JP2015095342A - Method for manufacturing negative electrode material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents

Method for manufacturing negative electrode material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery Download PDF

Info

Publication number
JP2015095342A
JP2015095342A JP2013233638A JP2013233638A JP2015095342A JP 2015095342 A JP2015095342 A JP 2015095342A JP 2013233638 A JP2013233638 A JP 2013233638A JP 2013233638 A JP2013233638 A JP 2013233638A JP 2015095342 A JP2015095342 A JP 2015095342A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013233638A
Other languages
Japanese (ja)
Other versions
JP6046594B2 (en
Inventor
浩一朗 渡邊
Koichiro Watanabe
浩一朗 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013233638A priority Critical patent/JP6046594B2/en
Publication of JP2015095342A publication Critical patent/JP2015095342A/en
Application granted granted Critical
Publication of JP6046594B2 publication Critical patent/JP6046594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for manufacturing a negative electrode material for lithium ion secondary batteries high in initial charge/discharge efficiency and superior in cycle characteristics while holding the advantages of a silicon-based active material, such as a high battery capacity and a low volume expansion coefficient; a negative electrode material manufactured by the manufacturing method; and a lithium ion secondary battery including the negative electrode material.SOLUTION: A method for manufacturing a negative electrode material for lithium ion secondary batteries comprises: a deposition step for covering, by vapor deposition, particles of a silicon-based active material with a carbon coating formed by a carbon raw material. In the method, the deposition step is performed more than once, and the kind of the carbon raw material to use is changed for each deposition step at least once, whereby the carbon coating is formed with two or more kinds of carbon raw materials. In each deposition step, the carbon raw material is one selected from among three kinds of materials consisting of an aliphatic hydrocarbon, an aromatic hydrocarbon and a distillate produced in a tar distillation process; the selected material or a mixture thereof is used.

Description

本発明は、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、及びリチウムイオン二次電池に関する。   The present invention relates to a method for producing a negative electrode material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices.

従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1、2参照)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3参照)、負極材料に酸化珪素を用いる方法(特許文献4参照)、負極材料にSiO及びGeOを用いる方法(特許文献5参照)等が知られている。 Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, or Sn and a composite oxide thereof as a negative electrode material (see Patent Documents 1 and 2) , A method of applying a melt-quenched metal oxide as a negative electrode material (see Patent Document 3), a method of using silicon oxide as a negative electrode material (see Patent Document 4), and Si 2 N 2 O and Ge 2 N 2 O as negative electrode materials There is known a method using the method (see Patent Document 5).

また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後に炭化処理する方法(特許文献6参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献7参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8参照)がある。   In addition, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after graphite and mechanical alloying (see Patent Document 6), a method of coating a carbon layer on the surface of silicon particles by a chemical vapor deposition method (Patent Document 7). And a method of coating the surface of silicon oxide particles with a carbon layer by chemical vapor deposition (see Patent Document 8).

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.

特に、特許文献4では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らが知る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりする等の問題があり、改良する余地がある。   In particular, Patent Document 4 uses silicon oxide as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, as far as the present inventors know, the irreversible capacity during the initial charge / discharge is still large. There is a problem that the cycle performance has not reached the practical level, and there is room for improvement.

また、負極材に導電性を付与した技術についても、特許文献6では固体と固体の融着であるため均一な炭素被膜が形成されず、導電性が不十分であるといった問題がある。
そして、特許文献7の方法においては、均一な炭素被膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮が余りにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならない。
特許文献8の方法においては、サイクル性の向上は確認されるものの、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。
Further, the technique of imparting conductivity to the negative electrode material also has a problem in Patent Document 6 that a uniform carbon film is not formed because of solid-solid fusion, and the conductivity is insufficient.
In the method of Patent Document 7, although a uniform carbon film can be formed, since Si is used as a negative electrode material, the expansion / contraction at the time of adsorption / desorption of lithium ions is too large. As a result, the battery cannot be put into practical use, and the cycle performance is degraded.
In the method of Patent Document 8, although improvement in cycle performance is confirmed, the number of cycles of charge / discharge is increased due to insufficient deposition of fine silicon crystals, integration of the carbon coating structure and the base material. As a result, there is a problem that the capacity gradually decreases and then rapidly decreases after a certain number of times, which is still insufficient for a secondary battery.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A

本発明は、珪素系活物質の高い電池容量と低い体積膨張率の利点を維持しつつ、初回充放電効率が高くまたサイクル特性に優れたリチウムイオン二次電池用負極材の製造方法及びその製造方法で製造された負極材並びにその負極材を含むリチウムイオン二次電池を提供することを目的とする。   The present invention provides a method for producing a negative electrode material for a lithium ion secondary battery having high initial charge / discharge efficiency and excellent cycle characteristics while maintaining the advantages of a high battery capacity and a low volume expansion coefficient of a silicon-based active material, and the production thereof An object of the present invention is to provide a negative electrode material produced by the method and a lithium ion secondary battery including the negative electrode material.

上記目的を達成するために、本発明によれば、リチウムイオンを吸蔵及び放出する珪素系活物質の粒子の表面を、蒸着法により炭素原料を用いた炭素被膜で被覆する蒸着工程を有するリチウムイオン二次電池用負極材の製造方法であって、前記蒸着工程を2回以上実施し、蒸着工程毎に使用する前記炭素原料の種類を少なくとも1回は変更することで、2種類以上の前記炭素原料を使用した前記炭素被膜を形成し、各蒸着工程において、前記炭素原料の種類は、脂肪族炭化水素、芳香族炭化水素、タール蒸留工程で得られる留分の3種類の中から1種類選択し、該選択した種類の物質の単体又は混合物を使用することを特徴とするリチウムイオン二次電池用負極材の製造方法を提供する。   In order to achieve the above object, according to the present invention, a lithium ion having a vapor deposition step of coating the surface of particles of a silicon-based active material that absorbs and releases lithium ions with a carbon film using a carbon raw material by a vapor deposition method. A method for producing a negative electrode material for a secondary battery, wherein the vapor deposition step is performed twice or more, and the type of the carbon raw material used for each vapor deposition step is changed at least once, so that two or more types of the carbon Forming the carbon film using the raw material, and in each vapor deposition step, the type of the carbon raw material is selected from one of three types obtained from aliphatic hydrocarbons, aromatic hydrocarbons, and fractions obtained in the tar distillation step. The present invention also provides a method for producing a negative electrode material for a lithium ion secondary battery, characterized by using a single substance or a mixture of the selected types of substances.

このように、蒸着工程を2工程以上に分け、少なくとも2種類以上の炭素原料を各蒸着工程において使い分けることで、生産性と電池容量、初回充放電効率、サイクル特性といった負極材としての特性の向上とを両立したリチウムイオン二次電池用負極材の製造ができる。また、本発明の製造方法は、特別複雑なものではなく簡便であり、工業的規模の製造にも十分に耐えることが可能である。   In this way, the vapor deposition process is divided into two or more processes, and at least two types of carbon raw materials are properly used in each vapor deposition process, thereby improving the characteristics as a negative electrode material such as productivity, battery capacity, initial charge / discharge efficiency, and cycle characteristics. Thus, a negative electrode material for a lithium ion secondary battery can be manufactured. Further, the production method of the present invention is not particularly complicated and simple, and can sufficiently withstand industrial scale production.

このとき、前記脂肪族炭化水素を、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、プロピレンの単体又はこれらの中の少なくとも2個以上の混合物とすることが好ましい。   At this time, the aliphatic hydrocarbon is preferably methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, propylene, or a mixture of at least two of these.

また、前記芳香族炭化水素を、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン、メシチレンの単体又はこれらの中の少なくとも2個以上の混合物とすることが好ましい。   The aromatic hydrocarbon may be benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, mesitylene, It is preferable to use a mixture of at least two.

このとき、前記タール蒸留工程で得られる留分をガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油の単体又はこれらの中の少なくとも2個以上の混合物とすることが好ましい。   At this time, it is preferable that the fraction obtained in the tar distillation step is a simple gas gas oil, creosote oil, anthracene oil or naphtha cracked tar oil or a mixture of at least two of them.

これらのようなものを、それぞれ脂肪族炭化水素、芳香族炭化水素、タール蒸留工程で得られる留分の種類から選択することで、良好な炭素被膜を蒸着することができ、電池容量、初回充放電効率、サイクル特性をより向上させることができる。   By selecting such materials from aliphatic hydrocarbons, aromatic hydrocarbons, and types of fractions obtained in the tar distillation step, a good carbon film can be deposited, battery capacity, initial charge. Discharge efficiency and cycle characteristics can be further improved.

