JP2015094534A - Trough solar thermal collector - Google Patents

Trough solar thermal collector Download PDF

Info

Publication number
JP2015094534A
JP2015094534A JP2013234672A JP2013234672A JP2015094534A JP 2015094534 A JP2015094534 A JP 2015094534A JP 2013234672 A JP2013234672 A JP 2013234672A JP 2013234672 A JP2013234672 A JP 2013234672A JP 2015094534 A JP2015094534 A JP 2015094534A
Authority
JP
Japan
Prior art keywords
reflecting mirror
trough
reflector
solar collector
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013234672A
Other languages
Japanese (ja)
Other versions
JP2015094534A5 (en
Inventor
小山 一仁
Kazuhito Koyama
一仁 小山
穂刈 信幸
Nobuyuki Hokari
信幸 穂刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013234672A priority Critical patent/JP2015094534A/en
Publication of JP2015094534A publication Critical patent/JP2015094534A/en
Publication of JP2015094534A5 publication Critical patent/JP2015094534A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a trough solar thermal collector capable of effectively using total direct solar radiation incident on a reflector and excellent in heat collection efficiency.SOLUTION: A trough solar thermal collector collecting sunlight reflected by a trough reflector in a heat collecting tube, includes a drive unit (such as rotary gears and chains) provided on a back surface of the reflector or in a lower portion of the reflector for driving the reflector to rotate so as to track sunlight.

Description

本発明は、太陽光を集熱管に集光して太陽熱エネルギーを集熱するトラフ型太陽熱集熱器に関する。   The present invention relates to a trough solar collector that collects solar heat energy by concentrating sunlight on a heat collecting tube.

化石燃料の消費に伴う地球温暖化の防止や地球規模でのエネルギー供給安定化の一助として、再生可能エネルギーの利用促進が図られている。再生可能エネルギーには太陽エネルギーや風力、波力、地熱などがあり、それぞれ効率的な利用方法が検討されている。また、太陽エネルギーとして、太陽光を直接利用するシステムと、太陽熱の形で利用する場合が有る。   The use of renewable energy is being promoted to help prevent global warming associated with fossil fuel consumption and stabilize the energy supply on a global scale. Renewable energies include solar energy, wind power, wave power, and geothermal heat. Moreover, as solar energy, there are cases where it is used in the form of solar heat and a system that directly uses sunlight.

太陽熱を利用する場合、トラフ型の反射鏡で集熱管に集光し、集熱管内の流体を加熱して、熱媒体として用いるトラフ型太陽熱集熱器が知られている。例えば特許文献1の技術がある。具体的には、放物線形状の反射鏡の回転軸に集熱管を配置して、反射鏡で反射させた太陽光を集熱管に集光し、集熱管内の流体を加熱させる技術が開示されている。これまでのトラフ型太陽熱集熱器では、反射鏡と集熱管をフレームで一体化した構成が用いられている。   In the case of using solar heat, a trough-type solar heat collector that is condensed on a heat collecting tube by a trough-type reflector and heats a fluid in the heat collecting tube to be used as a heat medium is known. For example, there is a technique disclosed in Patent Document 1. Specifically, a technology is disclosed in which a heat collecting tube is arranged on the rotation axis of a parabolic reflector, sunlight reflected by the reflecting mirror is collected on the heat collecting tube, and the fluid in the heat collecting tube is heated. Yes. Conventional trough solar collectors use a configuration in which a reflector and a heat collecting tube are integrated by a frame.

US2008/0078380A1US2008 / 0078380A1

従来、トラフ型太陽熱集熱器の反射鏡の多くは、南北方向に回転軸が設けられ、日中の太陽の動きに合わせて東から西にその回転軸の周りを反射鏡が回転することで、太陽光に反射鏡が常に正対した状態で追尾するように構成される。すなわち、太陽光追尾機能により、逐次、太陽光を集熱管に線集光させて集熱している。   Conventionally, many of the reflectors of trough solar collectors have a rotating axis in the north-south direction, and the reflecting mirror rotates around the rotating axis from east to west according to the movement of the sun during the day. It is configured to track in a state where the reflector is always facing the sunlight. In other words, the solar light tracking function sequentially collects sunlight by collecting light on the heat collecting tube.

また、一般的にトラフ型反射鏡の放物曲面を形成する部材として反射鏡の両端に強度部材であるミラーフレームや、反射鏡を回転するためのチェーン円盤などが設けられる。これらの部材は太陽光が反射鏡に入射する際に、反射鏡へ影を落とす要因となるため、集熱管へ入射する入射光は、実質の反射鏡の投影面積より少なくなる。したがって、一日のうちの太陽光追尾を通しての集熱効率は、反射鏡の投影面積よりもおよそ5〜20%低い値になる。   In general, a mirror frame that is a strength member, a chain disk for rotating the reflecting mirror, or the like is provided at both ends of the reflecting mirror as a member that forms a parabolic curved surface of the trough reflecting mirror. Since these members cause a shadow on the reflecting mirror when sunlight enters the reflecting mirror, the incident light incident on the heat collecting tube is smaller than the projected area of the reflecting mirror. Therefore, the heat collection efficiency through sunlight tracking in a day is about 5 to 20% lower than the projected area of the reflector.

すなわち、従来技術では、例えば、一面の反射鏡の両端にフレームを設けて、それらのフレームに集熱管を貫通もしくは固定する構造のため、太陽高度および日照時間帯によっては反射鏡にフレームの影が写り、反射鏡の全面を有効に利用できていないという課題がある。   That is, in the prior art, for example, a structure in which frames are provided at both ends of a reflector on one side, and a heat collecting tube is penetrated or fixed to those frames, the shadow of the frame is reflected on the reflector depending on solar altitude and sunshine hours. There is a problem that the entire surface of the reflection mirror cannot be used effectively.

本発明の目的は、反射鏡に入射する全直達日射量を有効に利用することができ、集熱効率(=加熱媒体の得た熱量/太陽光の入射熱量)に優れたトラフ型太陽熱集熱器を提供することにある。   An object of the present invention is to provide a trough solar collector that can effectively use the total amount of direct solar radiation incident on a reflecting mirror and is excellent in heat collection efficiency (= heat amount obtained by heating medium / incident heat amount of sunlight) Is to provide.

本発明のトラフ型太陽熱集熱器は、反射鏡の背面もしくは反射鏡の下部に、反射鏡を回転させて反射鏡を太陽光に追尾させる駆動部を設けたことを特徴とする。   The trough solar collector according to the present invention is characterized in that a drive unit for rotating the reflecting mirror to track the reflecting mirror to sunlight is provided on the back surface of the reflecting mirror or below the reflecting mirror.

本発明によれば、反射鏡に入射する太陽光を集熱管に線集光するにあたり、反射鏡と集熱管との間に介在していた太陽光を遮る部材が基本的に取り除かれるので、従来よりも集熱効率を向上したトラフ型太陽熱集熱器を提供することが可能となる。   According to the present invention, when the sunlight incident on the reflecting mirror is linearly collected on the heat collecting tube, the sunlight blocking member interposed between the reflecting mirror and the heat collecting tube is basically removed. It becomes possible to provide a trough solar collector with improved heat collection efficiency.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施例のトラフ型太陽熱集熱器の正面図である(実施例1)。It is a front view of the trough type solar heat collector of the example of the present invention (example 1). 本発明の実施例のトラフ型太陽熱集熱器の側面図である(実施例1)。1 is a side view of a trough solar collector according to an embodiment of the present invention (Example 1). FIG. 本発明の他の実施例のトラフ型太陽熱集熱器の正面図である(実施例2)。It is a front view of the trough type solar heat collector of other examples of the present invention (example 2). 本発明の他の実施例のトラフ型太陽熱集熱器の正面図である(実施例3)。It is a front view of the trough type solar heat collector of other examples of the present invention (example 3). 本発明の他の実施例のトラフ型太陽熱集熱器の部分的な正面図である(実施例4)。It is a partial front view of the trough type solar heat collector of other examples of the present invention (example 4).

以下、本発明を実施するための形態について、図面を用いて詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

先ず、本発明に至った経緯について説明する。本発明者等は、トラフ型太陽熱集熱器を用いて太陽光追尾による集熱実験を試みた。その結果、反射鏡に影を落とす要因となる部材として、次の知見を得た。   First, the background to the present invention will be described. The present inventors tried a heat collection experiment by solar light tracking using a trough type solar heat collector. As a result, the following knowledge was obtained as a member that causes a shadow on the reflecting mirror.

1)反射鏡からの反射光を集熱管に集めるため、集熱管自身が常時反射鏡の中心軸上に影を落とす構造は本質的に避けられない。
2)集熱管を支持する反射鏡から伸びたサポートも反射鏡に影を落とす。
3)反射鏡の両端にある放物曲面を形成するためのミラーフレームも反射鏡に影を落とす。
4)反射鏡を回転するチェーンを動かすために設けられた回転軸の円盤状回転ギアも反射鏡に影を落とす。特に集熱管を回転軸とする場合は、集熱管を回転軸とした円盤状回転ギアの影が占める比率が大きい。
1) Since the reflected light from the reflecting mirror is collected on the heat collecting tube, a structure in which the heat collecting tube itself always casts a shadow on the central axis of the reflecting mirror is unavoidable.
2) The support extended from the reflector that supports the heat collection tube also casts a shadow on the reflector.
3) The mirror frames for forming a parabolic curved surface at both ends of the reflector also cast shadows on the reflector.
4) The disc-shaped rotating gear of the rotating shaft provided to move the chain that rotates the reflecting mirror also casts a shadow on the reflecting mirror. In particular, when the heat collecting tube is used as the rotating shaft, the ratio of the shadow of the disk-shaped rotating gear using the heat collecting tube as the rotating shaft is large.

上記の知見を基に、集熱管を回転軸とするトラフ型太陽熱集熱器においては、集熱管と反射鏡との間にできる限り連結部材は使用せずに太陽光自動追尾が可能とする構造が望ましいと考え、下記のように構成することが望ましいことを見出した。   Based on the above knowledge, in a trough solar collector with a heat collection tube as the rotation axis, a structure that enables automatic solar tracking without using a connecting member between the heat collection tube and the reflector as much as possible We found that it is desirable to configure as follows.

すなわち、集熱管は集熱管の外径以下の支柱で支持すると共に、通常、集熱管と反射鏡との間に設けられるミラーフレームを削除し、かつ円盤状回転ギアを反射鏡の下部に設置する構成とすることである。   That is, the heat collecting tube is supported by a support column having a diameter equal to or smaller than the outer diameter of the heat collecting tube, and usually the mirror frame provided between the heat collecting tube and the reflecting mirror is deleted, and a disk-shaped rotating gear is installed below the reflecting mirror. It is to be configured.

これらによって、反射鏡と集熱管との間に介在していた太陽光を遮る部材(反射鏡に影を落とす部材)を取り除き、反射鏡への太陽光入射量を最大にするトラフ型太陽熱集熱器の構造を提供することが可能となる。   The trough-type solar heat collector that removes the sunlight blocking member (the member that casts a shadow on the reflecting mirror) that was interposed between the reflecting mirror and the heat collecting tube, and maximizes the amount of sunlight incident on the reflecting mirror. It is possible to provide a vessel structure.

なお、本発明に関わるトラフ型太陽熱集熱器とは、太陽光を反射する鏡の曲面が放物線形状となっており、反射鏡に入射した平行光(直達日射光という)が集熱管に線集光する構造を有し、かつ反射鏡の回転軸が集熱管の中心軸に一致する集熱器を指す。したがって、トラフ型太陽熱集熱器では、太陽光を追尾する反射鏡は集熱管を回転軸として太陽光の日射方向に逐次追尾する。   Note that the trough solar collector according to the present invention is such that the curved surface of the mirror that reflects sunlight has a parabolic shape, and parallel light incident on the reflector (referred to as direct solar radiation) is collected in the heat collecting tube. It refers to a heat collector that has a structure that shines and whose rotation axis of the reflecting mirror coincides with the central axis of the heat collecting tube. Therefore, in the trough solar collector, the reflector that tracks sunlight sequentially tracks the sunlight in the solar radiation direction with the heat collection tube as the rotation axis.

トラフ型太陽熱集熱器の基本的な構成要素は、熱媒体を流通させる集熱管および集熱管の支持部材と、その集熱管に太陽光を反射して線集光させる放物線形状の反射鏡と、この反射鏡を太陽光に追尾して駆動させる回転ギアおよびモータである。本発明では、太陽光を集熱管に線集光させる際に、反射鏡に影を落とす部材を可能な限り削除しつつ、反射鏡の太陽光追尾を可能とするものである。   The basic components of the trough-type solar collector are a heat collecting tube for circulating a heat medium and a support member for the heat collecting tube, a parabolic reflector for reflecting the sunlight to the heat collecting tube and collecting the line. A rotating gear and a motor that drive the reflecting mirror by tracking the sunlight. In the present invention, when the sunlight is linearly collected on the heat collecting tube, the solar tracking of the reflecting mirror is made possible while eliminating the member that casts a shadow on the reflecting mirror as much as possible.

本発明の実施例1を図1により具体的に説明する。
図1は、直達日射光13を集熱管1に線集光し、集熱管1内の熱媒体を加熱するトラフ型太陽熱集熱器の正面図である。図1は図2におけるA-A矢視図を示す。
図1において、本実施例のトラフ型太陽熱集熱器は、熱媒体を流通させる集熱管1と、直達日射光13を反射させる反射鏡2、反射鏡2を補強する反射鏡外郭3および反射鏡2と反射鏡外郭3とを連結する接続板4と、集熱管1を支える支柱5と、支柱5の最下部に位置するベース台6と、支柱5に設けられたモータ駆動軸7と、反射鏡外郭3を太陽光の角度に追尾駆動させるための回転ギア8と、モータ駆動軸7から回転ギア8に回転力を伝達するチェーン12から構成される。モータ駆動軸7にはチェーン12と噛み合うチェーンホイール7aが設けられている。
A first embodiment of the present invention will be specifically described with reference to FIG.
FIG. 1 is a front view of a trough solar collector that collects direct sunlight 13 on a heat collecting tube 1 and heats a heat medium in the heat collecting tube 1. FIG. 1 shows an AA arrow view in FIG.
In FIG. 1, the trough solar collector of the present embodiment includes a heat collecting tube 1 for circulating a heat medium, a reflecting mirror 2 for reflecting direct solar radiation 13, a reflecting shell 3 for reinforcing the reflecting mirror 2, and a reflecting mirror. 2 and the reflector outer shell 3, the connecting plate 4, the support column 5 supporting the heat collecting tube 1, the base 6 located at the bottom of the support column 5, the motor drive shaft 7 provided on the support column 5, the reflection It comprises a rotating gear 8 for driving the mirror shell 3 to follow the sun at an angle of sunlight, and a chain 12 for transmitting a rotational force from the motor drive shaft 7 to the rotating gear 8. The motor drive shaft 7 is provided with a chain wheel 7a that meshes with the chain 12.

図2に図1のトラフ型太陽熱集熱器の側面図を示す。図2は反射鏡外郭3の長手方向から見た図である。図2では1枚の反射鏡2について記載しているが、モータ駆動軸7を回転させるモータ15は複数枚の反射鏡2に対して1台の割合で構わず、図2のように反射鏡2ごとにモータ15を設ける必要は無い。
モータ15はモータ駆動軸7に連結され、モータ駆動軸7の両側に設けられたチェーンホイール7aと、ギア駆動軸10および11にそれぞれ設けられたチェーンホイール10a(駆動軸11に設けられたチェーンホイールは図示省略)と、チェーン12を介して、モータ15の回転がギア駆動軸10および11に伝達される。また、ギア駆動軸10および11の両側には回転ギア8が左右に2台ずつ、計4台が設置されている。4台の回転ギア8は反射鏡外郭3の表面(背面)に設けた回転ギア溝14にはめ込むように設けられる。集熱管1は反射鏡2の両端近傍に設けた支柱5で支えられ、支柱5はベース台6に保持されている。支柱5には前述のモータ駆動軸7とギア回転軸10および11が設置される(支柱5には回転軸10および11を支持するフレームが設けられているが図示省略している。)。
FIG. 2 is a side view of the trough solar collector shown in FIG. FIG. 2 is a view seen from the longitudinal direction of the reflector outer shell 3. In FIG. 2, only one reflecting mirror 2 is shown. However, the motor 15 for rotating the motor drive shaft 7 may be in a ratio of one unit to a plurality of reflecting mirrors 2, and as shown in FIG. There is no need to provide a motor 15 for every two.
The motor 15 is connected to the motor drive shaft 7, the chain wheel 7 a provided on both sides of the motor drive shaft 7, and the chain wheel 10 a provided on the gear drive shafts 10 and 11 (the chain wheel provided on the drive shaft 11). And the rotation of the motor 15 is transmitted to the gear drive shafts 10 and 11 via the chain 12. Further, on both sides of the gear drive shafts 10 and 11, a total of four rotary gears 8 are installed, two on each side. The four rotary gears 8 are provided so as to be fitted into the rotary gear groove 14 provided on the front surface (back surface) of the reflector outer shell 3. The heat collecting tube 1 is supported by support columns 5 provided in the vicinity of both ends of the reflecting mirror 2, and the support columns 5 are held by a base base 6. The column 5 is provided with the motor drive shaft 7 and the gear rotation shafts 10 and 11 described above (the column 5 is provided with a frame for supporting the rotation shafts 10 and 11 but not shown).

次に、図1および図2に示す実施例の動作を説明する。   Next, the operation of the embodiment shown in FIGS. 1 and 2 will be described.

本実施例では、太陽からの直達日射光13を反射鏡2で反射させて集熱管1に集光し、集熱管1内の熱媒体を加熱する。この場合は、反射鏡2の断面形状は、平行光である直達日射光13を集熱管1の表面に直線的に焦点を結ぶように、パラボリックトラフ型(通称トラフ型)と呼ばれる放物線形状となっている。但し、太陽高度が時々刻々と変化するので、トラフ型の反射鏡2も太陽の方角に一致させるべく、太陽光の入射方向に角度を変える動作いわゆる追尾動作が必要であり、反射鏡2を時々刻々と回転させることで達成される。   In the present embodiment, the direct sunlight 13 from the sun is reflected by the reflecting mirror 2 and condensed on the heat collecting tube 1 to heat the heat medium in the heat collecting tube 1. In this case, the cross-sectional shape of the reflecting mirror 2 has a parabolic shape called a parabolic trough type (commonly referred to as a trough type) so that direct sunlight 13 which is parallel light is linearly focused on the surface of the heat collecting tube 1. ing. However, since the solar altitude changes from moment to moment, the trough-type reflector 2 also requires a so-called tracking operation that changes the angle in the incident direction of sunlight in order to match the direction of the sun. This is achieved by rotating every minute.

本実施例では、放物曲面の反射鏡2を回転させるために、接続板4を用いて半円弧状の反射鏡外郭3を反射鏡2に合体して、反射鏡外郭3を回転させることにより、集熱管1を回転軸として反射鏡2を回転できるようにしている。集熱管1と反射鏡2との間に反射鏡2を回転させる回転ギア8などを設けるとその回転ギア8などが反射鏡2に影を落とし集熱効率が低下するため、回転ギア8は反射鏡外郭3の背面側ないしは下側に設置する。加えて、図2のように、反射鏡外郭3の長手方向の両側に回転ギア8を2台ずつ置き、計4台の回転ギア8を反射鏡外郭3に設けた回転ギア溝14にはめ込むことで反射鏡2の位置が保持される。太陽光の方向に反射鏡2を追尾させる場合は、モータ15によりモータ駆動軸7を回転させてチェーン12で連結されたギア駆動軸10および11を所望の方向に回転させることで、反射鏡外郭3および反射鏡2が集熱管1を中心に回転し、常に集熱管1に直達日射光13が集光し、集熱管1内の熱媒体を加熱する。   In this embodiment, in order to rotate the reflecting mirror 2 having a parabolic curved surface, a semicircular reflecting mirror outer shell 3 is combined with the reflecting mirror 2 using the connecting plate 4, and the reflecting mirror outer shell 3 is rotated. The reflecting mirror 2 can be rotated about the heat collecting tube 1 as a rotation axis. If a rotating gear 8 or the like for rotating the reflecting mirror 2 is provided between the heat collecting tube 1 and the reflecting mirror 2, the rotating gear 8 or the like casts a shadow on the reflecting mirror 2 to reduce the heat collecting efficiency. Installed on the back side or the lower side of the outer shell 3. In addition, as shown in FIG. 2, two rotating gears 8 are placed on both sides of the reflector outer shell 3 in the longitudinal direction, and a total of four rotating gears 8 are fitted into the rotating gear grooves 14 provided in the reflector outer shell 3. Thus, the position of the reflecting mirror 2 is maintained. When tracking the reflecting mirror 2 in the direction of sunlight, the motor driving shaft 7 is rotated by the motor 15 and the gear driving shafts 10 and 11 connected by the chain 12 are rotated in a desired direction. 3 and the reflecting mirror 2 rotate around the heat collecting tube 1, and the direct sunlight 13 is always focused on the heat collecting tube 1 to heat the heat medium in the heat collecting tube 1.

本実施例においては、集熱管1と反射鏡2との間に連結部材を用いず非接触構成としたので、反射鏡2に入射し集熱管1に反射する直達日射光13の影となる部品が少なく、集熱効率(=加熱媒体の得た熱量/太陽光の入射熱量)を向上できる。また、4台の回転ギア8に反射鏡外郭3を組み合わせたので安定した姿勢で集熱ができる。   In the present embodiment, since a connection member is not used between the heat collecting tube 1 and the reflecting mirror 2, a component that becomes a shadow of the direct sunlight 13 that enters the reflecting mirror 2 and reflects to the heat collecting tube 1 is used. The heat collection efficiency (= the amount of heat obtained by the heating medium / the amount of incident heat of sunlight) can be improved. Moreover, since the reflecting mirror shell 3 is combined with the four rotating gears 8, heat can be collected in a stable posture.

次に、図3を用いて本発明の実施例2を説明する。なお、実施例1と異なる点を中心に説明する。
図3は、直達日射光13を集熱管1に線集光し、集熱管1内の熱媒体を加熱するトラフ型太陽熱集熱器の正面図である。図3において、本実施例のトラフ型太陽熱集熱器は、モータ駆動軸7から直接的に回転ギア8に回転力を伝達するように構成される。実施例2でも、反射鏡外郭3の背面に回転ギア溝14が設けられており、回転ギア8が回転ギア溝14に噛み合っている。
Next, Embodiment 2 of the present invention will be described with reference to FIG. The description will focus on the differences from the first embodiment.
FIG. 3 is a front view of a trough solar collector that collects the direct sunlight 13 on the heat collecting tube 1 and heats the heat medium in the heat collecting tube 1. In FIG. 3, the trough solar collector of the present embodiment is configured to transmit the rotational force directly from the motor drive shaft 7 to the rotary gear 8. Also in the second embodiment, the rotating gear groove 14 is provided on the back surface of the reflector outer shell 3, and the rotating gear 8 is engaged with the rotating gear groove 14.

1枚の反射鏡2については、回転ギア8は反射鏡2の長手方向の両側に1台ずつ、計2台を置いて反射鏡2の回転を制御している。このように、実施例2では1枚の反射鏡外郭3に接触する回転ギア8が2台ゆえ、反射鏡2の姿勢が安定しにくい。このため、実施例2では反射鏡外郭3の長手方向の両側にテンションベルト16を接続して、そのテンションベルト16をベース台6の内部に貫通させることで反射鏡外郭3の両側からテンションを与えて反射鏡2の姿勢を安定的に保持している。   With respect to one reflecting mirror 2, two rotating gears 8 are placed on both sides in the longitudinal direction of the reflecting mirror 2, for a total of two to control the rotation of the reflecting mirror 2. As described above, in the second embodiment, since there are two rotating gears 8 in contact with one reflector outer shell 3, the posture of the reflector 2 is difficult to stabilize. For this reason, in Example 2, a tension belt 16 is connected to both sides in the longitudinal direction of the reflector shell 3, and tension is applied from both sides of the reflector shell 3 by penetrating the tension belt 16 into the base base 6. Thus, the posture of the reflecting mirror 2 is stably maintained.

次に、図3の実施例の動作を説明する。基本的な動作は実施例1と同様である。
本実施例では、モータ駆動軸7から直接的に回転力が伝達される回転ギア8が反射鏡外郭3の背面に設けた回転ギア溝14に噛み合うように設置されている。太陽光の方向に放物曲面の反射鏡2を追尾させる場合は、モータ駆動軸7を回転させて直接的に回転ギア8を回転させる。反射鏡2が回転している間は、常にテンションベルト16により反射鏡外郭3とベース台6との間に一定のテンションがかかり、風圧などの外乱の影響を抑制する。これにより、反射鏡外郭3および反射鏡2が集熱管1を中心に回転し、常に集熱管1に直達日射光13が集光し、集熱管1内の熱媒体を加熱する。
Next, the operation of the embodiment of FIG. 3 will be described. The basic operation is the same as in the first embodiment.
In this embodiment, the rotary gear 8 to which the rotational force is directly transmitted from the motor drive shaft 7 is installed so as to mesh with the rotary gear groove 14 provided on the back surface of the reflector outer shell 3. When tracking the parabolic curved reflecting mirror 2 in the direction of sunlight, the motor drive shaft 7 is rotated to directly rotate the rotary gear 8. While the reflecting mirror 2 is rotating, a constant tension is always applied between the reflecting mirror outer shell 3 and the base base 6 by the tension belt 16 to suppress the influence of disturbance such as wind pressure. As a result, the reflector outer shell 3 and the reflector 2 rotate around the heat collecting tube 1, and the direct sunlight 13 is always collected on the heat collecting tube 1, and the heat medium in the heat collecting tube 1 is heated.

本実施例においても、集熱管1と反射鏡2との間に連結部材を用いず非接触構成としたので、反射鏡2に入射し集熱管1に反射する直達日射光13の影となる部品が少なく、集熱効率(=加熱媒体の得た熱量/太陽光の入射熱量)を向上できる。また、1枚の反射鏡2あたりに2台の回転ギア8で済み、チェーン12の代わりにテンションベルト16を用いるので、コストを削減できる。   Also in this embodiment, since the connection member is not used between the heat collecting tube 1 and the reflecting mirror 2, it is a non-contact configuration, so that the component that becomes the shadow of the direct sunlight 13 that enters the reflecting mirror 2 and reflects to the heat collecting tube 1 The heat collection efficiency (= the amount of heat obtained by the heating medium / the amount of incident heat of sunlight) can be improved. Further, since two rotating gears 8 are required per one reflecting mirror 2, and the tension belt 16 is used instead of the chain 12, the cost can be reduced.

次に、図4を用いて本発明の実施例3を説明する。実施例1及び実施例2と異なる点を中心に説明する。
図4は、直達日射光13を集熱管1に線集光し、集熱管1内の熱媒体を加熱するトラフ型太陽熱集熱器の正面図である。図4において、本実施例のトラフ型太陽熱集熱器は、実施例2と同様に、モータ駆動軸7から直接的に回転ギア8に回転力を伝達するように構成される。そして、実施例3では、反射鏡外郭3の背面に接するように支柱5にスライド支持部17が設けられている。支柱5は両側に設けられているので、スライド支持部17は1枚の反射鏡外郭3に2ヶ所設置されている。
Next, Embodiment 3 of the present invention will be described with reference to FIG. The description will focus on the differences from the first and second embodiments.
FIG. 4 is a front view of a trough solar collector that collects the direct sunlight 13 on the heat collecting tube 1 and heats the heat medium in the heat collecting tube 1. In FIG. 4, the trough solar collector of the present embodiment is configured to transmit the rotational force directly from the motor drive shaft 7 to the rotary gear 8, as in the second embodiment. In the third embodiment, the support 5 is provided with the slide support portion 17 so as to be in contact with the back surface of the reflector outer shell 3. Since the support columns 5 are provided on both sides, two slide support portions 17 are installed on one reflector outer shell 3.

1枚の反射鏡2については、回転ギア8は反射鏡2の長手方向の両側に1台ずつ、計2台を置いて反射鏡2の回転を制御している。なお、反射鏡2の姿勢を安定させるため、反射鏡外郭3の長手方向の両側にチェーン18を接続して、そのチェーン18に噛み合った回転ギア8を回転させることで反射鏡2の姿勢を保持している。チェーン18と反射鏡外郭3の接続は接続部19を介して行われている。   With respect to one reflecting mirror 2, two rotating gears 8 are placed on both sides in the longitudinal direction of the reflecting mirror 2, for a total of two to control the rotation of the reflecting mirror 2. In addition, in order to stabilize the posture of the reflector 2, the chain 18 is connected to both longitudinal sides of the reflector outer shell 3, and the posture of the reflector 2 is maintained by rotating the rotating gear 8 meshed with the chain 18. doing. The connection between the chain 18 and the reflector outer shell 3 is made through a connecting portion 19.

次に、図4の実施例の動作を説明する。基本的な動作は実施例1や実施例2と同様である。
本実施例では、太陽光の方向に放物曲面の反射鏡2を追尾させる場合は、モータ駆動軸7を回転させて直接的に回転ギア8を回転し、チェーン18を介して反射鏡2を所望の方向に回転させる。反射鏡外郭3はスライド支持部17上をスライドしながら所望の回転角度に制御される。反射鏡外郭3と回転ギア8が常にチェーン18により連結されていることで、風圧などの外乱の影響を抑制できる。これにより、反射鏡外郭3および反射鏡2が集熱管1を中心に回転し、常に集熱管1に直達日射光13が集光し、集熱管1内の熱媒体を加熱する。
Next, the operation of the embodiment of FIG. 4 will be described. The basic operation is the same as in the first and second embodiments.
In this embodiment, when tracking the parabolic curved reflecting mirror 2 in the direction of sunlight, the rotating shaft 8 is rotated directly by rotating the motor drive shaft 7, and the reflecting mirror 2 is rotated via the chain 18. Rotate in desired direction. The reflector outer shell 3 is controlled to a desired rotation angle while sliding on the slide support portion 17. Since the reflector outer shell 3 and the rotary gear 8 are always connected by the chain 18, the influence of disturbance such as wind pressure can be suppressed. As a result, the reflector outer shell 3 and the reflector 2 rotate around the heat collecting tube 1, and the direct sunlight 13 is always collected on the heat collecting tube 1, and the heat medium in the heat collecting tube 1 is heated.

本実施例においても、集熱管1と反射鏡2との間に連結部材を用いず非接触構成としたので、反射鏡2に入射し集熱管1に反射する直達日射光13の影となる部品が少なく、集熱効率(=加熱媒体の得た熱量/太陽光の入射熱量)を向上できる。また、1枚の反射鏡外郭3に2ヶ所のスライド支持部17を設けて反射鏡2の位置を確定し、チェーン18によって回転ギア8と反射鏡外郭3とを直接連結しているので反射鏡2の角度制御の精度を向上できる。   Also in this embodiment, since the connection member is not used between the heat collecting tube 1 and the reflecting mirror 2, it is a non-contact configuration, so that the component that becomes the shadow of the direct sunlight 13 that enters the reflecting mirror 2 and reflects to the heat collecting tube 1 The heat collection efficiency (= the amount of heat obtained by the heating medium / the amount of incident heat of sunlight) can be improved. Further, two slide support portions 17 are provided on one reflector outer shell 3 to determine the position of the reflector 2, and the rotary gear 8 and the reflector outer shell 3 are directly connected by the chain 18, so that the reflector mirror The angle control accuracy of 2 can be improved.

次に、図5を用いて本発明の実施例4を説明する。実施例1〜3と異なる点を中心に説明する。
図5は、直達日射光13を集熱管1に線集光し、集熱管1内の熱媒体を加熱するトラフ型太陽熱集熱器の正面図である。図5において、本実施例のトラフ型太陽熱集熱器は、実施例2や実施例3と同様に、モータ駆動軸7から直接的に回転ギア8に回転力を伝達するように構成される。そして、実施例4では反射鏡外郭3の背面に接するように支柱5にローラー20が設けられている。支柱5は両側に設けられているので、ローラー20は1枚の反射鏡外郭3に2ヶ所設置されている。
Next, Embodiment 4 of the present invention will be described with reference to FIG. The description will focus on the differences from the first to third embodiments.
FIG. 5 is a front view of a trough solar collector that condenses direct sunlight 13 on the heat collecting tube 1 and heats the heat medium in the heat collecting tube 1. In FIG. 5, the trough solar collector of the present embodiment is configured to transmit the rotational force directly from the motor drive shaft 7 to the rotary gear 8, as in the second and third embodiments. In the fourth embodiment, a roller 20 is provided on the column 5 so as to be in contact with the back surface of the reflector outer shell 3. Since the columns 5 are provided on both sides, the rollers 20 are installed in two places on one reflector outer shell 3.

1枚の反射鏡2については、回転ギア8は反射鏡2の長手方向の両側に1台ずつ、計2台を置いて反射鏡2の回転を制御している。なお、反射鏡2の姿勢を安定させるため、接続部19を介して、反射鏡外郭3の長手方向の背面両側の中間地点にチェーン18を接続して、そのチェーン18に噛み合った回転ギア8を回転させることで反射鏡2の姿勢を保持している。   With respect to one reflecting mirror 2, two rotating gears 8 are placed on both sides in the longitudinal direction of the reflecting mirror 2, for a total of two to control the rotation of the reflecting mirror 2. In order to stabilize the posture of the reflecting mirror 2, a chain 18 is connected to an intermediate point on both sides of the back surface in the longitudinal direction of the reflecting mirror outer shell 3 via the connecting portion 19, and the rotating gear 8 meshed with the chain 18 is connected. The posture of the reflecting mirror 2 is maintained by rotating it.

次に、図5の実施例の動作を説明する。基本的な動作は実施例1〜実施例3と同様である。
本実施例では、太陽光の方向に放物曲面の反射鏡2を追尾させる場合は、モータ駆動軸7を回転させて直接的に回転ギア8を回転し、チェーン18を介して反射鏡2を所望の方向に回転させる。反射鏡外郭3はローラー20上を転がりながら所望の回転角度に制御される。なお、反射鏡外郭3の姿勢を安定させるため、ローラー20は複数個を並べて設置(例えば、支柱5に横方向に延在するフレーム(図示省略)を設けて複数個のローラー20を設置)しても良い。反射鏡外郭3と回転ギア8が常にチェーン18により連結されていることで、風圧などの外乱の影響を抑制できる。これにより、反射鏡外郭3および反射鏡2が集熱管1を中心に回転し、常に集熱管1に直達日射光13が集光し、集熱管1内の熱媒体を加熱する。
Next, the operation of the embodiment of FIG. 5 will be described. The basic operation is the same as in the first to third embodiments.
In this embodiment, when tracking the parabolic curved reflecting mirror 2 in the direction of sunlight, the rotating shaft 8 is rotated directly by rotating the motor drive shaft 7, and the reflecting mirror 2 is rotated via the chain 18. Rotate in desired direction. The reflector outer shell 3 is controlled to a desired rotation angle while rolling on the roller 20. In order to stabilize the posture of the reflector outer shell 3, a plurality of rollers 20 are installed side by side (for example, a plurality of rollers 20 are installed on the support column 5 by providing a frame (not shown) extending in the lateral direction). May be. Since the reflector outer shell 3 and the rotary gear 8 are always connected by the chain 18, the influence of disturbance such as wind pressure can be suppressed. As a result, the reflector outer shell 3 and the reflector 2 rotate around the heat collecting tube 1, and the direct sunlight 13 is always collected on the heat collecting tube 1, and the heat medium in the heat collecting tube 1 is heated.

本実施例においても、集熱管1と反射鏡2との間に連結部材を用いず非接触構成としたので、反射鏡2に入射し集熱管1に反射する直達日射光13の影となる部品が少なく、集熱効率(=加熱媒体の得た熱量/太陽光の入射熱量)を向上できる。また、1枚の反射鏡外郭3背面の中間地点にチェーン18を設けたので回転ギア8を小型化できる。   Also in this embodiment, since the connection member is not used between the heat collecting tube 1 and the reflecting mirror 2, it is a non-contact configuration, so that the component that becomes the shadow of the direct sunlight 13 that enters the reflecting mirror 2 and reflects to the heat collecting tube 1 The heat collection efficiency (= the amount of heat obtained by the heating medium / the amount of incident heat of sunlight) can be improved. Further, since the chain 18 is provided at an intermediate point on the back surface of one reflector outer shell 3, the rotary gear 8 can be reduced in size.

本発明のトラフ型太陽光集熱器は、集熱媒体の温度レベルによって、空調機や冷凍機の熱源のほか、植物工場の熱源あるいは、冬季の融雪熱源としても利用可能である。   The trough solar collector of the present invention can be used not only as a heat source for an air conditioner or a refrigerator, but also as a heat source for a plant factory or a snowmelt heat source in winter depending on the temperature level of the heat collection medium.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 集熱管
2 反射鏡
3 反射鏡外郭
4 接続板
5 支柱
6 ベース台
7 モータ駆動軸
8、9 回転ギア
10、11 ギア駆動軸
12、18 チェーン
13 直達日射光
14 回転ギア溝
15 モータ
16 テンションベルト
17 スライド支持部
19 接続部
20 ローラー
DESCRIPTION OF SYMBOLS 1 Heat collecting tube 2 Reflecting mirror 3 Reflecting mirror outer shell 4 Connection board 5 Support | pillar 6 Base stand 7 Motor drive shaft 8, 9 Rotating gear 10, 11 Gear driving shaft 12, 18 Chain 13 Direct sunlight 14 Rotating gear groove 15 Motor 16 Tension belt 17 Slide support part 19 Connection part 20 Roller

Claims (10)

トラフ型反射鏡で反射した太陽光を集熱管に集熱するトラフ型太陽熱集熱器であって、
前記反射鏡の背面もしくは前記反射鏡の下部に、前記反射鏡を回転させて前記反射鏡を太陽光に追尾させる駆動部を設けたことを特徴とするトラフ型太陽熱集熱器。
A trough solar collector that collects sunlight reflected by a trough reflector into a heat collecting tube,
A trough solar collector that includes a driving unit that rotates the reflecting mirror to track the reflecting mirror to sunlight on a back surface of the reflecting mirror or on a lower portion of the reflecting mirror.
請求項1に記載のトラフ型太陽熱集熱器において、
前記反射鏡の背面となる反射鏡外郭の形状は半円弧状に形成され、
前記駆動部は回転ギアで構成され、
前記半円弧状に形成された反射鏡の背面に前記回転ギアと噛み合う回転ギア溝が形成されていることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 1,
The shape of the outer surface of the reflecting mirror that forms the back surface of the reflecting mirror is formed in a semicircular arc shape,
The drive unit is composed of a rotating gear,
A trough solar collector, wherein a rotating gear groove that meshes with the rotating gear is formed on the back surface of the reflecting mirror formed in a semicircular arc shape.
請求項2に記載のトラフ型太陽熱集熱器において、
前記駆動部は、前記回転ギアを前記回転ギアの下方に設けられた駆動軸によりチェーンを介して駆動するように構成されていることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 2,
The said drive part is comprised so that the said rotation gear may be driven via a chain by the drive shaft provided under the said rotation gear, The trough type solar heat collector characterized by the above-mentioned.
請求項3に記載のトラフ型太陽熱集熱器において、
前記回転ギアは、前記反射鏡1枚に付き4台設けられていることを特徴とするトラフ型太陽熱集熱器。
In the trough type solar collector according to claim 3,
The trough-type solar collector is characterized in that four rotating gears are provided per one reflecting mirror.
請求項2に記載のトラフ型太陽熱集熱器において、
前記駆動部は、前記回転ギアを支持し回転駆動する駆動軸を備えていることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 2,
The trough solar collector, wherein the drive unit includes a drive shaft that supports and rotates the rotating gear.
請求項5に記載のトラフ型太陽熱集熱器において、
前記回転ギアは前記反射鏡1枚に付き2台設けられており、
前記反射鏡の長手方向の両側に接続されたテンションベルトを備え、
前記テンションベルトは、前記トラフ型太陽熱集熱器のベース台を貫通するように設けられていることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 5,
Two rotating gears are provided per one reflecting mirror,
A tension belt connected to both sides of the reflector in the longitudinal direction;
The trough-type solar heat collector, wherein the tension belt is provided so as to penetrate a base base of the trough-type solar heat collector.
請求項1に記載のトラフ型太陽熱集熱器において、
前記反射鏡の背面に接触して前記反射鏡の回転を支えるスライド支持部を備え、
前記駆動部は、前記反射鏡の下部で、かつ、前記スライド支持部の下方に設けられていることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 1,
A slide support that contacts the back of the reflector and supports the rotation of the reflector;
The trough solar collector, wherein the driving unit is provided below the reflecting mirror and below the slide support unit.
請求項7に記載のトラフ型太陽熱集熱器において、
前記駆動部は、回転駆動される回転ギアと、前記回転ギアで駆動され、前記前記反射鏡の長手方向の両側に接続するチェーンとを備えることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 7,
The trough solar collector according to claim 1, wherein the drive unit includes a rotary gear that is rotationally driven and a chain that is driven by the rotary gear and that is connected to both sides of the reflector in the longitudinal direction.
請求項1に記載のトラフ型太陽熱集熱器において、
前記反射鏡の背面に接触して前記反射鏡の回転を支えるローラーを備え、
前記駆動部は、前記反射鏡の下部で、かつ、前記ローラーの下方に設けられていることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 1,
A roller that contacts the back of the reflector and supports the rotation of the reflector;
The trough solar collector, wherein the driving unit is provided below the reflecting mirror and below the roller.
請求項9に記載のトラフ型太陽熱集熱器において、
前記駆動部は、回転駆動される回転ギアと、前記回転ギアで駆動され、前記前記反射鏡の長手方向の左右両面に接続するチェーンとを備えることを特徴とするトラフ型太陽熱集熱器。
The trough solar collector according to claim 9,
The trough solar collector, comprising: a rotary gear that is rotationally driven; and a chain that is driven by the rotary gear and that is connected to both left and right sides of the reflector in the longitudinal direction.
JP2013234672A 2013-11-13 2013-11-13 Trough solar thermal collector Pending JP2015094534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234672A JP2015094534A (en) 2013-11-13 2013-11-13 Trough solar thermal collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234672A JP2015094534A (en) 2013-11-13 2013-11-13 Trough solar thermal collector

Publications (2)

Publication Number Publication Date
JP2015094534A true JP2015094534A (en) 2015-05-18
JP2015094534A5 JP2015094534A5 (en) 2016-10-20

Family

ID=53197048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234672A Pending JP2015094534A (en) 2013-11-13 2013-11-13 Trough solar thermal collector

Country Status (1)

