JP2015093231A - Method and device for processing highly wet waste - Google Patents

Method and device for processing highly wet waste Download PDF

Info

Publication number
JP2015093231A
JP2015093231A JP2013233597A JP2013233597A JP2015093231A JP 2015093231 A JP2015093231 A JP 2015093231A JP 2013233597 A JP2013233597 A JP 2013233597A JP 2013233597 A JP2013233597 A JP 2013233597A JP 2015093231 A JP2015093231 A JP 2015093231A
Authority
JP
Japan
Prior art keywords
waste
carbon dioxide
humidity
humidity waste
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013233597A
Other languages
Japanese (ja)
Other versions
JP6132203B2 (en
Inventor
剛志 水上
Tsuyoshi Mizukami
剛志 水上
林 謙年
Kanetoshi Hayashi
謙年 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013233597A priority Critical patent/JP6132203B2/en
Publication of JP2015093231A publication Critical patent/JP2015093231A/en
Application granted granted Critical
Publication of JP6132203B2 publication Critical patent/JP6132203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for processing a highly wet waste at low cost.SOLUTION: The method for processing a highly wet waste includes the successive steps of: supplying carbon dioxide gas to a highly wet waste; dissolving the carbon dioxide gas in the water contained in the highly wet waste with application of pressure; and reacting the water with dissolved carbon dioxide gas and a solid matter in the highly wet waste. Preferably the highly wet waste is decompressed after the reaction so that carbon dioxide gas is separated and recycled for use as carbon dioxide gas to be dissolved in water, and heated so that the reaction is accelerated.

Description

本発明は、下水汚泥や生ゴミ、パルプスラッジなどの高い水分割合を有している廃棄物(以下、高湿潤廃棄物という)を処理する技術に関するものである。   The present invention relates to a technique for treating waste (hereinafter referred to as high-humidity waste) having a high water content such as sewage sludge, raw garbage, and pulp sludge.

下水汚泥や生ゴミ、パルプスラッジなどの高湿潤廃棄物は例えば燃焼炉によって焼却処理されている。
高湿潤廃棄物である下水汚泥などは多量の水分を含有しているため、前もってスクリュープレス脱水装置、フィルタープレス脱水装置または遠心分離脱水装置などの機械的脱水装置を用いて含水率を低下させたのちに焼却処理を行っている。
High-humidity waste such as sewage sludge, garbage, and pulp sludge is incinerated by a combustion furnace, for example.
Since sewage sludge, which is a highly humid waste, contains a large amount of moisture, the moisture content has been reduced beforehand using a mechanical dehydrator such as a screw press dewatering device, a filter press dewatering device, or a centrifugal dewatering device. Later, incineration is performed.

しかしながら、上記したような機械的な脱水処理によっては高湿潤廃棄物の含水率を例えば自燃できる程度にまで下げることは困難である。そのため、化石燃料を追加して十分な燃焼状態を確保する必要があり、焼却処理に要する燃料消費量が嵩んでしまうという課題がある。
そこで、高湿潤廃棄物の燃焼処理に必要な化石燃料を低減させる、もしくは全く不要にするための前処理方法として種々の提案がなされている。
However, it is difficult to reduce the moisture content of high-humidity waste to such an extent that it can be self-combusted by mechanical dehydration as described above. Therefore, it is necessary to add a fossil fuel to ensure a sufficient combustion state, and there is a problem that the fuel consumption required for the incineration process increases.
Therefore, various proposals have been made as pretreatment methods for reducing or eliminating the fossil fuel necessary for the combustion treatment of highly humid waste.

特許文献1には、高湿潤廃棄物を処理容器内に投入して高圧水蒸気を注入し、所定の圧力及び温度下に所定時間保持することにより水熱反応が進行し、加水分解作用によって高湿潤廃棄物を微細化および低分子化して機械的脱水処理では放出されない水分を離脱し易い状態とし、次いでこれを脱水処理装置において脱水することによって水分含有率を低減させることが記載されている。
しかしながら、この方法は水熱処理に使用された高圧水蒸気は廃蒸気として系外に排気されるため、廃蒸気が保有する多大な熱エネルギーが損失し、熱効率が悪いという問題がある。
In Patent Document 1, a high-humidity waste is put into a processing container, high-pressure steam is injected, and a hydrothermal reaction proceeds by holding it at a predetermined pressure and temperature for a predetermined time. It is described that the water content is reduced by making the waste finer and lower in molecular weight so that moisture that is not released in the mechanical dehydration process can be easily released, and then dewatering in a dehydration apparatus.
However, this method has a problem that the high-pressure steam used in the hydrothermal treatment is exhausted out of the system as waste steam, so that a great amount of heat energy possessed by the waste steam is lost and thermal efficiency is poor.