また、各蒸着工程で使用する前記炭素原料の種類は、先に前記芳香族炭化水素の種類から選んで使用し、その後、前記脂肪族炭化水素の種類から選択して使用することで前記炭素被膜を形成することが好ましい。
このように、まず、先の蒸着工程で芳香族炭化水素を使用して効率よく炭素量を稼ぐことで導電性を確保し、その後の蒸着工程で脂肪族炭化水素を使用して、電解液との相性が良好な炭素被膜の表面状態を形成させることで、生産性と電池容量、初回充放電効率、サイクル特性といった負極材としての特性の向上をより確実に両立することができる。
In addition, the type of the carbon raw material used in each vapor deposition step is selected from the type of the aromatic hydrocarbon, and then selected from the type of the aliphatic hydrocarbon. Is preferably formed.
In this way, first, the conductivity is ensured by using an aromatic hydrocarbon in the previous vapor deposition process to efficiently increase the amount of carbon, and the aliphatic liquid is used in the subsequent vapor deposition process. By forming the surface state of the carbon film having good compatibility, it is possible to more reliably improve the productivity as a negative electrode material such as productivity, battery capacity, initial charge / discharge efficiency, and cycle characteristics.

このとき、前記蒸着工程において、600〜1200℃の温度範囲で炭素被膜を形成することが好ましい。
このような温度範囲で炭素被膜を形成すれば、珪素系活物質の粒子の珪素結晶の肥大化を抑制できるため、充電時の珪素系活物質の粒子の膨張を抑制できる。その結果、負極材としての特性、特にはサイクル特性をより確実に向上させることができる。
At this time, in the said vapor deposition process, it is preferable to form a carbon film in the temperature range of 600-1200 degreeC.
If the carbon film is formed in such a temperature range, the silicon crystal enlargement of the silicon-based active material particles can be suppressed, so that the expansion of the silicon-based active material particles during charging can be suppressed. As a result, the characteristics as the negative electrode material, particularly the cycle characteristics can be improved more reliably.

また、前記珪素系活物質の粒子は、珪素粒子、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粒子のいずれか、又はこれらのうちの2種類以上の混合物であることが好ましい。
これらを珪素系活物質の粒子として使用すれば、より初回充放電効率が高く、高容量でサイクル特性に優れたリチウムイオン二次電池用負極材を製造することができる。
The silicon-based active material particles include silicon particles, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, and an oxidation represented by a general formula SiO x (0.5 ≦ x ≦ 1.6). One of the silicon particles or a mixture of two or more of these is preferable.
If these are used as particles of a silicon-based active material, a negative electrode material for a lithium ion secondary battery having higher initial charge / discharge efficiency, high capacity, and excellent cycle characteristics can be produced.

本発明では、上記のいずれかのリチウムイオン二次電池用負極材の製造方法で製造されたことを特徴とするリチウムイオン二次電池用負極材を提供する。
このようなものであれば、生産性、電池容量、初回充放電効率、サイクル特性に優れたリチウムイオン二次電池用負極材となる。
The present invention provides a negative electrode material for a lithium ion secondary battery produced by any one of the above-described methods for producing a negative electrode material for a lithium ion secondary battery.
If it is such, it will become a negative electrode material for lithium ion secondary batteries excellent in productivity, battery capacity, initial charge / discharge efficiency, and cycle characteristics.

また、本発明では、上記のいずれかのリチウムイオン二次電池用負極材の製造方法で製造されたリチウムイオン二次電池用負極材を用いたものであることを特徴とするリチウムイオン二次電池を提供する。
このようなものであれば、電池容量、初回充放電効率、サイクル特性に優れたリチウムイオン二次電池となる。
Moreover, in the present invention, a lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery produced by any one of the above-described methods for producing a negative electrode material for a lithium ion secondary battery. I will provide a.
If it is such, it will become a lithium ion secondary battery excellent in battery capacity, initial charge-and-discharge efficiency, and cycling characteristics.

以上説明したように、本発明により、高容量で初回充放電効率が高く、またサイクル特性に優れたリチウムイオン二次電池用負極材を製造できる。本発明の製造方法で製造した負極材は、リチウムイオン二次電池に好適なものとなり、この負極材を用いたリチウムイオン二次電池は高容量で初回充放電効率が高く、サイクル特性に優れたものとなる。また、本発明は特別複雑なものではなく簡便であり、工業的規模の製造にも十分に耐えることが可能である。   As described above, according to the present invention, a negative electrode material for a lithium ion secondary battery having a high capacity, high initial charge / discharge efficiency, and excellent cycle characteristics can be produced. The negative electrode material produced by the production method of the present invention is suitable for a lithium ion secondary battery, and the lithium ion secondary battery using this negative electrode material has high capacity, high initial charge / discharge efficiency, and excellent cycle characteristics. It will be a thing. Further, the present invention is not particularly complicated, is simple, and can sufficiently withstand industrial scale manufacturing.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.

前述のように、負極材に使用する珪素系活物質の高い電池容量と低い体積膨張率という利点を維持しつつ、初回充放電効率とサイクル特性に優れたリチウムイオン二次電池用負極材の製造方法の開発が待たれていた。   As described above, production of a negative electrode material for a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycle characteristics while maintaining the advantages of high battery capacity and low volume expansion coefficient of silicon-based active material used for the negative electrode material The development of the method was awaited.

負極材に使用する珪素系活物質としては、例えば酸化珪素等が挙げられる。この、酸化珪素はSiOと表記することができる。また、酸化珪素は、X線回折による分析では数nm〜数十nm程度のナノシリコンが酸化珪素中に微分散している構造をとっている。このため、電池容量は炭素と比較すれば質量あたりで5〜6倍と高く、さらには充電時の体積膨張も小さく、負極活物質として使用しやすいと考えられている。 Examples of the silicon-based active material used for the negative electrode material include silicon oxide. This silicon oxide can be expressed as SiO x . In addition, silicon oxide has a structure in which nano-silicon of about several nanometers to several tens of nanometers is finely dispersed in silicon oxide as analyzed by X-ray diffraction. For this reason, the battery capacity is as high as 5 to 6 times per mass as compared with carbon, and further, the volume expansion during charging is small, and it is considered that the battery capacity is easy to use as a negative electrode active material.

しかしながら、酸化珪素は絶縁体であるために何らかの手段で導電性を付与する必要がある。導電性を付与する方法として、酸化珪素の粒子と黒鉛等の導電性のある粒子と混合する方法、酸化珪素の粒子の表面を炭素被膜で被覆する方法、及びその両方を組み合わせる方法がある。例えば、酸化珪素の粒子の表面を炭素被膜で被覆する方法としては、粒子を有機物ガス及び/又は蒸気中で化学蒸着(CVD)する方法が好適であり、熱処理時に反応器内に有機物ガス及び/又は蒸気を導入することで効率よく行うことが可能である。   However, since silicon oxide is an insulator, it is necessary to provide conductivity by some means. As a method of imparting conductivity, there are a method of mixing silicon oxide particles and conductive particles such as graphite, a method of coating the surface of silicon oxide particles with a carbon film, and a method of combining both. For example, as a method of coating the surface of silicon oxide particles with a carbon film, a method of chemical vapor deposition (CVD) of the particles in an organic gas and / or vapor is suitable. Alternatively, it can be performed efficiently by introducing steam.

このような事情から、本発明者等は、リチウムイオンを吸蔵、放出する珪素系活物質の表面を炭素被膜で被覆することで著しい電池特性の向上が見られることを確認することができた。しかし同時に単なる炭素被覆では市場の要求特性に応えられないことも判った。   Under such circumstances, the present inventors were able to confirm that the battery characteristics were significantly improved by coating the surface of the silicon-based active material that occludes and releases lithium ions with a carbon coating. At the same time, however, it was found that mere carbon coating could not meet the required characteristics of the market.

そこで、本発明者等は負極材としての電池特性の更なる向上を目指し、詳細検討を行った。その結果、被覆する炭素被膜の被覆状態を特定範囲に制御することで、市場の要求特性のレベルに到達し得ることを見出した。
具体的には、導電性に影響を及ぼすのは、炭素被覆の量だけでなく、炭素被膜の均一性や膜質も重要であることが判った。例えば、十分な炭素量が得られていても、炭素被膜が不均一で酸化珪素の表面が部分的に露出していたり、また黒鉛化が不十分でタール成分が残留していたりすると、その部分は絶縁性となってしまい充放電容量やサイクル特性に悪影響を及ぼす。
Therefore, the present inventors conducted detailed studies with the aim of further improving battery characteristics as a negative electrode material. As a result, it was found that the level of required characteristics in the market can be reached by controlling the coating state of the carbon coating to be coated within a specific range.
Specifically, it has been found that not only the amount of the carbon coating but also the uniformity and the quality of the carbon coating affect the conductivity. For example, even if a sufficient amount of carbon is obtained, if the carbon coating is uneven and the surface of the silicon oxide is partially exposed, or if the tar component remains due to insufficient graphitization, the portion Becomes insulative and adversely affects charge / discharge capacity and cycle characteristics.

