2015098007A (en) 2015-05-28
JP6206115B2 true JP6206115B2 (en) 2017-10-04

Family

ID=53375013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240160A Expired - Fee Related JP6206115B2 (en) 2013-11-20 2013-11-20 Method for producing exhaust gas purification catalyst material

Country Status (1)

Country Link
JP (1) JP6206115B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065659A1 (en) * 2017-09-26 2019-04-04 Johnson Matthey Japan G.K. Exhaust gas purification catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262044B2 (en) * 1996-10-07 2002-03-04 株式会社豊田中央研究所 Composite oxide carrier and composite oxide-containing catalyst
EP1736241B1 (en) * 2004-03-11 2012-10-03 Cataler Corporation Exhaust gas-purifying catalyst
JP2008212833A (en) * 2007-03-05 2008-09-18 Mazda Motor Corp Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst containing this composite oxide
JP5903205B2 (en) * 2010-01-04 2016-04-13 株式会社キャタラー Exhaust gas purification catalyst
JP2012154259A (en) * 2011-01-26 2012-08-16 Mazda Motor Corp Exhaust gas purification catalytic system

Also Published As

Publication number Publication date
JP2015098007A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
WO2015075875A1 (en) Catalyst material for exhaust gas purification and method for producing same
JP4959129B2 (en) Exhaust gas purification catalyst
JP2017538573A (en) Nitrous oxide removal catalyst for exhaust system
JP2006334490A (en) Catalyst for cleaning exhaust gas
JP6662852B2 (en) Internal combustion engine exhaust gas purification catalyst and exhaust gas purification method using the catalyst
WO2017051459A1 (en) Exhaust purification filter
EP2683467A1 (en) Exhaust gas purification catalyst
WO2007111004A1 (en) Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas
JP2008290065A (en) Exhaust gas purification catalyst and manufacturing method of the same
JP2011062683A (en) Catalyst for cleaning exhaust gas
US10753248B2 (en) Exhaust gas purification catalyst
JP5488214B2 (en) Exhaust gas purification catalyst
JP6504096B2 (en) Exhaust gas purification catalyst
JP2007289920A (en) Exhaust-gas cleaning catalyst, its regeneration method, exhaust-gas cleaning apparatus and exhaust-gas cleaning method using it
JP6538246B2 (en) Exhaust gas purification system for internal combustion engine
JP6146436B2 (en) Exhaust gas purification catalyst
JP2007069076A (en) Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst
JP2007185588A (en) Catalyst for exhaust gas purification
JP5488215B2 (en) Exhaust gas purification catalyst
JP6206115B2 (en) Method for producing exhaust gas purification catalyst material
JP5412789B2 (en) Exhaust gas purification catalyst
JP6206116B2 (en) Exhaust gas purification catalyst material and method for producing the same
JP4577408B2 (en) Exhaust gas purification catalyst
JP5942894B2 (en) Method for producing exhaust gas purifying catalyst
JP5412788B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees