WO2013005479A1 - Solar light collection system and solar thermal electric power generation system - Google Patents

Solar light collection system and solar thermal electric power generation system Download PDF

Info

Publication number
WO2013005479A1
WO2013005479A1 PCT/JP2012/062498 JP2012062498W WO2013005479A1 WO 2013005479 A1 WO2013005479 A1 WO 2013005479A1 JP 2012062498 W JP2012062498 W JP 2012062498W WO 2013005479 A1 WO2013005479 A1 WO 2013005479A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
mirror
condensing
light collection
central axis
Prior art date
Application number
PCT/JP2012/062498
Other languages
French (fr)
Japanese (ja)
Inventor
俊泰 光成
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2013005479A1 publication Critical patent/WO2013005479A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a solar condensing system and a solar thermal power generation system.
  • Patent Document 1 discloses a trough-type solar condensing system including a plurality of rows of bowl-shaped reflecting mirrors that condense sunlight into a linear shape with respect to a linear receiver.
  • the heat transport fluid flows inside the tubular receiver, and the heat received by the receiver by light collection is sent to the power generation equipment such as a steam turbine through the heat transport fluid. Then, power generation using solar heat is performed.
  • FIG. 6 shows an example of a conventional solar condensing system.
  • a conventional solar condensing system 50 shown in FIG. 6 has a linear receiver 51, a condensing mirror 53 having a reflecting portion 52 that condenses the linear receiver 51, and the condensing mirror 53 can be rotated.
  • a support base 54 that supports the actuator and an actuator 55 that is attached near the center of the condenser mirror 53 and rotates the condenser mirror 53 are provided.
  • the central axis Q serving as the rotation center of the condensing mirror 53 is located near the center of the condensing mirror 53 when viewed from the side of the condensing mirror 53.
  • an object of the present invention is to provide a solar condensing system and a solar thermal power generation system that can efficiently arrange a plurality of rows of condensing mirrors.
  • the present invention is a trough-type solar condensing system including a plurality of condensing mirror rows each having a reflecting portion that condenses a linearly extending receiver.
  • the mirror is configured to be rotatable or swingable about a central axis extending along the receiver, and the central axis is an end portion farthest from the central axis in the collecting mirror in a direction orthogonal to the central axis. It is characterized in that the linear distance between the outer edge and the central axis is minimized.
  • this solar condensing system since the rotational diameter of the condensing mirror can be reduced, multiple rows of condensing mirrors can be arranged at short intervals without causing mechanical interference due to rotation or swinging. Multiple rows of collecting mirrors can be arranged efficiently. Therefore, according to this solar condensing system, since the ratio of the light beam area received by the condensing mirror to the land area to be used can be increased, solar heat can be obtained efficiently.
  • the cross section perpendicular to the central axis of the reflecting portion may have a parabolic shape with the receiver as a focal point. According to this solar condensing system, sunlight incident from the front of the condensing mirror can be effectively condensed on the receiver, so that solar heat can be obtained more efficiently.
  • the present invention is a trough solar power generator that includes a plurality of condenser mirror rows each having a reflecting portion that collects light with respect to a linearly extending receiver, and that generates power using heat obtained by the receiver through light collection.
  • the light collecting mirror is configured to be rotatable or swingable about a central axis extending along the receiver, and the central axis is a central axis of the collecting mirrors in a direction perpendicular to the central axis. It is located so that the linear distance of the outer edge edge used as the edge part which is furthest away from the center axis and the central axis may be minimized.
  • this solar thermal power generation system since the rotational radius of the condensing mirror can be reduced, multiple rows of condensing mirrors can be arranged at short intervals without causing mechanical interference due to rotation or swinging. Multiple rows of collecting mirrors can be arranged efficiently. Therefore, according to this solar thermal power generation system, the ratio of the luminous flux area received by the condensing mirror to the land area can be increased, so that highly efficient solar thermal power generation can be realized.
  • a plurality of rows of collecting mirrors can be efficiently arranged.
  • FIG. 1 It is a perspective view which shows one Embodiment of the solar condensing system in the solar thermal power generation system which concerns on this invention. It is a side view which shows the solar condensing system of FIG. (A) It is a figure for demonstrating the condensing state when the altitude of the sun is high. (B) It is a figure for demonstrating the schematic relationship of E and G shown to Fig.3 (a). It is a figure for demonstrating the condensing state when the altitude of the sun is low. It is a graph which shows the relationship between the light energy for one day per unit area, and the clearance ratio of a condensing mirror row
  • the solar thermal power generation system which concerns on this embodiment is a system which produces electric power using the solar heat obtained by condensing sunlight
  • the solar condensing system 10 which condenses sunlight is comprised. I have.
  • the solar condensing system 10 is a so-called trough-type condensing system, and includes a plurality of rows of condensing mirrors 13 each having a bowl-shaped reflecting portion 12 that condenses light on a linearly extending receiver 11. .
  • the receiver 11 is a tube-shaped member through which the heat transport fluid flows, and the heat obtained by the receiver 11 by the light collection by the light collecting mirror 13 is supplied to the power generation facility by the heat transport fluid.
  • the power generation facility is, for example, a steam turbine or a Stirling engine, and generates power using heat supplied through a heat transport fluid.
  • the number of columns of the collector mirror 13 in the solar collector system 10 is determined according to the size of usable land such as several to several tens of columns.
  • description will be given by exemplifying two condensing mirror rows A and B.
  • the condenser mirror rows A and B are each provided with six condenser mirrors 13 and are arranged in parallel to each other.
  • the condensing mirror rows A and B all have the same components except for the arrangement position.
  • the condenser mirror array A will be described.
  • the six condenser mirrors 13 included in the condenser mirror array A share one receiver 11 and are arranged in a straight line.
  • Each condensing mirror 13 is supported on the left and right by a support base 14.
  • the condensing mirror 13 is supported so as to be rotatable about the central axis P in order to change the direction according to the movement of the sun.
  • the receiver 11 rotates integrally with the condenser mirror 13.
  • the central axis P is a virtual axis that extends in parallel along the receiver 11.
  • the condensing mirror 13 includes a reflecting portion 12, a mirror base material 15 that supports the reflecting portion 12, and an arm portion 16 that connects the mirror base material 15 and the support base 14.
  • the reflection unit 12 is configured by, for example, a thin glass or a film mirror in which a metal coating such as Al is applied to a resin, and collects incident sunlight on the receiver 11.
  • the reflecting part 12 has a horizontally long bowl shape for focusing on the linear receiver 11.
  • the reflection unit 12 is curved so as to surround the receiver 11 when viewed from the side of the condensing mirror 13 (the extending direction of the central axis P).
  • the cross section perpendicular to the axis P has a parabolic shape with the receiver 11 as a focal point. According to the condensing mirror 13 having such a reflecting portion 12, sunlight incident from the front of the condensing mirror 13 can be effectively condensed on the receiver 11, so that solar heat can be obtained very efficiently. Can do.
  • the mirror base material 15 is a base material that supports the bowl-shaped reflecting portion 12.
  • the mirror substrate 15 is formed in a bowl shape along the reflecting portion 12.
  • This mirror base material 15 is comprised, for example from metals, such as iron.
  • the arm portion 16 is a pair of plate-like members provided on the left and right sides of the mirror base material 15.
  • the arm portions 16 are fixed to the left and right side surfaces of the mirror base material 15 respectively.
  • the arm portion 16 is rotatably connected to the support base 14.
  • the arm portion 16 has a first connecting plate 16a and a second connecting plate 16b, one end of which is fixed to the mirror base 15 and the other end protruding toward the receiver 11, and a first connecting plate 16a and a second connecting plate 16b. And a third connecting plate 16c that connects the other end side of the first connecting plate 16c.
  • a receiver receiving member 17 that supports the receiver 11 is connected to the third connecting plate 16c.
  • An actuator 20 for rotating the six condenser mirrors 13 of the condenser mirror array A is provided between the support base 14 and the arm portion 16 positioned at the right end of the condenser mirror array A.
  • the actuator 20 can employ various drive mechanisms such as an electric type and a hydraulic type.
  • the actuator 20 can rotate the condenser mirror 13 in an arbitrary direction.
  • the actuator 20 may be rotatable only in one direction.
  • N ⁇ b> 1 and N ⁇ b> 2 shown in FIG. 2 indicate the outer edge ends of the condenser mirror 13.
  • the outer edge end means an end portion of the condenser mirror 13 that is farthest from the central axis P in a direction orthogonal to the central axis P.