化学蒸着による炭素被膜の形成には様々な有機物がその炭素原料として挙げられるが、熱分解温度や蒸着速度、また蒸着後に形成される炭素被膜の特性などは用いる物質によって大きく異なる。蒸着速度が大きい物質を使用する場合は、表面の炭素被膜は十分な均一性を得られないことが多い。また、熱分解に高温を要する物質を使用する場合は、高温での蒸着時に母粒子の珪素結晶が大きく成長し過ぎて放電効率やサイクル特性の低下を招く恐れがある。   Various organic substances are listed as carbon raw materials for the formation of a carbon film by chemical vapor deposition, but the thermal decomposition temperature, vapor deposition rate, characteristics of the carbon film formed after vapor deposition, and the like vary greatly depending on the substance used. When using a material having a high deposition rate, the surface carbon film often cannot obtain sufficient uniformity. In addition, when using a substance that requires high temperature for thermal decomposition, the silicon crystal of the mother particle grows too much at the time of vapor deposition at high temperature, and there is a risk that the discharge efficiency and cycle characteristics will be lowered.

均一性は、母粒子中の珪素結晶や平均粒径、被覆炭素量によっても変化するが、例えばラマン分光分析の珪素と黒鉛の結晶強度比などで確認することができる。炭素被膜の黒鉛化についても同様に、ラマン分光分析の炭素のグラファイトとダイヤモンド結晶強度比や半値幅で確認可能である。   The uniformity varies depending on the silicon crystal in the mother particle, the average particle diameter, and the amount of coated carbon, but can be confirmed by, for example, the crystal intensity ratio of silicon and graphite in Raman spectroscopic analysis. Similarly, graphitization of the carbon film can be confirmed by the ratio of carbon graphite to diamond crystal and the half-value width in Raman spectroscopic analysis.

炭素被膜を十分に黒鉛化し、タール成分の残留を抑制するには、蒸着時の温度が高いほど効果的にタール成分の残留を抑制できる。更に、蒸着時の温度が高いと、蒸着速度も高くなり生産性の向上に寄与するが、酸化珪素中に微分散しているナノシリコンの肥大化に繋がり電池容量やサイクル特性を低下させる要因となってしまう。また、蒸着速度が大きいと生産性が向上するが、被膜の均一性という点では不利となってしまう。   In order to fully graphitize the carbon coating and suppress the remaining tar component, the higher the temperature during vapor deposition, the more effectively the remaining tar component can be suppressed. Furthermore, if the temperature during vapor deposition is high, the vapor deposition rate increases and contributes to the improvement of productivity, but this leads to enlargement of nano-silicon finely dispersed in silicon oxide and causes a decrease in battery capacity and cycle characteristics. turn into. Moreover, although productivity will improve when a vapor deposition rate is large, it will become disadvantageous at the point of the uniformity of a film.

そこで、本発明者等は、化学蒸着により炭素被膜の形成を行う蒸着工程を、2回以上実施し、2種類以上の炭素原料、例えば短時間で炭素量を稼ぐための炭素原料と表面特性を向上させるための炭素原料を各蒸着工程において使い分けることで、生産性と負極材としての特性(電池容量、初回充放電効率、サイクル特性)の向上とを両立させることが可能であることを見出し、本発明を完成するに至ったものである。   Therefore, the present inventors have performed a vapor deposition step of forming a carbon film by chemical vapor deposition twice or more, and obtained two or more types of carbon raw materials, for example, carbon raw materials and surface characteristics for earning carbon in a short time. We find that it is possible to achieve both improvement in productivity and characteristics as negative electrode materials (battery capacity, initial charge / discharge efficiency, cycle characteristics) by properly using carbon materials for improvement in each vapor deposition step, The present invention has been completed.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明は、リチウムイオンを吸蔵及び放出する珪素系活物質の粒子の表面を炭素被膜で被覆した導電性粉末からなるリチウムイオン二次電池用負極材の製造方法及びその製造方法で製造された負極材、並びにその負極材を用いたリチウムイオン二次電池である。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
The present invention relates to a method for producing a negative electrode material for a lithium ion secondary battery comprising a conductive powder in which the surface of particles of a silicon-based active material that occludes and releases lithium ions is coated with a carbon coating, and a negative electrode produced by the method. And a lithium ion secondary battery using the negative electrode material.

次に、本発明のリチウムイオン二次電池用負極材の製造方法について詳細に説明するが、もちろんこれに限定されるものではない。   Next, although the manufacturing method of the negative electrode material for lithium ion secondary batteries of this invention is demonstrated in detail, of course, it is not limited to this.

まず、リチウムイオンを吸蔵及び放出する珪素系活物質の粒子を用意する。   First, particles of a silicon-based active material that absorbs and releases lithium ions are prepared.

ここで、リチウムイオンを吸蔵及び放出する珪素系活物質の粒子として、珪素粉末(珪素単体)、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、又はこれらのうちの2以上の混合物を用いることが好ましい。
このように、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末として、高容量で、充放電を繰り返した際の体積膨張率が低い等の特徴を有する、珪素粉末や、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物を用いることによって、より初回充放電効率が高く、また高容量でかつサイクル性に優れたリチウムイオン二次電池用負極材が得られる。
Here, as silicon active material particles that occlude and release lithium ions, silicon powder (silicon simple substance), particles having a composite structure in which silicon fine particles are dispersed in a silicon compound, a general formula SiO x (0.5 ≦ 0.5) It is preferable to use any one of silicon oxide powders represented by x ≦ 1.6) or a mixture of two or more thereof.
Thus, as a powder made of a material capable of occluding and releasing lithium ions containing silicon, a silicon powder having features such as a high capacity and a low volume expansion coefficient upon repeated charge and discharge, One of particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide powder represented by the general formula SiO x (0.5 ≦ x ≦ 1.6), or two or more of these By using the mixture, it is possible to obtain a negative electrode material for a lithium ion secondary battery having higher initial charge / discharge efficiency, high capacity, and excellent cycleability.

この原料となる粉末の1つである珪素の微粒子(珪素ナノ粒子)が珪素系化合物(例えば酸化珪素)中に分散した構造を有する粒子は、例えば、珪素の微粒子を珪素系化合物と混合したものを焼成する方法や、一般式SiOで表される不均化前の酸化珪素粒子を、アルゴン等不活性な非酸化性雰囲気中、400℃以上、好適には800〜1100℃の温度で熱処理し、不均化反応を行う方法で得ることができる。特に後者の方法で得た材料は、珪素の微結晶が均一に分散されるため好適である。上記のような不均化反応により、珪素ナノ粒子のサイズを1〜100nmとすることができる。
なお、珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子中の酸化珪素については、二酸化珪素であることが望ましい。なお、透過電子顕微鏡によってシリコンのナノ粒子(結晶)が無定形の酸化珪素に分散していることを確認することができる。
The particles having a structure in which silicon fine particles (silicon nanoparticles) as one of the raw material powders are dispersed in a silicon-based compound (for example, silicon oxide) are, for example, a mixture of silicon fine particles and a silicon-based compound. The silicon oxide particles before disproportionation represented by the general formula SiO x are heat-treated at a temperature of 400 ° C. or higher, preferably 800 to 1100 ° C. in an inert non-oxidizing atmosphere such as argon. However, it can be obtained by a method of performing a disproportionation reaction. In particular, the material obtained by the latter method is suitable because silicon crystallites are uniformly dispersed. By the disproportionation reaction as described above, the size of the silicon nanoparticles can be set to 1 to 100 nm.
Note that silicon dioxide in the particles having a structure in which silicon nanoparticles are dispersed in silicon oxide is preferably silicon dioxide. Note that it can be confirmed by transmission electron microscopy that silicon nanoparticles (crystals) are dispersed in amorphous silicon oxide.

本発明における酸化珪素としては、非晶質の珪素酸化物の総称であり、不均化前の酸化珪素は、一般式SiO(0.5≦x≦1.6)で表されるものが挙げられる。また、この酸化珪素は、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得ることができる。 Silicon oxide in the present invention is a general term for amorphous silicon oxide, and silicon oxide before disproportionation is represented by the general formula SiO x (0.5 ≦ x ≦ 1.6). Can be mentioned. The silicon oxide can be obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon.

