JP2015093798A - Method for manufacturing multiple-oxide single crystal by using crucible made of iridium - Google Patents

Method for manufacturing multiple-oxide single crystal by using crucible made of iridium Download PDF

Info

Publication number
JP2015093798A
JP2015093798A JP2013233859A JP2013233859A JP2015093798A JP 2015093798 A JP2015093798 A JP 2015093798A JP 2013233859 A JP2013233859 A JP 2013233859A JP 2013233859 A JP2013233859 A JP 2013233859A JP 2015093798 A JP2015093798 A JP 2015093798A
Authority
JP
Japan
Prior art keywords
single crystal
iridium crucible
temperature
temperature range
iridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013233859A
Other languages
Japanese (ja)
Inventor
清水 寿一
Juichi Shimizu
寿一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013233859A priority Critical patent/JP2015093798A/en
Publication of JP2015093798A publication Critical patent/JP2015093798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a multiple-oxide single crystal such as a garnet-group single crystal capable of suppressing the early formation of cracks in an iridium crucible, thereby to elongate the lifetime of the crucible.SOLUTION: In a method for manufacturing a multiple-oxide single crystal which includes accommodating a material of a multiple-oxide in an iridium crucible arranged in a growth furnace and growing the multiple-oxide single crystal from a material molten liquid after the material of the multiple-oxide single crystal has been molten, the atmosphere in the growth furnace in which the iridium crucible is arranged is set to an inert gas atmosphere containing no oxygen, if the temperature of the iridium crucible is within a temperature range of 300°C to 1000°C. When the temperature of the iridium crucible is within the aforementioned temperature range, the atmosphere in the growth furnace is set to the inert gas atmosphere containing no oxygen so that the formation of cracks due to the oxidation of the iridium crucible can be suppressed.

Description

本発明は、Ir(イリジウム)製坩堝を用いて、GGG(ガドリニウム・ガリウム・ガーネット)、LT(タンタル酸リチウム)等の複合酸化物単結晶を育成する方法に係り、特に、イリジウム製坩堝の長寿命化が図られる複合酸化物単結晶の製造方法に関するものである。   The present invention relates to a method for growing a composite oxide single crystal such as GGG (gadolinium gallium garnet) or LT (lithium tantalate) using an Ir (iridium) crucible, and in particular, the length of an iridium crucible. The present invention relates to a method for producing a complex oxide single crystal with a long lifetime.

例えば、磁気光学デバイスに利用される希土類−鉄ガーネット結晶薄膜の育成には、GGG[ガドリニウム・ガリウム・ガーネット、代表的には、Gd3Ga512あるいは(Gd、Ca)3(Ga、Mg、Zr)512という組成式で表される複合酸化物]といったガーネット系の単結晶基板が用いられ、携帯電話等に利用されるSAWデバイスの製造には、LT[タンタル酸リチウム、代表的には、LiTaO3という組成式で表される複合酸化物]といった強誘電体酸化物の単結晶基板が用いられている。 For example, for the growth of rare earth-iron garnet crystal thin films used in magneto-optical devices, GGG [gadolinium gallium garnet, typically Gd 3 Ga 5 O 12 or (Gd, Ca) 3 (Ga, Mg , Zr) 5 O 12 , which is a garnet-based single crystal substrate] and is used for the manufacture of SAW devices used for cellular phones and the like, LT [lithium tantalate, typical For example, a single crystal substrate of a ferroelectric oxide such as a composite oxide represented by a composition formula of LiTaO 3 is used.

これ等複合酸化物の単結晶基板を製造するには、複数の高純度酸化物原料あるいは炭酸化物を混合しかつ仮焼して、複合酸化物化がある程度進行された複合酸化物の原料をまず調製する。次に、この原料を用い、Cz法(Czochralski Method)、VB法(Vertical Bridgman Method)、VGF法(Vertical Gradient Freeze Method)、EFG法(Edge-defined Film-fed Growth Method)等の方法により原料融液から単結晶を育成し(例えばGGGの育成については特許文献1参照、LTについては特許文献2〜3参照)、更に、この単結晶を機械加工することで所望形状の単結晶基板が得られる。   In order to manufacture these complex oxide single crystal substrates, a plurality of high-purity oxide raw materials or carbonates are mixed and calcined to first prepare a composite oxide raw material in which the composite oxide has progressed to some extent. To do. Next, this raw material is used to melt the raw material by methods such as Cz method (Czochralski Method), VB method (Vertical Bridgman Method), VGF method (Vertical Gradient Freeze Method), EFG method (Edge-defined Film-fed Growth Method). A single crystal is grown from the liquid (for example, refer to Patent Document 1 for growing GGG, and Patent Documents 2 to 3 for LT). Further, a single crystal substrate having a desired shape is obtained by machining the single crystal. .

ところで、これ等複合酸化物の単結晶の内、融点がおおよそ1000℃を越えるものについては、その育成温度が非常に高いこと、また、複合酸化物の融点以上の温度では昇華や還元等による結晶品質の劣化を防ぐため0.5〜3体積%程度の酸素を含む不活性雰囲気で結晶育成を行う必要があることから、通常、高融点貴金属であるイリジウム製の坩堝が用いられている(特許文献1の特許請求の範囲および特許文献3の実施例等参照)。   By the way, among these single crystals of complex oxides, those whose melting point exceeds approximately 1000 ° C. have a very high growth temperature, and at temperatures higher than the melting point of the complex oxide, crystals by sublimation, reduction, etc. Since it is necessary to carry out crystal growth in an inert atmosphere containing about 0.5 to 3% by volume of oxygen in order to prevent quality deterioration, iridium crucibles that are high melting point precious metals are usually used (patents) (Refer to claim of patent document 1 and examples of patent document 3).

そして、GGGやLT等の複合酸化物単結晶の製造コストを抑えるためには、非常に高価であるイリジウム製坩堝の寿命をいかに延ばすかという点が非常に重要になっている。   And in order to hold down the manufacturing cost of complex oxide single crystals, such as GGG and LT, the point of extending the life of a very expensive iridium crucible is very important.

特開昭55−136200号公報JP 55-136200 A 特開昭62−292698号公報JP 62-292698 A 特開平06−234597号公報Japanese Patent Laid-Open No. 06-234597

しかし、GGGやLT等上記複合酸化物単結晶の育成にイリジウム製坩堝を使用した場合、使用開始から比較的早期の段階で坩堝にクラックが発生し、継続してイリジウム製坩堝を使用できなくなるといった問題が存在した。   However, when an iridium crucible is used for growing the above complex oxide single crystal such as GGG or LT, a crack occurs in the crucible at a relatively early stage from the start of use, and the iridium crucible cannot be used continuously. There was a problem.