  • both ends of the mirror base material 15 in the vertical direction are the outer edge ends N1 and N2.
  • the outer edge varies depending on the shape of the condenser mirror 13, and there may be three or more points depending on the shape.
  • the rotating track K is the outermost rotating track in the collecting mirror 13, and in order to avoid mechanical contact between the collecting mirrors 13 due to rotation, the collecting mirror arrays A and B need to be arranged at intervals that the rotating tracks K do not intersect. is there.
  • the rotation diameter of the rotation track K is indicated by D, and the rotation radius is indicated by R.
  • the central axis P of the condenser mirror 13 is positioned so that the linear distance between the outer edge ends N1 and N2 and the central axis P in the direction orthogonal to the central axis P is minimized.
  • the central axis P is located at the midpoint of the line segment J connecting N1 and N2 that are both ends of the mirror base material 15 in the direction orthogonal to the central axis P. Since the central axis P exists at such a position, the rotation diameter D (rotation radius R) of the condensing mirror 13 can be reduced.
  • H shown in FIG. 2 is the total height of the collecting mirror rows A and B, and L is the row interval between the collecting mirror rows A and B.
  • F is a margin between the rotation path K and the ground
  • W is a margin between the rotation path K of the condenser mirror array A and the rotation path K of the collector mirror array B.
  • F and W are safety margins provided to avoid mechanical interference of the condenser mirror 13 due to rotation.
  • FIG. 3 is a diagram for explaining a light collecting state when the altitude of the sun is high.
  • FIG. 4 is a diagram for explaining a light collecting state when the altitude of the sun is lower than that in FIG. 3.
  • 3 and 4 exemplify and explain three condenser mirror rows A, B, and C.
  • T is sunlight
  • is the light flux area of sunlight received by the condenser mirror rows A, B, and C
  • G is the land area used by the condenser mirror rows A, B, and C
  • the luminous flux area of sunlight with respect to G is shown as E.
  • the light flux areas of sunlight received by the condenser mirror rows A, B, and C are indicated by ⁇ 1 to ⁇ 3, and the shaded ranges of the condenser mirror 13 in the front row are indicated as S1 and S2.
  • the condensing mirror rows A, B, and C adjust the rotation angle of the condensing mirror 13 so that the light flux areas ⁇ 1 to ⁇ 3 that receive sunlight T are maximized.
  • the condensing mirror arrays A, B, and C can receive sunlight in the entire range of the respective reflecting portions 12, and there is no difference in the light flux areas ⁇ 1 to ⁇ 3.
  • the luminous flux area E of sunlight falling on the land is small.
  • the sum of the luminous flux areas ⁇ 1 to ⁇ 3 of sunlight received by the condenser mirror rows A, B, and C is small.
  • FIG. 6 is a side view showing the condensing mirror arrays Ap and Bp in the conventional solar condensing system 50.
  • the conventional solar condensing system 50 is such that the central axis Q of the condensing mirror 53 is located near the center of the mirror base material 56 when viewed from the side of the condensing mirror 53.
  • the point that the receiver receiving member 57 is directly fixed to the mirror base 56 is mainly different from the solar condensing system 10 according to the present embodiment.
  • the receiver 51, the reflection part 52, and the support stand 54 have the same structure as the receiver 11, the reflection part 12, and the support stand 14 in the solar condensing system 10.
  • the total height of the collecting mirror arrays Ap and Bp of the conventional solar collecting system 50 is Hp
  • the rotating diameter of the collecting mirror 53 is Dp
  • the rotating radius of the collecting mirror 53 is Rp
  • the outer edge of the collecting mirror 53 The ends are represented by Np1, Np2
  • the margin between the rotation trajectory Kp and the ground is represented by Fp
  • the line segment connecting the outer edge ends Np1, Np2 is represented by Jp.
  • the interval between the collecting mirror rows Ap and Bp is indicated by Lp
  • the margin between the rotating orbit Kp of the collecting mirror row Ap and the rotating orbit Kp of the collecting mirror row Bp is indicated by Wp.
  • the margin F in FIG. 2 and the margin Fp in FIG. 6 and the margin W in FIG. 2 and the margin Wp in FIG. 6 are safety margins provided to avoid mechanical interference due to rotation and have the same value.
  • the line segment J connecting the outer edge ends N1 and N2 in FIG. 2 and the line segment Jp connecting the outer edge ends Np1 and Np2 in FIG. 6 have the same length.
  • the outer edge N ⁇ b> 1 that is the end farthest from the central axis P among the condensing mirrors 13 in the direction orthogonal to the central axis P. , N2 and the central axis P are located so that the linear distance is minimized, the rotational diameter Dp (rotational radius Rp) of the condensing mirror 53 in the conventional solar concentrating system 50 shown in FIG. ), The rotation diameter D (rotation radius R) of the condenser mirror 13 can be reduced.
  • FIG. 5 is a graph showing the relationship between the light energy for one day per unit area and the gap ratio of the condenser mirror rows.
  • the daily light energy per unit area is the amount of direct solar radiation DNI [Direct Normal Irradiance] per unit area when the solar condensing system is placed on a land of 1200 (kWh / m 2 ). It is the light energy (calorie
  • the gap ratio is a ratio between the row intervals of the plurality of rows of collecting mirrors and the width of the collecting mirror. For example, when the value of the gap ratio is 1, it means that the column intervals of the condenser mirrors are arranged to be equal to the width of the condenser mirrors.
  • the smaller the gap ratio the greater the light energy that can be obtained by the system.
  • the gap ratio is 5 or more and 1 or less, the obtained light energy is twice or more larger.
  • the conventional sun in which the condensing mirror rows are arranged at a high gap ratio due to mechanical interference and shadowing problems of the front and rear condensing mirror rows due to rotation.
  • the light collecting mirror row can be arranged with a very small gap ratio, so that the light energy can be efficiently collected.
  • the total height H of the condensing mirror rows A and B is made lower than the total height Hp of the conventional condensing mirror rows Ap and Bp. Can do. That is, the height of the receiver 11 can be set lower than that of the conventional solar cell system. For this reason, according to the solar condensing system 10, since the position of the receiver 11 can be brought close to the ground warmed by sunlight, the heat loss in the receiver 11 can be reduced by the thermal energy received from the ground side. become. Therefore, according to this solar condensing system 10, since the heat acquisition efficiency by the receiver 11 and the heat transport efficiency of the heat transport fluid in the receiver 11 can be increased, efficient use of solar heat can be realized. .
  • the condensing mirror 13 of multiple rows can be efficiently arrange
  • a condensing mirror is used with respect to the land area to be used.
  • the ratio of the area of the light flux received by 13 can be increased, and high-efficiency solar thermal power generation can be realized.
  • the present invention is not limited to the embodiment described above.
  • the solar condensing system 10 is not limited to use for solar thermal power generation.
  • Hot water supply using solar heat, steam supply, heating air conditioning, cooling air conditioning (high temperature heat source of absorption refrigeration machine) can be used in various fields. It is particularly suitable for applications such as factory air conditioning and steam supply in medium-scale plants.
  • it can also utilize as a concentrating solar cell system by arrange
  • the condensing mirror 13 is not necessarily configured to be capable of rotating 360 degrees, and may be configured to be swingable. In this case, since it is not necessary to provide a rotation space directly below the condenser mirror 13, the height of the condenser mirror rows A and B can be further reduced.
  • the reflecting part 12 of the condensing mirror 13 of the solar condensing system 10 does not necessarily have a parabolic cross section.
  • the reflection part 12 may have a flat part, and may be what is called a Fresnel type mirror shape.
  • the condensing mirror described in the claims includes various members that rotate integrally with the reflecting portion, except for the receiver and the like.
  • the support frame is also included in the condensing mirror, and the end of the support frame becomes the outer edge end described in the claims. obtain.
  • It can be used as a solar condensing system and a solar thermal power generation system that can efficiently arrange multiple rows of condensing mirrors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are a solar light collection system and a solar thermal electric power generation system configured so that rows of light collection mirrors can be efficiently arranged. This trough type solar light collection system (10) is provided with rows (A, B) of light collection mirrors (13) having reflection sections (12) for concentrating light on rectilinearly extending receivers (11). The light collection mirrors (13) are configured so as to be capable of rotating or pivoting about the center axes (P) extending along the receivers (11). Each of the center axes (P) is positioned in such a manner that the rectilinear distance in the direction perpendicular to the center axis (P) measured between the center axis (P) and each of the outer edges (N1, N2) of each of the light collection mirrors (13) is the smallest, the outer edges (N1, N2) being the farthest ends of the light collection mirror (13) from the center axis (P). The solar light collection system (10) enables the diameter (D) of rotation of the light collection mirrors (13) to be reduced, and this enables the rows of the light collection mirrors (13) to be arranged at a small interval within a range which does not cause mechanical interference due to the rotation or pivoting. As a result, the light collection mirrors (13) can be efficiently arranged.