そして不均化前の酸化珪素粒子、珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子の物性は、目的とする複合粒子により適宜選定することができる。
例えば、平均粒子径は0.1〜50μmが望ましく、下限は0.2μm以上がより望ましく、0.5μm以上がさらに望ましい。上限は30μm以下がより望ましく、20μm以下がさらに望ましい。
なお、上記の平均粒子径とは、レーザー光回折法による粒度分布測定における重量平均粒子径で表すものである。
The physical properties of the particles having a structure in which silicon oxide particles and silicon nanoparticles before disproportionation are dispersed in silicon oxide can be appropriately selected depending on the intended composite particles.
For example, the average particle size is desirably 0.1 to 50 μm, the lower limit is more desirably 0.2 μm or more, and further desirably 0.5 μm or more. The upper limit is more desirably 30 μm or less, and further desirably 20 μm or less.
In addition, said average particle diameter is represented by the weight average particle diameter in the particle size distribution measurement by a laser beam diffraction method.

更に、珪素系活物質の粒子のBET比表面積は、0.5〜100m/gが望ましく、1〜20m/gであることがより望ましい。
BET比表面積が0.5m/g以上であれば、電極に塗布した際の接着性が低下して電池特性が低下するおそれも無い。また100m/g以下であれば、粒子表面の二酸化珪素の割合が大きくなり、リチウムイオン二次電池負極材として用いた際に電池容量が低下するおそれも無いものとすることができる。
Further, BET specific surface area of the particles of silicon-based active material, 0.5 to 100 2 / g is desirable, and more desirably about 1-20 m 2 / g.
If the BET specific surface area is 0.5 m 2 / g or more, there is no possibility that the adhesiveness when applied to the electrode is lowered and the battery characteristics are not lowered. Moreover, if it is 100 m < 2 > / g or less, the ratio of the silicon dioxide on the particle | grain surface will become large, and when it uses as a lithium ion secondary battery negative electrode material, it can be set as the thing which does not have a possibility that battery capacity may fall.

そして、先に用意した珪素系活物質の粒子に対して、有機物ガス及び/又は蒸気雰囲気中、所定の温度範囲で炭素を化学蒸着して炭素被膜を形成して導電性を付与する。   Then, carbon is chemically vapor-deposited in a predetermined temperature range in an organic gas and / or vapor atmosphere to the previously prepared silicon-based active material particles to form a carbon film to impart conductivity.

本発明では、この炭素被膜を形成する工程で、蒸着工程を2回以上実施し、蒸着工程毎に使用する炭素原料の種類を少なくとも1回は変更することで、2種類以上の炭素原料を使用した炭素被膜を形成する。ここでいう炭素原料の種類とは、肪族炭化水素、芳香族炭化水素、タール蒸留工程で得られる留分のことである。この3種類の炭素原料の種類の中から1種類選択し、該選択した種類の物質の単体又は混合物を各蒸着工程で使用する。それぞれの蒸着工程は必ずしも同一の温度、圧力で行う必要性はなく、炭素原料となる物質の特性に応じて適宜選択することが可能である。   In the present invention, in the process of forming the carbon film, the vapor deposition process is performed twice or more, and the type of the carbon raw material used for each vapor deposition process is changed at least once to use two or more carbon raw materials. Forming a carbon film. The kind of carbon raw material here is an aliphatic hydrocarbon, an aromatic hydrocarbon, or a fraction obtained in a tar distillation step. One type is selected from the three types of carbon raw materials, and a single substance or a mixture of the selected types of substances is used in each vapor deposition step. Each vapor deposition process does not necessarily need to be performed at the same temperature and pressure, and can be appropriately selected according to the characteristics of a substance that is a carbon raw material.

化学蒸着による炭素被膜の生成には様々な有機物が炭素原料として挙げられるが、熱分解温度や蒸着速度、また蒸着後に形成される炭素被膜の特性などは用いる物質によって大きく異なる場合がある。蒸着速度が大きい物質は表面の炭素被膜の均一性が十分でない場合が多く、充放電効率やサイクル特性が低下する。反面、分解に高温を要する場合、生産性が下がり、更に、高温での蒸着時に母粒子の珪素結晶が大きく成長し過ぎて充放電効率やサイクル特性の低下を招く。そこで本発明のように、蒸着工程を2回以上実施し、炭素原料を蒸着工程毎に適宜使い分けることで、生産性と電池容量、初回充放電効率、サイクル特性といった負極材としての特性の向上を両立したリチウムイオン二次電池用負極材の製造が可能となる。また、本発明の製造方法は、特別複雑なものではなく簡便であり、工業的規模の製造にも十分に耐えることが可能である。   Various organic substances are listed as carbon raw materials for the production of a carbon film by chemical vapor deposition. However, the thermal decomposition temperature, vapor deposition rate, and characteristics of the carbon film formed after vapor deposition may vary greatly depending on the substance used. Substances with a high deposition rate often have insufficient uniformity of the carbon coating on the surface, and charge / discharge efficiency and cycle characteristics deteriorate. On the other hand, when a high temperature is required for decomposition, the productivity is lowered, and further, the silicon crystal of the mother particle grows too much at the time of vapor deposition at a high temperature, leading to a decrease in charge / discharge efficiency and cycle characteristics. Therefore, as in the present invention, the vapor deposition process is performed twice or more, and the carbon material is appropriately used for each vapor deposition process, thereby improving the characteristics as a negative electrode material such as productivity, battery capacity, initial charge / discharge efficiency, and cycle characteristics. It becomes possible to produce a compatible negative electrode material for a lithium ion secondary battery. Further, the production method of the present invention is not particularly complicated and simple, and can sufficiently withstand industrial scale production.

また、この炭素被膜の蒸着工程を、50Pa〜30000Paの減圧下で行ってもよい。特に、蒸着装置が粉体を静置して行うバッチ式の装置の場合、減圧下で行なうことにより炭素を更に均一に被覆することができ、電池特性の向上を図ることができる。   Moreover, you may perform the vapor deposition process of this carbon film under reduced pressure of 50 Pa-30000 Pa. In particular, in the case of a batch-type apparatus in which the vapor deposition apparatus is placed by allowing powder to stand, by performing the process under reduced pressure, carbon can be coated more uniformly, and battery characteristics can be improved.

このとき、蒸着工程において、600〜1200℃の温度範囲で炭素被膜を形成することが好ましい。
このような温度範囲で炭素被膜を形成すれば、珪素系活物質の粒子の珪素結晶の肥大化を抑制できるため、充電時の珪素系活物質の粒子の膨張を抑制できる。その結果、電池容量、サイクル特性をより確実に向上させることができる。
At this time, it is preferable to form a carbon film in the temperature range of 600-1200 degreeC in a vapor deposition process.
If the carbon film is formed in such a temperature range, the silicon crystal enlargement of the silicon-based active material particles can be suppressed, so that the expansion of the silicon-based active material particles during charging can be suppressed. As a result, the battery capacity and cycle characteristics can be improved more reliably.

そして、本発明における有機物ガス及び/又は蒸気を発生させ炭素原料として用いられる物質としては、特に非酸性雰囲気下において、上記の600〜1200℃の温度範囲での熱処理で熱分解して炭素(黒鉛)を生成する以下のものから選択することが好ましい。
脂肪族炭化水素の種類のものは、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、プロピレンの単体又はこれらの中の少なくとも2個以上の混合物を使用することが好ましい。
更に、芳香族炭化水素の種類のものは、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン、メシチレンといった1環〜3環の芳香族炭化水素の単体又はこれらの中の少なくとも2個以上の混合物を使用することが好ましい。
また、タール蒸留工程で得られる留分の種類のものは、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油の単体又はこれらの中の少なくとも2個以上の混合物を使用することが好ましい。
脂肪族炭化水素、芳香族炭化水素、タール蒸留工程で得られる留分の中から、上記したこれらの物質を選択して炭素原料として使用することで、電池容量、初回充放電効率、サイクル特性をより確実に向上させることができる。
In the present invention, the substance used to generate the organic gas and / or vapor and used as the carbon raw material is thermally decomposed by heat treatment in the above-mentioned temperature range of 600 to 1200 ° C., particularly in a non-acidic atmosphere. Are preferably selected from the following:
For the type of aliphatic hydrocarbon, it is preferable to use methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, propylene alone or a mixture of at least two of these. .
Further, aromatic hydrocarbon types include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, and mesitylene. It is preferable to use a tricyclic aromatic hydrocarbon alone or a mixture of at least two of them.
Moreover, it is preferable to use the gas distillate obtained in the tar distillation step, gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil alone or a mixture of at least two of them.
By selecting these substances from the aliphatic hydrocarbons, aromatic hydrocarbons, and fractions obtained in the tar distillation process, and using them as carbon raw materials, the battery capacity, initial charge / discharge efficiency, and cycle characteristics can be improved. It can improve more reliably.