特許文献2では、特許文献1記載の水熱反応を利用する方法において、水熱処理反応器を並列に設けて、一方の水熱処理反応器から排出される廃蒸気を他方の水熱処理反応器の反応域の予熱用水蒸気として供給することが記載されている。この方法は、水熱処理に使用された高圧水蒸気の熱エネルギーを回収して有効利用するものである。 In Patent Document 2, in the method using hydrothermal reaction described in Patent Document 1, hydrothermal treatment reactors are provided in parallel, and waste steam discharged from one hydrothermal reaction reactor is reacted in the other hydrothermal reaction reactor. It is described that it is supplied as water vapor for preheating the area. In this method, the thermal energy of high-pressure steam used for hydrothermal treatment is recovered and effectively used.

しかしながら、特許文献1及び特許文献2記載の方法はいずれも水の水熱反応を利用するものであり、水を高温、高圧にするために多量のエネルギーを消費するという問題がある。
また、高圧水蒸気を高湿潤廃棄物に吹き掛けることで、高湿潤廃棄物の水分含有率が増加するという懸念がある。
However, both of the methods described in Patent Document 1 and Patent Document 2 utilize a hydrothermal reaction of water, and there is a problem that a large amount of energy is consumed to make water high temperature and high pressure.
Moreover, there is a concern that the moisture content of the high-humidity waste increases by spraying high-pressure steam on the high-humidity waste.

特許文献3には、スラリー状の汚泥に加圧条件下で炭酸ガスを溶解させるガス溶解手段と、加圧条件下の圧力より低い圧力の下で、ガスを溶解したスラリー状の汚泥を破砕する破壊手段とを備えた汚泥処理装置を用いて汚泥を処理する方法が記載されている。
この汚泥処理方法は、スラリー状の汚泥に加圧条件下でガスを溶解させた後、このスラリー状の汚泥を加圧条件下の圧力より低い圧力下でノズルから噴射して衝突板に衝突させることにより、汚泥細胞内に溶解していたガスを圧力差(加圧条件下と当該加圧条件下の圧力より低い圧力下との圧力差)により気泡とすることによって汚泥細胞を膨らんだ状態とし、この膨らんで弾性力が小さい状態にある細胞壁を破壊して水分を放出させるものである。
Patent Document 3 discloses a gas dissolving means for dissolving carbon dioxide gas in slurry sludge under pressure, and crushing slurry sludge in which gas is dissolved under a pressure lower than the pressure under pressure. A method of treating sludge using a sludge treatment apparatus equipped with a destruction means is described.
In this sludge treatment method, after gas is dissolved in slurry-like sludge under pressure, the slurry-like sludge is injected from a nozzle under a pressure lower than the pressure under pressure to collide with a collision plate. By making the gas dissolved in the sludge cells into bubbles by a pressure difference (pressure difference between the pressurized condition and a pressure lower than the pressure under the pressurized condition), the sludge cells are inflated. This swells the cell wall in a state where the elastic force is small, thereby releasing moisture.

しかしながら、この方法はスラリー状の汚泥を機械的に破壊する手段を用いておりこのための処理装置が別途必要となる。また、汚泥をノズルから噴射すると汚泥がノズルに詰まり安定した操業ができないと考えられる。更に、汚泥をノズルから噴射して衝突板に衝突させた際に発生する炭酸ガスは臭気成分を含んでおり、これをそのまま環境に放出することは環境対策上好ましくないが、特許文献3にはこの対策については記載がない。 However, this method uses a means for mechanically destroying the sludge in the form of a slurry and requires a separate processing apparatus for this purpose. Further, when sludge is sprayed from the nozzle, it is thought that the sludge is clogged in the nozzle and stable operation cannot be performed. Furthermore, carbon dioxide gas generated when sludge is jetted from a nozzle and collided with a collision plate contains an odor component, and it is not preferable to discharge this to the environment as it is in environmental measures. This measure is not described.