Country Link
JP (1) JP2015094534A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913525A (en) * 2015-06-17 2015-09-16 赵连新 Two-dimensional automatic-sun-tracking trough type solar thermal collector
CN105928221A (en) * 2016-05-20 2016-09-07 深圳诺必达节能环保有限公司 Heat conduction pipe heat exchange solar heating system
CN108224810A (en) * 2018-01-16 2018-06-29 北京民利储能技术有限公司 A kind of rotatable solar thermal collector
CN109089606A (en) * 2018-07-11 2018-12-28 怀宁美蓝康佳食品科技发展有限公司 A kind of blueberry plantation frame following sunlight automatically
CN113865117A (en) * 2021-10-22 2021-12-31 镇江赫利俄斯能源科技有限公司 Solar heat collecting device
CN117450676A (en) * 2023-12-13 2024-01-26 胜利油田胜兴集团有限责任公司 Light-following reversing balance structure for trough type solar energy and control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126051A (en) * 1974-08-28 1976-03-03 Hitachi Ltd
US4455833A (en) * 1980-05-13 1984-06-26 Vilati Villamos Automatika Fovallalkozo Es Gyarto Vallalat Solar wheel
JPS59119147A (en) * 1982-12-27 1984-07-10 Toshiba Corp Solar heat collector
US4469938A (en) * 1983-08-18 1984-09-04 Cohen Elie Solar tracking unit
CA2129600A1 (en) * 1994-08-05 1996-02-06 Yvan Lachance Solar purifier and water purifying system
US20110100358A1 (en) * 2009-09-04 2011-05-05 Randal Jerome Perisho Low Cost Fixed Focal Point Parabolic Trough
JP2011142261A (en) * 2010-01-08 2011-07-21 Shin Kurushima Dockyard Co Ltd Mount for photovoltaic power generation panel on ship
JP2013021286A (en) * 2011-07-08 2013-01-31 Topper Sun Energy Technology Co Ltd Cable control solar tracking power generator
WO2013117790A1 (en) * 2012-02-08 2013-08-15 Compañía Valenciana De Energías Renovables, S. A. Solar tracker with refraction-based concentration

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126051A (en) * 1974-08-28 1976-03-03 Hitachi Ltd
US4455833A (en) * 1980-05-13 1984-06-26 Vilati Villamos Automatika Fovallalkozo Es Gyarto Vallalat Solar wheel
JPS59119147A (en) * 1982-12-27 1984-07-10 Toshiba Corp Solar heat collector
US4469938A (en) * 1983-08-18 1984-09-04 Cohen Elie Solar tracking unit
CA2129600A1 (en) * 1994-08-05 1996-02-06 Yvan Lachance Solar purifier and water purifying system
US20110100358A1 (en) * 2009-09-04 2011-05-05 Randal Jerome Perisho Low Cost Fixed Focal Point Parabolic Trough
JP2011142261A (en) * 2010-01-08 2011-07-21 Shin Kurushima Dockyard Co Ltd Mount for photovoltaic power generation panel on ship
JP2013021286A (en) * 2011-07-08 2013-01-31 Topper Sun Energy Technology Co Ltd Cable control solar tracking power generator
WO2013117790A1 (en) * 2012-02-08 2013-08-15 Compañía Valenciana De Energías Renovables, S. A. Solar tracker with refraction-based concentration

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913525A (en) * 2015-06-17 2015-09-16 赵连新 Two-dimensional automatic-sun-tracking trough type solar thermal collector
CN105928221A (en) * 2016-05-20 2016-09-07 深圳诺必达节能环保有限公司 Heat conduction pipe heat exchange solar heating system
CN108224810A (en) * 2018-01-16 2018-06-29 北京民利储能技术有限公司 A kind of rotatable solar thermal collector
CN109089606A (en) * 2018-07-11 2018-12-28 怀宁美蓝康佳食品科技发展有限公司 A kind of blueberry plantation frame following sunlight automatically
CN113865117A (en) * 2021-10-22 2021-12-31 镇江赫利俄斯能源科技有限公司 Solar heat collecting device
CN117450676A (en) * 2023-12-13 2024-01-26 胜利油田胜兴集团有限责任公司 Light-following reversing balance structure for trough type solar energy and control system
CN117450676B (en) * 2023-12-13 2024-05-28 胜利油田胜兴集团有限责任公司 Light-following reversing balance structure for trough type solar energy and control system

Similar Documents

Publication Publication Date Title
JP2015094534A (en) Trough solar thermal collector
JP5797737B2 (en) Solar heat collection system
US4135493A (en) Parabolic trough solar energy collector assembly
US20090314280A1 (en) Apparatus and A Method for Solar Tracking and Concentration af Incident Solar Radiation for Power Generation
US20100051016A1 (en) Modular fresnel solar energy collection system
KR20080024309A (en) Solar focus type generation apparatus
CN102667656A (en) A solar central receiver system employing common positioning mechanism for heliostats
WO2013053222A1 (en) Disc-type condenser and solar thermal power generating system comprising the same
RU2628257C2 (en) Solar energy tracking concentrator
JP6342632B2 (en) Solar concentrator
CN109857154B (en) Method and device for tracking sun by reflector in Fresnel photo-thermal power generation system
KR20050042314A (en) Solar collecting apparatus having variable function of a collecting angle
US8101896B2 (en) Solar tracking unit for a steam generator or the like having first and second plurality of photovoltaic cells for generating electrical signals to rotate a concave reflector about first and second axes, respectively
JP5687043B2 (en) Solar collector
Yousef et al. Development of solar thermal energy systems
CN105423574A (en) Parabolic trough type solar concentrating collector with separated collector and condenser
CN101839566A (en) Solar multi-directional tracking plane utilization system
CN201503149U (en) Solar energy multidirectional tracking heat pipe utilization system
KR20170032635A (en) Concentrating method of light using linear fresnel reflector and device of the same
CN106679198A (en) Solar energy condensation device
RU2435112C1 (en) Automatic device for concentration of sun rays on stationary object
CN107702354B (en) Solar linear condensing device and array for integrally moving and tracking reflector
WO2013005479A1 (en) Solar light collection system and solar thermal electric power generation system
US20130269683A1 (en) Solar collector having a multi-tube receiver, thermosolar plants that use said collector and method for operating said plants
KR101581456B1 (en) Sunlight generation and hot water system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171226