更に、本発明において、上記の有機物のうち、先に芳香族炭化水素の種類から選んで使用し、その後、脂肪族炭化水素の種類から使用することで炭素被膜を形成することが好ましい。
芳香族炭化水素は比較的低温であっても蒸着速度が高い。また、脂肪族炭化水素の蒸着によって形成される炭素被膜は電解液との接触面で電解液を分解させにくいため電池特性の悪化を抑制できる。そこで、炭素被膜を被覆する蒸着工程において、まず芳香族炭化水素を使用して効率よく炭素量を稼ぐことで十分な導電性を確保し、その後、脂肪族炭化水素の化学蒸着により、電解液との相性が良好な表面状態を形成させることで、生産性と電池特性の向上をより確実に両立させることができる。
Furthermore, in the present invention, it is preferable to use the organic substance selected from the types of aromatic hydrocarbons, and then use the type of aliphatic hydrocarbons to form a carbon film.
Aromatic hydrocarbons have a high deposition rate even at relatively low temperatures. Moreover, since the carbon film formed by vapor deposition of aliphatic hydrocarbons hardly decomposes the electrolyte solution at the contact surface with the electrolyte solution, deterioration of battery characteristics can be suppressed. Therefore, in the vapor deposition step for coating the carbon coating, first, sufficient conductivity is ensured by using an aromatic hydrocarbon to efficiently increase the amount of carbon, and then by chemical vapor deposition of aliphatic hydrocarbon, By forming a surface state with good compatibility, productivity and battery characteristics can be improved more reliably.

この場合の炭素被膜の被覆量は特に限定されるものではないが、炭素の割合は、炭素被覆した珪素系活物質の粒子全体に対して0.3〜40質量%が望ましく、0.5〜30質量%がより望ましい。
炭素被覆量を0.3質量%以上とすることで、十分な導電性を維持することができ、非水電解質二次電池の負極とした際のサイクル性の向上を確実に達成することができる。また、炭素被覆量が40質量%以下であれば、効果の向上が見られずに負極材料に占める炭素の割合が多くなってリチウムイオン二次電池用負極材として用いた場合に充放電容量が低下するような事態が発生する可能性を極力低くすることができる。
The coating amount of the carbon coating in this case is not particularly limited, but the proportion of carbon is desirably 0.3 to 40% by mass with respect to the entire particles of the silicon-based silicon-coated material, 0.5 to 30% by mass is more desirable.
By setting the carbon coating amount to 0.3% by mass or more, it is possible to maintain sufficient conductivity, and it is possible to reliably achieve improvement in cycleability when used as a negative electrode of a nonaqueous electrolyte secondary battery. . Further, if the carbon coating amount is 40% by mass or less, the improvement of the effect is not seen, and the proportion of carbon in the negative electrode material is increased so that the charge / discharge capacity is obtained when used as a negative electrode material for a lithium ion secondary battery. It is possible to reduce the possibility of occurrence of such a situation as much as possible.

また、炭素被膜の蒸着工程の圧力は、常圧、減圧下共に適用可能である。   Moreover, the pressure of the vapor deposition process of a carbon film can be applied to both normal pressure and reduced pressure.

更に、炭素被膜の蒸着工程に使用する装置はバッチ式炉やロータリーキルン、ローラーハースキルンといった連続炉、又流動層炉など一般的に知られた装置が使用可能である。   Furthermore, as the apparatus used for the carbon film deposition process, generally known apparatuses such as a batch furnace, a continuous kiln such as a rotary kiln and a roller hearth kiln, and a fluidized bed furnace can be used.

以上説明したようなリチウムイオン二次電池用負極材の製造方法でリチウムイオン二次電池用負極材を製造する。
このような方法で製造されたものであれば、生産性、電池容量、初回充放電効率、サイクル特性により優れたリチウムイオン二次電池用負極材となる。
A negative electrode material for a lithium ion secondary battery is manufactured by the method for manufacturing a negative electrode material for a lithium ion secondary battery as described above.
If manufactured by such a method, a negative electrode material for a lithium ion secondary battery that is superior in productivity, battery capacity, initial charge / discharge efficiency, and cycle characteristics is obtained.

[リチウムイオン二次電池]
また、本発明のリチウムイオン二次電池は、上記リチウムイオン二次電池用負極材を用いた負極からなる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。
[Lithium ion secondary battery]
In addition, the lithium ion secondary battery of the present invention is characterized in that it comprises a negative electrode using the above negative electrode material for lithium ion secondary batteries, and other materials such as positive electrode, electrolyte, separator, and battery shape are known. Can be used, and is not particularly limited.

ここで、上記リチウムイオン二次電池用負極材を用いて負極を作製する場合、更にカーボンや黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。
具体的にはAl、Ti、Fe、Ni、Cu、Zn、Ag、Sn、Si等の金属粒子や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粒子、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
Here, when producing a negative electrode using the said negative electrode material for lithium ion secondary batteries, conductive agents, such as carbon and graphite, can be added further. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the configured battery may be used.
Specifically, metal particles such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fibers, natural graphite, artificial graphite, various coke particles, mesophase carbon, vapor grown carbon fiber, pitch Graphite such as carbon-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used.

負極(成型体)の調製方法としては、一例として下記のような方法が挙げられる。
上述の負極材と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。
この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。
なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
Examples of the method for preparing the negative electrode (molded body) include the following methods.
A paste-like mixture is prepared by kneading a negative electrode material, if necessary, a conductive agent, and other additives such as a binder, with a solvent such as N-methylpyrrolidone or water. Apply to current collector sheet.
In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment.
In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

また、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoS等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等を用いることができる。
電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられる。非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用することができる。
As the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , lithium, chalcogen compounds, and the like can be used. .
As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. As the non-aqueous solvent, one or a combination of two or more of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like are used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例1)
平均粒子径が5μm、BET比表面積が3.5m/gのSiO(x=1.0)粒子100gを粉体層厚みが10mmとなるようトレイに敷き、バッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして、炉内の温度が900℃に達した後、炉内に芳香族炭化水素であるトルエンを0.3cc/minで流入し、炭素被膜を形成するための蒸着工程を4時間行った。トルエン停止後、脂肪族炭化水素であるメタンガスを0.3NL/minで通気する蒸着工程を3時間行った。この時の炉内圧は800Paとした。このように、実施例1では、蒸着工程を2回実施し、蒸着工程毎に使用する炭素原料の種類を1回変更して、2種類(先に芳香族炭化水素を使用し、その後に脂肪族炭化水素を使用した。)の炭素原料を使用した炭素被膜を形成した。
Example 1
100 g of SiO x (x = 1.0) particles having an average particle diameter of 5 μm and a BET specific surface area of 3.5 m 2 / g were laid on a tray so that the powder layer thickness was 10 mm, and charged in a batch type heating furnace. .
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. Then, after the temperature in the furnace reached 900 ° C., toluene as an aromatic hydrocarbon was introduced into the furnace at 0.3 cc / min, and a vapor deposition step for forming a carbon film was performed for 4 hours. After the toluene was stopped, a vapor deposition step of venting methane gas, which is an aliphatic hydrocarbon, at 0.3 NL / min was performed for 3 hours. The furnace pressure at this time was 800 Pa. Thus, in Example 1, the vapor deposition step was performed twice, the type of carbon raw material used for each vapor deposition step was changed once, and two types (first using aromatic hydrocarbons and then fat A carbon film was formed using a carbon raw material of group hydrocarbon.

処理後に降温し、106gの黒色粒子を得た。
得られた黒色粒子は、平均粒子径5.2μm、BET比表面積が6.5m/gで、黒色粒子に対する炭素被覆量4.8質量%の導電性粒子であった。
After the treatment, the temperature was lowered to obtain 106 g of black particles.
The obtained black particles were conductive particles having an average particle diameter of 5.2 μm, a BET specific surface area of 6.5 m 2 / g, and a carbon coating amount of 4.8% by mass with respect to the black particles.

<電池評価>
次に、以下の方法で、得られた粒子を負極活物質として用いた電池評価を行った。
まず、得られた負極材45質量%と人造黒鉛(平均粒子径10μm)45質量%、ポリイミド10質量%を混合し、さらにN−メチルピロリドンを加えてスラリーとした。
このスラリーを厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥させた。その後、2cmに打ち抜き、負極とした。
<Battery evaluation>
Next, battery evaluation using the obtained particles as a negative electrode active material was performed by the following method.
First, 45% by mass of the obtained negative electrode material, 45% by mass of artificial graphite (average particle size 10 μm), and 10% by mass of polyimide were mixed, and N-methylpyrrolidone was further added to form a slurry.
This slurry was applied to a copper foil having a thickness of 12 μm, dried at 80 ° C. for 1 hour, then subjected to pressure molding by a roller press, and the electrode was vacuum-dried at 350 ° C. for 1 hour. Then, it punched out to 2 cm < 2 > and set it as the negative electrode.

そして、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   In order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used for the counter electrode, and lithium hexafluorophosphate was mixed with ethylene carbonate and diethyl carbonate in a 1/1 (volume ratio) mixture as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池を、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで0.5mA/cmの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cmを下回った時点で充電を終了させた。そして放電は0.5mA/cmの定電流で行い、セル電圧が1.4Vに達した時点で放電を終了して、放電容量を求めた。
そしてこの際の充電容量(初回充電容量)と放電容量(初回放電容量)から初回充放電効率を算出した。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果を表1に示す。
The prepared lithium ion secondary battery is allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reaches 0 V / 0.5 mA / cm 2. After reaching 0V, the battery was charged by decreasing the current so as to keep the cell voltage at 0V. The charging was terminated when the current value fell below 40 μA / cm 2 . The discharge was performed at a constant current of 0.5 mA / cm 2 , and the discharge was terminated when the cell voltage reached 1.4 V, and the discharge capacity was determined.
The initial charge / discharge efficiency was calculated from the charge capacity (initial charge capacity) and the discharge capacity (initial discharge capacity) at this time.
The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. The results are shown in Table 1.

その結果、初回充電容量は2150mAh/gで初回放電容量は1656mAh/gとなり、初回充放電効率(初回放電容量/初回充電容量)は77%となった。また、50サイクル目の放電容量は1573mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は94%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、高電池容量となり、初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result, the initial charge capacity was 2150 mAh / g, the initial discharge capacity was 1656 mAh / g, and the initial charge / discharge efficiency (initial discharge capacity / initial charge capacity) was 77%. Further, the discharge capacity at the 50th cycle was 1573 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 94%. From the above results, the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention has a high battery capacity, and is a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability. confirmed.

(実施例2)
実施例1と同じSiO(x=1.0)粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を800℃に昇温した。そして、炉内の温度が800℃に達した後、炉内に芳香族炭化水素であるメシチレンを0.3cc/minで流入し、炭素被膜を形成するための蒸着工程を5時間行った。メシチレン停止後、脂肪族炭化水素であるプロピレンガスを0.3NL/minで通気する蒸着工程を3時間行った。この時の炉内圧は800Paとした。このように、実施例2では、蒸着工程を2回実施し、蒸着工程毎に使用する炭素原料の種類を1回変更して、2種類(先に芳香族炭化水素を使用し、その後に脂肪族炭化水素を使用した。)の炭素原料を使用した炭素被膜を形成した。
(Example 2)
The same SiO x (x = 1.0) particles as in Example 1 were charged into a batch-type heating furnace.
Then, the pressure in the furnace was increased to 800 ° C. at a temperature increase rate of 200 ° C./hr while the pressure in the furnace was reduced by an oil rotary vacuum pump. Then, after the temperature in the furnace reached 800 ° C., mesitylene, which is an aromatic hydrocarbon, was flowed into the furnace at 0.3 cc / min, and a vapor deposition process for forming a carbon film was performed for 5 hours. After stopping the mesitylene, a vapor deposition step in which propylene gas, which is an aliphatic hydrocarbon, was vented at 0.3 NL / min was performed for 3 hours. The furnace pressure at this time was 800 Pa. Thus, in Example 2, the vapor deposition step was performed twice, the type of carbon raw material used for each vapor deposition step was changed once, and two types (first using aromatic hydrocarbons and then fat A carbon film was formed using a carbon raw material of group hydrocarbon.

処理後に降温し、106gの黒色粒子を得た。
得られた黒色粒子は、平均粒子径5.3μm、BET比表面積が4.0m/gで、黒色粒子に対する炭素被覆量4.9質量%の導電性粒子であった。
After the treatment, the temperature was lowered to obtain 106 g of black particles.
The obtained black particles were conductive particles having an average particle diameter of 5.3 μm, a BET specific surface area of 4.0 m 2 / g, and a carbon coating amount of 4.9% by mass with respect to the black particles.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2225mAh/gで初回放電容量は1691mAh/gとなり、初回充放電効率(初回放電容量/初回充電容量)は76%となった。また、50サイクル目の放電容量は1606mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は95%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、高電池容量となり、初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result, the initial charge capacity was 2225 mAh / g, the initial discharge capacity was 1691 mAh / g, and the initial charge / discharge efficiency (initial discharge capacity / initial charge capacity) was 76%. The discharge capacity at the 50th cycle was 1606 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 95%. From the above results, the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention has a high battery capacity, and is a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability. confirmed.

(実施例3)
実施例1と同じSiO(x=1.0)粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして炉内の温度が900℃に達した後、炉内に芳香族炭化水素であるトルエンを0.3cc/min流入し、炭素被膜を形成するための蒸着工程を5時間行った。トルエン停止後、200℃/hrの昇温速度で炉内を1000℃に昇温し、1000℃到達後に、脂肪族炭化水素であるメタンガスを0.3NL/minで通気する蒸着工程を1時間行った。この時の炉内圧は800Paとした。このように、実施例3では、蒸着工程を2回実施し、蒸着工程毎に使用する炭素原料の種類を1回変更して、2種類(先に芳香族炭化水素を使用し、その後に脂肪族炭化水素を使用した。)の炭素原料を使用した炭素被膜を形成した。
(Example 3)
The same SiO x (x = 1.0) particles as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. Then, after the temperature in the furnace reached 900 ° C., toluene as an aromatic hydrocarbon was flowed into the furnace at 0.3 cc / min, and a vapor deposition step for forming a carbon film was performed for 5 hours. After the toluene was stopped, the inside of the furnace was heated to 1000 ° C. at a temperature rising rate of 200 ° C./hr, and after reaching 1000 ° C., a vapor deposition step of aeration of methane gas as an aliphatic hydrocarbon at 0.3 NL / min was performed for 1 hour It was. The furnace pressure at this time was 800 Pa. Thus, in Example 3, the vapor deposition step was performed twice, the type of carbon raw material used for each vapor deposition step was changed once, and two types (first using aromatic hydrocarbons and then fat A carbon film was formed using a carbon raw material of group hydrocarbon.

処理後に降温し、106gの黒色粒子を得た。
得られた黒色粒子は、平均粒子径5.5μm、BET比表面積が6.5m/gで、黒色粒子に対する炭素被覆量5.1質量%の導電性粒子であった。
After the treatment, the temperature was lowered to obtain 106 g of black particles.
The obtained black particles were conductive particles having an average particle diameter of 5.5 μm, a BET specific surface area of 6.5 m 2 / g, and a carbon coating amount of 5.1% by mass with respect to the black particles.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2096mAh/gで初回放電容量は1635mAh/gとなり、初回充放電効率は78%となった。また、50サイクル目の放電容量は1504mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は92%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、高電池容量となり、初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result, the initial charge capacity was 2096 mAh / g, the initial discharge capacity was 1635 mAh / g, and the initial charge / discharge efficiency was 78%. Further, the discharge capacity at the 50th cycle was 1504 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 92%. From the above results, the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention has a high battery capacity, and is a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability. confirmed.

(実施例4)
実施例1と同じSiO(x=1.0)粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして炉内の温度が900℃に達した後、炉内に芳香族炭化水素であるトルエンを0.3cc/minで流入し、炭素被膜を形成するための蒸着工程を5時間行った。トルエン停止後、200℃/hrの昇温速度で炉内を1000℃に昇温し、1000℃到達後に、タール蒸留工程で得られる留分であるガス軽油を0.2cc/minで流入する蒸着工程を1時間行った。この時の炉内圧は800Paとした。このように、実施例4では、蒸着工程を2回実施し、蒸着工程毎に使用する炭素原料の種類を1回変更して、2種類(先に芳香族炭化水素を使用し、その後にタール蒸留工程で得られる留分を使用した。)の炭素原料を使用した炭素被膜を形成した。
Example 4
The same SiO x (x = 1.0) particles as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. Then, after the temperature in the furnace reached 900 ° C., toluene as an aromatic hydrocarbon was introduced into the furnace at 0.3 cc / min, and a vapor deposition step for forming a carbon film was performed for 5 hours. After stopping toluene, the inside of the furnace is heated up to 1000 ° C. at a heating rate of 200 ° C./hr, and after reaching 1000 ° C., gas gas oil, which is a fraction obtained in the tar distillation process, flows in at 0.2 cc / min. The process was performed for 1 hour. The furnace pressure at this time was 800 Pa. Thus, in Example 4, the vapor deposition step was performed twice, the type of carbon raw material used for each vapor deposition step was changed once, and two types (first using aromatic hydrocarbons and then tar) The carbon film using the carbon raw material of the fraction obtained in the distillation process was used.