特開2007−203213号公報JP 2007-203213 A 特開2009−120746号公報JP 2009-120746 A 特開2009−233637号公報JP 2009-233637 A

本発明は上記したような従来技術の課題を解決し、高湿潤廃棄物を低コストで処理できる方法および装置を提供することを目的とする。   An object of the present invention is to solve the problems of the prior art as described above, and to provide a method and an apparatus capable of treating highly humid waste at low cost.

本発明者は、上記課題を解決するべく鋭意検討を進めた結果、高湿潤廃棄物の脱水処理に先立って、高湿潤廃棄物に炭酸ガスを供給し加圧することによって得られる、炭酸ガスが溶解した水によって処理することにより、脱水処理工程において廃棄物の水分含有率を大きく低減させることができることを見出して本発明を完成したものである。
本発明の構成は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has dissolved carbon dioxide gas obtained by supplying and pressurizing carbon dioxide gas to the high-humidity waste prior to dehydration treatment of the high-humidity waste. The present invention has been completed by finding that the water content of the waste can be greatly reduced in the dehydration process by treating with water.
The configuration of the present invention is as follows.

(1)高湿潤廃棄物に炭酸ガスを供給した後、
加圧して炭酸ガスを高湿潤廃棄物中の水に溶解させ、
前記炭酸ガスを溶解させた水と高湿潤廃棄物中の固形物とを反応させる
ことを特徴とする高湿潤廃棄物の処理方法。
(2)前記反応後の高湿潤廃棄物を減圧して炭酸ガスを分離することを特徴とする(1)に記載の高湿潤廃棄物の処理方法
(3)前記炭酸ガスを溶解させた水と高湿潤廃棄物中の固形物との反応を促進するために、高湿潤廃棄物を加熱することを特徴とする(1)または(2)に記載の高湿潤廃棄物の処理方法
(4)高湿潤廃棄物に炭酸ガスを供給する装置と、
前記装置より得られる高湿潤廃棄物と炭酸ガスとの混合物を加圧し、炭酸ガスを高湿潤廃棄物中の水に溶解させる装置と、
前記装置で炭酸ガスを溶解させた水と高湿潤廃棄物中の固形物とを反応させる反応槽と
を設けたことを特徴とする高湿潤廃棄物の処理装置。
(5)前記反応槽から排出される高湿潤廃棄物を減圧する装置を設けたことを特徴とする、(4)に記載の高湿潤廃棄物の処理装置
(6)前記高湿潤廃棄物を減圧する装置から排出される高湿潤廃棄物と炭酸ガスとの混合物から炭酸ガスを分離するための炭酸ガス分離装置を設けたことを特徴とする(5)に記載の高湿潤廃棄物の処理装置。
(7)前記炭酸ガス分離装置において分離した炭酸ガスを前記高湿潤廃棄物と炭酸ガスとを混合する装置において使用される炭酸ガスとして使用することを特徴とする(6)に記載の高湿潤廃棄物の処理装置。
(8)高湿潤廃棄物と炭酸ガスとの混合物の加圧と高湿潤廃棄物の減圧とを圧力交換器で行うこと特徴とする(5)〜(7)のいずれかに記載の高湿潤廃棄物処理装置。
(9)前記反応槽から排出される高湿潤廃棄物を減圧する装置が減圧弁であることを特徴とする(5)〜(7)のいずれかに記載の高湿潤廃棄物処理装置。
(10)反応槽に供給される高湿潤廃棄物を加熱する、または反応槽にて高湿潤廃棄物を加熱するための加熱器を設けたことを特徴とする(4)〜(12)のいずれかに記載の高湿潤廃棄物の処理装置。
(11)前記反応槽から排出される高湿潤廃棄物と前記反応槽に供給される高湿潤廃棄物とを熱交換させるための熱交換器を設けたことを特徴とする(10)に記載の高湿潤廃棄物の処理装置。
(12)前記反応槽に炭酸ガスを供給し、反応槽から排出される炭酸ガスを反応槽に供給する炭酸ガス循環経路を設けたことを特徴とする(4)〜(11)のいずれかに記載の高湿潤廃棄物の処理装置。
(13)(4)〜(12)のいずれかに記載の高湿潤廃棄物の処理装置から排出された高湿潤廃棄物を脱水する脱水機を設けたことを特徴とする高湿潤廃棄物の脱水処理装置。
(1) After supplying carbon dioxide to highly humid waste,
Pressurize to dissolve carbon dioxide in water in highly humid waste,
A method for treating high-humidity waste, characterized by reacting water in which the carbon dioxide gas is dissolved with solids in high-humidity waste.
(2) The method for treating high-humidity waste according to (1), wherein the high-humidity waste after the reaction is decompressed to separate carbon dioxide, and (3) water in which the carbon dioxide is dissolved The method for treating high-humidity waste according to (1) or (2), wherein the high-humidity waste is heated in order to promote the reaction with the solid matter in the high-humidity waste (4) An apparatus for supplying carbon dioxide to wet waste;
An apparatus for pressurizing a mixture of high-humidity waste and carbon dioxide obtained from the apparatus, and dissolving the carbon dioxide in water in the high-humidity waste;
An apparatus for treating high-humidity waste, comprising a reaction tank for reacting water in which carbon dioxide gas is dissolved in the apparatus with solid matter in high-humidity waste.