Description

太陽集光システム及び太陽熱発電システムSolar condensing system and solar power generation system
 本発明は、太陽集光システム及び太陽熱発電システムに関する。 The present invention relates to a solar condensing system and a solar thermal power generation system.
 近年、化石燃料の枯渇や二酸化炭素排出による諸問題に鑑み、再生可能な自然エネルギーである太陽光の利用が広く検討されている。太陽光エネルギーの利用には、太陽電池により直接電気に変換する手法と太陽光を吸収して太陽熱として利用する手法とが知られている。太陽熱として利用する手法には、その熱を利用してタービンやスターリングエンジンにより間接的に発電するものも含まれる。 In recent years, in view of problems caused by depletion of fossil fuels and carbon dioxide emissions, the use of sunlight, which is renewable natural energy, has been widely studied. There are two known methods of using solar energy: a method of converting directly into electricity by a solar cell and a method of absorbing sunlight and using it as solar heat. Techniques used as solar heat include those that indirectly generate electricity using a turbine or Stirling engine using the heat.
 太陽熱の利用は半導体を用いないため、太陽電池に比べて単位面積当たりのコストを低くすることができ、大面積で利用したい場合の初期投資が低く抑えられるため、近年注目を再び集めている。特に、発電せずに熱そのものを利用する場合に効率が高く、太陽熱を利用する意義が大きい。このため、特に産業用の蒸気の供給などの中規模なプラントにおいて太陽熱を利用できる太陽集光システムが日本だけではなく欧州等の世界各国でも検討されている。 Since the use of solar heat does not use semiconductors, the cost per unit area can be reduced compared to solar cells, and the initial investment for use in a large area can be kept low. In particular, when using heat itself without generating electricity, the efficiency is high, and the significance of using solar heat is great. For this reason, solar concentrating systems that can use solar heat in medium-sized plants such as industrial steam supply are being studied not only in Japan but also in countries around the world such as Europe.
 太陽集光システムとしては、トラフ型、タワー型、ディッシュ型、フレネル型などの手法が知られており、ここではトラフ型について説明する。例えば特許文献1には、直線状のレシーバに対して太陽光を線状に集光する樋状の反射鏡を複数列備えたトラフ型の太陽集光システムが開示されている。このようなトラフ型の太陽熱発電システムでは、管状のレシーバ内部を熱輸送流体が流れており、集光によってレシーバが受けた熱が熱輸送流体を介して蒸気タービンなどの発電設備へと送られることで、太陽熱を利用した発電が行われる。 As the solar condensing system, methods such as trough type, tower type, dish type, and Fresnel type are known. Here, the trough type will be described. For example, Patent Document 1 discloses a trough-type solar condensing system including a plurality of rows of bowl-shaped reflecting mirrors that condense sunlight into a linear shape with respect to a linear receiver. In such a trough-type solar thermal power generation system, the heat transport fluid flows inside the tubular receiver, and the heat received by the receiver by light collection is sent to the power generation equipment such as a steam turbine through the heat transport fluid. Then, power generation using solar heat is performed.
 図6に従来の太陽集光システムの例を示す。図6に示す従来の太陽集光システム50は、直線状のレシーバ51と、直線状のレシーバ51に対して集光する反射部52を有する集光ミラー53と、集光ミラー53を回転可能に支持する支持台54と、集光ミラー53の中央付近に取り付けられ、集光ミラー53を回転駆動させるアクチュエータ55と、を備えている。この太陽集光システム50では、集光ミラー53の側方から見て、集光ミラー53の回転中心となる中心軸Qが集光ミラー53の中央付近に位置している。 Fig. 6 shows an example of a conventional solar condensing system. A conventional solar condensing system 50 shown in FIG. 6 has a linear receiver 51, a condensing mirror 53 having a reflecting portion 52 that condenses the linear receiver 51, and the condensing mirror 53 can be rotated. A support base 54 that supports the actuator and an actuator 55 that is attached near the center of the condenser mirror 53 and rotates the condenser mirror 53 are provided. In the solar condensing system 50, the central axis Q serving as the rotation center of the condensing mirror 53 is located near the center of the condensing mirror 53 when viewed from the side of the condensing mirror 53.
特開2010-144725号公報JP 2010-144725 A
 ところで、トラフ型の太陽集光システムでは、複数列の集光ミラーが狭い列間隔で設置されると、太陽の高度が低い時間帯に集光ミラーの一部が前列の集光ミラーの影に入り、影に入った分のミラー面積が無駄となる。このため、土地の価格が安い砂漠地帯などでは、通常、集光ミラー自体の幅の数倍程度の間隔で集光ミラーの各列が配置されている。しかしながら、日本など土地の価格が高く土地の広さに制限のある地域では、土地利用効率を高める必要がある。このため、集光ミラーの効率的な配置が強く求められている。 By the way, in a trough-type solar condensing system, if multiple rows of condensing mirrors are installed at narrow row intervals, some of the condensing mirrors become shadows of the condensing mirrors in the front row when the solar altitude is low. The mirror area that enters and shadows is wasted. For this reason, in a desert area where the price of land is low, the rows of the collecting mirrors are usually arranged at intervals of several times the width of the collecting mirror itself. However, in areas where land prices are high and land size is limited, such as in Japan, it is necessary to increase land use efficiency. For this reason, the efficient arrangement | positioning of a condensing mirror is calculated | required strongly.
 そこで、本発明は、複数列の集光ミラーを効率良く配置できる太陽集光システム及び太陽熱発電システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a solar condensing system and a solar thermal power generation system that can efficiently arrange a plurality of rows of condensing mirrors.
 上記課題を解決するため、本発明は、直線状に延在するレシーバに対して集光する反射部を有する集光ミラーの列を複数備えたトラフ型の太陽集光システムであって、集光ミラーは、レシーバに沿って延在する中心軸を中心として回転可能又は揺動可能に構成され、中心軸は、中心軸と直交する方向において集光ミラーのうち中心軸から最も離れた端部となる外縁端と中心軸との直線距離が最小となるように位置することを特徴とする。 In order to solve the above problems, the present invention is a trough-type solar condensing system including a plurality of condensing mirror rows each having a reflecting portion that condenses a linearly extending receiver. The mirror is configured to be rotatable or swingable about a central axis extending along the receiver, and the central axis is an end portion farthest from the central axis in the collecting mirror in a direction orthogonal to the central axis. It is characterized in that the linear distance between the outer edge and the central axis is minimized.
 この太陽集光システムによれば、集光ミラーの回転直径を小さくすることができるので、回転や揺動による機械的干渉を起こすことなく複数列の集光ミラーを短い間隔で配置することができ、複数列の集光ミラーを効率良く配置することができる。従って、この太陽集光システムによれば、使用する土地面積に対して集光ミラーが受ける光束面積の比率を大きくすることができるので、効率良く太陽熱を得ることができる。 According to this solar condensing system, since the rotational diameter of the condensing mirror can be reduced, multiple rows of condensing mirrors can be arranged at short intervals without causing mechanical interference due to rotation or swinging. Multiple rows of collecting mirrors can be arranged efficiently. Therefore, according to this solar condensing system, since the ratio of the light beam area received by the condensing mirror to the land area to be used can be increased, solar heat can be obtained efficiently.
 上記太陽集光システムにおいては、反射部の中心軸に垂直な断面がレシーバを焦点とした放物線形状であっても良い。
 この太陽集光システムによれば、集光ミラーの正面から入射した太陽光を効果的にレシーバに集光することができるので、一層効率良く太陽熱を得ることができる。
In the solar condensing system described above, the cross section perpendicular to the central axis of the reflecting portion may have a parabolic shape with the receiver as a focal point.
According to this solar condensing system, sunlight incident from the front of the condensing mirror can be effectively condensed on the receiver, so that solar heat can be obtained more efficiently.