処理後に降温し、106gの黒色粒子を得た。
得られた黒色粒子は、平均粒子径5.7μm、BET比表面積が4.1m/gで、黒色粒子に対する炭素被覆量5.0質量%の導電性粒子であった。
After the treatment, the temperature was lowered to obtain 106 g of black particles.
The obtained black particles were conductive particles having an average particle diameter of 5.7 μm, a BET specific surface area of 4.1 m 2 / g, and a carbon coating amount of 5.0 mass% with respect to the black particles.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2129mAh/gで初回放電容量は1640mAh/gとなり、初回充放電効率は77%となった。また、50サイクル目の放電容量は1459mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は89%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、高電池容量となり、初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result, the initial charge capacity was 2129 mAh / g, the initial discharge capacity was 1640 mAh / g, and the initial charge / discharge efficiency was 77%. In addition, the discharge capacity at the 50th cycle was 1459 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 89%. From the above results, the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention has a high battery capacity, and is a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability. confirmed.

(実施例5)
実施例1と同じSiO(x=1.0)粒子100gを粉体層厚みが10mmとなるようトレイに敷き、バッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして、炉内の温度が900℃に達した後、脂肪族炭化水素であるメタンガスを0.3NL/minで通気する蒸着工程を3時間行った。メタンガス停止後、芳香族炭化水素であるトルエンを0.3cc/minで流入し、炭素被膜を形成するための蒸着工程を4時間行った。つまり実施例5では、実施例1と順番を逆に、先に脂肪族炭化水素を使用し、その後に芳香族炭化水素を使用した。
(Example 5)
100 g of the same SiO x (x = 1.0) particles as in Example 1 were laid on a tray so that the thickness of the powder layer was 10 mm, and charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. And after the temperature in a furnace reached to 900 degreeC, the vapor deposition process which ventilates methane gas which is an aliphatic hydrocarbon at 0.3 NL / min was performed for 3 hours. After stopping methane gas, toluene as an aromatic hydrocarbon was introduced at 0.3 cc / min, and a vapor deposition step for forming a carbon film was performed for 4 hours. In other words, in Example 5, the order was reversed from that in Example 1, and aliphatic hydrocarbons were used first, followed by aromatic hydrocarbons.

処理後に降温し、107gの黒色粒子を得た。
得られた黒色粒子は、平均粒子径5.2μm、BET比表面積が3.0m/gで、黒色粒子に対する炭素被覆量5.1質量%の導電性粒子であった。
After the treatment, the temperature was lowered to obtain 107 g of black particles.
The obtained black particles were conductive particles having an average particle diameter of 5.2 μm, a BET specific surface area of 3.0 m 2 / g, and a carbon coating amount of 5.1 mass% with respect to the black particles.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2142mAh/gで初回放電容量は1650mAh/gとなり、初回充放電効率は77%となった。また、50サイクル目の放電容量は1485mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は90%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、高電池容量となり、初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result, the initial charge capacity was 2142 mAh / g, the initial discharge capacity was 1650 mAh / g, and the initial charge / discharge efficiency was 77%. Further, the discharge capacity at the 50th cycle was 1485 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 90%. From the above results, the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention has a high battery capacity, and is a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability. confirmed.

(比較例1)
実施例1と同じSiO(x=1.0)粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、炉内を1100℃に昇温させた。1100℃に達した後に脂肪族炭化水素であるメタンガスを0.3NL/min流入し、5時間の炭素被覆処理を行った。なお、この時の炉内圧は800Paとした。このように、比較例1では、蒸着工程を1回のみ実施し、1種類の炭素原料を使用した炭素被膜を形成した。
この粉末を混合して測定したところ、炭素被覆量5.0質量%、平均粒子径5.3μm、BET比表面積5.1m/gの粒子であった。
(Comparative Example 1)
The same SiO x (x = 1.0) particles as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 1100 ° C. while reducing the inside of the furnace with an oil rotary vacuum pump. After reaching 1100 ° C., methane gas, which is an aliphatic hydrocarbon, was introduced at 0.3 NL / min, and carbon coating treatment was performed for 5 hours. The furnace pressure at this time was 800 Pa. Thus, in the comparative example 1, the vapor deposition process was implemented only once and the carbon film which used one type of carbon raw material was formed.
When this powder was mixed and measured, it was a particle having a carbon coating amount of 5.0% by mass, an average particle size of 5.3 μm, and a BET specific surface area of 5.1 m 2 / g.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2091mAh/gで初回放電容量は1631mAh/gとなり、初回充放電効率は78%となった。また、50サイクル目の放電容量は1402mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は86%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池に比べてサイクル特性が大幅に劣ることが確認された。   As a result, the initial charge capacity was 2091 mAh / g, the initial discharge capacity was 1631 mAh / g, and the initial charge / discharge efficiency was 78%. In addition, the discharge capacity at the 50th cycle was 1402 mAh / g, and the cycle retention rate (capacity maintenance rate) after 50 cycles was 86%. From the above results, it was confirmed that the cycle characteristics were significantly inferior to those of the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention.

(比較例2)
実施例1と同じSiO(x=1.0)粒子100gをバッチ式加熱炉内に仕込んだ。
油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして、炉内の温度が900℃に達した後、炉内に芳香族炭化水素であるトルエンを0.3cc/minで流入し、4時間の炭素被覆処理を行った。トルエン停止後、芳香族炭化水素であるベンゼンを0.3NL/minで通気し2時間の炭素被覆処理を行った。この時の炉内圧は800Paとした。このように、比較例2では、蒸着工程を2回実施し、蒸着工程毎に使用する炭素原料の種類を変更しないで、1種類(2回とも芳香族炭化水素を使用した。)の炭素原料を使用した炭素被膜を形成した。
冷却後この粉末を混合して測定したところ、炭素被覆量5.3質量%、平均粒子径5.3μm、BET比表面積2.1m/gの粒子であった。
(Comparative Example 2)
100 g of the same SiO x (x = 1.0) particles as in Example 1 were charged in a batch heating furnace.
While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 900 ° C. at a temperature rising rate of 200 ° C./hr. And after the temperature in a furnace reached 900 degreeC, toluene which is an aromatic hydrocarbon was flowed in into the furnace at 0.3 cc / min, and the carbon coating process for 4 hours was performed. After stopping toluene, benzene, which is an aromatic hydrocarbon, was aerated at 0.3 NL / min to perform carbon coating treatment for 2 hours. The furnace pressure at this time was 800 Pa. As described above, in Comparative Example 2, the vapor deposition process was performed twice, and without changing the type of the carbon raw material used for each vapor deposition process, one type of carbon raw material (both using aromatic hydrocarbons was used). A carbon film was formed using
After cooling, this powder was mixed and measured to find particles having a carbon coating amount of 5.3 mass%, an average particle size of 5.3 μm, and a BET specific surface area of 2.1 m 2 / g.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2155mAh/gで初回放電容量は1660mAh/gとなり、初回充放電効率は77%となった。また、50サイクル目の放電容量は1211mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は73%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池に比べてサイクル特性が大幅に劣ることが確認された。   As a result, the initial charge capacity was 2155 mAh / g, the initial discharge capacity was 1660 mAh / g, and the initial charge / discharge efficiency was 77%. In addition, the discharge capacity at the 50th cycle was 1211 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 73%. From the above results, it was confirmed that the cycle characteristics were significantly inferior to those of the lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery of the present invention.

(比較例3)
実施例1と同じSiO(x=1.0)粒子100gをバッチ式加熱炉内に仕込んだ。
油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして900℃に達した後、炉内にメタンガスを0.3NL/minで通気し、42時間の炭素被覆処理を行った。このように、比較例3では、蒸着工程を1回のみ実施し、1種類の炭素原料を使用した炭素被膜を形成した。
冷却後この粉末を混合して測定したところ、炭素被覆量4.7質量%であったが、他の実施例及び比較例と比較して生産性が非常に低かった。
(Comparative Example 3)
100 g of the same SiO x (x = 1.0) particles as in Example 1 were charged in a batch heating furnace.
While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 900 ° C. at a temperature rising rate of 200 ° C./hr. And after reaching 900 degreeC, methane gas was ventilated at 0.3 NL / min in the furnace, and the carbon coating process for 42 hours was performed. Thus, in the comparative example 3, the vapor deposition process was implemented only once and the carbon film which used one type of carbon raw material was formed.
When the powder was mixed and measured after cooling, the carbon coating amount was 4.7% by mass, but the productivity was very low compared to other examples and comparative examples.