(5) The apparatus for treating high-humidity waste according to (4), wherein a device for reducing the high-humidity waste discharged from the reaction tank is provided. (6) The high-humidity waste is reduced in pressure. The high-humidity waste treatment apparatus according to (5), further comprising a carbon dioxide separation device for separating carbon dioxide from a mixture of high-humidity waste and carbon dioxide discharged from the apparatus.
(7) The high-humidity waste according to (6), wherein the carbon dioxide gas separated in the carbon dioxide separation device is used as a carbon dioxide gas used in a device for mixing the high-humidity waste and carbon dioxide. Material processing equipment.
(8) The high-humidity waste according to any one of (5) to (7), wherein pressurization of the mixture of high-humidity waste and carbon dioxide gas and decompression of the high-humidity waste are performed with a pressure exchanger. Material processing equipment.
(9) The high-humidity waste treatment apparatus according to any one of (5) to (7), wherein the apparatus for depressurizing the high-humidity waste discharged from the reaction tank is a pressure reducing valve.
(10) Any one of (4) to (12), wherein a heater for heating the high-humidity waste supplied to the reaction tank or heating the high-humidity waste in the reaction tank is provided. An apparatus for treating highly humid waste according to claim 1.
(11) The heat exchanger for exchanging heat between the highly humid waste discharged from the reaction tank and the highly humid waste supplied to the reaction tank is provided. High-humidity waste treatment equipment.
(12) In any one of (4) to (11), a carbon dioxide gas circulation path for supplying carbon dioxide gas to the reaction tank and supplying carbon dioxide gas discharged from the reaction tank to the reaction tank is provided. The high-humidity waste processing apparatus as described.
(13) Dehydration of high-humidity waste characterized in that a dehydrator for dehydrating high-humidity waste discharged from the high-humidity waste treatment apparatus according to any one of (4) to (12) is provided. Processing equipment.

本発明によれば、高温高圧の水熱反応を用いることなく、炭酸ガスを溶解した水による酸化作用を利用するため、処理のための圧力及び温度をより下げることが可能となり、エネルギー消費量を低減できる効果がある。   According to the present invention, it is possible to further reduce the pressure and temperature for the treatment because the oxidation action by the water in which carbon dioxide gas is dissolved is used without using a high-temperature and high-pressure hydrothermal reaction. There is an effect that can be reduced.

本発明の高湿潤廃棄物処理装置の一例を示す図である。It is a figure which shows an example of the highly humid waste processing apparatus of this invention. 本発明の高湿潤廃棄物処理装置の一例を示す図である。It is a figure which shows an example of the highly humid waste processing apparatus of this invention. 本発明の高湿潤廃棄物処理装置の一例を示す図である。It is a figure which shows an example of the highly humid waste processing apparatus of this invention. 図1の高湿潤廃棄物処理装置の変形例を示す図である。It is a figure which shows the modification of the highly humid waste processing apparatus of FIG. 図1の高湿潤廃棄物処理装置に脱水機を付加した一例を示す図である。It is a figure which shows an example which added the dehydrator to the highly humid waste processing apparatus of FIG.