 本発明は、直線状に延在するレシーバに対して集光する反射部を有する集光ミラーの列を複数備え、集光によりレシーバが得た熱を利用して発電を行うトラフ型の太陽熱発電システムであって、集光ミラーは、レシーバに沿って延在する中心軸を中心として回転可能又は揺動可能に構成され、中心軸は、中心軸と直交する方向において集光ミラーのうち中心軸から最も離れた端部となる外縁端と中心軸との直線距離が最小となるように位置することを特徴とする。 The present invention is a trough solar power generator that includes a plurality of condenser mirror rows each having a reflecting portion that collects light with respect to a linearly extending receiver, and that generates power using heat obtained by the receiver through light collection. The light collecting mirror is configured to be rotatable or swingable about a central axis extending along the receiver, and the central axis is a central axis of the collecting mirrors in a direction perpendicular to the central axis. It is located so that the linear distance of the outer edge edge used as the edge part which is furthest away from the center axis and the central axis may be minimized.
 この太陽熱発電システムによれば、集光ミラーの回転半径を小さくすることができるので、回転や揺動による機械的干渉を起こすことなく複数列の集光ミラーを短い間隔で配置することができ、複数列の集光ミラーを効率良く配置することができる。従って、この太陽熱発電システムによれば、土地の面積に対して集光ミラーが受ける光束面積の比率を大きくすることができるので、高効率の太陽熱発電を実現することができる。 According to this solar thermal power generation system, since the rotational radius of the condensing mirror can be reduced, multiple rows of condensing mirrors can be arranged at short intervals without causing mechanical interference due to rotation or swinging. Multiple rows of collecting mirrors can be arranged efficiently. Therefore, according to this solar thermal power generation system, the ratio of the luminous flux area received by the condensing mirror to the land area can be increased, so that highly efficient solar thermal power generation can be realized.
 本発明によれば、複数列の集光ミラーを効率良く配置できる。 According to the present invention, a plurality of rows of collecting mirrors can be efficiently arranged.
本発明に係る太陽熱発電システムにおける太陽集光システムの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the solar condensing system in the solar thermal power generation system which concerns on this invention. 図1の太陽集光システムを示す側面図である。It is a side view which shows the solar condensing system of FIG. (a)太陽の高度が高いときの集光状態を説明するための図である。(b)図3(a)に示すE及びGの概略的関係を説明するための図である。(A) It is a figure for demonstrating the condensing state when the altitude of the sun is high. (B) It is a figure for demonstrating the schematic relationship of E and G shown to Fig.3 (a). 太陽の高度が低いときの集光状態を説明するための図である。It is a figure for demonstrating the condensing state when the altitude of the sun is low. 単位面積当たりにおける一日分の光エネルギと集光ミラー列の隙間比率との関係を示すグラフである。It is a graph which shows the relationship between the light energy for one day per unit area, and the clearance ratio of a condensing mirror row | line | column. 従来の太陽集光システムを示す側面図である。It is a side view which shows the conventional solar condensing system.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1に示されるように、本実施形態に係る太陽熱発電システムは、太陽光の集光により得られる太陽熱を利用して発電を行うシステムであり、太陽光を集光する太陽集光システム10を備えている。 As FIG. 1 shows, the solar thermal power generation system which concerns on this embodiment is a system which produces electric power using the solar heat obtained by condensing sunlight, The solar condensing system 10 which condenses sunlight is comprised. I have.
 太陽集光システム10は、いわゆるトラフ型の集光システムであり、直線状に延在するレシーバ11に対して集光する樋状の反射部12を有する集光ミラー13の列を複数備えている。レシーバ11は、内部を熱輸送流体が流れるチューブ状の部材であり、集光ミラー13の集光によりレシーバ11が得た熱は熱輸送流体によって発電設備へ供給される。発電設備は、例えば蒸気タービンやスターリングエンジンなどであり、熱輸送流体を通じて供給された熱を利用して発電を行う。 The solar condensing system 10 is a so-called trough-type condensing system, and includes a plurality of rows of condensing mirrors 13 each having a bowl-shaped reflecting portion 12 that condenses light on a linearly extending receiver 11. . The receiver 11 is a tube-shaped member through which the heat transport fluid flows, and the heat obtained by the receiver 11 by the light collection by the light collecting mirror 13 is supplied to the power generation facility by the heat transport fluid. The power generation facility is, for example, a steam turbine or a Stirling engine, and generates power using heat supplied through a heat transport fluid.
 太陽集光システム10における集光ミラー13の列数は、数列から数十列以上など使用可能な土地の大きさなどに応じて決定される。図1及び図2では、二列の集光ミラー列A,Bを例示して説明を行う。 The number of columns of the collector mirror 13 in the solar collector system 10 is determined according to the size of usable land such as several to several tens of columns. In FIG. 1 and FIG. 2, description will be given by exemplifying two condensing mirror rows A and B.
 図1及び図2に示されるように、集光ミラー列A,Bは、各六枚の集光ミラー13を備えており、互いに平行に並んでいる。集光ミラー列A,Bは、配置位置を除いて、全て同一の構成要素を有している。以下、集光ミラー列Aについて説明を行う。 As shown in FIGS. 1 and 2, the condenser mirror rows A and B are each provided with six condenser mirrors 13 and are arranged in parallel to each other. The condensing mirror rows A and B all have the same components except for the arrangement position. Hereinafter, the condenser mirror array A will be described.
 集光ミラー列Aの有する六枚の集光ミラー13は、一本のレシーバ11を共有して直線状に配置されている。各集光ミラー13は、支持台14によって左右が支持されている。集光ミラー13は、太陽の動きに合わせて向きを変えるため、中心軸Pを中心として回転可能に支持されている。レシーバ11は集光ミラー13と一体的に回転する。中心軸Pは、レシーバ11に沿って平行に延在する仮想の軸線である。 The six condenser mirrors 13 included in the condenser mirror array A share one receiver 11 and are arranged in a straight line. Each condensing mirror 13 is supported on the left and right by a support base 14. The condensing mirror 13 is supported so as to be rotatable about the central axis P in order to change the direction according to the movement of the sun. The receiver 11 rotates integrally with the condenser mirror 13. The central axis P is a virtual axis that extends in parallel along the receiver 11.
 集光ミラー13は、反射部12と、反射部12を支持するミラー基材15と、ミラー基材15と支持台14とを繋ぐアーム部16と、を有している。 The condensing mirror 13 includes a reflecting portion 12, a mirror base material 15 that supports the reflecting portion 12, and an arm portion 16 that connects the mirror base material 15 and the support base 14.
 反射部12は、例えば薄型のガラスや樹脂にAlなどの金属コーティングを施したフィルムミラーなどから構成されており、入射した太陽光をレシーバ11に集光させるものである。反射部12は、直線状のレシーバ11に集光させるため横長の樋形状をなしている。 The reflection unit 12 is configured by, for example, a thin glass or a film mirror in which a metal coating such as Al is applied to a resin, and collects incident sunlight on the receiver 11. The reflecting part 12 has a horizontally long bowl shape for focusing on the linear receiver 11.
 図2に示されるように、反射部12は、集光ミラー13の側方(中心軸Pの延在方向)から見た場合、レシーバ11を囲むように湾曲しており、反射部12における中心軸Pと垂直な断面は、レシーバ11を焦点とした放物線形状をなしている。このような反射部12を有する集光ミラー13によれば、集光ミラー13の正面から入射した太陽光を効果的にレシーバ11に集光することができるので、非常に効率良く太陽熱を得ることができる。 As shown in FIG. 2, the reflection unit 12 is curved so as to surround the receiver 11 when viewed from the side of the condensing mirror 13 (the extending direction of the central axis P). The cross section perpendicular to the axis P has a parabolic shape with the receiver 11 as a focal point. According to the condensing mirror 13 having such a reflecting portion 12, sunlight incident from the front of the condensing mirror 13 can be effectively condensed on the receiver 11, so that solar heat can be obtained very efficiently. Can do.