本発明はこのような問題に着目してなされたもので、その課題とするところは、イリジウム製坩堝の早期におけるクラックの発生を抑制し、イリジウム製坩堝の長寿命化が図られる複合酸化物単結晶の製造方法を提供することにある。   The present invention has been made paying attention to such a problem, and the problem is to suppress the occurrence of early cracks in the iridium crucible and to increase the life of the iridium crucible. The object is to provide a method for producing crystals.

育成炉内に配置されたイリジウム製坩堝を使用してGGGやLT等複合酸化物単結晶の育成を行なった場合、使用開始から比較的早期の段階でイリジウム製坩堝にクラックが発生し、融液漏れを引き起こして複合酸化物単結晶の育成を継続できなくなるという事態を本発明者等は経験した。   When a complex oxide single crystal such as GGG or LT is grown using an iridium crucible placed in a growth furnace, cracks occur in the iridium crucible at a relatively early stage from the start of use. The present inventors have experienced a situation in which the growth of the complex oxide single crystal cannot be continued due to leakage.

この原因について本発明者等が鋭意分析を行なったところ、300℃〜1000℃の温度域でイリジウム製坩堝が酸化されて部分的に酸化イリジウムとなり、かつ、1000℃を超える温度域において上記酸化イリジウムの還元が起こり、酸化と還元によりイリジウム製坩堝の粒界が膨張、収縮して上記クラックが発生していることを発見するに至った。本発明はこのような技術的発見に基づき完成されたものである。   The present inventors conducted an extensive analysis on this cause, and as a result, the iridium crucible was oxidized in the temperature range of 300 ° C. to 1000 ° C. to partially become iridium oxide, and the above iridium oxide in the temperature range exceeding 1000 ° C. As a result of the reduction, the grain boundary of the iridium crucible expands and contracts due to the oxidation and reduction, and the inventors have discovered that the cracks are generated. The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
育成炉内に配置されたイリジウム製坩堝に複合酸化物の原料を収容し、該複合酸化物の原料を融解させた後、上記複合酸化物の原料融液から複合酸化物単結晶を育成する複合酸化物単結晶の製造方法において、
イリジウム製坩堝の温度が300℃〜1000℃の温度域にあるとき、イリジウム製坩堝が配置された上記育成炉内の雰囲気を、酸素を含まない不活性ガス雰囲気に設定することを特徴とし、
請求項2に係る発明は、
請求項1に記載の複合酸化物単結晶の製造方法において、
上記イリジウム製坩堝の温度が1000℃を超えて原料が融解している温度域にあるとき、イリジウム製坩堝が配置された上記育成炉内の雰囲気を、0.5〜3体積%の酸素を含む不活性ガス雰囲気に設定することを特徴とし、
また、請求項3に係る発明は、
請求項1または2に記載の複合酸化物単結晶の製造方法において、
上記複合酸化物単結晶が、ガーネット系単結晶またはタンタル酸リチウム単結晶であることを特徴とするものである。
That is, the invention according to claim 1
A composite oxide material is housed in an iridium crucible placed in a growth furnace, the composite oxide material is melted, and then a composite oxide single crystal is grown from the composite oxide material melt. In the method for producing an oxide single crystal,
When the temperature of the iridium crucible is in the temperature range of 300 ° C. to 1000 ° C., the atmosphere in the growth furnace in which the iridium crucible is arranged is set to an inert gas atmosphere containing no oxygen,
The invention according to claim 2
In the manufacturing method of the complex oxide single crystal according to claim 1,
When the temperature of the iridium crucible exceeds 1000 ° C. and is in a temperature range where the raw material is melted, the atmosphere in the growth furnace in which the iridium crucible is arranged contains 0.5 to 3% by volume of oxygen. It is characterized by setting in an inert gas atmosphere,
The invention according to claim 3
In the manufacturing method of the complex oxide single crystal according to claim 1 or 2,
The complex oxide single crystal is a garnet single crystal or a lithium tantalate single crystal.

本発明は、育成炉内に配置された上記イリジウム製坩堝の酸化を防止するため、イリジウム製坩堝の温度が300℃〜1000℃の温度域にあるときは、育成炉内の雰囲気を、酸素を含まない不活性ガス雰囲気に設定することを特徴としている。   In the present invention, in order to prevent oxidation of the iridium crucible disposed in the growth furnace, when the temperature of the iridium crucible is in a temperature range of 300 ° C. to 1000 ° C., the atmosphere in the growth furnace is oxygenated. It is characterized by an inert gas atmosphere not included.

但し、イリジウム製坩堝の温度が、上記温度域(300℃〜1000℃の温度域)以外の300℃未満の場合、および、1000℃を超えて結晶が育成される温度条件未満の場合には、育成炉内に配置されたイリジウム製坩堝は酸化されないため、育成炉内の雰囲気について、0.5〜3体積%の酸素を含む不活性ガス雰囲気に設定してもよいし、酸素を含まない不活性ガス雰囲気に設定してもよく任意である。   However, when the temperature of the iridium crucible is less than 300 ° C. other than the above temperature range (temperature range of 300 ° C. to 1000 ° C.), and when the temperature exceeds 1000 ° C. and less than the temperature condition under which the crystal is grown, Since the iridium crucible placed in the growth furnace is not oxidized, the atmosphere in the growth furnace may be set to an inert gas atmosphere containing 0.5 to 3% by volume of oxygen, or oxygen-free crucibles. An active gas atmosphere may be set and is arbitrary.

また、本発明に係る複合酸化物単結晶の製造方法は、ガーネット系単結晶やタンタル酸リチウム単結晶の育成に有効であるが、結晶育成の温度が1500℃を越える他の複合酸化物単結晶の育成に応用することも可能である。   The method for producing a complex oxide single crystal according to the present invention is effective for growing a garnet-based single crystal or a lithium tantalate single crystal, but other complex oxide single crystals having a crystal growth temperature exceeding 1500 ° C. It is also possible to apply to the development of

本発明に係る複合酸化物単結晶の製造方法によれば、使用開始から比較的早期の段階でイリジウム製坩堝にクラックが発生する現象を回避できる。このため、イリジウム製坩堝の寿命が伸びる分、複合酸化物単結晶基板の製造コストを低減できる効果を有する。   According to the method for producing a complex oxide single crystal according to the present invention, it is possible to avoid a phenomenon in which cracks occur in an iridium crucible at a relatively early stage from the start of use. For this reason, it has the effect that the manufacturing cost of a complex oxide single crystal substrate can be reduced by the extent that the life of an iridium crucible is extended.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、上述したように300℃〜1000℃の温度域においてイリジウム製坩堝が部分的に酸化される現象を本発明者等が発見したことにより完成されている。   The present invention has been completed as a result of the discovery by the present inventors of the phenomenon that the iridium crucible is partially oxidized in the temperature range of 300 ° C. to 1000 ° C. as described above.

