JP5798209B2 - Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery - Google Patents

Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP5798209B2
JP5798209B2 JP2014067497A JP2014067497A JP5798209B2 JP 5798209 B2 JP5798209 B2 JP 5798209B2 JP 2014067497 A JP2014067497 A JP 2014067497A JP 2014067497 A JP2014067497 A JP 2014067497A JP 5798209 B2 JP5798209 B2 JP 5798209B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
particles
silicon
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067497A
Other languages
Japanese (ja)
Other versions
JP2014139948A (en
Inventor
浩一朗 渡邊
浩一朗 渡邊
福岡 宏文
宏文 福岡
宮脇 悟
悟 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014067497A priority Critical patent/JP5798209B2/en
Publication of JP2014139948A publication Critical patent/JP2014139948A/en
Application granted granted Critical
Publication of JP5798209B2 publication Critical patent/JP5798209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用負極活物質として用いた際に、高い初回充放電効率及び高容量、並びに良好なサイクル特性を示す非水電解質二次電池用負極材とその製造方法並びにそれを用いたリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery that exhibits high initial charge / discharge efficiency, high capacity, and good cycle characteristics when used as a negative electrode active material for a lithium ion secondary battery, and a method for producing the same, and The present invention relates to a lithium ion secondary battery using a battery.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices.

従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1、2参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4参照)、負極材料にSiO及びGeOを用いる方法(例えば、特許文献5参照)等が知られている。 Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as the negative electrode material (for example, Patent Documents 1 and 2). Reference), a method of applying a melt-quenched metal oxide as a negative electrode material (for example, see Patent Document 3), a method of using silicon oxide as a negative electrode material (for example, see Patent Document 4), and Si 2 N 2 O as a negative electrode material And a method using Ge 2 N 2 O (see, for example, Patent Document 5) is known.

また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後に炭化処理する方法(例えば、特許文献6参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8参照)がある。   Further, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after graphite and mechanical alloying (for example, see Patent Document 6), a method of coating a carbon layer on the surface of silicon particles by a chemical vapor deposition method (for example, And Patent Document 7), and a method of coating the surface of silicon oxide particles with a carbon layer by chemical vapor deposition (for example, see Patent Document 8).

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.

特に、特許文献4では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らが知る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったり等の問題があり、改良する余地がある。   In particular, Patent Document 4 uses silicon oxide as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, as far as the present inventors know, the irreversible capacity during the initial charge / discharge is still large. There is a problem that the cycle performance has not reached the practical level, and there is room for improvement.

また、負極材に導電性を付与した技術についても、特許文献6では固体と固体の融着であるため均一な炭素被膜が形成されず、導電性が不十分であるといった問題がある。
そして、特許文献7の方法においては、均一な炭素被膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮が余りにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならない。
特許文献8の方法においては、サイクル性の向上は確認されるものの、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。
Further, the technique of imparting conductivity to the negative electrode material also has a problem in Patent Document 6 that a uniform carbon film is not formed because of solid-solid fusion, and the conductivity is insufficient.
In the method of Patent Document 7, although a uniform carbon film can be formed, since Si is used as a negative electrode material, the expansion / contraction at the time of adsorption / desorption of lithium ions is too large. As a result, the battery cannot be put into practical use, and the cycle performance is degraded.
In the method of Patent Document 8, although improvement in cycle performance is confirmed, the number of cycles of charge / discharge is increased due to insufficient deposition of fine silicon crystals, integration of the carbon coating structure and the base material. As a result, there is a problem that the capacity gradually decreases and then rapidly decreases after a certain number of times, which is still insufficient for a secondary battery.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A

本発明は、珪素を含む材料、例えば酸化珪素系の材料の高い電池容量と低い体積膨張率の利点を維持しつつ、初回充放電効率が高くまたサイクル特性に優れた非水電解質二次電池負極用として有効な負極材とその製造方法並びにそのような負極材を含むリチウムイオン二次電池を提供することを目的とする。   The present invention provides a negative electrode for a non-aqueous electrolyte secondary battery having high initial charge / discharge efficiency and excellent cycle characteristics while maintaining the advantages of a high battery capacity and a low volume expansion coefficient of a silicon-containing material, for example, a silicon oxide-based material. An object of the present invention is to provide a negative electrode material that is effective for use, a manufacturing method thereof, and a lithium ion secondary battery including such a negative electrode material.

上記課題を解決するため、本発明では、少なくとも、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末の表面が黒鉛被膜で被覆された導電性粉末からなる非水電解質二次電池用負極材であって、前記導電性粉末は、該導電性粉末中の粒子20個を無作為に抽出して各粒子のラマンスペクトルを測定して500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測したときに、得られた20個の粒子のISi/Iの標準偏差σがσ≦10の関係を満たすものであることを特徴とする非水電解質二次電池用負極材を提供する。 In order to solve the above problems, in the present invention, at least a non-aqueous electrolyte secondary comprising a conductive powder in which the surface of a powder made of a material capable of occluding and releasing lithium ions containing silicon is coated with a graphite film. A negative electrode material for a battery, wherein the conductive powder is obtained by randomly extracting 20 particles in the conductive powder and measuring a Raman spectrum of each particle to obtain a silicon peak I Si that appears at 500 cm −1. the intensity ratio I Si / I G peak I G of graphite appearing at 1580 cm -1 when measured, that the standard deviation sigma of I Si / I G of 20 particles obtained satisfies the relation of sigma ≦ 10 A negative electrode material for a non-aqueous electrolyte secondary battery is provided.

このように、導電性粉末中の粒子20個を無作為に抽出して各粒子のラマンスペクトルを測定して500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測したときに、得られた20個の粒子のISi/Iの標準偏差σがσ≦10の関係を満たすものであれば、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末の表面に黒鉛が従来に比べてより均一に被覆されたものであり、よって従来に比べて初回充放電効率やサイクル特性に優れた、高容量で堆積膨張率の低い珪素を含む材料からなる非水電解液二次電池用負極材となっているものとなる。 Thus, the peak I G of graphite appearing twenty particles was randomly peak I Si and 1580 cm -1 of silicon appears at 500 cm -1 by measuring the Raman spectra of each particle in the conductive powder the intensity ratio I Si / I G when measured, as long as the standard deviation sigma of I Si / I G of 20 particles obtained satisfies the relation of sigma ≦ 10, absorbs lithium ions containing silicon In addition, the surface of the powder made of a material that can be released is more uniformly coated with graphite than in the past, and is therefore deposited at a high capacity, which is superior in initial charge / discharge efficiency and cycle characteristics compared to the conventional method. This is a negative electrode material for a non-aqueous electrolyte secondary battery made of a material containing silicon having a low expansion coefficient.

ここで、前記珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末は、珪素粉末、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物であることが好ましい。
このように、珪素粉末、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物が、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末であれば、より初回充放電効率が高く、また高容量でかつサイクル性に優れた非水電解質二次電池用負極材となる。
Here, the powder made of a material capable of inserting and extracting lithium ions containing silicon is silicon powder, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, and a general formula SiO x (0. Any one of silicon oxide powders represented by 5 ≦ x ≦ 1.6) or a mixture of two or more thereof is preferable.
Thus, either silicon powder, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide powder represented by the general formula SiO x (0.5 ≦ x ≦ 1.6), or If the mixture of two or more of these is a powder made of a material capable of occluding and releasing lithium ions containing silicon, the initial charge / discharge efficiency is higher, the capacity is high, and the cycle performance is excellent. A negative electrode material for a non-aqueous electrolyte secondary battery.

また、本発明では、少なくとも、正極と、負極と、リチウムイオン導電性の非水電解質とからなるリチウムイオン二次電池であって、前記負極に、本発明に係る非水電解質二次電池用負極材が用いられたものであることを特徴とするリチウムイオン二次電池を提供する。
上述のように、本発明の非水電解質二次電池用負極材は、非水電解質の二次電池の負極として用いた場合の電池特性(初回効率及びサイクル特性)が良好なものである。このため、本発明の非水電解質二次電池用負極材が用いられたリチウムイオン二次電池は、電池特性、特に初回効率及びサイクル耐久性に優れたものである。
The present invention also provides a lithium ion secondary battery comprising at least a positive electrode, a negative electrode, and a lithium ion conductive nonaqueous electrolyte, wherein the negative electrode includes a negative electrode for a nonaqueous electrolyte secondary battery according to the present invention. Provided is a lithium ion secondary battery characterized in that the material is used.
As described above, the negative electrode material for a nonaqueous electrolyte secondary battery of the present invention has good battery characteristics (initial efficiency and cycle characteristics) when used as a negative electrode for a nonaqueous electrolyte secondary battery. For this reason, the lithium ion secondary battery in which the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is used has excellent battery characteristics, particularly initial efficiency and cycle durability.

更に、本発明では、非水電解質二次電池用負極材の製造方法であって、少なくとも、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末に対して有機物ガス及び/又は蒸気雰囲気中、1000〜1400℃の温度範囲で黒鉛を化学蒸着して黒鉛被膜を形成して導電性粉末とし、その後、該導電性粉末中の粒子N個を無作為に抽出して各粒子のラマンスペクトルを測定して500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測して、得られたN個の粒子のISi/Iの標準偏差σが所定値以下か否かを評価し、前記所定値以下であった前記導電性粉末のみを次工程に送って前記非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法を提供する。 Furthermore, in the present invention, there is provided a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, wherein at least an organic gas and / or a powder made of a material capable of occluding and releasing lithium ions containing silicon is used. In a steam atmosphere, graphite is chemically vapor-deposited in a temperature range of 1000 to 1400 ° C. to form a graphite film to form a conductive powder. After that, N particles in the conductive powder are randomly extracted to obtain each of the particles. by measuring the intensity ratio I Si / I G peak I G of measuring the Raman spectrum appears at the peak I Si and 1580 cm -1 of silicon appears at 500 cm -1 with graphite, the resulting N number of particles I Si it / I standard deviation of G sigma evaluates whether more than a predetermined value, to produce a negative electrode material for the nonaqueous electrolyte secondary battery only said conductive powder said was less than a predetermined value is sent to the next step Features To provide a method of manufacturing a non-aqueous electrolyte secondary battery negative electrode material.

このように、黒鉛被膜を被覆した後に、導電性粉末中の粒子N個を無作為に抽出して各粒子のラマンスペクトルを測定し、500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測して、得られたN個の粒子のISi/Iの標準偏差σが所定値以下か否かを評価することによって、導電性粉末に黒鉛が従来の負極材に比べて初回充放電効率やサイクル特性を大幅に改善することができる程度に均一に被覆されているかどうかを精度良く、また容易に評価することができる。よって、このような方法で非水電解質二次電池用負極材を製造することによって、高歩留りで充放電効率やサイクル特性が改善された非水電解質二次電池用負極材を製造することができる。 Thus, after coating the graphite coating, the particles of N conductive powder to randomly measures the Raman spectrum of each particle, the peak I Si and 1580 cm -1 of silicon appears at 500 cm -1 appear intensity ratio of the peak I G of the graphite by measuring the I Si / I G, by a standard deviation σ of the I Si / I G of the resulting N number of particles to assess whether less than a predetermined value, conductive It is possible to accurately and easily evaluate whether or not graphite is uniformly coated to such an extent that the initial charge / discharge efficiency and cycle characteristics can be significantly improved as compared with conventional negative electrode materials. Therefore, by producing a negative electrode material for a nonaqueous electrolyte secondary battery by such a method, a negative electrode material for a nonaqueous electrolyte secondary battery with improved yield and improved charge / discharge efficiency and cycle characteristics can be produced. .

ここで、前記Nを20とし、また前記所定値を10とすることが好ましい。
このように、Nを20とし、また所定値を10とすることで、評価精度を確保しつつ、評価に要する時間が長時間となることもなく、製造歩留りの低下を防止することができる。
Here, it is preferable that the N is 20 and the predetermined value is 10.
Thus, by setting N to 20 and the predetermined value to 10, it is possible to prevent a decrease in manufacturing yield without securing a long evaluation time and ensuring evaluation accuracy.

ここで、前記黒鉛被膜を形成する工程では、前記黒鉛の化学蒸着中における最高温度より50℃以上低い温度から前記有機物ガス及び/又は蒸気の通気を開始して前記粉末に前記黒鉛被膜を形成することが好ましい。
このような方法で黒鉛被膜を形成することによって、粉末の表面により確実かつ簡易に黒鉛を均一に被覆することができ、より確実かつ簡易に得られたN個の粒子のISi/Iの標準偏差σが所定値以下である粒子を作製することができ、製造歩留りの改善と電池特性の改善を同時に図ることができる。
Here, in the step of forming the graphite film, the aeration of the organic gas and / or vapor is started from a temperature lower by 50 ° C. or more than the maximum temperature during chemical vapor deposition of the graphite to form the graphite film on the powder. It is preferable.
By forming the graphite film by such a method, it is possible to reliably and easily uniformly coat the graphite on the surface of the powder, and more reliably and easily obtain N particles of I Si / I G obtained . Particles having a standard deviation σ of a predetermined value or less can be produced, and improvement in production yield and improvement in battery characteristics can be achieved simultaneously.

また、前記黒鉛被膜の形成工程を、50Pa〜30000Paの減圧下で行うことが好ましい。
このように、50Pa〜30000Paの減圧下で黒鉛被膜の形成工程を行うことによって、粒子への均一な黒鉛被覆が可能となり、歩留りの向上を図ることができる。またこれによって作製した導電性粉末を非水電解質二次電池用負極材として用いることによって電池の導電性を著しく向上させることができ、より電池容量を改善することができる。
Moreover, it is preferable to perform the formation process of the said graphite film under reduced pressure of 50 Pa-30000 Pa.
Thus, by performing the graphite film forming step under a reduced pressure of 50 Pa to 30000 Pa, the particles can be uniformly coated with graphite, and the yield can be improved. In addition, by using the conductive powder produced as a negative electrode material for a non-aqueous electrolyte secondary battery, the conductivity of the battery can be remarkably improved, and the battery capacity can be further improved.

そして、前記有機物ガス及び/又は蒸気雰囲気を、メタンを50体積%以上含有する雰囲気とすることが好ましい。
このように、有機物ガス及び/又は蒸気雰囲気を、メタンを50体積%以上含有する雰囲気とすることによって、高品質の黒鉛被膜を形成することができ、よりサイクル特性に優れた非水電解質二次電池用負極材を製造することができる。
And it is preferable to make the said organic substance gas and / or steam atmosphere into the atmosphere containing 50 volume% or more of methane.
Thus, by making the organic substance gas and / or vapor atmosphere an atmosphere containing 50% by volume or more of methane, a high quality graphite film can be formed, and the non-aqueous electrolyte secondary having more excellent cycle characteristics. A negative electrode material for a battery can be produced.

更に、前記珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末として、珪素粉末、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物を用いることが好ましい。
このように、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末として、高容量であったり、充放電を繰り返した際の体積膨張率が低い等の特徴を有する、珪素粉末や、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれかや、これらのうちの2以上の混合物を用いることによって、確実に初回充放電効率が高く、また高容量でかつサイクル性に優れた非水電解質二次電池用負極材を得ることができる。
Further, as a powder made of a material capable of inserting and extracting lithium ions containing silicon, silicon powder, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, a general formula SiO x (0.5 It is preferable to use any one of silicon oxide powders represented by ≦ x ≦ 1.6) or a mixture of two or more thereof.
Thus, as a powder made of a material capable of occluding and releasing lithium ions containing silicon, a silicon powder having a high capacity and a low volume expansion coefficient when charging and discharging are repeated Or a particle having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, a silicon oxide powder represented by the general formula SiO x (0.5 ≦ x ≦ 1.6), or two of these By using the above mixture, a negative electrode material for a non-aqueous electrolyte secondary battery having high initial charge / discharge efficiency, high capacity and excellent cycleability can be obtained.

以上説明したように、本発明で得られた非水電解質二次電池用負極材を例えばリチウムイオン二次電池の負極材として用いることで、初回充放電効率が高く、また高容量でかつサイクル性に優れたリチウムイオン二次電池を得ることができる。また、その製造方法についても特別複雑なものではなく簡便であり、工業的規模の生産にも十分耐え得るものである。   As described above, by using the negative electrode material for a nonaqueous electrolyte secondary battery obtained in the present invention, for example, as a negative electrode material for a lithium ion secondary battery, the initial charge / discharge efficiency is high, the capacity is high, and the cycle performance is high. Can be obtained. Further, the manufacturing method is not particularly complicated and simple, and can sufficiently withstand industrial scale production.

以下、本発明についてより具体的に説明する。
前述のように、酸化珪素系の高い電池容量と低い体積膨張率の利点を維持しつつ、初回充放電効率が高くまたサイクル特性に優れた非水電解質二次電池負極用として有効な負極材とその製造方法の開発が待たれていた。
Hereinafter, the present invention will be described more specifically.
As described above, while maintaining the advantages of a high silicon oxide-based battery capacity and a low volume expansion coefficient, the negative electrode material is effective as a negative electrode for a nonaqueous electrolyte secondary battery with high initial charge / discharge efficiency and excellent cycle characteristics. Development of the manufacturing method was awaited.

ここで、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末、例えば酸化珪素はSiO(ただし、xは酸化被膜のため理論値の1よりわずかに大きい)と表記することができるが、X線回折による分析では数nm〜数十nm程度のナノシリコンが酸化珪素中に微分散している構造をとっている。
このため、電池容量は珪素と比較して小さいものの、炭素と比較すれば質量あたりで5〜6倍と高く、さらには体積膨張も小さく、負極活物質として使用しやすいと考えられている。
Here, a powder made of a material capable of inserting and extracting lithium ions containing silicon, for example, silicon oxide is expressed as SiO x (where x is an oxide film and is slightly larger than the theoretical value 1). However, analysis by X-ray diffraction has a structure in which nano-silicon of about several nm to several tens of nm is finely dispersed in silicon oxide.
For this reason, although the battery capacity is small compared to silicon, it is considered to be easy to use as a negative electrode active material because it is as high as 5-6 times per mass compared to carbon, and further, the volume expansion is small.

しかしながら、酸化珪素は絶縁体であるために何らかの手段で導電性を付与する必要がある。
この導電性を付与するための方法として、黒鉛等の導電性のある粒子と混合したり、上記複合粒子の表面を黒鉛被膜で被覆する方法、及びその両方を組み合わせる方法がある。
例えば黒鉛被膜で被覆する方法としては、複合粒子を有機物ガス及び/又は蒸気中で化学蒸着(CVD)する方法が好適であり、熱処理時に反応器内に有機物ガス及び/又は蒸気を導入することで効率よく行うことが可能である。
However, since silicon oxide is an insulator, it is necessary to provide conductivity by some means.
As a method for imparting this conductivity, there are a method of mixing with conductive particles such as graphite, a method of coating the surface of the composite particle with a graphite film, and a method of combining both.
For example, as a method of coating with a graphite film, a method of chemical vapor deposition (CVD) of the composite particles in an organic gas and / or vapor is suitable, and by introducing the organic gas and / or vapor into the reactor during heat treatment. It is possible to carry out efficiently.

このような事情から、本発明者らは、上記目的を達成するため種々検討を行った結果、リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛被膜で被覆することで著しい電池特性の向上が見られることを確認することができた。しかし同時に単なる黒鉛被覆では市場の要求特性に応えられないことも判った。   Under these circumstances, the present inventors have conducted various studies to achieve the above object, and as a result, the battery characteristics can be remarkably improved by covering the surface of the material capable of occluding and releasing lithium ions with a graphite film. I was able to confirm that it was seen. At the same time, however, it was found that mere graphite coating could not meet the required characteristics of the market.

そこで、本発明者らは更なる特性向上を目指し、詳細検討を行った。その結果、リチウムイオンを吸蔵、放出し得る材料の表面に被覆する黒鉛被膜の被覆状態を特定範囲に制御することで、市場の要求する特性レベルに到達し得ることを見出した。
具体的には、導電性に影響を及ぼすのは、黒鉛被覆の量だけでなく、その被膜の均一性も重要であることが判った。
例えば十分な黒鉛量が得られていても、被膜が不均一で酸化珪素の表面が部分的に露出していたりすると、その部分は絶縁性となってしまい充放電容量やサイクル特性に悪影響を及ぼす。
Therefore, the present inventors have conducted detailed studies with the aim of further improving the characteristics. As a result, it has been found that the characteristic level required by the market can be reached by controlling the covering state of the graphite film covering the surface of the material capable of occluding and releasing lithium ions within a specific range.
Specifically, it has been found that not only the amount of graphite coating but also the uniformity of the coating affects the conductivity.
For example, even if a sufficient amount of graphite is obtained, if the coating is non-uniform and the surface of the silicon oxide is partially exposed, that part becomes insulative and adversely affects charge / discharge capacity and cycle characteristics. .

この均一性を評価する指標としては、ラマン分光で1580cm−1付近に現れるグラファイト結晶のピーク(I)と500cm−1付近に現れる珪素の結晶ピーク(ISi)との強度比を取り、粒子によるその数値のばらつき、例えば標準偏差σを評価することで、高い精度で評価することができる。
この強度比の絶対値は、黒鉛被覆量や酸化珪素の一次粒径、またCVD処理時の温度による珪素結晶の成長度合いなどでも変化するが、強度比の粒子間のばらつきは均一度に依存する。
As the index for evaluating the uniformity, taking the intensity ratio of the peak of the graphite crystals appearing near 1580 cm -1 in Raman spectroscopy (I G) and the crystal peak of silicon appearing near 500cm -1 (I Si), particles It is possible to evaluate with high accuracy by evaluating the variation of the numerical value due to, for example, the standard deviation σ.
The absolute value of the strength ratio varies depending on the graphite coating amount, the primary particle size of silicon oxide, and the degree of growth of silicon crystals depending on the temperature during CVD processing, but the variation in the strength ratio between particles depends on the uniformity. .

即ち、種々の条件にて得られたリチウムイオンを吸蔵、放出し得る珪素を含む材料の表面を黒鉛被膜で覆った後に電池特性評価を行った結果、被覆状態によって特性の相違があることが確認できた。
そして、得られた各種材料の分析を行った結果、電池特性と黒鉛被膜の被覆状態がある特定の範囲であると電池特性(初回充放電効率やサイクル特性)の良好な非水電解質二次電池用負極材料となること、また特定の範囲であることを製造過程において評価することで電池特性(初回充放電効率やサイクル特性)の良好な負極材を高効率で製造することができることを知見し、本発明を完成するに至ったものである。
That is, as a result of battery characteristics evaluation after covering the surface of the silicon-containing material that can occlude and release lithium ions obtained under various conditions with a graphite film, it was confirmed that there were differences in characteristics depending on the coating state did it.
As a result of analyzing the obtained various materials, the non-aqueous electrolyte secondary battery having good battery characteristics (initial charge / discharge efficiency and cycle characteristics) when the battery characteristics and the coating state of the graphite film are within a specific range. It has been found that negative electrode materials with good battery characteristics (initial charge / discharge efficiency and cycle characteristics) can be manufactured with high efficiency by evaluating in the manufacturing process that it is a negative electrode material for use and in a specific range. The present invention has been completed.

以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の非水電解質二次電池用負極材は、少なくとも、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末の表面が黒鉛被膜で被覆された導電性粉末からなる非水電解質二次電池用負極材である。
そしてこの導電性粉末は、該導電性粉末中の粒子20個を無作為に抽出して各粒子のラマンスペクトルを測定して500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測したときに、得られた20個の粒子のISi/Iの標準偏差σがσ≦10の関係を満たすものである。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous material comprising a conductive powder in which at least the surface of a powder made of a material capable of occluding and releasing lithium ions containing silicon is coated with a graphite film. It is a negative electrode material for electrolyte secondary batteries.
This conductive powder is composed of a silicon peak I Si appearing at 500 cm −1 and a graphite peak appearing at 1580 cm −1 by randomly extracting 20 particles in the conductive powder and measuring the Raman spectrum of each particle. when measured the intensity ratio I Si / I G peak I G, standard deviation sigma of I Si / I G of 20 particles obtained satisfy the relation of sigma ≦ 10.

このように、導電性粉末中の粒子20個を無作為に抽出して各粒子のラマンスペクトルを測定して500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測したときに、得られた20個の粒子のISi/Iの標準偏差σがσ≦10の関係を満たすような導電性粉末からなる負極材は、各粒子の黒鉛被膜の被覆量が安定であり、バラツキが非常に少ないものである。そのため、このような黒鉛被膜が均一に被覆された導電性粉末からなる負極材であれば、従来に比べて初回充放電効率やサイクル特性に優れた非水電解質二次電池用負極材とすることができる。 Thus, the peak I G of graphite appearing twenty particles was randomly peak I Si and 1580 cm -1 of silicon appears at 500 cm -1 by measuring the Raman spectra of each particle in the conductive powder the intensity ratio I Si / I G when measured, the negative electrode material of the standard deviation sigma of I Si / I G of 20 particles obtained was made of a conductive powder that satisfies the relation of sigma ≦ 10, each The amount of the graphite coating on the particles is stable and the variation is very small. Therefore, if it is a negative electrode material made of conductive powder uniformly coated with such a graphite film, it should be a negative electrode material for a non-aqueous electrolyte secondary battery that is excellent in initial charge / discharge efficiency and cycle characteristics as compared with conventional materials. Can do.

ここで、黒鉛被膜が均一であると判断できる20個の粒子のISi/Iの標準偏差σは、σ≦10以下であることが好適であり、より望ましくは5以下、更に望ましくは3以下である。
標準偏差σが10より大きい場合、粒子表面で場所によっては黒鉛被膜が非常に薄い、若しくは被覆されていない状態が存在するものとなり、リチウムイオンの吸蔵、放出が阻害されて導電性が低下するおそれがあるものとなる。そのため、標準偏差σは10以下とする。
Here, the standard deviation sigma of I Si / I G of 20 particles, which can be determined that the graphite coating is uniform, it is preferable that at sigma ≦ 10 or less, more preferably 5 or less, more preferably 3 It is as follows.
If the standard deviation σ is greater than 10, the graphite film may be very thin or uncoated depending on the location on the particle surface, and the lithium ion occlusion and release may be inhibited, leading to a decrease in conductivity. There will be something. Therefore, the standard deviation σ is 10 or less.

ここで、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末としては、珪素粉末、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物であることとすることができる。
珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末がこのような粒子からなるものであれば、より初回充放電効率が高く、また高容量でかつサイクル性に優れた非水電解質二次電池用負極材とすることができる。
Here, as a powder made of a material capable of inserting and extracting lithium ions containing silicon, silicon powder, particles having a composite structure in which fine particles of silicon are dispersed in a silicon-based compound, a general formula SiO x (0. 5 ≦ x ≦ 1.6), or a mixture of two or more of these.
If the powder made of a material capable of occluding and releasing lithium ions containing silicon is made of such particles, the non-aqueous solution has higher initial charge / discharge efficiency, high capacity, and excellent cycleability. It can be set as the negative electrode material for electrolyte secondary batteries.

次に、本発明の非水電解質二次電池用負極材の製造方法について詳細に説明するが、もちろんこれに限定されるものではない。   Next, although the manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries of this invention is demonstrated in detail, of course, it is not limited to this.

まず、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末を用意する。   First, a powder made of a material capable of inserting and extracting lithium ions containing silicon is prepared.

ここで、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末として、珪素粉末、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物を用いることができる。
このように、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末として、高容量であったり、充放電を繰り返した際の体積膨張率が低い等の特徴を有する、珪素粉末や、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれかや、これらのうちの2以上の混合物を用いることによって、より初回充放電効率が高く、また高容量でかつサイクル性に優れた非水電解質二次電池用負極材が得られるようになる。
Here, as a powder made of a material capable of inserting and extracting lithium ions containing silicon, silicon powder, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, a general formula SiO x (0.5 Any of the silicon oxide powders represented by ≦ x ≦ 1.6) or a mixture of two or more thereof can be used.
Thus, as a powder made of a material capable of occluding and releasing lithium ions containing silicon, a silicon powder having a high capacity and a low volume expansion coefficient when charging and discharging are repeated Or a particle having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, a silicon oxide powder represented by the general formula SiO x (0.5 ≦ x ≦ 1.6), or two of these By using the above mixture, a negative electrode material for a nonaqueous electrolyte secondary battery having higher initial charge / discharge efficiency, high capacity, and excellent cycleability can be obtained.

この原料となる粉末の1つである珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子は、例えば、珪素の微粒子を珪素系化合物と混合したものを焼成する方法や、一般式SiOで表される不均化前の酸化珪素粒子を、アルゴン等不活性な非酸化性雰囲気中、400℃以上、好適には800〜1100℃の温度で熱処理し、不均化反応を行うことで得ることができる。特に後者の方法で得た材料は、珪素の微結晶が均一に分散されるため好適である。上記のような不均化反応により、珪素ナノ粒子のサイズを1〜100nmとすることができる。
なお、珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子中の酸化珪素については、二酸化珪素であることが望ましい。なお、透過電子顕微鏡によってシリコンのナノ粒子(結晶)が無定形の酸化珪素に分散していることを確認することができる。
Particles having a structure in which silicon nanoparticles as one of the raw material powders are dispersed in silicon oxide include, for example, a method of firing a mixture of silicon fine particles with a silicon-based compound, or a general formula SiO x The silicon oxide particles before disproportionation represented are heat-treated at a temperature of 400 ° C. or higher, preferably 800 to 1100 ° C. in an inert non-oxidizing atmosphere such as argon, to obtain a disproportionation reaction. be able to. In particular, the material obtained by the latter method is suitable because silicon crystallites are uniformly dispersed. By the disproportionation reaction as described above, the size of the silicon nanoparticles can be set to 1 to 100 nm.
Note that silicon dioxide in the particles having a structure in which silicon nanoparticles are dispersed in silicon oxide is preferably silicon dioxide. Note that it can be confirmed by transmission electron microscopy that silicon nanoparticles (crystals) are dispersed in amorphous silicon oxide.

なお、本発明における酸化珪素とは、非晶質の珪素酸化物の総称であり、不均化前の酸化珪素は、一般式SiO(0.5≦x≦1.6)で表される。また、この酸化珪素は、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得ることができる。 The silicon oxide in the present invention is a general term for amorphous silicon oxide, and the silicon oxide before disproportionation is represented by the general formula SiO x (0.5 ≦ x ≦ 1.6). . The silicon oxide can be obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon.

そして不均化前の酸化珪素粒子、珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子の物性は、目的とする複合粒子により適宜選定することができる。
例えば、平均粒子径は0.1〜50μmが望ましく、下限は0.2μm以上がより望ましく、0.5μm以上がさらに望ましい。上限は30μm以下がより望ましく、20μm以下がさらに望ましい。
なお、本発明における平均粒子径とは、レーザー光回折法による粒度分布測定における重量平均粒子径で表すものである。
The physical properties of the particles having a structure in which silicon oxide particles and silicon nanoparticles before disproportionation are dispersed in silicon oxide can be appropriately selected depending on the intended composite particles.
For example, the average particle size is desirably 0.1 to 50 μm, the lower limit is more desirably 0.2 μm or more, and further desirably 0.5 μm or more. The upper limit is more desirably 30 μm or less, and further desirably 20 μm or less.
In addition, the average particle diameter in this invention is represented by the weight average particle diameter in the particle size distribution measurement by a laser beam diffraction method.

更に、用いる粉末のBET比表面積は、0.5〜100m/gが望ましく、1〜20m/gであることがより望ましい。
BET比表面積が0.5m/g以上であれば、電極に塗布した際の接着性が低下して電池特性が低下するおそれも無い。また100m/g以下であれば、粒子表面の二酸化珪素の割合が大きくなり、リチウムイオン二次電池負極材として用いた際に電池容量が低下するおそれも無いものとすることができる。
Further, the BET specific surface area of the powder used, 0.5 to 100 2 / g is desirable, and more desirably about 1-20 m 2 / g.
If the BET specific surface area is 0.5 m 2 / g or more, there is no possibility that the adhesiveness when applied to the electrode is lowered and the battery characteristics are not lowered. Moreover, if it is 100 m < 2 > / g or less, the ratio of the silicon dioxide on the particle | grain surface will become large, and when it uses as a lithium ion secondary battery negative electrode material, it can be set as the thing which does not have a possibility that battery capacity may fall.

そして、先に用意した粉末に対して有機物ガス及び/又は蒸気雰囲気中、1000〜1400℃の温度範囲で黒鉛を化学蒸着して黒鉛被膜を形成して導電性粉末とする。   Then, graphite is chemically deposited on the previously prepared powder in a temperature range of 1000 to 1400 ° C. in an organic gas and / or steam atmosphere to form a graphite film to obtain a conductive powder.

ここで、この黒鉛被膜を形成する工程では、黒鉛の化学蒸着中における最高温度より50℃以上低い温度から有機物ガス及び/又は蒸気の通気を開始して粉末に黒鉛被膜を形成することができる。
このように黒鉛の化学蒸着中における最高温度より50℃以上低い温度から有機物ガス及び/又は蒸気の通気を開始して粉末に黒鉛被膜を形成することによって、粉末の表面により均一に黒鉛を被覆することができるため、得られたN個の粒子のISi/Iの標準偏差σが所定値以下の粒子をより確実かつ簡易に作製することができ、より効率的に高品質(電池特性が良好)な非水電解質二次電池用負極材を効率よく製造することができる。
Here, in the step of forming the graphite film, it is possible to form the graphite film on the powder by starting the aeration of organic gas and / or vapor from a temperature lower by 50 ° C. or more than the maximum temperature during chemical vapor deposition of graphite.
In this way, the ventilation of organic gas and / or vapor is started from a temperature lower than the maximum temperature during the chemical vapor deposition of graphite by 50 ° C. or more to form a graphite film on the powder, thereby uniformly covering the surface of the powder with graphite. it is possible, the particle standard deviation σ is less than or equal to a predetermined value of I Si / I G of the resulting N number of particles can be manufactured more reliably and easily, more efficiently high quality (battery characteristics A good negative electrode material for non-aqueous electrolyte secondary batteries can be efficiently produced.

また、この黒鉛被膜の形成工程を、50Pa〜30000Paの減圧下で行うことができる。
このように、50Pa〜30000Paの減圧下で黒鉛被膜の形成工程を行うことによって、黒鉛を更に均一に被覆することができ、電池特性の向上を図ることができる。
Moreover, the formation process of this graphite film can be performed under reduced pressure of 50 Pa-30000 Pa.
Thus, by performing the process of forming a graphite film under a reduced pressure of 50 Pa to 30000 Pa, it is possible to coat graphite more uniformly and to improve battery characteristics.

そして、本発明における有機物ガス及び/又は蒸気を発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択される。例えば、メタンを50体積%以上含有する雰囲気とすることができるが、もちろんこれに限定されない。
より具体的には、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環〜3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油等も単独もしくは混合物として用いることができる。
The organic material used as a raw material for generating the organic gas and / or vapor in the present invention is selected from those capable of generating carbon (graphite) by pyrolysis at the heat treatment temperature, particularly in a non-acidic atmosphere. . For example, the atmosphere may contain 50% by volume or more of methane, but it is not limited to this.
More specifically, hydrocarbons such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane and the like, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, Examples thereof include 1 to 3 aromatic hydrocarbons such as cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, and mixtures thereof. Further, gas light oil, creosote oil, anthracene oil, naphtha cracked tar oil and the like obtained in the tar distillation step can be used alone or as a mixture.

この場合の黒鉛被膜の被覆量は特に限定されるものではないが、黒鉛の割合は、黒鉛被覆した粒子全体に対して0.3〜40質量%が望ましく、0.5〜30質量%がより望ましい。
黒鉛被覆量を0.3質量%以上とすることで、十分な導電性を維持することができ、非水電解質二次電池の負極とした際のサイクル性の向上を確実に達成することができる。また、黒鉛被覆量が40質量%以下であれば、効果の向上が見られずに負極材料に占める黒鉛の割合が多くなって非水電解質二次電池用負極材として用いた場合に充放電容量が低下するような事態が発生する可能性を極力低くすることができる。
In this case, the coating amount of the graphite coating is not particularly limited, but the proportion of graphite is preferably 0.3 to 40% by mass, more preferably 0.5 to 30% by mass with respect to the entire graphite-coated particles. desirable.
By setting the graphite coating amount to 0.3% by mass or more, it is possible to maintain sufficient conductivity, and it is possible to reliably achieve improvement in cycleability when used as a negative electrode of a nonaqueous electrolyte secondary battery. . In addition, if the graphite coating amount is 40% by mass or less, the improvement of the effect is not seen, and the proportion of graphite in the negative electrode material is increased, and the charge / discharge capacity is used when used as the negative electrode material for non-aqueous electrolyte secondary batteries. It is possible to reduce the possibility of occurrence of such a situation as much as possible.

その後、作製した導電性粉末中の粒子N個(例えばN=20)を無作為に抽出して各粒子のラマンスペクトルを測定し、粒子それぞれの500cm−1に現れる珪素のピークISiと、1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測する。
そして、得られたN個の粒子のISi/Iの標準偏差σが所定値以下(例えば10以下)か否かを評価する。
Thereafter, N particles (for example, N = 20) in the produced conductive powder were randomly extracted to measure the Raman spectrum of each particle, and the silicon peak I Si appearing at 500 cm −1 of each particle was 1580 cm. the intensity ratio of the peak I G of graphite appearing at -1 to measure the I Si / I G.
Then, the standard deviation σ of the I Si / I G of the resulting N number of particles to assess whether less than a predetermined value (e.g., 10 or less).

ここで、黒鉛被膜が均一であると判断できるN個の粒子のISi/Iの標準偏差σの所定値としては10とすることができ、より望ましくは5、更に望ましくは3とすることができる。
このように、得られたN個の粒子のISi/Iの標準偏差σを10以下とすることで、黒鉛被膜が薄いか、若しくは被覆されていない粒子が多く含まれていることを高確率で抑制できる。そのため、標準偏差σがσ≦10の関係を満たすかどうかを評価することが重要である。
Here, the predetermined value of the standard deviation σ of the I Si / I G of the N particles can be determined that the graphite coating is uniform can be 10, more preferably 5, more preferably to 3 that Can do.
In this way, by the standard deviation σ of the I Si / I G of the resulting N number of particles 10 or less, high that the particles of graphite coating is not thin or, or coating contains many Can be suppressed with probability. Therefore, it is important to evaluate whether the standard deviation σ satisfies the relationship σ ≦ 10.

また、抽出するN個としては、20個とすることができるが、もちろんこれに限定されず、N=10やN=30、またその他の値とすることができる。
20個ならば、測定数が必要以上に多くなって測定に要する時間が長くなり過ぎることもなく、また測定数が少ないために評価精度が低くなるといった事態となることを確実に抑制することができる。
Further, the number of N to be extracted can be 20. However, of course, the number is not limited to this, and N = 10, N = 30, and other values can be used.
If the number is 20, the number of measurements is increased more than necessary and the time required for the measurement does not become too long, and the evaluation accuracy is lowered because the number of measurements is small. it can.

そして、得られたN個の粒子のISi/Iの標準偏差σが所定値以下であった粒子が抽出された導電性粉末のみを次工程に送って非水電解質二次電池用負極材を製造する。 The negative for the resulting N number of I Si / I standard deviation σ is only a non-aqueous electrolyte secondary battery is sent to the next step electroconductive powder particles were less than a predetermined value is extracted in G of particulate electrode material Manufacturing.

このような方法で非水電解質二次電池用負極材を製造することによって、黒鉛が従来に比べて均一に被覆された導電性粒子のみを高精度でかつ効率よく製造することができ、充放電効率やサイクル特性を改善することができる非水電解質二次電池用負極材を従来に比べて効率よく製造することができる。   By producing a negative electrode material for a non-aqueous electrolyte secondary battery by such a method, only conductive particles coated with graphite more uniformly than conventional can be produced with high accuracy and efficiency. A negative electrode material for a non-aqueous electrolyte secondary battery that can improve efficiency and cycle characteristics can be produced more efficiently than in the past.

[リチウムイオン二次電池]
また、本発明のリチウムイオン二次電池は、上記負極材を用いた負極からなる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。
[Lithium ion secondary battery]
In addition, the lithium ion secondary battery of the present invention is characterized by comprising a negative electrode using the above negative electrode material, and other positive electrodes, electrolytes, separators, and other materials, battery shapes, and the like are used. There is no particular limitation.

ここで、上記非水電解質二次電池用負極材を用いて負極を作製する場合、更にカーボンや黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。
具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粒子や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粒子、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
Here, when producing a negative electrode using the said negative electrode material for nonaqueous electrolyte secondary batteries, conductive agents, such as carbon and graphite, can be added further. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the configured battery may be used.
Specifically, metal particles such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fibers, natural graphite, artificial graphite, various coke particles, mesophase carbon, vapor grown carbon fiber, pitch Graphite such as carbon-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used.

負極(成型体)の調製方法としては、一例として下記のような方法が挙げられる。
上述の負極材と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。
この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。
なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
Examples of the method for preparing the negative electrode (molded body) include the following methods.
A paste-like mixture is prepared by kneading a negative electrode material, if necessary, a conductive agent, and other additives such as a binder, with a solvent such as N-methylpyrrolidone or water. Apply to current collector sheet.
In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment.
In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

また、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoS等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。
電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられる。非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用することができる。
As the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , lithium, chalcogen compounds, and the like are used.
As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. As the non-aqueous solvent, one or a combination of two or more of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like are used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
平均粒子径が5μm、BET比表面積が3.5m/gのSiO(x=1.01)100gを粉体層厚みが10mmとなるようバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ炉内を900℃に昇温した。そして900℃に達した後にCHガスを0.3NL/min流入し、5時間の黒鉛被覆処理を行った。更に、その後CHガスを0.3NL/minで通気したまま50℃/hrで1100℃まで昇温し、1100℃で3時間保持した。なお、この時の減圧度は800Paとした。
処理後に降温し、106gの黒色粒子を得た。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
100 g of SiO x (x = 1.01) having an average particle diameter of 5 μm and a BET specific surface area of 3.5 m 2 / g was charged into a batch heating furnace so that the powder layer thickness was 10 mm.
Then, the inside of the furnace was heated to 900 ° C. while reducing the inside of the furnace with an oil rotary vacuum pump. Then, after reaching 900 ° C., CH 4 gas was introduced at 0.3 NL / min, and the graphite coating treatment was performed for 5 hours. Further, after CH 4 gas was passed through at 0.3 NL / min, the temperature was raised to 1100 ° C. at 50 ° C./hr and held at 1100 ° C. for 3 hours. In addition, the pressure reduction degree at this time was 800 Pa.
After the treatment, the temperature was lowered to obtain 106 g of black particles.

得られた黒色粒子は、平均粒子径5.2μm、BET比表面積が6.5m/gで、黒色粒子に対する黒鉛被覆量5.7質量%の導電性粒子であった。
この導電性粒子を20個無作為に抽出し、堀場製作所製顕微レーザーラマン分光装置LabRAM HR−800を用いて、その500cm−1付近のSiピーク(ISi)と1580cm−1付近のグラファイトのピーク(I)を評価し、強度比(ISi/I)を計測した。
そしてその結果の標準偏差σを計算したところ、σは0.1であった。
The obtained black particles were conductive particles having an average particle diameter of 5.2 μm, a BET specific surface area of 6.5 m 2 / g, and a graphite coating amount of 5.7 mass% with respect to the black particles.
The conductive particles extracted into 20 randomly using Horiba microscopic laser Raman spectrometer LabRAM HR-800, the peak of graphite near 1580 cm -1 and Si peaks of near 500 cm -1 (I Si) (I G ) was evaluated, and the intensity ratio (I Si / I G ) was measured.
When the standard deviation σ of the result was calculated, σ was 0.1.

<電池評価>
次に、以下の方法で、得られた粒子を負極活物質として用いた電池評価を行った。
まず、得られた負極材45質量%と人造黒鉛(平均粒子径10μm)45質量%、ポリイミド10質量%を混合し、さらにN−メチルピロリドンを加えてスラリーとした。
このスラリーを厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥させた。その後、2cmに打ち抜き、負極とした。
<Battery evaluation>
Next, battery evaluation using the obtained particles as a negative electrode active material was performed by the following method.
First, 45% by mass of the obtained negative electrode material, 45% by mass of artificial graphite (average particle size 10 μm), and 10% by mass of polyimide were mixed, and N-methylpyrrolidone was further added to form a slurry.
This slurry was applied to a copper foil having a thickness of 12 μm, dried at 80 ° C. for 1 hour, then subjected to pressure molding by a roller press, and the electrode was vacuum-dried at 350 ° C. for 1 hour. Then, it punched out to 2 cm < 2 > and set it as the negative electrode.

そして、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   In order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used for the counter electrode, and lithium hexafluorophosphate was mixed with ethylene carbonate and diethyl carbonate in a 1/1 (volume ratio) mixture as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池を、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで0.5mA/cmの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cmを下回った時点で充電を終了させた。そして放電は0.5mA/cmの定電流で行い、セル電圧が1.4Vに達した時点で放電を終了して、放電容量を求めた。
そしてこの際の充電容量(初回充電容量)と放電容量(初回放電容量)から初回充放電効率を算出した。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果を表1に示す。
The prepared lithium ion secondary battery is allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reaches 0 V / 0.5 mA / cm 2. After reaching 0V, the battery was charged by decreasing the current so as to keep the cell voltage at 0V. The charging was terminated when the current value fell below 40 μA / cm 2 . The discharge was performed at a constant current of 0.5 mA / cm 2 , and the discharge was terminated when the cell voltage reached 1.4 V, and the discharge capacity was determined.
The initial charge / discharge efficiency was calculated from the charge capacity (initial charge capacity) and the discharge capacity (initial discharge capacity) at this time.
The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. The results are shown in Table 1.

その結果、初回充電容量2150mAh/g、初回放電容量1656mAh/g、初回充放電効率77%、50サイクル目の放電容量1573mAh/g、50サイクル後のサイクル保持率95%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result, the initial charge capacity is 2150 mAh / g, the initial discharge capacity is 1656 mAh / g, the initial charge / discharge efficiency is 77%, the discharge capacity at the 50th cycle is 1573 mAh / g, and the cycle retention is 95% after 50 cycles, and It was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.

(実施例2)
実施例1と同じSiO粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、炉内を200℃/hrで800℃まで昇温し、その後800℃からはCHガスを0.3NL/minで通気しながら30℃/hrの昇温速度で1100℃まで昇温した。そして1100℃に達したら、CHガス0.3NL/min通気のまま3時間保持して黒鉛被覆処理を行った。処理後は降温し、106.5gの黒色粒子を得た。
得られた黒色粒子は、平均粒子径5.3μm、BET比表面積が6.2m/gで、黒色粒子に対する黒鉛被覆量6.0質量%の導電性粒子であった。
そして粒子20個のISi/Iの標準偏差σは0.4であった。
(Example 2)
The same SiO x particles as in Example 1 were charged into a batch-type heating furnace.
Then, while reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 800 ° C. at 200 ° C./hr, and then from 800 ° C., CH 4 gas was vented at 0.3 NL / min at 30 ° C. / The temperature was raised to 1100 ° C. at a rate of temperature increase of hr. When the temperature reached 1100 ° C., the graphite coating treatment was performed by holding the CH 4 gas at 0.3 NL / min for 3 hours while aeration was performed. After the treatment, the temperature was lowered to obtain 106.5 g of black particles.
The obtained black particles were conductive particles having an average particle diameter of 5.3 μm, a BET specific surface area of 6.2 m 2 / g, and a graphite coating amount of 6.0% by mass with respect to the black particles.
And the standard deviation σ of the particle 20 I Si / I G was 0.4.

次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果を表1に示す。
その結果、初回充電容量2140mAh/g、初回放電容量1626mAh/g、初回充放電効率76%、50サイクル目の放電容量1512mAh/g、50サイクル後のサイクル保持率93%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
Next, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed. The results are shown in Table 1.
As a result, the initial charge capacity is 2140 mAh / g, the initial discharge capacity is 1626 mAh / g, the initial charge / discharge efficiency is 76%, the discharge capacity at the 50th cycle is 1512 mAh / g, and the cycle retention is 93% after 50 cycles, and It was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.

(参考例)
実施例1と同じSiO粒子100gをバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、炉内を1100℃に昇温させた。1100℃に達した後にCHガスを0.6NL/min流入し、3時間の黒鉛被覆処理を行った。なお、この時の減圧度は1500Paであった。
得られた黒色粒子は、黒色粒子に対する黒鉛被覆量5.3質量%、平均粒子径5.1μm、BET比表面積5.1m/gの粒子であった。
そして粒子20個のISi/Iの標準偏差σは4.8であった。
(Reference example)
The same SiO x particles 100 g as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 1100 ° C. while reducing the inside of the furnace with an oil rotary vacuum pump. After reaching 1100 ° C., CH 4 gas was introduced at 0.6 NL / min, and the graphite coating treatment was performed for 3 hours. In addition, the pressure reduction degree at this time was 1500 Pa.
The obtained black particles were particles having a graphite coating amount of 5.3 mass%, an average particle diameter of 5.1 μm, and a BET specific surface area of 5.1 m 2 / g with respect to the black particles.
And the standard deviation σ of the particle 20 I Si / I G was 4.8.

次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果を表1に示す。
その結果、初回充電容量2030mAh/g、初回放電容量1563mAh/g、初回充放電効率77%、50サイクル目の放電容量1360mAh/g、50サイクル後のサイクル保持率86%であった。
Next, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed. The results are shown in Table 1.
As a result, the initial charge capacity was 2030 mAh / g, the initial discharge capacity was 1563 mAh / g, the initial charge / discharge efficiency was 77%, the 50th cycle discharge capacity was 1360 mAh / g, and the cycle retention after 50 cycles was 86%.

(比較例1)
実施例1と同じSiO粒子300gをバッチ式加熱炉内に仕込んだ。この際の粉体層厚みは30mmとなった。
そして油回転式真空ポンプで炉内を減圧しつつ、炉内を1100℃に昇温させた。1100℃に達した後にCHガスを0.6NL/min流入し、8時間の黒鉛被覆処理を行った。なお、この時の減圧度は1500Paであった。
冷却後回収したところ、底部に黒鉛被覆処理が十分にされていないと思われる茶色を呈した部分が観察された。
この粉末を混合して測定したところ、黒鉛被覆量5.4質量%、平均粒子径5.0μm、BET比表面積5.5m/gの粒子であった。
そして粒子20個のISi/Iの標準偏差σは12.4と、ばらつきが大きかった。
(Comparative Example 1)
300 g of the same SiO x particles as in Example 1 were charged into a batch-type heating furnace. The powder layer thickness at this time was 30 mm.
Then, the inside of the furnace was heated to 1100 ° C. while reducing the inside of the furnace with an oil rotary vacuum pump. After reaching 1100 ° C., CH 4 gas was introduced at 0.6 NL / min, and the graphite coating treatment was performed for 8 hours. In addition, the pressure reduction degree at this time was 1500 Pa.
When recovered after cooling, a brownish portion was observed at the bottom, which was thought to be not sufficiently covered with graphite.
When this powder was mixed and measured, it was particles having a graphite coating amount of 5.4% by mass, an average particle size of 5.0 μm, and a BET specific surface area of 5.5 m 2 / g.
And the standard deviation σ is 12.4 particles 20 I Si / I G, the variation was large.

次に、実施例1と同様な方法で負極を作製し、電池評価を行った。その結果を表1に示す。
その結果、初回充電容量1826mAh/g、初回放電容量1388mAh/g、初回充放電効率76%、50サイクル目の放電容量1193mAh/g、50サイクル後のサイクル保持率86%であった。
このように、比較例1の負極材は、実施例1、2及び参考例の負極材に比べて明らかに放電容量及び初回充放電効率に劣るリチウムイオン二次電池であることが確認された。
Next, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed. The results are shown in Table 1.
As a result, the initial charge capacity was 1826 mAh / g, the initial discharge capacity was 1388 mAh / g, the initial charge / discharge efficiency was 76%, the 50th cycle discharge capacity was 1193 mAh / g, and the cycle retention after 50 cycles was 86%.
Thus, it was confirmed that the negative electrode material of Comparative Example 1 is a lithium ion secondary battery that is clearly inferior in discharge capacity and initial charge / discharge efficiency as compared with the negative electrode materials of Examples 1 and 2 and the reference example.

(比較例2)
実施例1と同じSiO粒子100gをバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、炉内を1100℃に昇温させた。1100℃に達した後にトルエン0.3g/minとAr2L/minを炉内に流入して、2時間の黒鉛被覆処理を行った。なお、この時の減圧度は1000Paであった。
得られた黒色粒子は、黒色粒子に対する黒鉛被覆量5.6質量%、平均粒子径5.6μm、BET比表面積3.1m/gの粒子であった。
そして粒子20個のISi/Iの標準偏差σは11.0と、ばらつきが大きかった。
(Comparative Example 2)
The same SiO x particles 100 g as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 1100 ° C. while reducing the inside of the furnace with an oil rotary vacuum pump. After reaching 1100 ° C., 0.3 g / min of toluene and Ar 2 L / min were flown into the furnace to perform a graphite coating treatment for 2 hours. In addition, the pressure reduction degree at this time was 1000 Pa.
The obtained black particles were particles having a graphite coating amount of 5.6% by mass, an average particle size of 5.6 μm, and a BET specific surface area of 3.1 m 2 / g with respect to the black particles.
And the standard deviation σ is 11.0 particles 20 I Si / I G, the variation was large.

次に、実施例1と同様な方法で負極を作製し、そして電池評価を行った。その結果を表1に示す。
その結果、初回充電容量2160mAh/g、初回放電容量1663mAh/g、初回充放電効率77%、50サイクル目の放電容量948Ah/g、50サイクル後のサイクル保持率57%であった。
このように、比較例2の負極材は実施例1、2及び参考例の負極材に比べて明らかにサイクル特性に劣るリチウムイオン二次電池であることが確認された。
Next, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed. The results are shown in Table 1.
As a result, the initial charge capacity was 2160 mAh / g, the initial discharge capacity was 1663 mAh / g, the initial charge / discharge efficiency was 77%, the 50th cycle discharge capacity was 948 Ah / g, and the cycle retention after 50 cycles was 57%.
Thus, it was confirmed that the negative electrode material of Comparative Example 2 is a lithium ion secondary battery that is clearly inferior in cycle characteristics as compared with the negative electrode materials of Examples 1 and 2 and the reference example.

Figure 0005798209
Figure 0005798209

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

例えば、上記実施例1、2及び参考例,比較例1−2ではN=20、標準偏差σの所定値を10として評価を行ったが、N=10,30とした場合も、標準偏差σを適切に設定することで上記と同様の傾向を示すことが確認できた。もちろんNは30より大きくすることもできるが、精度が向上するもののそれだけ評価に時間がかかる。   For example, in Examples 1 and 2 and Reference Examples and Comparative Example 1-2, the evaluation was performed with N = 20 and the predetermined value of the standard deviation σ being 10. However, when N = 10 and 30, the standard deviation σ was also evaluated. It was confirmed that the same tendency as above was shown by appropriately setting. Of course, N can be larger than 30, but the accuracy is improved, but the evaluation takes time.

Claims (3)

少なくとも、珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末の表面が黒鉛被膜で被覆された導電性粉末からなる非水電解質二次電池用負極材であって、
前記導電性粉末は、該導電性粉末中の粒子20個を無作為に抽出して各粒子のラマンスペクトルを測定して500cm−1に現れる珪素のピークISiと1580cm−1に現れるグラファイトのピークIの強度比ISi/Iを計測したときに、得られた20個の粒子のISi/Iの標準偏差σがσ≦3の関係を満たすものであり、
前記導電性粉末は、珪素のピークI Si を有するものであり、
前記黒鉛被膜の被覆量は、黒鉛被覆した粒子全体に対して0.3〜40質量%であることを特徴とする非水電解質二次電池用負極材。
At least a negative electrode material for a non-aqueous electrolyte secondary battery comprising a conductive powder coated with a graphite film on the surface of a powder made of a material capable of inserting and extracting lithium ions containing silicon,
Wherein the conductive powder is graphite peaks appearing in silicon peak I Si and 1580 cm -1 appear to 20 particles in the conductive powder is measured Raman spectrum of each was randomly particles 500 cm -1 when measured the intensity ratio I Si / I G of I G, standard deviation sigma of I Si / I G of 20 particles obtained are satisfy the relation of sigma ≦ 3,
The conductive powder has a silicon peak I Si ,
The negative electrode material for a nonaqueous electrolyte secondary battery, wherein the coating amount of the graphite coating is 0.3 to 40% by mass with respect to the entire graphite-coated particles.
前記珪素を含むリチウムイオンを吸蔵及び放出することが可能な材料からなる粉末は、珪素粉末、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粉末のいずれか、またはこれらのうちの2以上の混合物であることを特徴とする請求項1に記載の非水電解質二次電池用負極材。 The powder made of a material capable of inserting and extracting lithium ions containing silicon includes silicon powder, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, and a general formula SiO x (0.5 ≦ x 2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, which is any one of silicon oxide powders represented by ≦ 1.6) or a mixture of two or more thereof. 少なくとも、正極と、負極と、リチウムイオン導電性の非水電解質とからなるリチウムイオン二次電池であって、前記負極に、請求項1または請求項2に記載の非水電解質二次電池用負極材が用いられたものであることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising at least a positive electrode, a negative electrode, and a lithium ion conductive nonaqueous electrolyte, wherein the negative electrode is a negative electrode for a nonaqueous electrolyte secondary battery according to claim 1 or 2. A lithium ion secondary battery characterized in that a material is used.
JP2014067497A 2014-03-28 2014-03-28 Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery Active JP5798209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067497A JP5798209B2 (en) 2014-03-28 2014-03-28 Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067497A JP5798209B2 (en) 2014-03-28 2014-03-28 Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010241330A Division JP5558312B2 (en) 2010-10-27 2010-10-27 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014139948A JP2014139948A (en) 2014-07-31
JP5798209B2 true JP5798209B2 (en) 2015-10-21

Family

ID=51416539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067497A Active JP5798209B2 (en) 2014-03-28 2014-03-28 Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5798209B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394498B2 (en) * 2015-05-28 2018-09-26 信越化学工業株式会社 Graphite-coated particles and method for producing the same
TWI709272B (en) * 2019-11-13 2020-11-01 光宇材料股份有限公司 Method for manufacturing negative electrode material for secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393610B2 (en) * 1999-01-26 2010-01-06 日本コークス工業株式会社 Negative electrode material for lithium secondary battery, lithium secondary battery, and charging method of the secondary battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP5196149B2 (en) * 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) * 2008-06-16 2013-07-24 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
CN102792493B (en) * 2010-09-14 2015-03-11 日立麦克赛尔株式会社 Nonaqueous secondary cell

Also Published As

Publication number Publication date
JP2014139948A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
US10566613B2 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6301142B2 (en) Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP6592156B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
KR102029485B1 (en) Method for producing negative electrode active material for nonaqueous electrolytic secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5320890B2 (en) Method for producing negative electrode material
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP6046594B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5798209B2 (en) Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery
JP6403540B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6413007B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP6394498B2 (en) Graphite-coated particles and method for producing the same
JP5558312B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5798209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150