 ミラー基材15は、樋状の反射部12を支持する基材である。ミラー基材15は、反射部12に沿って樋状に形成されている。このミラー基材15は、例えば鉄などの金属から構成されている。 The mirror base material 15 is a base material that supports the bowl-shaped reflecting portion 12. The mirror substrate 15 is formed in a bowl shape along the reflecting portion 12. This mirror base material 15 is comprised, for example from metals, such as iron.
 アーム部16は、ミラー基材15の左右に設けられた一対の板状部材である。アーム部16は、ミラー基材15の左右の両側面に各々固定されている。アーム部16は、支持台14に対して回転可能に接続されている。 The arm portion 16 is a pair of plate-like members provided on the left and right sides of the mirror base material 15. The arm portions 16 are fixed to the left and right side surfaces of the mirror base material 15 respectively. The arm portion 16 is rotatably connected to the support base 14.
 アーム部16は、一端がミラー基材15に固定されると共に他端がレシーバ11に向かって突出した第1連結板16a及び第2連結板16bと、第1連結板16a及び第2連結板16bの他端側を繋ぐ第3連結板16cと、から構成されている。第3連結板16cには、レシーバ11を支持するレシーバ受け部材17が連結されている。 The arm portion 16 has a first connecting plate 16a and a second connecting plate 16b, one end of which is fixed to the mirror base 15 and the other end protruding toward the receiver 11, and a first connecting plate 16a and a second connecting plate 16b. And a third connecting plate 16c that connects the other end side of the first connecting plate 16c. A receiver receiving member 17 that supports the receiver 11 is connected to the third connecting plate 16c.
 集光ミラー列Aの右端に位置する支持台14とアーム部16との間には、集光ミラー列Aの六枚の集光ミラー13を回転させるためのアクチュエータ20が設けられている。アクチュエータ20には、電気式のものや油圧式のものなど様々な駆動機構を採用することができる。アクチュエータ20は、集光ミラー13を任意の方向に回転可能である。なお、アクチュエータ20は一方向のみに回転可能なものであっても良い。 An actuator 20 for rotating the six condenser mirrors 13 of the condenser mirror array A is provided between the support base 14 and the arm portion 16 positioned at the right end of the condenser mirror array A. The actuator 20 can employ various drive mechanisms such as an electric type and a hydraulic type. The actuator 20 can rotate the condenser mirror 13 in an arbitrary direction. The actuator 20 may be rotatable only in one direction.
 次に、太陽集光システム10の集光ミラー列A,Bの寸法及び列間隔について説明する。図2に示すN1,N2は、集光ミラー13の外縁端を示している。外縁端とは、集光ミラー13のうち中心軸Pと直交する方向において中心軸Pから最も離れた端部を意味する。本実施形態においては、縦方向におけるミラー基材15の両端が外縁端N1,N2となる。外縁端は集光ミラー13の形状によって変わり、形状によっては三点以上存在する場合もある。 Next, the dimensions and column intervals of the collector mirror rows A and B of the solar collector system 10 will be described. N <b> 1 and N <b> 2 shown in FIG. 2 indicate the outer edge ends of the condenser mirror 13. The outer edge end means an end portion of the condenser mirror 13 that is farthest from the central axis P in a direction orthogonal to the central axis P. In the present embodiment, both ends of the mirror base material 15 in the vertical direction are the outer edge ends N1 and N2. The outer edge varies depending on the shape of the condenser mirror 13, and there may be three or more points depending on the shape.
 図2に示すKは、中心軸Pを中心として回転したときの外縁端N1,N2の回転軌道である。回転軌道Kが集光ミラー13における最も外側の回転軌道となり、回転による集光ミラー13同士の機械的接触を避けるため集光ミラー列A,Bは回転軌道Kが交差しない間隔で配置する必要がある。回転軌道Kの回転直径をD、回転半径をRとして示す。 2 is a rotation trajectory of the outer edge ends N1 and N2 when rotating around the central axis P. The rotating track K is the outermost rotating track in the collecting mirror 13, and in order to avoid mechanical contact between the collecting mirrors 13 due to rotation, the collecting mirror arrays A and B need to be arranged at intervals that the rotating tracks K do not intersect. is there. The rotation diameter of the rotation track K is indicated by D, and the rotation radius is indicated by R.
 集光ミラー13の中心軸Pは、中心軸Pと直交する方向において外縁端N1,N2と中心軸Pとの直線距離が最小となるように位置する。本実施形態においては、中心軸Pは、中心軸Pと直交する方向におけるミラー基材15の両端であるN1,N2を結んだ線分Jの中点に位置している。このような位置に中心軸Pが存在することで、集光ミラー13の回転直径D(回転半径R)を小さくすることができる。 The central axis P of the condenser mirror 13 is positioned so that the linear distance between the outer edge ends N1 and N2 and the central axis P in the direction orthogonal to the central axis P is minimized. In the present embodiment, the central axis P is located at the midpoint of the line segment J connecting N1 and N2 that are both ends of the mirror base material 15 in the direction orthogonal to the central axis P. Since the central axis P exists at such a position, the rotation diameter D (rotation radius R) of the condensing mirror 13 can be reduced.
 また、図2に示すHは集光ミラー列A,Bの全高であり、Lは、集光ミラー列A,Bの間の列間隔である。Fは回転軌道Kと地面との間の余裕であり、Wは集光ミラー列Aの回転軌道Kと集光ミラー列Bの回転軌道Kとの間の余裕である。F及びWは回転による集光ミラー13の機械的干渉を避けるために設けられた安全マージンである。 Further, H shown in FIG. 2 is the total height of the collecting mirror rows A and B, and L is the row interval between the collecting mirror rows A and B. F is a margin between the rotation path K and the ground, and W is a margin between the rotation path K of the condenser mirror array A and the rotation path K of the collector mirror array B. F and W are safety margins provided to avoid mechanical interference of the condenser mirror 13 due to rotation.
 ここで、図3及び図4を参照して、太陽の高度に応じた集光ミラー13の回転状態を説明する。 Here, with reference to FIG.3 and FIG.4, the rotation state of the condensing mirror 13 according to the altitude of the sun is demonstrated.
 図3は、太陽の高度が高いときの集光状態を説明するための図である。図4は、図3より太陽の高度が低いときの集光状態を説明するための図である。図3及び図4では、三つの集光ミラー列A,B,Cを例示して説明を行う。図3において、太陽光をT、集光ミラー列A,B,Cが受ける太陽光の光束面積をα1~α3、集光ミラー列A,B,Cの使用する土地面積をG、使用土地面積Gに対する太陽光の光束面積をEとして示す。また、図4において集光ミラー列A,B,Cが受ける太陽光の光束面積をβ1~β3、前列の集光ミラー13の影となる範囲をS1,S2として示す。 FIG. 3 is a diagram for explaining a light collecting state when the altitude of the sun is high. FIG. 4 is a diagram for explaining a light collecting state when the altitude of the sun is lower than that in FIG. 3. 3 and 4 exemplify and explain three condenser mirror rows A, B, and C. In FIG. 3, T is sunlight, α is the light flux area of sunlight received by the condenser mirror rows A, B, and C, G is the land area used by the condenser mirror rows A, B, and C, and the land area used. The luminous flux area of sunlight with respect to G is shown as E. Further, in FIG. 4, the light flux areas of sunlight received by the condenser mirror rows A, B, and C are indicated by β1 to β3, and the shaded ranges of the condenser mirror 13 in the front row are indicated as S1 and S2.
 図3に示されるように、太陽の高度が高いとき、太陽光Tは地面に対して急な角度で入射する。集光ミラー列A,B,Cは、太陽光Tを受ける光束面積α1~α3が最大となるように集光ミラー13の回転角度を調整する。この場合、集光ミラー列A,B,Cは、それぞれの反射部12の全範囲で太陽光を受けることができ、光束面積α1~α3に差は生じない。 As shown in FIG. 3, when the altitude of the sun is high, sunlight T is incident on the ground at a steep angle. The condensing mirror rows A, B, and C adjust the rotation angle of the condensing mirror 13 so that the light flux areas α1 to α3 that receive sunlight T are maximized. In this case, the condensing mirror arrays A, B, and C can receive sunlight in the entire range of the respective reflecting portions 12, and there is no difference in the light flux areas α1 to α3.