高湿潤廃棄物に含有される水分のうち、間隙水、毛管結合水および表面付着水等の外部水は機械的な脱水が容易であるが、汚泥等に含まれる細胞や組織が内包する内部水は機械的な脱水は困難である。
本発明においては、まず炭酸ガスを高湿潤廃棄物に供給し加圧することにより、高湿潤廃棄物の外部水への炭酸ガスの溶解度が増加して、外部水は多量の二酸化炭素を溶解した炭酸水となる。そしてこの炭酸水と接触している高湿潤廃棄物を形成している個々の固体物質の細胞壁が炭酸水の酸化作用によって破壊される。細胞壁を破壊された高湿潤廃棄物に脱水処理を施すことによって高湿潤廃棄物の含水率が大幅に低減でき、焼却処分に必要な燃料消費量を低減するか、無くすことができる。
Out of the moisture contained in high-humidity waste, external water such as pore water, capillary-bound water, and surface-attached water is easy to mechanically dehydrate, but internal water contained in cells and tissues contained in sludge etc. Mechanical dehydration is difficult.
In the present invention, by first supplying carbon dioxide gas to the high-humidity waste and pressurizing, the solubility of the carbon dioxide gas in the external water of the high-humidity waste increases, and the external water is a carbon dioxide in which a large amount of carbon dioxide is dissolved. It becomes water. And the cell wall of each solid substance which forms the highly humid waste which is contacting with this carbonated water is destroyed by the oxidation action of carbonated water. By performing dehydration treatment on the highly humid waste whose cell wall has been destroyed, the moisture content of the highly humid waste can be greatly reduced, and the fuel consumption required for incineration can be reduced or eliminated.

また、酸化処理された高湿潤廃棄物は加圧された状態にあり、この加圧に要したエネルギーを回収することが好ましい。本発明においては、酸化処理後の加圧状態にある高湿潤廃棄物のエネルギーを圧力交換器を用いることによって回収し、未処理の高湿潤廃棄物を加圧するエネルギーとして利用する。 Further, the highly humid waste material that has been oxidized is in a pressurized state, and it is preferable to recover the energy required for this pressurization. In the present invention, the energy of the high-humidity waste in a pressurized state after the oxidation treatment is recovered by using a pressure exchanger, and is used as energy for pressurizing the untreated high-humidity waste.

また、酸化処理後の高湿潤廃棄物は炭酸ガスを含んでいる。本発明においては酸化処理後の高湿潤廃棄物を減圧して高湿潤廃棄物から炭酸ガスを分離・回収し、この炭酸ガスを再び未処理高湿潤廃棄物に供給して加圧することにより炭酸ガスを高湿潤廃棄物の外部水に溶解させて再利用する。炭酸ガスは臭気成分を含んでいるが、前記のように炭酸ガスを閉サイクルで再利用することにより環境に臭気成分が排出されることがない。
なお、炭酸ガスの一部は循環系から適宜抜き出して脱臭処理を施した後に放出することができる。
Moreover, the highly wet waste after the oxidation treatment contains carbon dioxide gas. In the present invention, the high-humidity waste after oxidation treatment is depressurized to separate and recover carbon dioxide from the high-humidity waste, and this carbon dioxide is supplied again to the untreated high-humidity waste and pressurized to produce carbon dioxide. Is reused by dissolving it in the external water of highly humid waste. Carbon dioxide gas contains an odor component, but as described above, the odor component is not discharged to the environment by reusing the carbon dioxide gas in a closed cycle.
In addition, a part of carbon dioxide gas can be discharged | emitted after taking out from a circulation system suitably and performing a deodorizing process.