すなわち、本発明に係る合酸化物単結晶の製造方法は、
育成炉内に配置されたイリジウム製坩堝に複合酸化物の原料を収容し、該複合酸化物の原料を融解させた後、上記複合酸化物の原料融液から複合酸化物単結晶を育成する複合酸化物単結晶の製造方法において、
イリジウム製坩堝の温度が300℃〜1000℃の温度域にあるとき、イリジウム製坩堝が配置された上記育成炉内の雰囲気を、酸素を含まない不活性ガス雰囲気に設定することを特徴とするものである。
That is, the method for producing a mixed oxide single crystal according to the present invention includes:
A composite oxide material is housed in an iridium crucible placed in a growth furnace, the composite oxide material is melted, and then a composite oxide single crystal is grown from the composite oxide material melt. In the method for producing an oxide single crystal,
When the temperature of the iridium crucible is in a temperature range of 300 ° C. to 1000 ° C., the atmosphere in the growth furnace in which the iridium crucible is arranged is set to an inert gas atmosphere not containing oxygen. It is.

また、イリジウム製坩堝の温度が1000℃を超えて原料が融解している温度域にあるときは、イリジウム製坩堝が配置された上記育成炉内の雰囲気を、酸素を含む不活性ガス雰囲気に設定することが好ましい。酸素を含む不活性ガス雰囲気に設定するのは、以下の理由による。すなわち、1000℃を超えて原料が融解している温度域にあるときは、通常の単結晶育成の場合と同様、複合酸化物原料の昇華、還元や酸化イリジウム製介在物の発生等が起こって良質な単結晶が得られなくなるからである。ここで、不活性ガスに含まれる酸素濃度は、GGGやLT等の単結晶育成時に用いられる酸素濃度であり、通常、0.5〜3体積%である。尚、上記不活性ガス雰囲気としては、窒素雰囲気、アルゴン(Ar)等の不活性雰囲気が例示される。但し、単結晶育成中において上記雰囲気を維持するためには多量のガスを使用することが必要で、アルゴン等の高価なガスを使用することは実用的ではなく、工業的には安価な窒素を用いることが好ましい。   In addition, when the temperature of the iridium crucible exceeds 1000 ° C. and is in the temperature range where the raw material is melted, the atmosphere in the growth furnace where the iridium crucible is arranged is set to an inert gas atmosphere containing oxygen It is preferable to do. The inert gas atmosphere containing oxygen is set for the following reason. That is, when it is in the temperature range where the raw material is melted above 1000 ° C., as in the case of normal single crystal growth, sublimation of the composite oxide raw material, reduction, generation of inclusions made of iridium oxide, etc. occur. This is because a high-quality single crystal cannot be obtained. Here, the oxygen concentration contained in the inert gas is an oxygen concentration used when growing a single crystal such as GGG or LT, and is usually 0.5 to 3% by volume. Examples of the inert gas atmosphere include a nitrogen atmosphere and an inert atmosphere such as argon (Ar). However, in order to maintain the above atmosphere during single crystal growth, it is necessary to use a large amount of gas. It is not practical to use an expensive gas such as argon, and industrially inexpensive nitrogen is used. It is preferable to use it.

また、育成炉内における単結晶育成前の昇温過程と単結晶育成後の降温過程においても、上記イリジウム製坩堝の温度が300℃〜1000℃の温度域にあるときは、酸素を含まない不活性ガス雰囲気に設定することを要する。この理由は、上述したようにイリジウム製坩堝が部分的に酸化されてしまうからである。すなわち、300℃〜1000℃の温度域を、単結晶育成時と同様、酸素を含む雰囲気にすると、比較的早期の段階でイリジウム製坩堝にクラックが発生して坩堝の使用ができなくなるからである。尚、不活性ガス雰囲気として窒素雰囲気が選択された場合、工業用窒素には、通常、10ppm程度以下の酸素が含まれることから、10ppm以下の不純物としての酸素は許容される。また、300℃〜1000℃の温度域においては酸化物の昇華や還元はほとんど起こらないため、酸素を含まない不活性ガス雰囲気に設定しても得られる単結晶の品質に特に問題は生じない。   Also, in the temperature rising process before the single crystal growth in the growth furnace and the temperature lowering process after the single crystal growth, when the temperature of the iridium crucible is in the temperature range of 300 ° C. to 1000 ° C., oxygen is not included. It is necessary to set an active gas atmosphere. This is because the iridium crucible is partially oxidized as described above. That is, if the temperature range of 300 ° C. to 1000 ° C. is made an oxygen-containing atmosphere as in the case of single crystal growth, cracks occur in the iridium crucible at a relatively early stage and the crucible cannot be used. . When a nitrogen atmosphere is selected as the inert gas atmosphere, industrial nitrogen usually contains about 10 ppm or less of oxygen, so that oxygen as an impurity of 10 ppm or less is allowed. In addition, in the temperature range of 300 ° C. to 1000 ° C., oxide sublimation and reduction hardly occur, so that there is no particular problem with the quality of the single crystal obtained even when an inert gas atmosphere containing no oxygen is set.

ここで、上記イリジウム製坩堝の温度が300℃〜1000℃の温度域にあるとき、イリジウム製坩堝が配置された育成炉内の雰囲気を、酸素を含まない不活性ガス雰囲気に設定する理由は、上述したように300℃〜1000℃の温度域でイリジウム製坩堝が酸化されて部分的に酸化イリジウムとなり、かつ、1000℃を超える温度域において上記酸化イリジウムの還元が起こり、酸化と還元によりイリジウム製坩堝の粒界が膨張、収縮して上記クラックが発生してしまう現象を回避するためである。   Here, when the temperature of the iridium crucible is in the temperature range of 300 ° C. to 1000 ° C., the reason for setting the atmosphere in the growth furnace in which the iridium crucible is arranged to an inert gas atmosphere not containing oxygen is as follows: As described above, the iridium crucible is oxidized in the temperature range of 300 ° C. to 1000 ° C. to partially become iridium oxide, and the iridium oxide is reduced in the temperature range exceeding 1000 ° C., and the iridium oxide is oxidized and reduced. This is to avoid the phenomenon that the cracks occur due to expansion and contraction of the grain boundaries of the crucible.

尚、上記イリジウム製坩堝の温度については、育成炉に設けた窓を通して放射温度計を用いる等の手段を用いて計測することができる。   In addition, about the temperature of the said iridium crucible, it can measure using means, such as using a radiation thermometer through the window provided in the growth furnace.

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明の技術的内容が以下の実施例により限定されるものではない。   Examples of the present invention will be specifically described below with reference to comparative examples. However, the technical contents of the present invention are not limited to the following examples.