 一方、太陽の高度が高いときには、一部の太陽光Tが集光ミラー列A,B,Cの隙間を通り抜けてしまう。通り抜けた分は光エネルギを取得できないため集光ミラー列A,B,Cの隙間が小さいことが好ましい。すなわち、土地に降り注ぐ太陽光の光束面積Eと集光ミラー列A,B,Cが受ける太陽光の光束面積α1~α3の和との差が小さいことが好ましい。この差が小さいほど、集光ミラー列A,B,Cによる土地利用率が高くなる。なお、図3(b)に示されるように、光束面積Eと使用土地面積Gとは、地面に対する太陽光Tの入射角をθとしたとき概略的にE=Gsinθの関係で表すことができる。 On the other hand, when the altitude of the sun is high, a part of the sunlight T passes through the gaps between the collecting mirror rows A, B, and C. Since the light energy cannot be acquired by the amount that passes through, it is preferable that the gaps between the condenser mirror rows A, B, and C are small. That is, it is preferable that the difference between the luminous flux area E of sunlight falling on the land and the sum of the luminous flux areas α1 to α3 of sunlight received by the condenser mirror rows A, B, and C is small. The smaller this difference, the higher the land use rate by the condensing mirror rows A, B, and C. As shown in FIG. 3B, the luminous flux area E and the used land area G can be roughly represented by the relationship of E = Gsinθ, where θ is the incident angle of sunlight T with respect to the ground. .
 図4に示されるように、太陽の高度が低いとき、太陽光Tは地面に対して緩やか角度で入射する。集光ミラー列A,B,Cは、太陽光Tを受ける光束面積β1~β3が最大となるように集光ミラー13の回転角度を調整する。この場合には、太陽の方向から見て後列の集光ミラー13の一部が前列の集光ミラー13の影に入るシャドーイングが発生する。 As shown in FIG. 4, when the altitude of the sun is low, sunlight T is incident on the ground at a gentle angle. The condensing mirror arrays A, B, and C adjust the rotation angle of the condensing mirror 13 so that the light flux areas β1 to β3 receiving the sunlight T are maximized. In this case, shadowing occurs in which a part of the rear-stage condenser mirror 13 enters the shadow of the front-stage condenser mirror 13 when viewed from the sun direction.
 シャドーイングが発生すると、後列の集光ミラー列B,Cの集光ミラー13の一部範囲S1,S2は前列の集光ミラー13の影となり太陽光Tを受けることができない。一方で、この場合には、土地に降り注ぐ太陽光の光束面積Eと集光ミラー列A,B,Cが受ける太陽光の光束面積β1~β3の和との差を小さくすることができる。そこで、本実施形態に係る太陽集光システム10では、従来の太陽集光システムでは避けられていたシャドーイングの発生を許容して集光ミラー列A,B,Cの配置を行う。これにより、集光ミラー列A,B,Cの列間隔(隙間)を短くすることができるので、集光ミラー列A,B,Cによる土地利用率を高くすることができる。 When shadowing occurs, partial ranges S1 and S2 of the collecting mirrors 13 in the rear collecting mirror rows B and C become shadows of the collecting mirror 13 in the front row and cannot receive sunlight T. On the other hand, in this case, the difference between the luminous flux area E of sunlight falling on the land and the sum of the luminous flux areas β1 to β3 received by the condenser mirror rows A, B, and C can be reduced. Therefore, in the solar condensing system 10 according to the present embodiment, the arrangement of the condensing mirror arrays A, B, and C is performed while allowing the generation of shadowing that is avoided in the conventional solar condensing system. Thereby, since the row | line space (gap) of the condensing mirror row | line | column A, B, C can be shortened, the land utilization rate by the condensing mirror row | line | column A, B, C can be made high.
 次に、図2及び図6を参照して、本実施形態に係る太陽集光システム10と従来の太陽集光システムとを比較しつつ、太陽集光システム10の作用効果を説明する。 Next, with reference to FIG. 2 and FIG. 6, the operation effect of the solar condensing system 10 is demonstrated, comparing the solar condensing system 10 which concerns on this embodiment, and the conventional solar condensing system.
 ここで、図6は、従来の太陽集光システム50における集光ミラー列Ap,Bpを示す側面図である。図6に示されるように、従来の太陽集光システム50は、集光ミラー53の側方から見て集光ミラー53の中心軸Qがミラー基材56の中央付近に位置している点と、レシーバ受け部材57がミラー基材56に直接固定されている点と、が本実施形態に係る太陽集光システム10と比べて主に異なっている。なお、レシーバ51、反射部52、及び支持台54は、太陽集光システム10におけるレシーバ11、反射部12、及び支持台14と同様の構成を有する。 Here, FIG. 6 is a side view showing the condensing mirror arrays Ap and Bp in the conventional solar condensing system 50. As shown in FIG. 6, the conventional solar condensing system 50 is such that the central axis Q of the condensing mirror 53 is located near the center of the mirror base material 56 when viewed from the side of the condensing mirror 53. The point that the receiver receiving member 57 is directly fixed to the mirror base 56 is mainly different from the solar condensing system 10 according to the present embodiment. In addition, the receiver 51, the reflection part 52, and the support stand 54 have the same structure as the receiver 11, the reflection part 12, and the support stand 14 in the solar condensing system 10.
 図6において、従来の太陽集光システム50の集光ミラー列Ap,Bpの全高をHp、集光ミラー53の回転直径をDp、集光ミラー53の回転半径をRp、集光ミラー53の外縁端をNp1,Np2、外縁端Np1,Np2の描く回転軌道をKp、回転軌道Kpと地面との間の余裕をFp、外縁端Np1,Np2を結ぶ線分をJpとして示す。 In FIG. 6, the total height of the collecting mirror arrays Ap and Bp of the conventional solar collecting system 50 is Hp, the rotating diameter of the collecting mirror 53 is Dp, the rotating radius of the collecting mirror 53 is Rp, and the outer edge of the collecting mirror 53 The ends are represented by Np1, Np2, the rotation trajectory drawn by the outer edge ends Np1, Np2, Kp, the margin between the rotation trajectory Kp and the ground is represented by Fp, and the line segment connecting the outer edge ends Np1, Np2 is represented by Jp.
 また、集光ミラー列Ap,Bpの間隔をLp、集光ミラー列Apの回転軌道Kpと集光ミラー列Bpの回転軌道Kpとの間の余裕をWpとして示す。なお、図2の余裕Fと図6の余裕Fp、及び図2の余裕Wと図6の余裕Wpとは、回転による機械的干渉を避けるために設けられた安全マージンであり、同じ値である。また、図2の外縁端N1,N2を結ぶ線分Jと図6の外縁端Np1,Np2を結ぶ線分Jpとは同一の長さである。 In addition, the interval between the collecting mirror rows Ap and Bp is indicated by Lp, and the margin between the rotating orbit Kp of the collecting mirror row Ap and the rotating orbit Kp of the collecting mirror row Bp is indicated by Wp. The margin F in FIG. 2 and the margin Fp in FIG. 6 and the margin W in FIG. 2 and the margin Wp in FIG. 6 are safety margins provided to avoid mechanical interference due to rotation and have the same value. . Also, the line segment J connecting the outer edge ends N1 and N2 in FIG. 2 and the line segment Jp connecting the outer edge ends Np1 and Np2 in FIG. 6 have the same length.
 図2に示されるように、本実施形態に係る太陽集光システム10によれば、中心軸Pと直交する方向において集光ミラー13のうち中心軸Pから最も離れた端部となる外縁端N1,N2と中心軸Pとの直線距離が最小となるように中心軸Pが位置しているので、図6に示す従来の太陽集光システム50における集光ミラー53の回転直径Dp(回転半径Rp)と比べて、集光ミラー13の回転直径D(回転半径R)を小さくすることができる。 As shown in FIG. 2, according to the solar condensing system 10 according to the present embodiment, the outer edge N <b> 1 that is the end farthest from the central axis P among the condensing mirrors 13 in the direction orthogonal to the central axis P. , N2 and the central axis P are located so that the linear distance is minimized, the rotational diameter Dp (rotational radius Rp) of the condensing mirror 53 in the conventional solar concentrating system 50 shown in FIG. ), The rotation diameter D (rotation radius R) of the condenser mirror 13 can be reduced.
 従って、この太陽集光システム10によれば、集光ミラー13の回転直径Dを小さくすることができるので、前後の集光ミラー13の機械的干渉すなわち回転軌道K同士の接触を避けつつも、集光ミラー13の列間隔Lを短く配置することが可能となり、複数列の集光ミラー13を効率良く配置することができる。この太陽集光システム10によれば、使用する土地面積Gに対して集光ミラー13が受ける光束面積の比率を大きくすることができるので、効率良く太陽熱を得ることができる。 Therefore, according to this solar condensing system 10, since the rotation diameter D of the condensing mirror 13 can be reduced, mechanical interference of the front and rear condensing mirrors 13, that is, contact between the rotational trajectories K is avoided. It becomes possible to arrange | position the row | line | column space | interval L of the condensing mirror 13 short, and can arrange | position the condensing mirror 13 of multiple rows efficiently. According to this solar condensing system 10, since the ratio of the luminous flux area which the condensing mirror 13 receives with respect to the land area G to be used can be enlarged, solar heat can be obtained efficiently.