<電池評価>
次に、この負極材を用いて実施例1と同様な方法で負極を作製し、得られた負極の充放電特性を評価するために、実施例1と同様な方法でリチウムイオン二次電池を作製した。そして、作製したリチウムイオン二次電池の電池評価を行った。その結果を表1に示す。
<Battery evaluation>
Next, using this negative electrode material, a negative electrode was produced in the same manner as in Example 1, and in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1. Produced. And the battery evaluation of the produced lithium ion secondary battery was performed. The results are shown in Table 1.

その結果、初回充電容量は2144mAh/gで初回放電容量は1651mAh/gとなり、初回充放電効率は77%となった。また、50サイクル目の放電容量は1518mAh/gとなり、50サイクル後のサイクル保持率(容量維持率)は92%となった。以上の結果から、本発明のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池と同等のサイクル特性を得るためには、蒸着工程に要する時間(CVD時間)が42時間必要となり、これでは生産性が大幅に悪化してしまうことが確認された。   As a result, the initial charge capacity was 2144 mAh / g, the initial discharge capacity was 1651 mAh / g, and the initial charge / discharge efficiency was 77%. Further, the discharge capacity at the 50th cycle was 1518 mAh / g, and the cycle retention rate (capacity retention rate) after 50 cycles was 92%. From the above results, in order to obtain the cycle characteristics equivalent to the lithium ion secondary battery using the negative electrode material for lithium ion secondary batteries of the present invention, the time required for the vapor deposition process (CVD time) is 42 hours, This confirmed that productivity would deteriorate significantly.

実施例、比較例の炭素蒸着工程及び電池特性の一覧表を表1に示す。比較例1、2の負極材は実施例1−3の負極材に比べて明らかにサイクル特性に劣るリチウムイオン二次電池であり、比較例3では電池特性こそ実施例に劣っていないが工程に難があることが確認された。   Table 1 shows a list of carbon deposition steps and battery characteristics of Examples and Comparative Examples. The negative electrode material of Comparative Examples 1 and 2 is a lithium ion secondary battery that is clearly inferior in cycle characteristics as compared with the negative electrode material of Example 1-3. In Comparative Example 3, the battery characteristics are not inferior to the Examples, but the process It was confirmed that there were difficulties.

Figure 2015095342
Figure 2015095342

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (9)

リチウムイオンを吸蔵及び放出する珪素系活物質の粒子の表面を、蒸着法により炭素原料を用いた炭素被膜で被覆する蒸着工程を有するリチウムイオン二次電池用負極材の製造方法であって、
前記蒸着工程を2回以上実施し、蒸着工程毎に使用する前記炭素原料の種類を少なくとも1回は変更することで、2種類以上の前記炭素原料を使用した前記炭素被膜を形成し、各蒸着工程において、前記炭素原料の種類は、脂肪族炭化水素、芳香族炭化水素、タール蒸留工程で得られる留分の3種類の中から1種類選択し、該選択した種類の物質の単体又は混合物を使用することを特徴とするリチウムイオン二次電池用負極材の製造方法。
A method for producing a negative electrode material for a lithium ion secondary battery, comprising a vapor deposition step of coating the surface of particles of a silicon-based active material that occludes and releases lithium ions with a carbon film using a carbon raw material by a vapor deposition method,
The vapor deposition step is performed twice or more, and the carbon film using two or more types of carbon raw materials is formed by changing the type of the carbon raw material used for each vapor deposition step at least once. In the process, the kind of the carbon raw material is selected from the three kinds of fractions obtained in the aliphatic hydrocarbon, the aromatic hydrocarbon, and the tar distillation process, and a simple substance or a mixture of the selected kinds of substances is selected. A method for producing a negative electrode material for a lithium ion secondary battery.
前記脂肪族炭化水素を、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、プロピレンの単体又はこれらの中の少なくとも2個以上の混合物とすることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材の製造方法。   The aliphatic hydrocarbon is methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, propylene, or a mixture of at least two of these. The manufacturing method of the negative electrode material for lithium ion secondary batteries of 1. 前記芳香族炭化水素を、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン、メシチレンの単体又はこれらの中の少なくとも2個以上の混合物とすることを特徴とする請求項1又は請求項2に記載のリチウムイオン二次電池用負極材の製造方法。   The aromatic hydrocarbon is benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, mesitylene, or at least two of these. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the mixture is a mixture of one or more. 前記タール蒸留工程で得られる留分をガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油の単体又はこれらの中の少なくとも2個以上の混合物とすることを特徴とする請求項1から請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。   The fraction obtained in the tar distillation step is gas light oil, creosote oil, anthracene oil, naphtha cracked tar oil or a mixture of at least two of them. 4. The method for producing a negative electrode material for a lithium ion secondary battery according to any one of 3 above. 各蒸着工程で使用する前記炭素原料の種類は、先に前記芳香族炭化水素の種類から選んで使用し、その後、前記脂肪族炭化水素の種類から選択して使用することで前記炭素被膜を形成することを特徴とする請求項1から請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。   The type of the carbon raw material used in each vapor deposition step is first selected from the type of the aromatic hydrocarbon, and then selected from the type of the aliphatic hydrocarbon to form the carbon film. The manufacturing method of the negative electrode material for lithium ion secondary batteries of any one of Claims 1-4 characterized by the above-mentioned. 前記蒸着工程において、600〜1200℃の温度範囲で炭素被膜を形成することを特徴とする請求項1から請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。   The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5, wherein in the vapor deposition step, a carbon film is formed in a temperature range of 600 to 1200 ° C. 前記珪素系活物質の粒子は、珪素粒子、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粒子のいずれか、又はこれらのうちの2種類以上の混合物とすることを特徴とする請求項1から請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。 The silicon-based active material particles include silicon particles, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, and silicon oxide particles represented by the general formula SiO x (0.5 ≦ x ≦ 1.6). The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 6, wherein any one of the above or a mixture of two or more thereof is used. 請求項1から7のいずれか1項に記載の製造方法で製造されたリチウムイオン二次電池用負極材。   The negative electrode material for lithium ion secondary batteries manufactured with the manufacturing method of any one of Claim 1 to 7. 請求項8に記載のリチウムイオン二次電池用負極材を用いたものであることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to claim 8.
JP2013233638A 2013-11-12 2013-11-12 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery Active JP6046594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233638A JP6046594B2 (en) 2013-11-12 2013-11-12 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233638A JP6046594B2 (en) 2013-11-12 2013-11-12 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015095342A true JP2015095342A (en) 2015-05-18
JP6046594B2 JP6046594B2 (en) 2016-12-21

Family

ID=53197618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233638A Active JP6046594B2 (en) 2013-11-12 2013-11-12 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6046594B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222475A (en) * 2015-05-28 2016-12-28 信越化学工業株式会社 Graphite-coated particle, and method for producing the same
JP2017168406A (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery
WO2021065200A1 (en) * 2019-10-03 2021-04-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222475A (en) * 2015-05-28 2016-12-28 信越化学工業株式会社 Graphite-coated particle, and method for producing the same
JP2017168406A (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery
WO2021065200A1 (en) * 2019-10-03 2021-04-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
JP2021061101A (en) * 2019-10-03 2021-04-15 信越化学工業株式会社 Anode active material, anode and method for producing anode active material
JP7186156B2 (en) 2019-10-03 2022-12-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for producing negative electrode active material
JP2023015403A (en) * 2019-10-03 2023-01-31 信越化学工業株式会社 Non-aqueous electrolyte secondary battery
EP4040540A4 (en) * 2019-10-03 2023-11-01 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
JP7410259B2 (en) 2019-10-03 2024-01-09 信越化学工業株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6046594B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP6193798B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5406799B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5500047B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP6301142B2 (en) Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5910479B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP5320890B2 (en) Method for producing negative electrode material
JP6046594B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP2016091649A (en) Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6413007B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5798209B2 (en) Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6394498B2 (en) Graphite-coated particles and method for producing the same
JP5558312B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2018206594A (en) Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161117

R150 Certificate of patent or registration of utility model

Ref document number: 6046594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150