[実施例1]
GGG(ガドリニウム・ガリウム・ガーネット)結晶用の原料として、50.3重量%のGd33、38.5重量%のGa23、8.1重量%のZrO2、1.8重量%のCaO、1.3重量%のMgOを適用し、これ等原料粉末を攪拌機で混合した後、ビニール袋に詰め、更にゴム型に入れ、かつ、CIP装置に収容して原料粉末の成形体を作製した。
[Example 1]
As raw materials for GGG (gadolinium gallium garnet) crystals, 50.3% by weight Gd 3 O 3 , 38.5% by weight Ga 2 O 3 , 8.1% by weight ZrO 2 , 1.8% by weight CaO, 1.3 wt% MgO was applied, and these raw material powders were mixed with a stirrer, then packed in a plastic bag, further placed in a rubber mold, and housed in a CIP device to form a raw material powder compact. Produced.

次に、作製された成形体を白金坩堝中に挿入し、この状態で大気中1350℃、6時間仮焼して、複合酸化物化がある程度進行した複合酸化物の原料を得た。   Next, the produced molded body was inserted into a platinum crucible, and in this state, calcined in the atmosphere at 1350 ° C. for 6 hours to obtain a composite oxide raw material in which composite oxide formation progressed to some extent.

尚、得られた複数ロットの複合酸化物原料について、上記高温加熱処理(仮焼)に起因して白金坩堝から複合酸化物原料に混入されるPtの濃度を分析したところ、いずれの複合酸化物原料も108〜327ppmであった。   The obtained complex oxide raw materials of a plurality of lots were analyzed for the concentration of Pt mixed into the composite oxide raw material from the platinum crucible due to the high temperature heat treatment (calcination). The raw material was also 108 to 327 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

すなわち、育成炉内に配置された外径φ150mm、高さ150mm、厚さ2mmであるイリジウム製坩堝の温度が、300℃〜1000℃の温度域、および、1000℃を超えて1400℃の温度域にあるときは、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が1400℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   That is, the temperature of an iridium crucible having an outer diameter of 150 mm, a height of 150 mm, and a thickness of 2 mm disposed in the growth furnace is a temperature range of 300 ° C. to 1000 ° C. and a temperature range of 1400 ° C. exceeding 1000 ° C. The temperature in the growth furnace is set to a nitrogen atmosphere that does not contain oxygen, and the temperature range until the raw material melts when the temperature of the iridium crucible exceeds 1400 ° C., and the raw material melts. When the temperature was within the temperature range, the atmosphere in the growth furnace was set to a nitrogen atmosphere containing 1% by volume of oxygen, and a GGG single crystal was grown by the Cz method.

尚、イリジウム製坩堝の温度が、初期温度から300℃未満の温度域にあるときも、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定した。   Even when the temperature of the iridium crucible was in the temperature range lower than 300 ° C. from the initial temperature, the atmosphere in the growth furnace was set to a nitrogen atmosphere not containing oxygen.

また、GGG単結晶の育成は、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施した。   The growth of the GGG single crystal was repeated many times while adding the raw material of the complex oxide to the iridium crucible.

そして、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Then, after the growth of the single crystal, the appearance of the iridium crucible was observed to confirm the presence or absence of cracks.

その結果、32ロットの単結晶育成後にもクラックの発生がないことを確認できた。   As a result, it was confirmed that no cracks occurred even after growing 32 lots of single crystals.

[実施例2]
GGG結晶用の原料として、50.3重量%のGd33、38.5重量%のGa23、8.1重量%のZrO2、1.8重量%のCaO、1.3重量%のMgOを適用し、かつ、実施例1と同様の方法により原料粉末の成形体を作製した。
[Example 2]
As raw materials for GGG crystals, 50.3% by weight Gd 3 O 3 , 38.5% by weight Ga 2 O 3 , 8.1% by weight ZrO 2 , 1.8% by weight CaO, 1.3% by weight % MgO was applied, and a raw material powder compact was produced in the same manner as in Example 1.

次に、作製された成形体を、実施例1と同様の方法により仮焼して、複合酸化物化がある程度進行した複合酸化物の原料を得た。   Next, the produced molded body was calcined by the same method as in Example 1 to obtain a composite oxide raw material in which composite oxide conversion progressed to some extent.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も111〜329ppmであった。   As in Example 1, the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, and all the composite oxide raw materials were 111 to 329 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

すなわち、育成炉内に配置されたイリジウム製坩堝の温度が、300℃〜1000℃の温度域にあるときは、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、イリジウム製坩堝の温度が1000℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   That is, when the temperature of the iridium crucible disposed in the growth furnace is in the temperature range of 300 ° C. to 1000 ° C., the atmosphere in the growth furnace is set to a nitrogen atmosphere not containing oxygen, and the iridium crucible is set. When the temperature is higher than 1000 ° C. until the raw material melts and in the temperature range where the raw material is melted, the atmosphere in the growth furnace is changed to a nitrogen atmosphere containing 1% by volume of oxygen. The GGG single crystal was grown by the Cz method.

尚、イリジウム製坩堝の温度が、初期温度から300℃未満の温度域にあるときも、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定した。   Even when the temperature of the iridium crucible was in the temperature range lower than 300 ° C. from the initial temperature, the atmosphere in the growth furnace was set to a nitrogen atmosphere not containing oxygen.

また、GGG単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施した。   Further, the growth of the GGG single crystal was repeated many times as in Example 1 while adding the raw material of the complex oxide to the iridium crucible.

そして、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Then, after the growth of the single crystal, the appearance of the iridium crucible was observed to confirm the presence or absence of cracks.

その結果、30ロットの単結晶育成後にもクラックの発生がないことを確認できた。   As a result, it was confirmed that no cracks occurred even after growing 30 lots of single crystals.

[実施例3]
GGG結晶用の原料として、54.0重量%のGd33、46.0重量%のGa23を適用し、かつ、実施例1と同様の方法により原料粉末の成形体を作製した。
[Example 3]
As a raw material for the GGG crystal, 54.0% by weight of Gd 3 O 3 and 46.0% by weight of Ga 2 O 3 were applied, and a raw material powder compact was produced in the same manner as in Example 1. .

次に、作製された成形体を、実施例1と同様の方法により仮焼して、複合酸化物化がある程度進行した複合酸化物の原料を得た。   Next, the produced molded body was calcined by the same method as in Example 1 to obtain a composite oxide raw material in which composite oxide conversion progressed to some extent.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も89〜367ppmであった。   In addition, as in Example 1, the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, and all the composite oxide raw materials were 89 to 367 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

すなわち、育成炉内に配置されたイリジウム製坩堝の温度が、300℃〜1000℃の温度域、および、1000℃を超えて1200℃の温度域にあるときは、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が1200℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   That is, when the temperature of the iridium crucible placed in the growth furnace is in the temperature range of 300 ° C. to 1000 ° C. and in the temperature range of 1200 ° C. exceeding 1000 ° C., the atmosphere in the growth furnace is When the temperature is set in a nitrogen atmosphere not containing oxygen and the temperature of the iridium crucible exceeds 1200 ° C. and the raw material is melted, and in the temperature range where the raw material is melted, the above growth furnace The inside atmosphere was set to a nitrogen atmosphere containing 1% by volume of oxygen, and a GGG single crystal was grown by the Cz method.