 次に、図5を参照して太陽集光システム10の作用効果を説明する。図5は、単位面積当たりにおける一日分の光エネルギと集光ミラー列の隙間比率との関係を示すグラフである。単位面積当たりにおける一日分の光エネルギとは、単位面積当たりにおける一日分の直達日射量DNI[Direct Normal Irradiance]を1200(kWh/m)の土地に太陽集光システムを配置した場合に当該太陽集光システムが得る光エネルギ(熱量)である。また、隙間比率とは、複数列の集光ミラーの列間隔と集光ミラーの幅との比率である。例えば、隙間比率の値が1の場合には、集光ミラーの列間隔が集光ミラーの幅と等しくなるように配置されていることを意味する。 Next, the effect of the solar condensing system 10 is demonstrated with reference to FIG. FIG. 5 is a graph showing the relationship between the light energy for one day per unit area and the gap ratio of the condenser mirror rows. The daily light energy per unit area is the amount of direct solar radiation DNI [Direct Normal Irradiance] per unit area when the solar condensing system is placed on a land of 1200 (kWh / m 2 ). It is the light energy (calorie | heat amount) which the said solar condensing system acquires. Further, the gap ratio is a ratio between the row intervals of the plurality of rows of collecting mirrors and the width of the collecting mirror. For example, when the value of the gap ratio is 1, it means that the column intervals of the condenser mirrors are arranged to be equal to the width of the condenser mirrors.
 図5に示されるように、太陽集光システムでは、一般的に隙間比率が小さいほどシステムが得られる光エネルギが大きくなる。隙間比率が5以上の場合と1以下の場合とを比べると、得られる光エネルギが二倍以上大きくなっている。 As shown in FIG. 5, in a solar condensing system, generally, the smaller the gap ratio, the greater the light energy that can be obtained by the system. When the gap ratio is 5 or more and 1 or less, the obtained light energy is twice or more larger.
 従って、本実施形態に係る太陽集光システム10によれば、回転による前後の集光ミラー列の機械的干渉やシャドーイングの問題から高い隙間比率で集光ミラー列を配置していた従来の太陽集光システムと比べて、非常に小さな隙間比率で集光ミラー列を配置することができるので、効率的に光エネルギを集めることができる。 Therefore, according to the solar condensing system 10 according to the present embodiment, the conventional sun in which the condensing mirror rows are arranged at a high gap ratio due to mechanical interference and shadowing problems of the front and rear condensing mirror rows due to rotation. Compared with the light collecting system, the light collecting mirror row can be arranged with a very small gap ratio, so that the light energy can be efficiently collected.
 また、この太陽集光システム10では、図2及び図6に示されるように、集光ミラー列A,Bの全高Hを従来の集光ミラー列Ap,Bpの全高Hpと比べて低くすることができる。すなわち、レシーバ11の高さを従来の太陽電池システムと比べて低い位置とすることができる。このため、太陽集光システム10によれば、レシーバ11の位置を太陽光により温められた地面に近づけることができるので、地面側から受ける熱的エネルギによりレシーバ11における熱損失を低減することが可能になる。従って、この太陽集光システム10によれば、レシーバ11による熱の取得効率及びレシーバ11内の熱輸送流体の熱輸送効率を高めることができるので、効率的な太陽熱の利用を実現することができる。 Moreover, in this solar condensing system 10, as shown in FIGS. 2 and 6, the total height H of the condensing mirror rows A and B is made lower than the total height Hp of the conventional condensing mirror rows Ap and Bp. Can do. That is, the height of the receiver 11 can be set lower than that of the conventional solar cell system. For this reason, according to the solar condensing system 10, since the position of the receiver 11 can be brought close to the ground warmed by sunlight, the heat loss in the receiver 11 can be reduced by the thermal energy received from the ground side. become. Therefore, according to this solar condensing system 10, since the heat acquisition efficiency by the receiver 11 and the heat transport efficiency of the heat transport fluid in the receiver 11 can be increased, efficient use of solar heat can be realized. .
 また、本実施形態に係る太陽熱発電システムによれば、太陽集光システム10を備えることにより複数列の集光ミラー13を効率良く配置することができるので、使用する土地面積に対して集光ミラー13が受ける光束面積の比率を大きくすることができ、高効率の太陽熱発電を実現することができる。 Moreover, according to the solar thermal power generation system which concerns on this embodiment, since the condensing mirror 13 of multiple rows can be efficiently arrange | positioned by providing the solar condensing system 10, a condensing mirror is used with respect to the land area to be used. The ratio of the area of the light flux received by 13 can be increased, and high-efficiency solar thermal power generation can be realized.
 本発明は、上述した実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、本実施形態に係る太陽集光システム10は、太陽熱発電への利用に限られない。太陽熱を利用した給湯、蒸気供給、暖房空調、冷房空調(吸収式冷凍機の高温熱源)など、様々な分野に活用することができる。特に、中規模プラントにおける工場の空調や蒸気供給などの用途に適している。また、レシーバ11に太陽電池を配置することにより、集光型の太陽電池システムとして活用することもできる。 For example, the solar condensing system 10 according to the present embodiment is not limited to use for solar thermal power generation. Hot water supply using solar heat, steam supply, heating air conditioning, cooling air conditioning (high temperature heat source of absorption refrigeration machine) can be used in various fields. It is particularly suitable for applications such as factory air conditioning and steam supply in medium-scale plants. Moreover, it can also utilize as a concentrating solar cell system by arrange | positioning a solar cell to the receiver 11. FIG.
 また、集光ミラー13は、必ずしも360度回転可能な構成である必要はなく、揺動可能な構成であっても良い。この場合、集光ミラー13の真下に回転スペースを設ける必要がないので、集光ミラー列A,Bの高さを一層低くすることができる。 Further, the condensing mirror 13 is not necessarily configured to be capable of rotating 360 degrees, and may be configured to be swingable. In this case, since it is not necessary to provide a rotation space directly below the condenser mirror 13, the height of the condenser mirror rows A and B can be further reduced.
 また、太陽集光システム10の集光ミラー13の反射部12は、必ずしも断面が放物線形状である必要はない。例えば、反射部12は、平面の部分を有していても良く、いわゆるフレネル型のミラー形状であっても良い。 Moreover, the reflecting part 12 of the condensing mirror 13 of the solar condensing system 10 does not necessarily have a parabolic cross section. For example, the reflection part 12 may have a flat part, and may be what is called a Fresnel type mirror shape.
 また、特許請求の範囲に記載された集光ミラーには、レシーバ等を除き、反射部と一体的に回転する各種部材が含まれる。例えば、反射部の裏側に大型のサポートフレームが取り付けられている場合には、当該サポートフレームも集光ミラーに含まれ、当該サポートフレームの端部が特許請求の範囲に記載された外縁端になり得る。 In addition, the condensing mirror described in the claims includes various members that rotate integrally with the reflecting portion, except for the receiver and the like. For example, when a large support frame is attached to the back side of the reflecting portion, the support frame is also included in the condensing mirror, and the end of the support frame becomes the outer edge end described in the claims. obtain.
 複数列の集光ミラーを効率良く配置できる太陽集光システム及び太陽熱発電システムとして利用可能である。 It can be used as a solar condensing system and a solar thermal power generation system that can efficiently arrange multiple rows of condensing mirrors.
 10…太陽集光システム 11…レシーバ 12…反射部 13…集光ミラー 14…支持台 15…ミラー基材 16…アーム部 20…アクチュエータ A,B,C…集光ミラー列 D…回転直径 E…土地に対する光束面積 G…使用土地面積 K…回転軌道 L…列間隔 N1,N2…外縁端 P…中心軸 Q…中心軸 R…回転半径 S1,S2…影となる範囲 T…太陽光 α1-α3…光束面積 β1-β3c…光束面積
 
