JP2017168406A - Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery - Google Patents

Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery Download PDF

Info

Publication number
JP2017168406A
JP2017168406A JP2016055248A JP2016055248A JP2017168406A JP 2017168406 A JP2017168406 A JP 2017168406A JP 2016055248 A JP2016055248 A JP 2016055248A JP 2016055248 A JP2016055248 A JP 2016055248A JP 2017168406 A JP2017168406 A JP 2017168406A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016055248A
Other languages
Japanese (ja)
Inventor
広太 高橋
Kota Takahashi
広太 高橋
貴一 廣瀬
Kiichi Hirose
貴一 廣瀬
浩一朗 渡邊
Koichiro Watanabe
浩一朗 渡邊
古屋 昌浩
Masahiro Furuya
昌浩 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016055248A priority Critical patent/JP2017168406A/en
Publication of JP2017168406A publication Critical patent/JP2017168406A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery negative electrode active material which is superior in load characteristic while retaining advantages of a silicon-based active material, including a high battery capacity and a low volumetric expansion coefficient.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery negative electrode active material including particles of a silicon compound, and a carbon coating formed on the surface of each particle and having open pores in the carbon coating comprises: the step of performing a carbon coating-forming reaction, which causes the thermal decomposition of an organic material gas, twice to four times on the surface of each of particles of a silicon compound (SiOx, where 0.5≤x<1.6).SELECTED DRAWING: None

Description

本発明は、非水電解質二次電池負極活物質、負極及び電池の製造方法に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery negative electrode active material, a negative electrode, and a battery manufacturing method.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices.

従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1,2参照)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3参照)、負極材料に酸化珪素を用いる方法(特許文献4参照)、負極材料にSi22O及びGe22Oを用いる方法(特許文献5参照)等が知られている。 Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (see Patent Documents 1 and 2) , A method of applying a molten and quenched metal oxide as a negative electrode material (see Patent Document 3), a method of using silicon oxide as a negative electrode material (see Patent Document 4), and Si 2 N 2 O and Ge 2 N 2 O as negative electrode materials There is known a method using the method (see Patent Document 5).

また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後に炭化処理する方法(特許文献6参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献7参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8参照)がある。   In addition, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after graphite and mechanical alloying (see Patent Document 6), a method of coating a carbon layer on the surface of silicon particles by a chemical vapor deposition method (Patent Document 7). And a method of coating the surface of silicon oxide particles with a carbon layer by chemical vapor deposition (see Patent Document 8).

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.

特に、特許文献4では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らが知る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりする等の問題があり、改良する余地がある。   In particular, Patent Document 4 uses silicon oxide as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, as far as the present inventors know, the irreversible capacity during the initial charge / discharge is still large. There is a problem that the cycle performance has not reached the practical level, and there is room for improvement.

また、負極材に導電性を付与した技術についても、特許文献6では固体と固体の融着であるため均一な炭素被膜が形成されず、導電性が不十分であるといった問題がある。
そして、特許文献7の方法においては、均一な炭素被膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮が余りにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならない。
Further, the technique of imparting conductivity to the negative electrode material also has a problem in Patent Document 6 that a uniform carbon film is not formed because of solid-solid fusion, and the conductivity is insufficient.
In the method of Patent Document 7, although a uniform carbon film can be formed, since Si is used as a negative electrode material, the expansion / contraction at the time of adsorption / desorption of lithium ions is too large. As a result, the battery cannot be put into practical use, and the cycle performance is degraded.

特許文献8の方法においては、サイクル性の向上は確認されるものの、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。   In the method of Patent Document 8, although improvement in cycle performance is confirmed, the number of cycles of charge / discharge is increased due to insufficient deposition of fine silicon crystals, integration of the carbon coating structure and the base material. As a result, there is a problem that the capacity gradually decreases and then rapidly decreases after a certain number of times, which is still insufficient for a secondary battery.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A

本発明は、珪素系活物質の高い電池容量と低い体積膨張率の利点を維持しつつ、負荷特性に優れたリチウムイオン二次電池用負極活物質を提供することを目的とする。   An object of this invention is to provide the negative electrode active material for lithium ion secondary batteries excellent in load characteristics, maintaining the advantage of the high battery capacity of a silicon type active material, and a low volume expansion coefficient.

本発明者らは、上記目的を達成するため鋭意検討した結果、珪素化合物(SiOx:0.5≦x<1.6)からなる粒子表面に、有機物ガスを熱分解させる炭素被膜形成反応を2〜4回で行うことによって、炭素被膜中に開孔が形成され、上記課題を解決できることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have conducted a carbon film forming reaction for thermally decomposing an organic gas on the particle surface made of a silicon compound (SiOx: 0.5 ≦ x <1.6). It has been found that an opening is formed in the carbon film by performing the above process 4 times, and the above problem can be solved, and the present invention has been made.

従って、本発明は下記製造方法を提供する。
[1].珪素化合物(SiOx:0.5≦x<1.6)からなる粒子表面に、有機物ガスを熱分解させる炭素被膜形成反応を2〜4回行う工程を含む、上記珪素化合物からなる粒子表面に炭素被膜が形成され、その炭素被膜中に開孔を有する非水電解質二次電池負極活物質の製造方法。
[2].非水電解質二次電池負極活物質の窒素ガス吸着法によるBET比表面積が、3.3〜7.5m2/gであることを特徴とする[1]記載の非水電解質二次電池負極活物質の製造方法。
[3].非水電解質二次電池負極活物質の窒素ガス吸着法によるBET比表面積が、3.6〜7.3m2/gであることを特徴とする[2]記載の非水電解質二次電池負極活物質の製造方法。
[4].窒素ガス吸着法により算出される上記開孔の平均開孔径が、9.8〜26.0nmである[1]〜[3]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[5].窒素ガス吸着法により算出される上記開孔の開孔容積が、0.9×10-2〜5.7×10-2cm3/gであることを特徴とする[1]〜[4]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[6].非水電解質二次電池負極活物質の炭素被覆量が、0.5〜19質量%である[1]〜[5]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[7].炭素被覆量が、1〜15質量%である[6]記載の非水電解質二次電池負極活物質の製造方法。
[8].非水電解質二次電池負極活物質の密度1.5cm3/gに圧縮された時の体積抵抗率が0.01〜190Ω・cmである[1]〜[7]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[9].体積抵抗率が、0.01〜100Ω・cmである[8]記載の非水電解質二次電池負極活物質の製造方法。
[10].非水電解質二次電池負極活物質が、炭化ケイ素を含有していることを特徴とする[1]〜[9]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[11].非水電解質二次電池負極活物質中の炭化ケイ素の含有量が、1.6質量%以下であることを特徴とする[10]記載の非水電解質二次電池負極活物質の製造方法。
[12].炭化ケイ素の含有量が1質量%以下である[11]記載の非水電解質二次電池負極活物質の製造方法。
[13].1回目の炭素被覆工程において形成される炭素膜厚Anmと、2回目以降の炭素被覆工程において形成される炭素膜厚Bnmとの比が、0.3≦B/A<1.7である、[1]〜[12]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[14].上記比が、0.4≦B/A<1.4であることを特徴とする[13]に記載の非水電解質二次電池活物質の製造方法。
[15].炭素被膜形成反応において、熱分解温度が600℃〜1,200℃である[1]〜[14]のいずれかに記載の非水電解質二次電池負極活物質の製造方法。
[16].[1]〜[15]のいずれかに記載の製造方法で得られた非水電解質二次電池活物質を用いることを特徴とする、非水電解質二次電池負極の製造方法。
[17].[1]〜[15]のいずれかに記載の製造方法で得られた非水電解質二次電池活物質を用いてスラリーを作製する工程と、スラリーを負極集電体に塗布・乾燥する工程を含む非水電解質二次電池負極の製造方法。
[18].[16]又は[17]の製造方法で得られた負極を用いることを特徴とする非水電解質二次電池の製造方法。
[19].[16]又は[17]の製造方法で得られた負極と、正極とを、セパレータを介して積層又は巻回させて巻回体を成型する工程と、前記巻回体をフィルムに封入し、電解液を投入し、真空含浸させる工程と、前記フィルムを融着させる工程を含む非水電解質二次電池の製造方法。
Accordingly, the present invention provides the following production method.
[1]. Carbon particles are formed on the surface of the particles made of the silicon compound, including a step of performing a carbon film forming reaction for thermally decomposing an organic gas 2 to 4 times on the surface of the particles made of a silicon compound (SiOx: 0.5 ≦ x <1.6). A method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery in which a film is formed and the carbon film has pores.
[2]. The negative electrode active material of the nonaqueous electrolyte secondary battery according to [1], wherein the BET specific surface area of the negative electrode active material of the nonaqueous electrolyte secondary battery by a nitrogen gas adsorption method is 3.3 to 7.5 m 2 / g. A method for producing a substance.
[3]. The non-aqueous electrolyte secondary battery negative electrode active material according to [2], wherein the negative electrode active material of the non-aqueous electrolyte secondary battery has a BET specific surface area by a nitrogen gas adsorption method of 3.6 to 7.3 m 2 / g. A method for producing a substance.
[4]. Production of the negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of [1] to [3], wherein the average pore diameter of the pores calculated by a nitrogen gas adsorption method is 9.8 to 26.0 nm Method.
[5]. The opening volume of the opening calculated by the nitrogen gas adsorption method is 0.9 × 10 −2 to 5.7 × 10 −2 cm 3 / g [1] to [4] The manufacturing method of the nonaqueous electrolyte secondary battery negative electrode active material in any one of these.
[6]. The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of [1] to [5], wherein the carbon coating amount of the non-aqueous electrolyte secondary battery negative electrode active material is 0.5 to 19% by mass.
[7]. The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to [6], wherein the carbon coating amount is 1 to 15% by mass.
[8]. The volume resistivity when the nonaqueous electrolyte secondary battery negative electrode active material is compressed to a density of 1.5 cm 3 / g is 0.01 to 190 Ω · cm, according to any one of [1] to [7] A method for producing a negative electrode active material for a water electrolyte secondary battery.
[9]. The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to [8], wherein the volume resistivity is 0.01 to 100 Ω · cm.
[10]. The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of [1] to [9], wherein the non-aqueous electrolyte secondary battery negative electrode active material contains silicon carbide.
[11]. Content of silicon carbide in nonaqueous electrolyte secondary battery negative electrode active material is 1.6 mass% or less, The manufacturing method of the nonaqueous electrolyte secondary battery negative electrode active material as described in [10] characterized by the above-mentioned.
[12]. The method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to [11], wherein the content of silicon carbide is 1% by mass or less.
[13]. The ratio of the carbon film thickness Anm formed in the first carbon coating process to the carbon film thickness Bnm formed in the second and subsequent carbon coating processes is 0.3 ≦ B / A <1.7. [1] A method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of [12].
[14]. The said ratio is 0.4 <= B / A <1.4, The manufacturing method of the nonaqueous electrolyte secondary battery active material as described in [13] characterized by the above-mentioned.
[15]. The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of [1] to [14], wherein the thermal decomposition temperature is 600 ° C to 1,200 ° C in the carbon film forming reaction.
[16]. A method for producing a nonaqueous electrolyte secondary battery negative electrode, comprising using the nonaqueous electrolyte secondary battery active material obtained by the production method according to any one of [1] to [15].
[17]. A step of producing a slurry using the nonaqueous electrolyte secondary battery active material obtained by the production method according to any one of [1] to [15], and a step of applying and drying the slurry to the negative electrode current collector The manufacturing method of the nonaqueous electrolyte secondary battery negative electrode containing.
[18]. [16] A method for producing a nonaqueous electrolyte secondary battery, comprising using the negative electrode obtained by the production method of [17].
[19]. [16] or [17] The negative electrode obtained by the production method and the positive electrode are laminated or wound via a separator to form a wound body, and the wound body is enclosed in a film, A method for producing a non-aqueous electrolyte secondary battery, comprising a step of introducing an electrolytic solution and vacuum impregnation, and a step of fusing the film.

本発明の製造方法によれば、珪素系活物質の高い電池容量と低い体積膨張率の利点を維持しつつ、負荷特性に優れたリチウムイオン二次電池用負極活物質を提供することができる。また、これを用いた負極、非水電解質二次電池の製造方法を提供することができる。   According to the production method of the present invention, it is possible to provide a negative electrode active material for a lithium ion secondary battery excellent in load characteristics while maintaining the advantages of a high battery capacity and a low volume expansion coefficient of a silicon-based active material. Moreover, the manufacturing method of the negative electrode and nonaqueous electrolyte secondary battery using this can be provided.

以下、本発明について詳細に説明する。
[非水電解質二次電池負極活物質の製造方法]
珪素化合物(SiOx:0.5≦x<1.6)からなる粒子表面に、有機物ガスを熱分解させる炭素被膜形成反応(CVD)を2〜4回行うことによって炭素被膜中に形成された開孔を有する非水電解質二次電池負極活物質(炭素被膜が形成された珪素化合物粒子:以下、負極活物質粒子と表記する場合がある。)の製造方法である。
Hereinafter, the present invention will be described in detail.
[Method for producing non-aqueous electrolyte secondary battery negative electrode active material]
The carbon film formation reaction (CVD) that thermally decomposes organic gas is performed 2 to 4 times on the particle surface made of silicon compound (SiOx: 0.5 ≦ x <1.6). This is a method for producing a nonaqueous electrolyte secondary battery negative electrode active material having pores (silicon compound particles on which a carbon film is formed: hereinafter may be referred to as negative electrode active material particles).

珪素化合物からなる粒子としては、一般式SiOx:0.5≦x<1.6で表される珪素化合物粒子には、酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した構造を有する複合粒子も含まれる。xは0.5≦x<1.5が好ましく、0.8≦x<1.3がより好ましく、0.8≦x≦1.0がさらに好ましい。珪素化合物の組成としては、高いサイクル特性が得られる点から、xが1に近い方が好ましい。本発明における珪素化合物は、必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。   As the particles made of a silicon compound, the silicon compound particles represented by the general formula SiOx: 0.5 ≦ x <1.6 are composite particles having a structure in which silicon oxide particles and silicon fine particles are dispersed in a silicon compound. Is also included. x is preferably 0.5 ≦ x <1.5, more preferably 0.8 ≦ x <1.3, and still more preferably 0.8 ≦ x ≦ 1.0. As the composition of the silicon compound, x is preferably close to 1 from the viewpoint of obtaining high cycle characteristics. The silicon compound in the present invention does not necessarily mean 100% purity, and may contain a trace amount of impurity elements.

珪素化合物からなる粒子の物性は、目的とする負極活物質の物性により、適宜選定される。平均粒子径は0.01〜50μmとすることができ、0.1〜20μmが好ましく、0.5〜15μmがより好ましい。なお、平均粒子径は、レーザー光回折法による粒度分布測定における体積平均粒子径で表すことができる。また、BET比表面積は0.1〜30m2/gが好ましく、0.1〜25m2/gがより好ましく、0.2〜20m2/gがさらに好ましい。BET比表面積は、N2ガス吸着量によって評価するBET1点法にて測定した値である。 The physical properties of the particles made of the silicon compound are appropriately selected depending on the physical properties of the target negative electrode active material. An average particle diameter can be 0.01-50 micrometers, 0.1-20 micrometers is preferable and 0.5-15 micrometers is more preferable. In addition, an average particle diameter can be represented by the volume average particle diameter in the particle size distribution measurement by a laser beam diffraction method. Further, BET specific surface area is preferably 0.1~30m 2 / g, more preferably 0.1~25m 2 / g, more preferably 0.2~20m 2 / g. The BET specific surface area is a value measured by the BET one-point method evaluated by the N 2 gas adsorption amount.

本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、一般式SiOx(0.5≦x<1.6)で表すことができる。酸化珪素の製造方法としては、例えば、酸化珪素ガスを発生する原料を不活性ガスの存在下もしくは減圧下900℃〜1,600℃の温度範囲で加熱し、酸化珪素ガスを発生させ、発生した酸化珪素ガスを吸着板に堆積させる方法がある。反応炉内温度を下げた状態で堆積物を取出し、ボールミル、ジェットミル等を用いて粉砕、粉末化を行う。   In the present invention, silicon oxide is a general term for amorphous silicon oxides obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. It can be represented by the formula SiOx (0.5 ≦ x <1.6). As a method for producing silicon oxide, for example, a raw material that generates silicon oxide gas is heated in a temperature range of 900 ° C. to 1,600 ° C. in the presence of an inert gas or under reduced pressure to generate silicon oxide gas, which is generated. There is a method of depositing silicon oxide gas on an adsorption plate. The deposit is taken out with the temperature in the reactor lowered, and pulverized and powdered using a ball mill, jet mill or the like.

珪素の微粒子が珪素系化合物に分散した構造を有する複合粒子(以下、複合粒子と略す場合がある)における、珪素系化合物については、不活性なものが好ましく、製造しやすさの点において二酸化珪素が好ましい。また、この粒子は下記性状を有していることが好ましい。   In the composite particles having a structure in which silicon fine particles are dispersed in a silicon-based compound (hereinafter may be abbreviated as composite particles), the silicon-based compound is preferably inactive, and silicon dioxide is easy to manufacture. Is preferred. Moreover, it is preferable that this particle | grain has the following property.

i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の微粒子(結晶)の粒子径が、好ましくは1〜500nm、より好ましくは2〜200nm、さらに好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなるおそれがあり、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することもできる。 i. In X-ray diffraction (Cu-Kα) using copper as the counter-cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and based on the broadening of the diffraction line The particle diameter of silicon fine particles (crystals) determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. Conversely, if the silicon fine particles are larger than 500 nm, the expansion / contraction during charge / discharge increases, and the cycle performance may be deteriorated. The size of the silicon fine particles can also be measured by a transmission electron micrograph.

ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに、−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiOx:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。 ii. In solid-state NMR ( 29 Si-DDMAS) measurement, there is a broad silicon dioxide peak whose spectrum is centered around −110 ppm, and a peak characteristic of Si diamond crystal is present near −84 ppm. This spectrum is completely different from ordinary silicon oxide (SiO x : x = 1.0 + α), and the structure itself is clearly different. Further, it is confirmed by transmission electron microscope that silicon crystals are dispersed in amorphous silicon dioxide.

複合粒子(Si/珪素系化合物)中における珪素微粒子(Si)の分散量は、2〜36質量%、特に10〜30質量%であることが好ましい。この分散珪素量が2質量%未満では、充放電容量が小さくなる場合があり、逆に36質量%を超えるとサイクル性が低下する場合がある。   The dispersion amount of the silicon fine particles (Si) in the composite particles (Si / silicon compound) is preferably 2 to 36% by mass, particularly preferably 10 to 30% by mass. If the amount of dispersed silicon is less than 2% by mass, the charge / discharge capacity may be reduced, and conversely if it exceeds 36% by mass, the cycle performance may be reduced.

なお、上記複合粒子は、例えば、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子を、不活性ガス雰囲気下、800〜1,400℃の温度域で熱処理を施して不均化する方法で得ることができる。 The above composite particles, for example, the general formula SiO x (0.5 ≦ x <1.6 ) of silicon oxide particles represented by an inert gas atmosphere, in a temperature range of 800~1,400 ° C. heat treatment It can obtain by the method of giving disproportionation.

炭素被膜形成反応は特に限定されることはないが、熱CVDを使用することが好ましい。熱CVDでは酸化珪素の粉末を炉内にセットした後に、炉内に炭化水素ガスを充満させ炉内温度を昇温させる。そして、炭化水素ガスが熱分解されることにより酸化珪素粒子の表面に炭素膜が形成される。   The carbon film forming reaction is not particularly limited, but it is preferable to use thermal CVD. In thermal CVD, silicon oxide powder is set in a furnace, and then the furnace is filled with a hydrocarbon gas to raise the temperature in the furnace. The hydrocarbon gas is thermally decomposed to form a carbon film on the surface of the silicon oxide particles.

炭素被膜形成回数は、炭素被膜形成可能な炭化水素雰囲気以外の雰囲気に晒されることで反応回数を区切り、炭素被膜形成可能な炭化水素雰囲気に晒された回数として定義する。すなわち、炭素被膜形成反応後、温度を下げて大気中に晒し、再度昇温し炭素被膜形成雰囲気に晒し、炭素被膜を形成させた場合、炭素被膜形成反応回数は2回となる。また、高温状態のまま炭素被膜形成可能な雰囲気の後に、不活性ガス雰囲気を通過し、再度炭素被膜形成可能な雰囲気を通過するような2段回の反応の場合も、炭素被膜形成反応回数は2回となる。なお、原料として一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子を用いた場合に、化学蒸着法(CVD法)によって不均化反応が進み、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子表面が、黒鉛被覆されたものである場合がある。   The number of times of carbon film formation is defined as the number of times of exposure to a hydrocarbon atmosphere in which a carbon film can be formed by dividing the number of reactions by exposure to an atmosphere other than the hydrocarbon atmosphere in which the carbon film can be formed. That is, after the carbon film forming reaction, when the temperature is lowered and exposed to the atmosphere, the temperature is raised again and the carbon film forming atmosphere is formed to form the carbon film, the number of carbon film forming reactions is two. Also, in the case of a two-stage reaction in which an inert gas atmosphere is passed after an atmosphere in which a carbon film can be formed in a high temperature state and an atmosphere in which a carbon film can be formed again, the number of carbon film formation reactions is 2 times. When silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.6) are used as raw materials, the disproportionation reaction proceeds by chemical vapor deposition (CVD), and silicon fine particles In some cases, the surface of particles having a fine structure dispersed in a silicon compound is coated with graphite.

このとき、炭素源として用いる炭化水素としては、脂肪族炭化水素、芳香族炭化水素、タール留分を、1種単独で又は2種以上を適宜選択して用いることができる。   At this time, as the hydrocarbon used as the carbon source, aliphatic hydrocarbons, aromatic hydrocarbons, and tar fractions can be used singly or in appropriate combination of two or more.

脂肪族炭化水素としては、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、プロピレン等が挙げられる。これらCnm組成のうち、特に3≧nが好ましい。これは、製造コストが低い上に、熱分解による生成物の物性が良いからである。 Examples of the aliphatic hydrocarbon include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, and propylene. Among these C n H m compositions, 3 ≧ n is particularly preferable. This is because the production cost is low and the physical properties of the product by thermal decomposition are good.

芳香族炭化水素としては、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン、メシチレンが挙げられる。   Examples of the aromatic hydrocarbon include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, and mesitylene.

タール蒸留工程で得られる留分としては、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油等が挙げられる。   Examples of the fraction obtained in the tar distillation step include gas light oil, creosote oil, anthracene oil, and naphtha cracked tar oil.

有機物ガスを熱分解させ炭素被膜形成する温度は、600〜1,200℃で行うことが好ましく、800〜1,150℃がより好ましく、800〜1,050℃がさらに好ましく、800〜950℃が特に好ましい。被膜形成温度が上記範囲内であれば、優れた負荷特性を有し、かつ高い容量維持率、高い初回効率を示す負極活物質を提供することができる。反応圧力は500〜50,000Paが好ましく、1,000〜10,000Paがより好ましい。なお、処理時間は目的とする炭素被覆量、処理温度、ガス(有機物ガス)の濃度(流速)や導入量等によって適宜選定されるが、通常、最高温度域での滞留時間として1〜100時間、特に1〜50時間、1〜30時間が経済的にも効率的である。   The temperature at which the organic gas is thermally decomposed to form the carbon film is preferably 600 to 1,200 ° C., more preferably 800 to 1,150 ° C., still more preferably 800 to 1,050 ° C., and 800 to 950 ° C. Particularly preferred. When the film forming temperature is within the above range, a negative electrode active material having excellent load characteristics, a high capacity retention rate, and a high initial efficiency can be provided. The reaction pressure is preferably 500 to 50,000 Pa, and more preferably 1,000 to 10,000 Pa. The treatment time is appropriately selected depending on the target carbon coating amount, treatment temperature, gas (organic gas) concentration (flow rate), introduction amount, and the like, but usually the residence time in the maximum temperature range is 1 to 100 hours. In particular, it is economically efficient for 1 to 50 hours and 1 to 30 hours.

有機物ガスを熱分解させる炭素被膜形成反応の回数は、2〜4回であり、2〜3回がより好ましい。CVDの回数を複数回とすることで、炭素被膜中に好適な開孔を有し、電池にした際に電解液の保持性が上がるため、電池特性、特に負荷特性の優れた非水電解質二次電池負極活物質となる。   The frequency | count of the carbon film formation reaction which thermally decomposes organic substance gas is 2-4 times, and 2 to 3 times is more preferable. By setting the number of times of CVD to a plurality of times, the carbon coating has suitable pores, and the retention of the electrolyte is improved when the battery is made. Therefore, the nonaqueous electrolyte with excellent battery characteristics, particularly load characteristics, is obtained. It becomes a secondary battery negative electrode active material.

本発明は有機物ガスを熱分解させる炭素被膜形成反応を2〜4回させることに特徴があるが、1回目の炭素被覆工程において形成される炭素膜厚Anmと、2回目以降の炭素被覆工程において形成される炭素膜厚Bnmとの比を、0.3≦B/A<1.7の範囲にすることができ、0.4≦B/A<1.4の範囲にすることが好ましく、0.4≦B/A≦1.0がさらに好ましい。珪素化合物上の炭素被膜の厚みが上記範囲内であれば、被膜中に空隙を有する炭素被膜をより効率的に作製することができ、負荷特性がより向上する。上記範囲よりも小さい場合、2回目以降の工程においても下地を埋めるのみになってしまい、空隙が効率的に形成されないおそれがある。また、上記範囲よりも大きい場合、形成された空隙を埋めてしまうため、空隙が効率的に形成されないおそれがある。上記のような炭素膜厚にするためには、全炭素膜厚を30〜100nm、好ましくは40〜70nmの範囲で形成させることが好ましく、1回目により形成される炭素膜厚を10〜50nm、好ましくは20〜40nmで制御することが好ましい。同様に、2回目以降に形成される全炭素膜厚は、10〜50nmが好ましく、20〜40nmで制御することが好ましい。なお、上記比率及び膜厚は、熱分解CVD時の、炭化水素種、反応時間を選択することで調整することができる。上記比率及び膜厚は透過型電子顕微鏡TEMで測定する。   The present invention is characterized in that the carbon film forming reaction for thermally decomposing the organic gas is performed 2 to 4 times, but the carbon film thickness Anm formed in the first carbon coating step and the second and subsequent carbon coating steps. The ratio of the formed carbon film thickness Bnm can be in the range of 0.3 ≦ B / A <1.7, preferably in the range of 0.4 ≦ B / A <1.4, More preferably, 0.4 ≦ B / A ≦ 1.0. If the thickness of the carbon coating on the silicon compound is within the above range, a carbon coating having voids in the coating can be produced more efficiently, and the load characteristics are further improved. When it is smaller than the above range, the base is only buried in the second and subsequent steps, and the voids may not be formed efficiently. Moreover, when larger than the said range, since the formed space | gap is filled, there exists a possibility that a space | gap may not be formed efficiently. In order to obtain the carbon film thickness as described above, the total carbon film thickness is preferably 30 to 100 nm, preferably 40 to 70 nm, and the carbon film formed by the first time is preferably 10 to 50 nm. It is preferable to control at 20 to 40 nm. Similarly, the total carbon film thickness formed after the second time is preferably 10 to 50 nm, and preferably controlled at 20 to 40 nm. In addition, the said ratio and film thickness can be adjusted by selecting the hydrocarbon seed | species and reaction time at the time of thermal decomposition CVD. The ratio and film thickness are measured with a transmission electron microscope TEM.

[非水電解質二次電池負極活物質]
本願発明の非水電解質二次電池負極活物質の製造方法は、2〜4回で熱分解工程を行うことにより形成された炭素被膜中に空隙を有することを特徴とする。熱分解工程を複数回に分けて行うことにより、下地となる炭素表面と、さらにその表面に形成される炭素膜との間に空隙が効率的に形成され、この空隙が電解液保持の役割を担う。これにより、電池の特に負荷特性が向上する。この場合、炭素成分による炭素被覆層の少なくとも一部でリチウムイオンの吸蔵放出が行われてもよい。また、本発明の非水電解質二次電池負極材を使用した二次電池を用いた電子機器においても同様の効果が得られる。以下、上記製造方法で得られた非水電解質二次電池負極活物性について説明する。これらの物性は、有機物ガスを熱分解させる炭素被膜形成反応における、炭化水素種、反応圧力、反応時間を調整することにより、得ることができる。
[Nonaqueous electrolyte secondary battery negative electrode active material]
The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized by having voids in a carbon film formed by performing a pyrolysis step 2 to 4 times. By performing the pyrolysis step in multiple steps, voids are efficiently formed between the carbon surface as a base and the carbon film formed on the surface, and these voids serve to retain the electrolyte. Bear. Thereby, especially the load characteristic of a battery improves. In this case, occlusion / release of lithium ions may be performed in at least a part of the carbon coating layer by the carbon component. Moreover, the same effect is acquired also in the electronic device using the secondary battery using the nonaqueous electrolyte secondary battery negative electrode material of this invention. Hereinafter, the negative electrode active physical properties of the nonaqueous electrolyte secondary battery obtained by the above production method will be described. These physical properties can be obtained by adjusting hydrocarbon species, reaction pressure, and reaction time in a carbon film forming reaction in which organic gas is thermally decomposed.

BET比表面積は、3.3〜7.5m2/gとすることができ、3.6〜7.3m2/gが好ましく、4.3〜6.9m2/gがより好ましい。このようなものであれば、空隙が形成されており、高い負荷特性を有する負極活物質が提供される。BETが低すぎる場合、空隙が少ないため、負荷特性が悪くなるおそれがあり、BETが高すぎる場合、副反応が進行するため、初回効率低下の要因となるおそれがある。なお、BET比表面積は、熱分解CVD時の、炭化水素種、反応圧力、反応時間を選択することで調整することができる。BET比表面積の測定条件は、吸着質:窒素、吸着温度:77Kであり、例えば、マイクロトラック・ベル株式会社製BELSORP−mini等によって測定することができる。 BET specific surface area may be a 3.3~7.5m 2 / g, preferably from 3.6~7.3m 2 / g, 4.3~6.9m 2 / g is more preferable. If it is such, the space | gap is formed and the negative electrode active material which has a high load characteristic is provided. If the BET is too low, the load characteristics may be deteriorated because the voids are small, and if the BET is too high, the side reaction proceeds, which may cause a decrease in initial efficiency. The BET specific surface area can be adjusted by selecting the hydrocarbon species, reaction pressure, and reaction time during pyrolysis CVD. The measurement conditions of the BET specific surface area are adsorbate: nitrogen, adsorption temperature: 77K, and can be measured by, for example, BELSORP-mini manufactured by Microtrack Bell Co., Ltd.

開孔における、窒素ガス吸着法により算出される平均開孔径は、9.8〜26.0nmとすることができ、10.0〜24.0nmが好ましく、15.0〜19.0nmがさらに好ましい。平均開孔径が上記の範囲にある場合、電解液の保持性が良好になるため、負荷特性がより向上する。平均開孔径が小さすぎると、保持性が悪く負荷特性が悪化するおそれがある。また、大きすぎる場合、副反応により初回効率低下の要因になってしまうおそれがある。なお、平均開孔径は、熱分解CVD時の、炭化水素種、反応圧力、反応時間を選択することで調整することがでできる。平均開孔径は、窒素ガス吸着法により得られた等温吸着線のBET法による解析により算出することができる。   The average pore diameter calculated by the nitrogen gas adsorption method in the opening can be 9.8 to 26.0 nm, preferably 10.0 to 24.0 nm, and more preferably 15.0 to 19.0 nm. . When the average pore diameter is in the above range, the retention property of the electrolyte is improved, and the load characteristics are further improved. When the average pore diameter is too small, the retention property is poor and the load characteristics may be deteriorated. Moreover, when too large, there exists a possibility of becoming a factor of initial efficiency fall by side reaction. The average pore diameter can be adjusted by selecting the hydrocarbon species, reaction pressure, and reaction time during pyrolysis CVD. The average pore diameter can be calculated by analyzing the isothermal adsorption line obtained by the nitrogen gas adsorption method using the BET method.

開孔における、窒素ガス吸着法により算出される開孔容積は、0.9×10-2〜5.7×10-2cm3/gとすることができ、0.9×10-2〜5.4×10-2cm3/gが好ましく、1.8×10-2〜3.5×10-2cm3/gがより好ましい。開孔容積が上記範囲にある場合、電解液の保持性が良好になるため、負荷特性が向上する。平均開孔径が上記範囲より小さい場合、保持性が悪く負荷特性が悪化するおそれがある。また、大きすぎる場合、副反応により初回効率低下の要因になってしまうおそれがある。なお、開孔容積は、熱分解CVD時の、炭化水素種、反応圧力、反応時間、CVD回数を選択することで調整することができる。開孔容積は、窒素ガス吸着法により得られた等温吸着線のBET法による解析により算出することができる。 The opening volume calculated by the nitrogen gas adsorption method in the opening can be 0.9 × 10 −2 to 5.7 × 10 −2 cm 3 / g, and 0.9 × 10 −2 to 5.4 × 10 −2 cm 3 / g is preferable, and 1.8 × 10 −2 to 3.5 × 10 −2 cm 3 / g is more preferable. When the pore volume is in the above range, the retention property of the electrolyte is improved, and the load characteristics are improved. When the average pore diameter is smaller than the above range, the retention property is poor and the load characteristics may be deteriorated. Moreover, when too large, there exists a possibility of becoming a factor of initial efficiency fall by side reaction. The pore volume can be adjusted by selecting the hydrocarbon species, reaction pressure, reaction time, and number of CVDs during pyrolysis CVD. The pore volume can be calculated by analyzing the isothermal adsorption line obtained by the nitrogen gas adsorption method using the BET method.

非水電解質二次電池負極活物質の炭素被覆量(負極活物質全体に対する炭素量)は、0.5〜19質量%とすることができ、1〜15質量%が好ましく、4〜10質量%がより好ましい。1〜15質量%の範囲で、良好な導電性がとれるため、電池特性がより向上する。少なすぎると、導電性が不十分となるおそれがあり、電池特性の低下の要因になる。また、多すぎると、容量を持たない炭素成分が多くなってしまいSiOxの添加効果が薄れてしまうおそれがある。上記炭素被覆量は、各回の熱分解CVD時の、炭化水素種、反応時間、反応温度をそれぞれ選択することで調整することができる。炭素被覆量は、カーボンアナライザー、例えば堀場製のカーボンアナライザー等で測定することができる。   The carbon coating amount of the non-aqueous electrolyte secondary battery negative electrode active material (carbon amount relative to the whole negative electrode active material) can be 0.5 to 19% by mass, preferably 1 to 15% by mass, and 4 to 10% by mass. Is more preferable. Since favorable electroconductivity can be taken in the range of 1 to 15% by mass, battery characteristics are further improved. If the amount is too small, the conductivity may be insufficient, which causes a decrease in battery characteristics. On the other hand, if the amount is too large, the carbon component having no capacity increases, and the effect of adding SiOx may be reduced. The carbon coating amount can be adjusted by selecting the hydrocarbon species, reaction time, and reaction temperature during each pyrolysis CVD. The carbon coating amount can be measured with a carbon analyzer such as a carbon analyzer manufactured by Horiba.

密度1.5cm3/gに圧縮された時の体積抵抗率は、0.01〜190Ω・cmとすることができ、0.01〜100Ω・cmが好ましい。体積抵抗率が上記範囲にある場合、良好な導電性が取れており、電池特性が向上する。体積抵抗率が小さすぎる場合、電池にした際の導電性が高すぎるため、電荷集中等による短絡等の要因となるため安全性の面で課題となる。一方で体積抵抗率が高すぎる場合、電荷移動の妨げとなり、電池特性に悪影響を及ぼしてしまうおそれがある。上記体積抵抗率は、各回の熱分解CVD時の、炭化水素種、反応時間、反応温度をそれぞれ選択することで調整することができる。上記密度1.5cm3/gに圧縮された時の体積抵抗率は、抵抗率計、例えば三菱アナリテック社製の抵抗率計等で測定できる。測定条件は、(i)装置例:ロレスタ、(ii)測定方法:4端子4探針法)である。 The volume resistivity when compressed to a density of 1.5 cm 3 / g can be 0.01 to 190 Ω · cm, preferably 0.01 to 100 Ω · cm. When the volume resistivity is in the above range, good conductivity is obtained and the battery characteristics are improved. If the volume resistivity is too small, the conductivity of the battery is too high, which causes a short circuit due to charge concentration and the like, which is a problem in terms of safety. On the other hand, if the volume resistivity is too high, charge transfer is hindered, which may adversely affect battery characteristics. The volume resistivity can be adjusted by selecting the hydrocarbon species, the reaction time, and the reaction temperature during each pyrolysis CVD. The volume resistivity when compressed to the density of 1.5 cm 3 / g can be measured with a resistivity meter, for example, a resistivity meter manufactured by Mitsubishi Analytech. The measurement conditions are (i) device example: Loresta, (ii) measurement method: 4-terminal 4-probe method).

また、本発明では、ケイ素化合物のSi成分の結晶性は低いほどよく、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は1.2°以上であると共に、その結晶面に起因する結晶子サイズは7.5nm以下であることが好ましい。特に、Si結晶の存在を低減する事で、Si結晶の存在による電池特性の悪化を抑制できるからである。   In the present invention, the lower the crystallinity of the Si component of the silicon compound, the better, and the half width (2θ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction is 1.2 ° or more. At the same time, the crystallite size attributable to the crystal plane is preferably 7.5 nm or less. This is because the deterioration of battery characteristics due to the presence of the Si crystal can be suppressed by reducing the presence of the Si crystal.

非水電解質二次電池負極活物質(又はその一部に)は、炭化ケイ素を含有していることが好ましい。よりケイ素化合物と炭素被膜の界面を化学結合で固定されるため、充放電時の活物質の膨張収縮による炭素被膜の剥離・脱離等が抑制され、サイクル後も活物質の導電性が確保できるため、容量維持率が向上する。その非水電解質二次電池負極活物質中の含有量は、1.6質量%以下とすることができ、1質量%以下であることが好ましい。下限は0.1質量%が好ましい。炭化ケイ素は絶縁体であり、かつLiを吸蔵しない。そのため、多すぎると、活物質の導電性を下げてしまいおそれがあり、Li移動の妨げにもなってしまう。上記炭化ケイ素量は、各回の熱分解CVD時の、炭化水素種、反応時間、反応温度をそれぞれ選択することで調整することができる。炭化ケイ素量は、カーボンアナライザー、例えば堀場製カーボンアナライザー等で測定することができる。   It is preferable that the non-aqueous electrolyte secondary battery negative electrode active material (or part thereof) contains silicon carbide. In addition, the interface between the silicon compound and the carbon coating is fixed by a chemical bond, so that the carbon coating is prevented from peeling and detaching due to expansion and contraction of the active material during charging and discharging, and the conductivity of the active material can be secured even after cycling. Therefore, the capacity maintenance rate is improved. The content of the non-aqueous electrolyte secondary battery negative electrode active material can be 1.6% by mass or less, and preferably 1% by mass or less. The lower limit is preferably 0.1% by mass. Silicon carbide is an insulator and does not occlude Li. For this reason, if the amount is too large, the conductivity of the active material may be lowered, which may hinder Li movement. The amount of silicon carbide can be adjusted by selecting the hydrocarbon species, reaction time, and reaction temperature during each pyrolysis CVD. The amount of silicon carbide can be measured with a carbon analyzer such as a carbon analyzer manufactured by Horiba.

非水電解質二次電池負極活物質中のトルエンにより抽出される有機物成分の含有量は、50〜1,900ppmとすることができ、50〜1,000ppmが好ましく、80〜800ppmがより好ましい。トルエンにより抽出操作により抽出される有機化合物の含有量が上記範囲よりも少ない場合、良好なSEIが形成できず、電池特性低下の要因となっておそれがある。また、多すぎる場合、副反応により、初回効率の低下要因となってしまうおそれがある。有機物成分の含有量は、非水電解質二次電池負極活物質(珪素化合物表面に炭素被膜が形成されたもの)100gに対してトルエンを500mL加え、密閉容器で常温撹拌させ、その後、溶液をろ過させて、トルエン溶液をロータリーエバポレーター等で濃縮させる。この操作を6回繰り返し、最後に濃縮したものを減圧乾燥器等で100℃/2時間加熱減圧乾燥させ、その後、抽出物の質量を測定し、ケイ素化合物中の有機化合物の割合を算出する。   Content of the organic substance component extracted with toluene in the non-aqueous electrolyte secondary battery negative electrode active material can be 50 to 1,900 ppm, preferably 50 to 1,000 ppm, and more preferably 80 to 800 ppm. When the content of the organic compound extracted by the extraction operation with toluene is less than the above range, good SEI cannot be formed, which may cause a decrease in battery characteristics. Moreover, when too large, there exists a possibility that it may become a cause of a fall of initial efficiency by side reaction. As for the content of the organic component, 500 mL of toluene is added to 100 g of a nonaqueous electrolyte secondary battery negative electrode active material (with a carbon film formed on the surface of a silicon compound), and the mixture is stirred at room temperature in a sealed container, and then the solution is filtered. The toluene solution is concentrated using a rotary evaporator or the like. This operation is repeated 6 times, and the final concentrated product is dried under reduced pressure by heating at 100 ° C./2 hours with a vacuum dryer or the like. Thereafter, the mass of the extract is measured, and the ratio of the organic compound in the silicon compound is calculated.

また、非水電解質二次電池負極活物質粒子の周囲には、珪素化合物よりもメディアン径の小さい粒子状の炭素系化合物を含むことが望ましい。これによって負極活物質粒子間の電気伝導性を向上させることが可能である。この炭素系化合物は、負極活物質粒子との物理的な混合等によって負極活物質粒子の周囲に存在させることができる。   In addition, it is desirable that a particulate carbon-based compound having a median diameter smaller than that of the silicon compound is included around the non-aqueous electrolyte secondary battery negative electrode active material particles. Thereby, it is possible to improve the electrical conductivity between the negative electrode active material particles. The carbon-based compound can be present around the negative electrode active material particles by, for example, physical mixing with the negative electrode active material particles.

非水電解質二次電池負極活物質粒子のメディアン径は特に限定されないが、0.5μm〜20μmであることが好ましい。これは、充放電時においてリチウムイオンの吸蔵放出がされやすくなると共に、粒子が割れにくくなるからである。0.5μm以上のメディアン径では表面積が大きくなり過ぎず、電池不可逆容量の増大を防止できる。更に、メディアン径が20μm以下であれば、粒子が割れにくく新生面が出にくい。平均粒子径は、レーザー光回折法による粒度分布測定による。   The median diameter of the nonaqueous electrolyte secondary battery negative electrode active material particles is not particularly limited, but is preferably 0.5 μm to 20 μm. This is because lithium ions are easily occluded and released during charging and discharging, and the particles are difficult to break. When the median diameter is 0.5 μm or more, the surface area does not become too large, and an increase in battery irreversible capacity can be prevented. Furthermore, if the median diameter is 20 μm or less, the particles are difficult to break and a new surface is difficult to appear. The average particle diameter is based on particle size distribution measurement by a laser light diffraction method.

負極結着剤としては、例えば高分子材料、合成ゴム等のいずれか1種類以上が挙げられる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、あるいはポリアクリル酸リチウム、カルボキシメチルセルロース等である。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、あるいはエチレンプロピレンジエン等である。   Examples of the negative electrode binder include one or more of polymer materials, synthetic rubbers, and the like. Examples of the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose. The synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber, ethylene propylene diene, or the like.

負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバー等の炭素材料のいずれか1種以上が挙げられる。   Examples of the negative electrode conductive assistant include one or more carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube, and carbon nanofiber.

負極活物質層は、本発明の負極材と炭素材料(炭素系負極材)の混合状態で作成してもよい。本発明のケイ素系の負極材に炭素系負極材を混合させることで、負極活物質層の電気抵抗を低減すると共に、充電に伴う膨張応力を緩和する事が可能となる。この炭素系負極材は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類等がある。   The negative electrode active material layer may be formed in a mixed state of the negative electrode material of the present invention and a carbon material (carbon-based negative electrode material). By mixing the carbon-based negative electrode material with the silicon-based negative electrode material of the present invention, it is possible to reduce the electrical resistance of the negative electrode active material layer and to reduce the expansion stress accompanying charging. Examples of the carbon-based negative electrode material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, and carbon blacks.

さらに、ケイ素化合物のメディアン径Yと炭素系負極材のメディアン径XがX/Y≧1の関係を満たすことが好ましい。このように、Li化合物を含むケイ素化合物及び皮膜層からなる負極材とともに、さらに炭素系負極材を含む負極とすることにより、負極の体積変化による破壊を防止することができる。特にこの効果は、炭素系負極材がケイ素化合物に対して同等以上に大きい場合に効果的に発揮される。   Furthermore, it is preferable that the median diameter Y of the silicon compound and the median diameter X of the carbon-based negative electrode material satisfy the relationship of X / Y ≧ 1. Thus, by using the negative electrode material further comprising the carbon compound negative electrode material together with the negative electrode material composed of the silicon compound containing the Li compound and the coating layer, it is possible to prevent the negative electrode from being damaged due to the volume change. In particular, this effect is effectively exhibited when the carbon-based negative electrode material is equal to or larger than the silicon compound.

[非水電解質二次電池負極]
本発明の非水電解質二次電池負極活物質(炭素被膜が形成された珪素化合物粒子)を用いた非水電解質二次電池負極について説明する。負極は、負極集電体の上に負極活物質層を有する構成になっている。この負極活物質層は負極集電体の両面、又は、片面だけに設けられていてもよい。さらに、本発明の負極活物質が用いられたものであれば、負極集電体はなくてもよい。
[Nonaqueous electrolyte secondary battery negative electrode]
A non-aqueous electrolyte secondary battery negative electrode using the non-aqueous electrolyte secondary battery negative electrode active material (silicon compound particles on which a carbon film is formed) of the present invention will be described. The negative electrode is configured to have a negative electrode active material layer on a negative electrode current collector. This negative electrode active material layer may be provided on both surfaces or only one surface of the negative electrode current collector. Furthermore, as long as the negative electrode active material of the present invention is used, the negative electrode current collector may be omitted.

[負極集電体]
負極集電体は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
[Negative electrode current collector]
The negative electrode current collector is an excellent conductive material and is made of a material having excellent mechanical strength. Examples of the conductive material that can be used for the negative electrode current collector include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).

負極集電体は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、100ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。   The negative electrode current collector preferably contains carbon (C) and sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved. In particular, in the case of having an active material layer that expands during charging, if the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector. Although content of said content element is not specifically limited, Especially, it is preferable that it is 100 ppm or less. This is because a higher deformation suppressing effect can be obtained.

負極集電体の表面は、粗化されていても、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔等である。粗化されていない負極集電体は例えば、圧延金属箔等である。   The surface of the negative electrode current collector may be roughened or not roughened. The roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching. The non-roughened negative electrode current collector is, for example, a rolled metal foil.

負極活物質層は、リチウムイオンを吸蔵、放出可能な複数の負極活物質粒子を含んでおり、電池設計上、さらに負極結着剤(バインダー)や導電助剤等、他の材料を含んでいてもよい。本発明の非水電解質二次電池負極材は、この負極活物質層を構成する材料となる。   The negative electrode active material layer includes a plurality of negative electrode active material particles capable of occluding and releasing lithium ions, and further includes other materials such as a negative electrode binder (binder) and a conductive aid in terms of battery design. Also good. The nonaqueous electrolyte secondary battery negative electrode material of the present invention is a material constituting the negative electrode active material layer.

[負極の製造方法]
非水電解質二次電池活物質(負極活物質粒子)を用いてスラリーを作製する工程と、スラリーを負極集電体に塗布・乾燥する工程を含む。具体的には、負極活物質粒子と、負極結着剤と、導電助剤等他の材料とを混合し負極合剤としたのち、有機溶剤又は水等を加えてスラリーとする。
[Production method of negative electrode]
It includes a step of producing a slurry using a nonaqueous electrolyte secondary battery active material (negative electrode active material particles) and a step of applying and drying the slurry to a negative electrode current collector. Specifically, the negative electrode active material particles, the negative electrode binder, and other materials such as a conductive additive are mixed to form a negative electrode mixture, and then an organic solvent or water is added to form a slurry.

次に負極集電体の表面に合剤スラリーを塗布し、乾燥させて負極活物質層を形成する。この時、必要に応じて加熱プレス等を行ってもよい。   Next, a mixture slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, you may perform a heat press etc. as needed.

また、負極集電体が炭素及び硫黄を90ppm以下含んでいれば、より高い効果を得ることができる。   In addition, if the negative electrode current collector contains 90 ppm or less of carbon and sulfur, a higher effect can be obtained.

[リチウムイオン二次電池]
次に、上記した負極を用いた非水電解質二次電池の具体例として、リチウムイオン二次電池、特にラミネートフィルム型二次電池について説明する。
[Lithium ion secondary battery]
Next, as a specific example of the non-aqueous electrolyte secondary battery using the above-described negative electrode, a lithium ion secondary battery, particularly a laminate film type secondary battery will be described.

[ラミネートフィルム型二次電池の構成]
ラミネートフィルム型二次電池は、主にシート状の外装部材の内部に巻回電極体が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リードが取り付けられ、負極に負極リードが取り付けられている。電極体の最外周部は保護テープにより保護されている。
[Configuration of laminated film type secondary battery]
A laminate film type secondary battery is one in which a wound electrode body is accommodated mainly in a sheet-like exterior member. This wound body has a separator between a positive electrode and a negative electrode and is wound. There is also a case where a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated. In both electrode bodies, a positive electrode lead is attached to the positive electrode and a negative electrode lead is attached to the negative electrode. The outermost peripheral part of the electrode body is protected by a protective tape.

正負極リードは、例えば、外装部材の内部から外部に向かって一方向で導出されている。正極リードは、例えば、アルミニウム等の導電性材料により形成され、負極リードは、例えば、ニッケル、銅等の導電性材料により形成される。   For example, the positive and negative electrode leads are led out in one direction from the inside of the exterior member to the outside. The positive electrode lead is formed of a conductive material such as aluminum, and the negative electrode lead is formed of a conductive material such as nickel and copper.

外装部材は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤等で張り合わされている。融着部は、例えばポリエチレンやポリプロピレン等のフィルムであり、金属部はアルミ箔等である。保護層は例えば、ナイロン等である。   The exterior member is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order, and this laminate film is a fusion of two films so that the fusion layer faces the electrode body. The outer peripheral edges of the layers are bonded together with an adhesive or an adhesive. The fused part is a film such as polyethylene or polypropylene, and the metal part is an aluminum foil or the like. The protective layer is, for example, nylon.

外装部材と正負極リードとの間には、外気侵入防止のため密着フィルムが挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。   An adhesion film is inserted between the exterior member and the positive and negative electrode leads to prevent intrusion of outside air. This material is, for example, polyethylene, polypropylene, or polyolefin resin.

[正極]
正極は、例えば負極と同様に、正極集電体の両面又は片面に正極活物質層を有している。
[Positive electrode]
The positive electrode has a positive electrode active material layer on both surfaces or one surface of a positive electrode current collector, for example, similarly to the negative electrode.

正極集電体は、例えば、アルミニウム等の導電性材により形成されている。   The positive electrode current collector is formed of, for example, a conductive material such as aluminum.

正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤等の他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。   The positive electrode active material layer includes one or more of positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You can leave. In this case, details regarding the binder and the conductive additive are the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.

正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、Lix12あるいはLiy2PO4で表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。 As the positive electrode material, a lithium-containing compound is desirable. Examples of the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element. Among these described positive electrode materials, compounds having at least one of nickel, iron, manganese, and cobalt are preferable. These chemical formulas are represented by, for example, Li x M 1 O 2 or Li y M 2 PO 4 . In the formula, M 1 and M 2 represent at least one transition metal element. The values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)等が挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnuPO4(0<u<1))等が挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。 Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ) and lithium nickel composite oxide (Li x NiO 2 ). Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 <u <1)). Is mentioned. This is because, when these positive electrode materials are used, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.

[負極]
負極は、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
[Negative electrode]
The negative electrode has, for example, a negative electrode active material layer on both sides of the current collector. The negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. This is because the deposition of lithium metal on the negative electrode can be suppressed.

正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。安定した電池設計を行うためである。   The positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on part of both surfaces of the negative electrode current collector. In this case, for example, the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is for a stable battery design.

非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成等、充放電の有無に依存せずに再現性良く組成等を正確に調べることができる。   In the non-opposing region, that is, the region where the negative electrode active material layer and the positive electrode active material layer are not opposed to each other, there is almost no influence of charge / discharge. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. This makes it possible to accurately examine the composition and the like with good reproducibility without depending on the presence or absence of charge and discharge, such as the composition of the negative electrode active material.

[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等が挙げられる。
[Separator]
The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact. This separator is formed of a porous film made of, for example, a synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.

[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤等他の材料を含んでいてもよい。
[Electrolyte]
At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution). This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.

溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2−ジメトキシエタン又はテトラヒドロフラン等が挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレン等の高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。   For example, a non-aqueous solvent can be used as the solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran. Among these, it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. This is because better characteristics can be obtained. In this case, more advantageous characteristics can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.

溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレン等が挙げられる。   The solvent additive preferably contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed. Examples of the unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.

また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。   The solvent additive preferably contains sultone (cyclic sulfonic acid ester). This is because the chemical stability of the battery is improved. Examples of sultone include propane sultone and propene sultone.

さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。   Furthermore, it is preferable that the solvent contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved. Examples of the acid anhydride include propanedisulfonic acid anhydride.

電解質塩は、例えば、リチウム塩等の軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)等が挙げられる。 The electrolyte salt can include, for example, any one or more of light metal salts such as a lithium salt. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).

電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。   The content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.

[ラミネートフィルム型二次電池の製造方法]
負極と、正極とを、セパレータを介して積層又は巻回させて巻回体を成型する工程と、前記巻回体をフィルムに封入し、電解液を投入し、真空含浸させる工程と、前記フィルムを融着させる工程を含む。具体的には下記に示す。
[Production method of laminated film type secondary battery]
A step of laminating or winding a negative electrode and a positive electrode via a separator to form a wound body, a step of encapsulating the wound body in a film, charging an electrolyte, and vacuum impregnation, and the film Including the step of fusing. Specifically, it is shown below.

最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤等を混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーター等のコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機等で正極活物質層を圧縮成型する。この時加熱してもよい。   First, a positive electrode is manufactured using the positive electrode material described above. First, a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry. Subsequently, the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer. Finally, the positive electrode active material layer is compression-molded with a roll press machine or the like. You may heat at this time.

次に、上記したリチウムイオン二次電池用負極の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。   Next, a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operation procedure as that for producing the negative electrode for a lithium ion secondary battery described above.

正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていてもよい。   When producing the positive electrode and the negative electrode, respective active material layers are formed on both surfaces of the positive electrode and the negative electrode current collector. At this time, the active material application length of both surface portions may be shifted in either electrode.

続いて、電解液を調製する。超音波溶接等により、正極集電体に正極リードを取り付けると共に、負極集電体に負極リードを取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により融着させる。以上のようにして、ラミネートフィルム型二次電池を製造することができる。   Subsequently, an electrolytic solution is prepared. The positive electrode lead is attached to the positive electrode current collector and the negative electrode lead is attached to the negative electrode current collector by ultrasonic welding or the like. Then, a positive electrode and a negative electrode are laminated | stacked or wound through a separator, a wound electrode body is produced, and a protective tape is adhere | attached on the outermost periphery part. Next, the wound body is molded so as to have a flat shape. Subsequently, after sandwiching the wound electrode body between the folded film-shaped exterior members, the insulating portions of the exterior members are bonded to each other by a heat fusion method, and the wound electrode body is opened in only one direction. Encapsulate. An adhesion film is inserted between the positive electrode lead and the negative electrode lead and the exterior member. A predetermined amount of the adjusted electrolytic solution is introduced from the release portion, and vacuum impregnation is performed. After the impregnation, the release part is fused by a vacuum heat fusion method. As described above, a laminated film type secondary battery can be manufactured.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1−1]
以下の手順により、ラミネートフィルム型の二次電池を作製した。
最初に正極を作製した。正極活物質はコバルト酸リチウム(LiCoO2)を95質量部と、正極導電助剤2.5質量部と、正極結着剤(ポリフッ化ビニリデン、PVDF)2.5質量部とを混合し正極合剤とした。続いて、正極合剤を有機溶剤(N−メチル−2−ピロリドン、以下NMPとも呼ぶ)に分散させてペースト状のスラリーとした。続いて、ダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後に、ロールプレスで圧縮成型を行った。
[Example 1-1]
A laminate film type secondary battery was produced by the following procedure.
First, a positive electrode was produced. The positive electrode active material was prepared by mixing 95 parts by mass of lithium cobalt oxide (LiCoO 2 ), 2.5 parts by mass of a positive electrode conductive additive and 2.5 parts by mass of a positive electrode binder (polyvinylidene fluoride, PVDF). An agent was used. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone, hereinafter also referred to as NMP) to obtain a paste slurry. Then, the slurry was apply | coated to both surfaces of the positive electrode electrical power collector with the coating device which has a die head, and it dried with the hot air type drying apparatus. At this time, a positive electrode current collector having a thickness of 15 μm was used. Finally, compression molding was performed with a roll press.

次に、以下に説明するように負極を作製した。
まず、本発明の負極材に含まれる負極活物質粒子は以下のように作製した。
初めに、金属ケイ素と二酸化ケイ素を混合した原料を反応炉へ設置し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。粒径を調整した後、得られた酸化珪素の粉末を炉内にセットした後に、炉内に炭化水素ガスを充満させ炉内温度を昇温させた。メタンが熱分解されることにより酸化珪素粒子の表面に炭素膜が形成される。炉内温度は1,000℃・2,000Paで、1回の時間は10時間であった。反応終了後、温度を400℃に下げて大気中に晒して、再度上記と同じ方法で炭素被膜を形成した。
Next, a negative electrode was produced as described below.
First, the negative electrode active material particles contained in the negative electrode material of the present invention were prepared as follows.
First, a raw material mixed with metal silicon and silicon dioxide is placed in a reaction furnace, and vaporized in a 10 Pa vacuum atmosphere is deposited on an adsorption plate, cooled sufficiently, and then the deposit is taken out and ball milled. Crushed with. After adjusting the particle size, the obtained silicon oxide powder was set in the furnace, and then the furnace gas was filled with a hydrocarbon gas to raise the furnace temperature. A carbon film is formed on the surface of the silicon oxide particles by thermally decomposing methane. The in-furnace temperature was 1,000 ° C. and 2,000 Pa, and one time was 10 hours. After completion of the reaction, the temperature was lowered to 400 ° C. and exposed to the atmosphere, and a carbon film was formed again by the same method as described above.

このとき、負極活物質粒子は、SiOxで表されるケイ素化合物のxの値が0.9であり、ケイ素化合物のメディアン径D50は4μmであった。また、炭素被覆層の被覆量が、ケイ素化合物と炭素被覆層の合計に対し、5質量%であった。 At this time, in the negative electrode active material particles, the value of x of the silicon compound represented by SiO x was 0.9, and the median diameter D 50 of the silicon compound was 4 μm. Moreover, the coating amount of the carbon coating layer was 5% by mass with respect to the total of the silicon compound and the carbon coating layer.

続いて、負極活物質粒子と天然黒鉛を10:90の質量比で配合した。配合した活物質材、炭素系導電助剤、炭素系導電助剤、負極結着剤(ポリイミド)の前駆体とを80〜83:10:2:5〜8の乾燥重量比で混合したのち、NMPで希釈してペースト状の負極合剤スラリーとした。この場合には、ポリアミック酸の溶媒としてNMPを用いた。続いて、コーティング装置で負極集電体の両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体としては、電解銅箔(厚さ=15μm)を用いた。最後に、真空雰囲気中で400℃×1時間焼成した。これにより、負極結着剤(ポリイミド)が形成される。   Subsequently, negative electrode active material particles and natural graphite were blended at a mass ratio of 10:90. After mixing the blended active material, carbon-based conductive additive, carbon-based conductive additive, and negative electrode binder (polyimide) precursor at a dry weight ratio of 80-83: 10: 2: 5-8, Diluted with NMP to obtain a paste-like negative electrode mixture slurry. In this case, NMP was used as a solvent for the polyamic acid. Subsequently, the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector with a coating apparatus and then dried. As this negative electrode current collector, an electrolytic copper foil (thickness = 15 μm) was used. Finally, baking was performed in a vacuum atmosphere at 400 ° C. for 1 hour. Thereby, a negative electrode binder (polyimide) is formed.

次に、溶媒(4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、エチレンカーボネート(EC)及びジメチルカーボネート(DMC))を混合したのち、電解質塩(六フッ化リン酸リチウム:LiPF6)を溶解させて電解液を調製した。この場合には、溶媒の組成を堆積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。 Next, after mixing a solvent (4-fluoro-1,3-dioxolan-2-one (FEC), ethylene carbonate (EC) and dimethyl carbonate (DMC)), an electrolyte salt (lithium hexafluorophosphate: LiPF) 6 ) was dissolved to prepare an electrolytic solution. In this case, the composition of the solvent was FEC: EC: DMC = 10: 20: 70 as a deposition ratio, and the content of the electrolyte salt was 1.2 mol / kg with respect to the solvent.

次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に巻回させ巻回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム12μmを用いた。続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。   Next, a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film of 12 μm sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used. Subsequently, after sandwiching the electrode body between the exterior members, the outer peripheral edges except for one side were heat-sealed, and the electrode body was housed inside. As the exterior member, a nylon film, an aluminum foil, and an aluminum laminate film in which a polypropylene film was laminated were used. Subsequently, the prepared electrolyte was injected from the opening, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.

得られた負極活物質粒子(炭素被覆されたケイ素化合物)について、下記評価を行った。
[BET比表面積]
2ガス吸着量によって評価するBET1点法、BET比表面積の測定条件は、吸着質:窒素、吸着温度:77Kであり、マイクロトラック・ベル株式会社製BELSORP−mini等によって測定した。
[平均開孔径、開孔容積]
窒素ガス吸着法により得られた等温吸着線のBET法による解析により算出した。
[炭素被覆量、炭化ケイ素の含有量]
堀場製カーボンアナライザーで測定した。
[密度1.5cm3/gに圧縮された時の体積抵抗率]
三菱アナリテック社製の抵抗率計で測定した(測定条件(i)装置例:ロレスタ、(ii)測定方法:4端子4探針法)
[炭素膜厚]
炭素被覆されたケイ素化合物を樹脂包埋し、FIBにより薄膜化し透過型電子顕微鏡を用いて、30個の粒子の炭素膜厚を測定し、その平均値を用いた。
The following evaluation was performed about the obtained negative electrode active material particle (silicon compound coated with carbon).
[BET specific surface area]
The measurement conditions of the BET one-point method and BET specific surface area evaluated by the N 2 gas adsorption amount are adsorbate: nitrogen, adsorption temperature: 77K, and were measured by BELSORP-mini manufactured by Microtrac Bell Co., Ltd.
[Average hole diameter, hole volume]
The isothermal adsorption line obtained by the nitrogen gas adsorption method was calculated by the BET analysis.
[Carbon coverage, silicon carbide content]
It was measured with a Horiba carbon analyzer.
[Volume resistivity when compressed to a density of 1.5 cm 3 / g]
Measured with a resistivity meter manufactured by Mitsubishi Analitech Co., Ltd. (measurement conditions (i) device example: Loresta, (ii) measurement method: 4-terminal 4-probe method)
[Carbon film thickness]
The silicon compound covered with carbon was embedded in a resin, thinned with FIB, and the carbon film thickness of 30 particles was measured using a transmission electron microscope, and the average value was used.

電池について、下記評価を行った。
[サイクル特性]
サイクル特性については、以下のようにして調べた。最初に電池安定化のため25℃の雰囲気下、2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて総サイクル数が100サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に100サイクル目の放電容量を2サイクル目の放電容量で割り、%表示のため100を掛け、容量維持率(以下では単に維持率と呼ぶ場合もある)を算出した。サイクル条件として、4.2Vに達するまで0.2Cの電流値で充電し、4.2Vの電圧に達した段階で4.2V定電圧で0.05Cの電柱値に達するまで充電した。また放電時は0.2Cの電流値で電圧が2.5Vに達するまで放電した。
The battery was evaluated as follows.
[Cycle characteristics]
The cycle characteristics were examined as follows. First, in order to stabilize the battery, charge / discharge was performed for 2 cycles in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 100, and the discharge capacity was measured each time. Finally, the discharge capacity at the 100th cycle was divided by the discharge capacity at the 2nd cycle and multiplied by 100 for% display, and the capacity maintenance rate (hereinafter, sometimes simply referred to as the maintenance rate) was calculated. As a cycle condition, the battery was charged at a current value of 0.2 C until 4.2 V was reached, and charged at a stage where the voltage reached 4.2 V until a utility pole value of 0.05 C was reached at a constant voltage of 4.2 V. During discharge, the battery was discharged at a current value of 0.2 C until the voltage reached 2.5V.

[容量維持率(%)、初回効率(%)、負荷特性]
初回充放電特性は、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。充放電条件はサイクル特性の0.2倍で行った。
負荷特性は、前記の初期放電容量測定後に、初期容量測定時と同条件で定電圧充電を行った。続いて、充電後の各電池を、4Cの電流値で、電圧が2.5Vになるまで放電させて、その時の容量(4C容量)を測定した。そして各電池について、4C容量を初期容量で割り、%表示のため100をかけ、容量維持率を算出した。この容量維持率が高いほど、電池の負荷特性が優れていることを意味する。
[Capacity maintenance ratio (%), initial efficiency (%), load characteristics]
For the initial charge / discharge characteristics, the initial efficiency (hereinafter sometimes referred to as initial efficiency) was calculated. The initial efficiency was calculated from an equation represented by initial efficiency (%) = (initial discharge capacity / initial charge capacity) × 100. The ambient temperature was the same as when the cycle characteristics were examined. The charge / discharge conditions were 0.2 times the cycle characteristics.
Regarding the load characteristics, after the initial discharge capacity measurement, constant voltage charging was performed under the same conditions as in the initial capacity measurement. Subsequently, each battery after charging was discharged at a current value of 4C until the voltage reached 2.5V, and the capacity at that time (4C capacity) was measured. For each battery, the 4C capacity was divided by the initial capacity, multiplied by 100 for% display, and the capacity maintenance rate was calculated. The higher the capacity retention rate, the better the load characteristics of the battery.

[実施例1−2〜1−4、比較例1−1〜1−3]
実施例1−2反応圧力を1,500Paにする以外は実施例1−1と同様にして、それ以外は、熱分解CVD(機物ガスを熱分解させる炭素被膜形成反応)の回数を下記表のようにする以外は実施例1−1と同様にして、炭素被覆されたケイ素化合物(負極活物質粒子)を得た。
[Examples 1-2 to 1-4, Comparative examples 1-1 to 1-3]
Example 1-2 Except that the reaction pressure was changed to 1,500 Pa, the procedure was the same as in Example 1-1. Otherwise, the number of thermal decomposition CVD (carbon film formation reaction for thermally decomposing machine gas) was shown in the following table. Except for the above, a carbon-coated silicon compound (negative electrode active material particles) was obtained in the same manner as in Example 1-1.

Figure 2017168406
Figure 2017168406

熱分解CVD工程を2〜4回行うことで、容量維持率・初回効率が高く、優れた負荷特性を示した。工程を複数回行うことによって、炭素膜中に空隙が形成され、電解液の保持性が向上したため、導電性が向上したことに由来すると考えられる。1回の工程では、炭素膜中に空隙は形成されにくいため、上記のような効果は見られない。5回以上行ってしまうと負荷特性は低下した。空隙が多くなってしまい、副反応による表面堆積物の影響によるものと考えられる。   By performing the thermal decomposition CVD process 2 to 4 times, the capacity retention rate and the initial efficiency were high, and excellent load characteristics were exhibited. By carrying out the process a plurality of times, voids are formed in the carbon film, and the retention of the electrolytic solution is improved. In one process, voids are not easily formed in the carbon film, and thus the above effects are not observed. If it was performed 5 times or more, the load characteristics deteriorated. It is thought that the voids increase and the surface deposits are caused by side reactions.

[実施例2−1〜2−8]
熱分解CVD時の、炭化水素種、反応圧力、反応時間を以下のようにする以外は、実施例1−1と同様にして、炭素被覆されたケイ素化合物(負極活物質粒子)を得た。実施例1−1の結果を併記する。
[Examples 2-1 to 2-8]
A carbon-coated silicon compound (negative electrode active material particles) was obtained in the same manner as in Example 1-1 except that the hydrocarbon species, reaction pressure, and reaction time during pyrolysis CVD were as follows. The results of Example 1-1 are also shown.

Figure 2017168406
Figure 2017168406

Figure 2017168406
Figure 2017168406

BET比表面積を3.6〜7.3m2/gの範囲で制御することにより、容量維持率、初回効率及び負荷特性が全て向上した。BET比表面積が7.3以上では、負荷特性が向上するが、表面での副反応起因により初回効率が低下する傾向にある。 By controlling the BET specific surface area in the range of 3.6 to 7.3 m 2 / g, the capacity retention ratio, initial efficiency and load characteristics were all improved. When the BET specific surface area is 7.3 or more, the load characteristics are improved, but the initial efficiency tends to decrease due to the side reaction on the surface.

[実施例3−1〜3−3]
熱分解CVDにおける反応時間を以下のようにする以外は、実施例1−1と同様にして、炭素被覆されたケイ素化合物(負極活物質粒子)を得た。実施例1−1の結果を併記する。
[Examples 3-1 to 3-3]
A silicon compound (negative electrode active material particles) coated with carbon was obtained in the same manner as in Example 1-1 except that the reaction time in pyrolysis CVD was as follows. The results of Example 1-1 are also shown.

Figure 2017168406
Figure 2017168406

Figure 2017168406
Figure 2017168406

炭素被覆量が少ない場合、導電性が足りないため電池特性は低下する傾向にある。また炭化ケイ素量が少ない場合、SiOxと炭素被膜が化学的な結合を形成し、充放電における活物質の膨張収縮由来の炭素被膜の剥離等を抑制する効果が少なくなるため、容量維持率が低下してしまう。一方で、炭素被覆量が15質量%よりも多い場合、導電性は十分に確保できるがSiOの容量メリットが低下してしまうため現実的ではない。また炭化ケイ素が1質量%よりも多い場合、今度は炭化ケイ素が抵抗成分となってしまうため電池特性の妨げとなってしまうおそれがある。以上から、炭素量は1〜15質量%、体積抵抗率は0.01〜100Ω・cm以下、炭化ケイ素は1質量%以下とすることで、容量維持率、初回効率及び負荷特性が全て向上した。   When the carbon coating amount is small, the battery characteristics tend to be lowered because of insufficient conductivity. In addition, when the amount of silicon carbide is small, SiOx and the carbon film form a chemical bond, and the effect of suppressing exfoliation of the carbon film derived from the expansion and contraction of the active material during charge and discharge is reduced, so the capacity maintenance rate is reduced. Resulting in. On the other hand, when the carbon coating amount is more than 15% by mass, the conductivity can be sufficiently ensured, but the capacity merit of SiO is lowered, which is not realistic. Moreover, when there is more silicon carbide than 1 mass%, since silicon carbide becomes a resistance component this time, there exists a possibility that it may interfere with a battery characteristic. From the above, the capacity retention rate, initial efficiency and load characteristics were all improved by setting the carbon amount to 1 to 15% by mass, the volume resistivity to 0.01 to 100Ω · cm or less, and silicon carbide to 1% by mass or less. .

[実施例4−1〜4−6]
熱分解CVD時の、炭化水素種、反応時間を以下のようにする以外は、実施例1−1と同様にして、炭素被覆されたケイ素化合物(負極活物質粒子)を得た。実施例1−1の結果を併記する。
[Examples 4-1 to 4-6]
A silicon compound coated with carbon (negative electrode active material particles) was obtained in the same manner as in Example 1-1 except that the hydrocarbon species and reaction time during pyrolysis CVD were as follows. The results of Example 1-1 are also shown.

Figure 2017168406
Figure 2017168406
Figure 2017168406
Figure 2017168406

B/Aは、0.4〜1.4の範囲で制御することで、容量維持率、初回効率及び負荷特性が全て向上した。   By controlling B / A in the range of 0.4 to 1.4, the capacity retention rate, initial efficiency, and load characteristics were all improved.

[実施例5−1〜5−4]
熱分解CVD時の反応温度を以下のようにする以外は、実施例1−1と同様にして、炭素被覆されたケイ素化合物(負極活物質粒子)を得た。実施例1−1の結果を併記する。
[Examples 5-1 to 5-4]
A silicon compound (negative electrode active material particles) coated with carbon was obtained in the same manner as in Example 1-1 except that the reaction temperature during pyrolysis CVD was as follows. The results of Example 1-1 are also shown.