尚、イリジウム製坩堝の温度が、初期温度から300℃未満の温度域にあるときも、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定した。   Even when the temperature of the iridium crucible was in the temperature range lower than 300 ° C. from the initial temperature, the atmosphere in the growth furnace was set to a nitrogen atmosphere not containing oxygen.

また、GGG単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施した。   Further, the growth of the GGG single crystal was repeated many times as in Example 1 while adding the raw material of the complex oxide to the iridium crucible.

そして、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Then, after the growth of the single crystal, the appearance of the iridium crucible was observed to confirm the presence or absence of cracks.

その結果、32ロットの単結晶育成後にもクラックの発生がないことを確認できた。   As a result, it was confirmed that no cracks occurred even after growing 32 lots of single crystals.

[実施例4]
LT(タンタル酸リチウム)結晶用の原料として、86.4重量%のTa23、13.6重量%のLi2CO3を適用し、これ等原料粉末を攪拌機で混合した後、実施例1と同様に、CIP装置を用いて原料粉末の成形体を作製した。
[Example 4]
As a raw material for LT (lithium tantalate) crystals, 86.4% by weight of Ta 2 O 3 and 13.6% by weight of Li 2 CO 3 were applied, and these raw material powders were mixed with a stirrer. In the same manner as in Example 1, a raw material powder compact was prepared using a CIP apparatus.

次に、作製された成形体を白金坩堝中に挿入し、この状態で大気中1500℃、15時間仮焼して、複合酸化物化がある程度進行した複合酸化物の原料を得た。   Next, the formed compact was inserted into a platinum crucible and calcined in this state at 1500 ° C. for 15 hours to obtain a composite oxide raw material in which composite oxide conversion progressed to some extent.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も77〜582ppmであった。   As in Example 1, the Pt concentration in the obtained composite oxide raw materials of a plurality of lots was analyzed, and all the composite oxide raw materials were 77 to 582 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるLT単結晶(融点:1750℃)の育成を実施した。   An LT single crystal (melting point: 1750 ° C.) was grown by the Cz method using the composite oxide raw material thus obtained and an iridium crucible.

すなわち、育成炉内に配置された外径φ150mm、高さ150mm、厚さ2mmであるイリジウム製坩堝の温度が、300℃〜1000℃の温度域、および、1000℃を超えて1200℃の温度域にあるときは、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が1200℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、2体積%の酸素を含む窒素雰囲気に設定してCz法によるLT単結晶の育成を行なった。   That is, the temperature of an iridium crucible having an outer diameter of 150 mm, a height of 150 mm, and a thickness of 2 mm disposed in the growth furnace is a temperature range of 300 ° C. to 1000 ° C. and a temperature range of more than 1000 ° C. and 1200 ° C. The temperature in the growth furnace is set to a nitrogen atmosphere not containing oxygen, and the temperature range until the temperature of the iridium crucible exceeds 1200 ° C. and the material melts, and the material melts When the temperature was within the temperature range, the atmosphere in the growth furnace was set to a nitrogen atmosphere containing 2% by volume of oxygen, and the LT single crystal was grown by the Cz method.

尚、イリジウム製坩堝の温度が、初期温度から300℃未満の温度域にあるときも、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定した。   Even when the temperature of the iridium crucible was in the temperature range lower than 300 ° C. from the initial temperature, the atmosphere in the growth furnace was set to a nitrogen atmosphere not containing oxygen.

また、LT単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施した。   Further, the growth of the LT single crystal was repeated many times as in Example 1 while adding the raw material of the complex oxide to the iridium crucible.

そして、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Then, after the growth of the single crystal, the appearance of the iridium crucible was observed to confirm the presence or absence of cracks.

その結果、34ロットの単結晶育成後にもクラックの発生がないことを確認できた。   As a result, it was confirmed that no cracks were generated even after growing 34 single crystals.

[実施例5]
LT結晶用の原料として、86.4重量%のTa23、13.6重量%のLi2CO3を適用し、かつ、実施例4と同様の方法により原料粉末の成形体を作製した。
[Example 5]
As the raw material for the LT crystal, 86.4% by weight of Ta 2 O 3 and 13.6% by weight of Li 2 CO 3 were applied, and a compact of the raw material powder was produced in the same manner as in Example 4. .

次に、作製された成形体を白金坩堝中に挿入し、この状態で大気中1500℃、15時間仮焼して、複合酸化物化がある程度進行した複合酸化物の原料を得た。   Next, the formed compact was inserted into a platinum crucible and calcined in this state at 1500 ° C. for 15 hours to obtain a composite oxide raw material in which composite oxide conversion progressed to some extent.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も73〜616ppmであった。   As in Example 1, the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, and all the composite oxide raw materials were 73 to 616 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるLT単結晶(融点:1750℃)の育成を実施した。   An LT single crystal (melting point: 1750 ° C.) was grown by the Cz method using the composite oxide raw material thus obtained and an iridium crucible.

すなわち、育成炉内に配置された外径φ150mm、高さ150mm、厚さ2mmであるイリジウム製坩堝の温度が、300℃〜1000℃の温度域、および、1000℃を超えて1500℃の温度域にあるときは、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が1500℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、2体積%の酸素を含む窒素雰囲気に設定してCz法によるLT単結晶の育成を行なった。   That is, the temperature of an iridium crucible having an outer diameter of 150 mm, a height of 150 mm, and a thickness of 2 mm disposed in the growth furnace is a temperature range of 300 ° C. to 1000 ° C. and a temperature range of more than 1000 ° C. and 1500 ° C. The temperature in the growth furnace is set to a nitrogen atmosphere containing no oxygen, and the temperature range until the temperature of the iridium crucible exceeds 1500 ° C. and the raw material melts, and the raw material melts When the temperature was within the temperature range, the atmosphere in the growth furnace was set to a nitrogen atmosphere containing 2% by volume of oxygen, and the LT single crystal was grown by the Cz method.

尚、イリジウム製坩堝の温度が、初期温度から300℃未満の温度域にあるときも、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定した。   Even when the temperature of the iridium crucible was in the temperature range lower than 300 ° C. from the initial temperature, the atmosphere in the growth furnace was set to a nitrogen atmosphere not containing oxygen.

また、LT単結晶の育成は、実施例4と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施した。   Further, the growth of the LT single crystal was repeated many times as in Example 4 while adding the raw material of the complex oxide to the iridium crucible.

そして、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Then, after the growth of the single crystal, the appearance of the iridium crucible was observed to confirm the presence or absence of cracks.

その結果、33ロットの単結晶育成後にもクラックの発生がないことを確認できた。   As a result, it was confirmed that no cracks occurred even after growing single lots of 33 lots.