DESCRIPTION OF SYMBOLS 10 ... Solar condensing system 11 ... Receiver 12 ... Reflection part 13 ... Condensing mirror 14 ... Support stand 15 ... Mirror base material 16 ... Arm part 20 ... Actuator A, B, C ... Condensing mirror row D ... Rotating diameter E ... Luminous flux area with respect to land G: Land area used K: Rotating orbit L: Row spacing N1, N2 ... Outer edge P ... Center axis Q ... Center axis R ... Rotation radius S1, S2 ... Shadow area T ... Sunlight α1-α3 ... Flux area β1-β3c ... Flux area

Claims (3)

  1.  直線状に延在するレシーバに対して集光する反射部を有する集光ミラーの列を複数備えたトラフ型の太陽集光システムであって、
     前記集光ミラーは、前記レシーバに沿って延在する中心軸を中心として回転可能又は揺動可能に構成され、前記中心軸は、前記中心軸と直交する方向において前記集光ミラーのうち前記中心軸から最も離れた端部となる外縁端と前記中心軸との直線距離が最小となるように位置することを特徴とする太陽集光システム。
    A trough-type solar condensing system comprising a plurality of rows of condensing mirrors having a reflecting portion that condenses light on a linearly extending receiver,
    The condensing mirror is configured to be rotatable or swingable about a central axis extending along the receiver, and the central axis is the center of the condensing mirror in a direction perpendicular to the central axis. A solar condensing system, wherein the solar light concentrating system is positioned such that a linear distance between an outer edge that is the end farthest from the axis and the central axis is minimum.
  2.  前記反射部の前記中心軸と垂直な断面は、前記レシーバを焦点とした放物線形状であることを特徴とする請求項1に記載の太陽集光システム。 The solar light collecting system according to claim 1, wherein a cross section perpendicular to the central axis of the reflecting portion has a parabolic shape with the receiver as a focal point.
  3.  直線状に延在するレシーバに対して集光する反射部を有する集光ミラーの列を複数備え、集光により前記レシーバが得た熱を利用して発電を行うトラフ型の太陽熱発電システムであって、
     前記集光ミラーは、前記レシーバに沿って延在する中心軸を中心として回転可能又は揺動可能に構成され、前記中心軸は、前記中心軸と直交する方向において前記集光ミラーのうち前記中心軸から最も離れた端部となる外縁端と前記中心軸との直線距離が最小となるように位置することを特徴とする太陽熱発電システム。
     
    A trough-type solar thermal power generation system that includes a plurality of condensing mirror rows each having a reflecting portion that condenses a linearly extending receiver, and that generates power using heat obtained by the receiver through condensing. And
    The condensing mirror is configured to be rotatable or swingable about a central axis extending along the receiver, and the central axis is the center of the condensing mirror in a direction perpendicular to the central axis. A solar thermal power generation system characterized by being positioned so that a linear distance between an outer edge end which is an end portion farthest from the axis and the central axis is minimized.
PCT/JP2012/062498 2011-07-06 2012-05-16 Solar light collection system and solar thermal electric power generation system WO2013005479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011150359A JP2013015304A (en) 2011-07-06 2011-07-06 Solar light collection system and solar thermal electric power generation system
JP2011-150359 2011-07-06

Publications (1)

Publication Number Publication Date
WO2013005479A1 true WO2013005479A1 (en) 2013-01-10

Family

ID=47436837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062498 WO2013005479A1 (en) 2011-07-06 2012-05-16 Solar light collection system and solar thermal electric power generation system

Country Status (2)

Country Link
JP (1) JP2013015304A (en)
WO (1) WO2013005479A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304975B2 (en) * 2013-09-03 2018-04-04 株式会社東芝 Solar heat collector
US9985156B2 (en) * 2013-11-01 2018-05-29 UNIVERSITé LAVAL Optical concentrator/diffuser using graded index waveguide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210463A (en) * 1977-07-11 1980-07-01 Escher William J D Multimode solar energy collector and process
JP2008039367A (en) * 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd Solar thermal power generation facility and heat medium supply facility
JP2009522534A (en) * 2006-01-06 2009-06-11 エヌイーピー・ソーラー・プロプライエタリー・リミテッド Reflector for solar energy collection system and solar energy collection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1003504A3 (en) * 1989-09-04 1992-04-07 Ven Irja Spiegelkonstruktie for collecting and koncentreren of solar radiation.
MX2008012118A (en) * 2006-03-28 2008-12-03 Rahmi Oguz Capan Parabolic solar trough systems with rotary tracking means.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210463A (en) * 1977-07-11 1980-07-01 Escher William J D Multimode solar energy collector and process
JP2009522534A (en) * 2006-01-06 2009-06-11 エヌイーピー・ソーラー・プロプライエタリー・リミテッド Reflector for solar energy collection system and solar energy collection system
JP2008039367A (en) * 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd Solar thermal power generation facility and heat medium supply facility

Also Published As

Publication number Publication date
JP2013015304A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5797737B2 (en) Solar heat collection system
US8365719B2 (en) Multi-receiver heliostat system architecture
El Gharbi et al. A comparative study between parabolic trough collector and linear Fresnel reflector technologies
JP4420902B2 (en) Solar energy integrated equipment
Ummadisingu et al. Concentrating solar power–technology, potential and policy in India
US9476612B2 (en) Beam-forming concentrating solar thermal array power systems
US20110000543A1 (en) Solar energy collection and conversion system
US20070186921A1 (en) Cylindrical solar energy collector
TW201109601A (en) Apparatus and system to lower cost per watt with concentrated linear solar panel
Machinda et al. Concentrating solar thermal power technologies: a review
MX2012012260A (en) A solar energy collector system.
JP2013539000A (en) Cross-line solar concentrator
US20110265783A1 (en) solar energy collecting system
CN102721195B (en) Solar condensation and tracking array horizontal directional collection system
US20140332054A1 (en) Solar collector having a pivotable concentrator arrangement
JP2013228184A (en) Linear solar concentrator and solar concentration power generation system
WO2013005479A1 (en) Solar light collection system and solar thermal electric power generation system
JP2012023108A (en) Tower type condensing type photovoltaic power generation system and light condensing method thereof
WO2011104400A1 (en) Parametric solar disk having a modular structure and mounting method thereof
Chayet et al. High efficiency, low cost parabolic dish system for cogeneration of electricity and heat
CN103795326A (en) Controllable dual-state reflective condensing solar heat-collection power generation apparatus
CN107702354B (en) Solar linear condensing device and array for integrally moving and tracking reflector
Saxena et al. Design and Performance of a Small Parabolic Trough System for Process Heat
KR101581456B1 (en) Sunlight generation and hot water system
US20150354856A1 (en) Trough collector with concentrator arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807705

Country of ref document: EP

Kind code of ref document: A1