Figure 2017168406
Figure 2017168406

Figure 2017168406
Figure 2017168406

反応温度を変えても、複数回熱分解CVDを行うことにより良好な電池特性が得られた。特に、800℃、900℃の低温条件では容量維持率、負荷特性の向上がみられ、1,100℃、1,200℃の高温条件では初回効率の向上がみられた。   Even if the reaction temperature was changed, good battery characteristics were obtained by performing pyrolysis CVD a plurality of times. In particular, capacity retention ratios and load characteristics were improved under low temperature conditions of 800 ° C. and 900 ° C., and initial efficiency was improved under high temperature conditions of 1,100 ° C. and 1,200 ° C.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (19)

珪素化合物(SiOx:0.5≦x<1.6)からなる粒子表面に、有機物ガスを熱分解させる炭素被膜形成反応を2〜4回行う工程を含む、上記珪素化合物からなる粒子表面に炭素被膜が形成され、その炭素被膜中に開孔を有する非水電解質二次電池負極活物質の製造方法。   Carbon particles are formed on the surface of the particles made of the silicon compound, including a step of performing a carbon film forming reaction for thermally decomposing an organic gas 2 to 4 times on the surface of the particles made of a silicon compound (SiOx: 0.5 ≦ x <1.6). A method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery in which a film is formed and the carbon film has pores. 非水電解質二次電池負極活物質の窒素ガス吸着法によるBET比表面積が、3.3〜7.5m2/gであることを特徴とする請求項1記載の非水電解質二次電池負極活物質の製造方法。 The non-aqueous electrolyte secondary battery negative electrode active material according to claim 1, wherein the non-aqueous electrolyte secondary battery negative electrode active material has a BET specific surface area by a nitrogen gas adsorption method of 3.3 to 7.5 m 2 / g. A method for producing a substance. 非水電解質二次電池負極活物質の窒素ガス吸着法によるBET比表面積が、3.6〜7.3m2/gであることを特徴とする請求項2記載の非水電解質二次電池負極活物質の製造方法。 The negative electrode active material of a nonaqueous electrolyte secondary battery according to claim 2 , wherein the BET specific surface area of the negative electrode active material of the nonaqueous electrolyte secondary battery by a nitrogen gas adsorption method is 3.6 to 7.3 m 2 / g. A method for producing a substance. 窒素ガス吸着法により算出される上記開孔の平均開孔径が、9.8〜26.0nmである請求項1〜3のいずれか1項記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of claims 1 to 3, wherein an average pore diameter of the pores calculated by a nitrogen gas adsorption method is 9.8 to 26.0 nm. . 窒素ガス吸着法により算出される上記開孔の開孔容積が、0.9×10-2〜5.7×10-2cm3/gであることを特徴とする請求項1〜4のいずれか1項記載の非水解質二次電池負極活物質。 The opening volume of the opening calculated by the nitrogen gas adsorption method is 0.9 × 10 −2 to 5.7 × 10 −2 cm 3 / g. The negative electrode active material of a non-hydrolyzed secondary battery according to claim 1. 非水電解質二次電池負極活物質の炭素被覆量が、0.5〜19質量%である請求項1〜5のいずれか1項記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of claims 1 to 5, wherein the non-aqueous electrolyte secondary battery negative electrode active material has a carbon coating amount of 0.5 to 19% by mass. 炭素被覆量が、1〜15質量%である請求項6記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to claim 6, wherein the carbon coating amount is 1 to 15 mass%. 非水電解質二次電池負極活物質の密度1.5cm3/gに圧縮された時の体積抵抗率が
0.01〜190Ω・cmである請求項1〜7のいずれか1項記載の非水電解質二次電池負極活物質の製造方法。
The non-aqueous electrolyte according to any one of claims 1 to 7, wherein the non-aqueous electrolyte secondary battery negative electrode active material has a volume resistivity of 0.01 to 190 Ω · cm when compressed to a density of 1.5 cm 3 / g. A method for producing an electrolyte secondary battery negative electrode active material.
体積抵抗率が、0.01〜100Ω・cmである請求項8記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to claim 8, wherein the volume resistivity is 0.01 to 100 Ω · cm. 非水電解質二次電池負極活物質が、炭化ケイ素を含有していることを特徴とする請求項1〜9のいずれか1項記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of claims 1 to 9, wherein the non-aqueous electrolyte secondary battery negative electrode active material contains silicon carbide. 非水電解質二次電池負極活物質中の炭化ケイ素の含有量が、1.6質量%以下であることを特徴とする請求項10記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 10, wherein the content of silicon carbide in the negative electrode active material for the nonaqueous electrolyte secondary battery is 1.6% by mass or less. 炭化ケイ素の含有量が1質量%以下である請求項11記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to claim 11, wherein the content of silicon carbide is 1% by mass or less. 1回目の炭素被覆工程において形成される炭素膜厚Anmと、2回目以降の炭素被覆工程において形成される炭素膜厚Bnmとの比が、0.3≦B/A<1.7である、請求項1〜12のいずれか1項記載の非水電解質二次電池活物質の製造方法。   The ratio of the carbon film thickness Anm formed in the first carbon coating process to the carbon film thickness Bnm formed in the second and subsequent carbon coating processes is 0.3 ≦ B / A <1.7. The manufacturing method of the nonaqueous electrolyte secondary battery active material of any one of Claims 1-12. 上記比が、0.4≦B/A<1.4であることを特徴とする請求項13に記載の非水電解質二次電池活物質の製造方法。   The said ratio is 0.4 <= B / A <1.4, The manufacturing method of the nonaqueous electrolyte secondary battery active material of Claim 13 characterized by the above-mentioned. 炭素被膜形成反応において、熱分解温度が600℃〜1,200℃である請求項1〜14のいずれか1項記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of claims 1 to 14, wherein in the carbon film forming reaction, a thermal decomposition temperature is 600 ° C to 1,200 ° C. 請求項1〜15のいずれか1項記載の製造方法で得られた非水電解質二次電池活物質を用いることを特徴とする、非水電解質二次電池負極の製造方法。   The manufacturing method of the nonaqueous electrolyte secondary battery negative electrode characterized by using the nonaqueous electrolyte secondary battery active material obtained by the manufacturing method of any one of Claims 1-15. 請求項1〜15のいずれか1項記載の製造方法で得られた非水電解質二次電池活物質を用いてスラリーを作製する工程と、スラリーを負極集電体に塗布・乾燥する工程を含む非水電解質二次電池負極の製造方法。   The process which produces a slurry using the nonaqueous electrolyte secondary battery active material obtained by the manufacturing method of any one of Claims 1-15, and the process of apply | coating and drying a slurry to a negative electrode collector. A method for producing a non-aqueous electrolyte secondary battery negative electrode. 請求項16又は17の製造方法で得られた負極を用いることを特徴とする非水電解質二次電池の製造方法。   A method for producing a non-aqueous electrolyte secondary battery, wherein the negative electrode obtained by the production method according to claim 16 or 17 is used. 請求項16又は17の製造方法で得られた負極と、正極とを、セパレータを介して積層又は巻回させて巻回体を成型する工程と、前記巻回体をフィルムに封入し、電解液を投入し、真空含浸させる工程と、前記フィルムを融着させる工程を含む非水電解質二次電池の製造方法。   A step of forming a wound body by laminating or winding the negative electrode obtained by the manufacturing method of claim 16 or 17 and a positive electrode via a separator, and encapsulating the wound body in a film, A method for producing a non-aqueous electrolyte secondary battery, which includes a step of charging and vacuum impregnating, and a step of fusing the film.
JP2016055248A 2016-03-18 2016-03-18 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery Pending JP2017168406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055248A JP2017168406A (en) 2016-03-18 2016-03-18 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055248A JP2017168406A (en) 2016-03-18 2016-03-18 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery

Publications (1)

Publication Number Publication Date
JP2017168406A true JP2017168406A (en) 2017-09-21

Family

ID=59914056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055248A Pending JP2017168406A (en) 2016-03-18 2016-03-18 Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery

Country Status (1)

Country Link
JP (1) JP2017168406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151814A1 (en) * 2018-01-31 2019-08-08 주식회사 엘지화학 Anode active material, anode comprising same, and lithium secondary battery
JP2019220350A (en) * 2018-06-20 2019-12-26 株式会社ダイネンマテリアル Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118905A1 (en) * 2001-12-26 2003-06-26 Hirofumi Fukuoka Conductive silicon oxide powder, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2008066053A (en) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd Negative electrode active material for power storage device, and its manufacturing method
JP2008235247A (en) * 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
JP2013246989A (en) * 2012-05-25 2013-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2015095342A (en) * 2013-11-12 2015-05-18 信越化学工業株式会社 Method for manufacturing negative electrode material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015098024A1 (en) * 2013-12-25 2015-07-02 三洋電機株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using such negative electrode active substance
JP2015160761A (en) * 2014-02-26 2015-09-07 東海カーボン株式会社 Porous silicon oxycarbide ceramic, manufacturing method therefor, porous silicon oxycarbide composite material and nonaqueous electrolyte secondary battery
WO2016009590A1 (en) * 2014-07-15 2016-01-21 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118905A1 (en) * 2001-12-26 2003-06-26 Hirofumi Fukuoka Conductive silicon oxide powder, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2008066053A (en) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd Negative electrode active material for power storage device, and its manufacturing method
JP2008235247A (en) * 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
JP2013246989A (en) * 2012-05-25 2013-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2015095342A (en) * 2013-11-12 2015-05-18 信越化学工業株式会社 Method for manufacturing negative electrode material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015098024A1 (en) * 2013-12-25 2015-07-02 三洋電機株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using such negative electrode active substance
JP2015160761A (en) * 2014-02-26 2015-09-07 東海カーボン株式会社 Porous silicon oxycarbide ceramic, manufacturing method therefor, porous silicon oxycarbide composite material and nonaqueous electrolyte secondary battery
WO2016009590A1 (en) * 2014-07-15 2016-01-21 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151814A1 (en) * 2018-01-31 2019-08-08 주식회사 엘지화학 Anode active material, anode comprising same, and lithium secondary battery
US11664493B2 (en) 2018-01-31 2023-05-30 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
JP2019220350A (en) * 2018-06-20 2019-12-26 株式会社ダイネンマテリアル Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP7098144B2 (en) 2018-06-20 2022-07-11 株式会社ダイネンマテリアル Negative electrode material for lithium-ion batteries, negative electrode for lithium-ion batteries and lithium-ion batteries

Similar Documents

Publication Publication Date Title
JP6268049B2 (en) Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
JP6268293B2 (en) Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
JP6859339B2 (en) Method for manufacturing negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and negative electrode active material for lithium ion secondary battery
JP6867821B2 (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP6301142B2 (en) Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6964386B2 (en) Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
US10396353B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
JP6719554B2 (en) Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and method for producing negative electrode active material for lithium ion secondary battery
JP6403638B2 (en) Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode material
JP6445956B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP2013258076A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same
JP6861565B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
WO2016132662A1 (en) Carbon coating treatment device, negative-electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium-ion secondary battery, and electrochemical capacitor
JP6802111B2 (en) Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
CN114744183A (en) Negative electrode active material and method for producing same, mixed negative electrode active material, negative electrode, lithium ion secondary battery, and method for producing same
JP6467031B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6413007B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2017168406A (en) Methods for manufacturing nonaqueous electrolyte secondary battery negative electrode active material, negative electrode, and battery
JP6634398B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6680531B2 (en) Negative electrode active material manufacturing method and lithium ion secondary battery manufacturing method
JP2017134914A (en) Positive electrode material for lithium ion secondary battery, positive electrode mixture for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020009776A (en) Negative electrode active material, negative electrode, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730