本発明は炭酸水の酸化作用を利用している。このような酸化反応は温度が高いほど反応効率が高い。このため、炭酸水と高湿潤廃棄物との接触は温度が管理された反応槽で昇温された状態で行うことが好ましい。具体的には炭酸水と高湿潤廃棄物との混合物を、反応槽にて加熱する、もしくは加熱器で加熱して反応槽に導入し、常温以上の温度下で酸化反応を行わせることが好ましい。
反応温度は高い方が酸化反応の効率は良いが、加熱するのにコストがかかり、また、温度が高くなると炭酸ガスの溶解度を高めるためにより高圧にする必要があり、加圧のコストもかかるので、処理対象に応じてコストを勘案して温度及び圧力を適宜設定する。
温度条件は、処理する高湿潤廃棄物の種類に応じて、適宜選定する必要があり
、通常は、常温〜80℃、好ましくは常温〜50℃、より好ましくは30℃〜50℃である。
The present invention utilizes the oxidizing action of carbonated water. Such an oxidation reaction has a higher reaction efficiency as the temperature is higher. For this reason, it is preferable to perform contact with carbonated water and highly humid waste in the state heated in the reaction tank where temperature was controlled. Specifically, it is preferable that a mixture of carbonated water and highly humid waste is heated in a reaction vessel, or heated with a heater and introduced into the reaction vessel to cause an oxidation reaction at a temperature of room temperature or higher. .
The higher the reaction temperature is, the better the efficiency of the oxidation reaction is, but it costs more to heat, and the higher the temperature, the higher the carbon dioxide gas solubility needs to be, and the higher the cost of pressurization. The temperature and pressure are appropriately set in consideration of the cost according to the processing target.
The temperature condition needs to be appropriately selected according to the type of high-humidity waste to be treated, and is usually room temperature to 80 ° C, preferably room temperature to 50 ° C, more preferably 30 ° C to 50 ° C.

以下に、本発明を実施するための形態を図1〜5に基づいて説明する。なお、以下の説明は本発明における実施の形態を例示するものであって、特許請求の範囲に記載の発明を何ら限定するものではない。   Below, the form for implementing this invention is demonstrated based on FIGS. In addition, the following description illustrates embodiment in this invention, Comprising: The invention as described in a claim is not limited at all.

(第1の実施形態)
本発明の第1の実施形態を図1に示す。
図1に示す高湿潤廃棄物処理装置10は、加圧ポンプ1、圧力交換器2、熱交換器3、加熱器4、反応槽5及び炭酸ガスを分離する分離器6を備えている。
未処理の高湿潤廃棄物W1は炭酸ガスを供給された後、ポンプ1によって加圧され圧力交換器2に送られる。
高湿潤廃棄物W1は圧力交換器2で、反応槽5から送られてくる高圧状態にある反応済み高湿潤廃棄物W2と圧力交換して高圧状態となる。
前記圧力交換器としては例えば米国フェデコ社のエネルギー回収ブースタ(HPB)を用いることができる。
(First embodiment)
A first embodiment of the present invention is shown in FIG.
A high-humidity waste treatment apparatus 10 shown in FIG. 1 includes a pressure pump 1, a pressure exchanger 2, a heat exchanger 3, a heater 4, a reaction tank 5, and a separator 6 that separates carbon dioxide gas.
Untreated high-humid waste W1 is supplied with carbon dioxide gas, then pressurized by the pump 1 and sent to the pressure exchanger 2.
The high-humidity waste W1 is pressure-exchanged by the pressure exchanger 2 with the reacted high-humidity waste W2 in a high-pressure state sent from the reaction tank 5 to be in a high-pressure state.
As the pressure exchanger, for example, an energy recovery booster (HPB) manufactured by Fedeco, USA can be used.

次いで、高圧となった高湿潤廃棄物W1は熱交換器3に送られる。高湿潤廃棄物W1は熱交換器3で加温された状態にある反応済み高湿潤廃棄物W2と熱交換して加熱された後、加熱器4で必要に応じて適宜加熱されて反応槽5に導入される。反応槽5に導入される段階では高湿潤廃棄物W1の水分中には炭酸ガスが溶解しており、水分は炭酸水となっている。 Next, the high-humidity waste W <b> 1 having a high pressure is sent to the heat exchanger 3. The high-humidity waste W1 is heated by exchanging heat with the reacted high-humidity waste W2 that has been heated by the heat exchanger 3, and then appropriately heated by the heater 4 as necessary. To be introduced. At the stage of introduction into the reaction vessel 5, carbon dioxide gas is dissolved in the moisture of the highly wet waste W1, and the moisture is carbonated water.