[比較例1]
実施例1と同様にして、複合酸化物化がある程度進行した複合酸化物の原料を得た。
[Comparative Example 1]
In the same manner as in Example 1, a composite oxide raw material in which composite oxide formation progressed to some extent was obtained.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も113〜258ppmであった。   As in Example 1, the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, and all the composite oxide raw materials were 113 to 258 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

但し、育成炉内に配置されたイリジウム製坩堝の温度が、初期温度から300℃未満の温度域、300℃〜1000℃の温度域、1000℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域(すなわち、全ての温度域)にあるとき、育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   However, the temperature of the iridium crucible placed in the growth furnace is less than 300 ° C. from the initial temperature, 300 ° C. to 1000 ° C., over 1000 ° C. until the raw material melts, and When the raw material is in a melting temperature range (that is, all temperature ranges), the atmosphere in the growth furnace is set to a nitrogen atmosphere containing 1% by volume of oxygen to grow a GGG single crystal by the Cz method. I did it.

また、GGG単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施し、かつ、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Further, the growth of the GGG single crystal was repeated many times while adding the raw material of the complex oxide to the iridium crucible as in Example 1, and the appearance of the iridium crucible was observed after the growth of the single crystal. The presence or absence of cracks was confirmed.

そして、3ロットのGGG単結晶の育成後においてクラックの発生が認められ、それ以上の結晶の育成を断念した。   Then, after the growth of 3 lots of GGG single crystal, the occurrence of cracks was observed, and the further growth of crystals was abandoned.

[比較例2]
実施例3と同様にして、複合酸化物化がある程度進行した複合酸化物の原料を得た。
[Comparative Example 2]
In the same manner as in Example 3, a composite oxide raw material in which composite oxide formation progressed to some extent was obtained.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も99〜294ppmであった。   In addition, as in Example 1, the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, and all the complex oxide raw materials were 99 to 294 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

但し、育成炉内に配置されたイリジウム製坩堝の温度が、初期温度から300℃未満の温度域、300℃〜800℃の温度域にあるときは、育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、イリジウム製坩堝の温度が800℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   However, when the temperature of the iridium crucible placed in the growth furnace is in the temperature range of less than 300 ° C. from the initial temperature, and in the temperature range of 300 ° C. to 800 ° C., the atmosphere in the growth furnace does not contain oxygen. When the temperature is set in a nitrogen atmosphere and the temperature of the iridium crucible exceeds 800 ° C. until the raw material melts, and in the temperature range where the raw material is melted, the atmosphere in the growth furnace is 1 A GGG single crystal was grown by the Cz method in a nitrogen atmosphere containing volume% oxygen.

また、GGG単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施し、かつ、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Further, the growth of the GGG single crystal was repeated many times while adding the raw material of the complex oxide to the iridium crucible as in Example 1, and the appearance of the iridium crucible was observed after the growth of the single crystal. The presence or absence of cracks was confirmed.

そして、5ロットのGGG単結晶の育成後においてクラックの発生が認められ、それ以上の結晶の育成を断念した。   Then, after the growth of 5 lots of GGG single crystal, the generation of cracks was observed, and the further crystal growth was abandoned.

[比較例3]
実施例1と同様にして、複合酸化物化がある程度進行した複合酸化物の原料を得た。
[Comparative Example 3]
In the same manner as in Example 1, a composite oxide raw material in which composite oxide formation progressed to some extent was obtained.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も75〜581ppmであった。   As in Example 1, the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, and all the composite oxide raw materials were 75 to 581 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

但し、育成炉内に配置されたイリジウム製坩堝の温度が、400℃〜1000℃の温度域にあるときは、育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、イリジウム製坩堝の温度が、初期温度から400℃未満の温度域、1000℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   However, when the temperature of the iridium crucible placed in the growth furnace is in the temperature range of 400 ° C. to 1000 ° C., the atmosphere in the growth furnace is set to a nitrogen atmosphere not containing oxygen, and the iridium crucible When the temperature is in the temperature range from the initial temperature to less than 400 ° C., the temperature range until the raw material melts exceeding 1000 ° C., and the temperature range in which the raw material is melted, the atmosphere in the growth furnace is A GGG single crystal was grown by the Cz method in a nitrogen atmosphere containing 1% by volume of oxygen.

また、GGG単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施し、かつ、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Further, the growth of the GGG single crystal was repeated many times while adding the raw material of the complex oxide to the iridium crucible as in Example 1, and the appearance of the iridium crucible was observed after the growth of the single crystal. The presence or absence of cracks was confirmed.

そして、14ロットのGGG単結晶の育成後においてクラックの発生が認められ、それ以上の結晶の育成を断念した。   Then, after the growth of 14 lots of GGG single crystals, the occurrence of cracks was observed, and further crystal growth was abandoned.

[比較例4]
実施例1と同様にして、複合酸化物化がある程度進行した複合酸化物の原料を得た。
[Comparative Example 4]
In the same manner as in Example 1, a composite oxide raw material in which composite oxide formation progressed to some extent was obtained.

尚、実施例1と同様、得られた複数ロットの複合酸化物原料におけるPt濃度を分析したところ、いずれの複合酸化物原料も81〜342ppmであった。   As in Example 1, when the Pt concentration in the obtained complex oxide raw materials of a plurality of lots was analyzed, all the complex oxide raw materials were 81 to 342 ppm.

こうして得られた複合酸化物の原料とイリジウム製坩堝を用い、Cz法によるGGG単結晶(融点:1850℃)の育成を実施した。   A GGG single crystal (melting point: 1850 ° C.) was grown by the Cz method using the raw material of the composite oxide thus obtained and an iridium crucible.

但し、育成炉内に配置されたイリジウム製坩堝の温度が、800℃〜1000℃の温度域にあるときは、育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、イリジウム製坩堝の温度が、初期温度から800℃未満の温度域、1000℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域にあるときは、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定してCz法によるGGG単結晶の育成を行なった。   However, when the temperature of the iridium crucible placed in the growth furnace is in the temperature range of 800 ° C. to 1000 ° C., the atmosphere in the growth furnace is set to a nitrogen atmosphere containing no oxygen, and the iridium crucible When the temperature is in the temperature range from the initial temperature to less than 800 ° C., the temperature range from 1000 ° C. until the raw material is melted, and the temperature range in which the raw material is melted, the atmosphere in the growth furnace is A GGG single crystal was grown by the Cz method in a nitrogen atmosphere containing 1% by volume of oxygen.

また、GGG単結晶の育成は、実施例1と同様、イリジウム製坩堝に複合酸化物の原料を追加しながら何度も繰り返し実施し、かつ、単結晶の育成後に、イリジウム製坩堝の外観を観察してクラック発生の有無を確認した。   Further, the growth of the GGG single crystal was repeated many times while adding the raw material of the complex oxide to the iridium crucible as in Example 1, and the appearance of the iridium crucible was observed after the growth of the single crystal. The presence or absence of cracks was confirmed.

そして、7ロットのGGG単結晶の育成後においてクラックの発生が認められ、それ以上の結晶の育成を断念した。   Then, after the growth of 7 lots of GGG single crystals, the occurrence of cracks was observed, and further crystal growth was abandoned.

[評 価]
(1)育成炉内に配置されたイリジウム製坩堝の温度が300℃〜1000℃の温度域にあるときに、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定している実施例1〜5に係る複合酸化物単結晶の製造方法は、30ロット〜34ロットの単結晶育成後においてもイリジウム製坩堝にクラックが発生しておらず、イリジウム製坩堝の長寿命化が図られていることが確認される。
[Evaluation]
(1) Example in which the atmosphere in the growth furnace is set to a nitrogen atmosphere not containing oxygen when the temperature of the iridium crucible disposed in the growth furnace is in the temperature range of 300 ° C. to 1000 ° C. In the method for producing a complex oxide single crystal according to 1 to 5, no cracks are generated in the iridium crucible even after growing 30 to 34 single crystals, and the life of the iridium crucible is extended. It is confirmed that

(2)他方、育成炉内に配置されたイリジウム製坩堝の温度が400℃〜1000℃の温度域にあるときに、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が初期温度から400℃未満の温度域にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定している比較例3に係る複合酸化物単結晶の製造方法は、14ロットのGGG単結晶の育成後においてクラックの発生が認められており、坩堝の長寿命化が十分に図られていないことが確認される。 (2) On the other hand, when the temperature of the iridium crucible placed in the growth furnace is in the temperature range of 400 ° C. to 1000 ° C., the atmosphere in the growth furnace is set to a nitrogen atmosphere containing no oxygen, and When the temperature of the iridium crucible is in the temperature range lower than 400 ° C. from the initial temperature, the composite oxidation according to Comparative Example 3 in which the atmosphere in the growth furnace is set to a nitrogen atmosphere containing 1% by volume of oxygen In the manufacturing method of the product single crystal, cracks are observed after the growth of 14 lots of GGG single crystal, and it is confirmed that the life of the crucible is not sufficiently extended.

比較例3に係る複合酸化物単結晶の製造方法は、イリジウム製坩堝の温度が300℃〜400℃未満の温度域にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定しているため、イリジウム製坩堝の酸化が起こったことによるものと思われる。   In the method for producing a complex oxide single crystal according to Comparative Example 3, when the temperature of the iridium crucible is in a temperature range of 300 ° C. to less than 400 ° C., the atmosphere in the growth furnace contains 1% by volume of oxygen. This is probably due to the fact that the iridium crucible was oxidized because the nitrogen atmosphere was set.

(3)育成炉内に配置されたイリジウム製坩堝の温度が800℃〜1000℃の温度域にあるときに、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が初期温度から800℃未満の温度域にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定している比較例4に係る複合酸化物単結晶の製造方法は、7ロットのGGG単結晶の育成後においてクラックの発生が認められており、比較例3と較べて坩堝の長寿命化が更に図られていないことが確認される。 (3) When the temperature of the iridium crucible arranged in the growth furnace is in the temperature range of 800 ° C. to 1000 ° C., the atmosphere in the growth furnace is set to a nitrogen atmosphere containing no oxygen, and iridium When the temperature of the crucible is in the temperature range below 800 ° C. from the initial temperature, the atmosphere in the growth furnace is set to a nitrogen atmosphere containing 1% by volume of oxygen. In the crystal production method, cracks were observed after the growth of 7 lots of GGG single crystal, confirming that the life of the crucible was not further extended as compared with Comparative Example 3.

比較例4に係る複合酸化物単結晶の製造方法は、イリジウム製坩堝の温度が300℃〜800℃未満の温度域にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定しているため、比較例3と較べてイリジウム製坩堝の酸化が更に起こったことによるものと思われる。   In the method for producing a complex oxide single crystal according to Comparative Example 4, when the temperature of the iridium crucible is in a temperature range of 300 ° C. to less than 800 ° C., the atmosphere in the growth furnace contains 1% by volume of oxygen. This is probably because the iridium crucible was further oxidized as compared with Comparative Example 3 because the nitrogen atmosphere was set.

(4)また、育成炉内に配置されたイリジウム製坩堝の温度が300℃〜800℃の温度域にあるときに、上記育成炉内の雰囲気を、酸素を含まない窒素雰囲気に設定し、かつ、イリジウム製坩堝の温度が800℃を超えて1000℃の温度域にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定している比較例2に係る複合酸化物単結晶の製造方法は、5ロットのGGG単結晶の育成後においてクラックの発生が認められており、比較例3および比較例4と較べて坩堝の長寿命化が更に図られていないことが確認される。 (4) Moreover, when the temperature of the iridium crucible arranged in the growth furnace is in a temperature range of 300 ° C. to 800 ° C., the atmosphere in the growth furnace is set to a nitrogen atmosphere containing no oxygen, and When the temperature of the iridium crucible exceeds 800 ° C. and is in the temperature range of 1000 ° C., the composite according to Comparative Example 2 in which the atmosphere in the growth furnace is set to a nitrogen atmosphere containing 1% by volume of oxygen. In the oxide single crystal manufacturing method, cracks are observed after the growth of 5 lots of GGG single crystal, and the life of the crucible is not further extended as compared with Comparative Example 3 and Comparative Example 4. Is confirmed.

比較例2に係る複合酸化物単結晶の製造方法は、イリジウム製坩堝の温度が800℃を超えて1000℃の温度域にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定しているため、比較例3および比較例4と較べてイリジウム製坩堝の酸化が更に起こったことによるものと思われる。   In the method for producing a complex oxide single crystal according to Comparative Example 2, when the temperature of the iridium crucible exceeds 800 ° C. and is in the temperature range of 1000 ° C., the atmosphere in the growth furnace is changed to 1% by volume of oxygen. This is probably because the iridium crucible was further oxidized compared to Comparative Example 3 and Comparative Example 4 because the nitrogen atmosphere was set.

(5)一方、育成炉内に配置されたイリジウム製坩堝の温度が、初期温度から300℃未満の温度域、300℃〜1000℃の温度域、1000℃を超えて原料が融解するまでの温度域、および、原料が融解している温度域(すなわち、全ての温度域)にあるときに、上記育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定している比較例1に係る複合酸化物単結晶の製造方法は、3ロットのGGG単結晶の育成後においてクラックの発生が認められており、比較例2〜4と較べてイリジウム製坩堝の長寿命化が更に図られていないことが確認される。 (5) On the other hand, the temperature until the temperature of the iridium crucible placed in the growth furnace is lower than the initial temperature, less than 300 ° C, 300 ° C to 1000 ° C, 1000 ° C, and the raw material melts. Comparative Example 1 in which the atmosphere in the growth furnace is set to a nitrogen atmosphere containing 1% by volume of oxygen when the temperature and the temperature range where the raw material is melted (that is, all temperature ranges) In the method for producing a composite oxide single crystal according to the present invention, cracks were observed after the growth of three lots of GGG single crystal, and the life of the iridium crucible was further increased as compared with Comparative Examples 2 to 4. It is confirmed that it is not.

比較例1に係る複合酸化物単結晶の製造方法は、イリジウム製坩堝の温度が300℃〜1000℃の温度域を含む全ての温度域にあるときに、育成炉内の雰囲気を、1体積%の酸素を含む窒素雰囲気に設定しているため、比較例2〜4と較べてイリジウム製坩堝の酸化が更に起こったことによるものと思われる。   When the temperature of the iridium crucible is in all the temperature ranges including the temperature range of 300 ° C. to 1000 ° C., the atmosphere in the growth furnace is 1% by volume. This is probably because the iridium crucible was further oxidized as compared with Comparative Examples 2 to 4.

本発明に係る合酸化物単結晶の製造方法によれば、使用開始から比較的早期の段階でイリジウム製坩堝にクラックが発生する現象を回避でき、イリジウム製坩堝の寿命が伸びる分、複合酸化物単結晶基板の製造コストを低減できるため、ガーネット系単結晶やタンタル酸リチウム単結晶の製造に利用される産業上の利用可能性を有している。   According to the method for producing a mixed oxide single crystal according to the present invention, it is possible to avoid a phenomenon in which cracks are generated in an iridium crucible at a relatively early stage from the start of use, and the life of the iridium crucible is increased. Since the manufacturing cost of the single crystal substrate can be reduced, it has industrial applicability for use in the manufacture of garnet single crystals and lithium tantalate single crystals.

Claims (3)

育成炉内に配置されたイリジウム製坩堝に複合酸化物の原料を収容し、該複合酸化物の原料を融解させた後、上記複合酸化物の原料融液から複合酸化物単結晶を育成する複合酸化物単結晶の製造方法において、
イリジウム製坩堝の温度が300℃〜1000℃の温度域にあるとき、イリジウム製坩堝が配置された上記育成炉内の雰囲気を、酸素を含まない不活性ガス雰囲気に設定することを特徴とする複合酸化物単結晶の製造方法。
A composite oxide material is housed in an iridium crucible placed in a growth furnace, the composite oxide material is melted, and then a composite oxide single crystal is grown from the composite oxide material melt. In the method for producing an oxide single crystal,
When the temperature of the iridium crucible is in the temperature range of 300 ° C. to 1000 ° C., the composite in which the atmosphere in the growth furnace in which the iridium crucible is arranged is set to an inert gas atmosphere containing no oxygen Manufacturing method of oxide single crystal.
上記イリジウム製坩堝の温度が1000℃を超えて原料が融解している温度域にあるとき、イリジウム製坩堝が配置された上記育成炉内の雰囲気を、0.5〜3体積%の酸素を含む不活性ガス雰囲気に設定することを特徴とする請求項1に記載の複合酸化物単結晶の製造方法。   When the temperature of the iridium crucible exceeds 1000 ° C. and is in a temperature range where the raw material is melted, the atmosphere in the growth furnace in which the iridium crucible is arranged contains 0.5 to 3% by volume of oxygen. The method for producing a complex oxide single crystal according to claim 1, wherein an inert gas atmosphere is set. 上記複合酸化物単結晶が、ガーネット系単結晶またはタンタル酸リチウム単結晶であることを特徴とする請求項1または2に記載の複合酸化物単結晶の製造方法。   The method for producing a complex oxide single crystal according to claim 1 or 2, wherein the complex oxide single crystal is a garnet single crystal or a lithium tantalate single crystal.
JP2013233859A 2013-11-12 2013-11-12 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium Pending JP2015093798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233859A JP2015093798A (en) 2013-11-12 2013-11-12 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233859A JP2015093798A (en) 2013-11-12 2013-11-12 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium

Publications (1)

Publication Number Publication Date
JP2015093798A true JP2015093798A (en) 2015-05-18

Family

ID=53196456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233859A Pending JP2015093798A (en) 2013-11-12 2013-11-12 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium

Country Status (1)

Country Link
JP (1) JP2015093798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086249A (en) * 2021-12-02 2022-02-25 北京镓和半导体有限公司 Method for inhibiting raw material decomposition and iridium crucible oxidation in gallium oxide single crystal preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969490A (en) * 1982-10-14 1984-04-19 Sumitomo Metal Mining Co Ltd Manufacture of lithium tantalate single crystal
JP2008169069A (en) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminum oxide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969490A (en) * 1982-10-14 1984-04-19 Sumitomo Metal Mining Co Ltd Manufacture of lithium tantalate single crystal
JP2008169069A (en) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd Method for manufacturing aluminum oxide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086249A (en) * 2021-12-02 2022-02-25 北京镓和半导体有限公司 Method for inhibiting raw material decomposition and iridium crucible oxidation in gallium oxide single crystal preparation

Similar Documents

Publication Publication Date Title
EP1997941B1 (en) PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL ACCORDING TO METHOD OF LIQUID PHASE GROWTH
JP2007277049A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
WO2010053915A3 (en) Methods for preparing a melt of silicon powder for silicon crystal growth
JP2011195423A (en) Method of manufacturing sapphire single crystal
EP2940196A1 (en) METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL
JP2016079080A (en) METHOD AND APPARATUS FOR MANUFACTURING β-Ga2O3 CRYSTAL, AND CRUCIBLE CONTAINER
KR101857612B1 (en) Method for producing gaas single crystal and gaas single crystal wafer
JPWO2010079655A1 (en) Reaction vessel for single crystal growth and single crystal growth method
JP6102687B2 (en) Method for producing complex oxide single crystal
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP2015093798A (en) Method for manufacturing multiple-oxide single crystal by using crucible made of iridium
JP2005112718A5 (en)
JP2008260641A (en) Method of manufacturing aluminum oxide single crystal
JP6102686B2 (en) Method for producing complex oxide single crystal
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
JP2018135228A (en) METHOD FOR GROWING LiTaO3 SINGLE CRYSTAL AND METHOD FOR PROCESSING LiTaO3 SINGLE CRYSTAL
JP2009242150A (en) Method for producing oxide single crystal
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2018100202A (en) METHOD FOR GROWING LiNbO3 SINGLE CRYSTAL
CN111379014A (en) Crystal growth fluxing agent and crystal growth method
Sabharwal Role of non-stoichiometry in the cracking of oxide crystals
CN102108550A (en) Method for preventing severe volatilization during growth process of cesium triborate
EP2857561A1 (en) Starting material alumina for production of sapphire single crystal and method for producing sapphire single crystal
JPH02196082A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129