高湿潤廃棄物W1は反応槽5内で所定時間炭酸水と接触され炭酸水の酸化作用によって高湿潤廃棄物W1の固形分の細胞壁が破壊されて、反応済み高湿潤廃棄物W2が反応槽から排出される。
反応槽5には、炭酸水と高湿潤廃棄物W1との均一かつ十分な接触を可能とするために攪拌機を設けることが好ましい。
The high-humidity waste W1 is brought into contact with carbonated water for a predetermined time in the reaction tank 5, and the cell wall of the solid content of the high-humidity waste W1 is destroyed by the oxidation action of the carbonated water. Discharged.
The reaction tank 5 is preferably provided with a stirrer to enable uniform and sufficient contact between the carbonated water and the highly wet waste W1.

反応槽5から排出された反応済み高湿潤廃棄物W2は熱交換器3で熱を回収され、更に圧力交換器2に送られて高湿潤廃棄物W1と圧力交換して圧力が低減され炭酸水中に溶け込んでいた炭酸ガスが分離してくる。
高湿潤廃棄物W2と炭酸ガスとの混合物は分離器6に送られて、炭酸ガスと高湿潤廃棄物W2とが分離される。
分離器6で分離された炭酸ガスは回収されて再び未処理の高湿潤廃棄物W1に供給され、上記と同様のサイクルが繰り返される。
The reacted high-humidity waste W2 discharged from the reaction vessel 5 is recovered by the heat exchanger 3, and further sent to the pressure exchanger 2 to exchange pressure with the high-humidity waste W1 to reduce the pressure, and the carbonated water. The carbon dioxide dissolved in the water will be separated.
The mixture of the highly humid waste W2 and the carbon dioxide gas is sent to the separator 6, and the carbon dioxide gas and the highly wet waste W2 are separated.
The carbon dioxide gas separated by the separator 6 is recovered and supplied again to the untreated high-humidity waste W1, and the same cycle as described above is repeated.

このように炭酸ガスを閉サイクルで循環使用することにより、炭酸ガス中に含まれる臭気成分は系外にそのまま放出されることがない。また、濃縮された臭気成分を含む炭酸ガスの一部は連続的、又は断続的に適宜循環系から抜き出して脱臭処理を施した後系外に放出することができる。この場合、臭気成分が濃縮されているので脱臭処理を効率良く行うことができる。
なお、ポンプ1と圧力交換器2の位置を入れ替えることは可能であり、また、熱交換器3と加熱器4の位置を入れ替えることも可能である。以下の実施形態においても同様である。
In this way, by circulating the carbon dioxide gas in a closed cycle, the odor component contained in the carbon dioxide gas is not released out of the system as it is. Further, a part of the carbon dioxide gas containing the concentrated odor component can be continuously or intermittently extracted from the circulation system as appropriate and deodorized, and then released outside the system. In this case, since the odor component is concentrated, the deodorization treatment can be performed efficiently.
The positions of the pump 1 and the pressure exchanger 2 can be exchanged, and the positions of the heat exchanger 3 and the heater 4 can be exchanged. The same applies to the following embodiments.

(第2の実施形態)
本発明の第2の実施形態を図2に示す。
本実施形態では、第1の実施形態における加熱器4の位置を変更したものである。
図2に示されたものでは、加熱器4は熱媒加熱器10によって加熱された熱媒を反応槽5内に設けられた伝熱管11に供給することによって高湿潤廃棄物を加熱するようにしている。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG.
In this embodiment, the position of the heater 4 in the first embodiment is changed.
In the case shown in FIG. 2, the heater 4 heats the highly humid waste by supplying the heat medium heated by the heat medium heater 10 to the heat transfer tube 11 provided in the reaction tank 5. ing.

(第3の実施形態)
本発明の第3の実施形態を図3に示す。
本実施形態では、第1の実施形態における圧力交換器2に代えて反応槽5から分離器6に至る経路に減圧弁7を配置したものである。
反応槽5から送出される反応済み高湿潤廃棄物W2は減圧弁7を通過することによって減圧され、高湿潤廃棄物W2から炭酸ガスが分離して高湿潤廃棄物W2と炭酸ガスとの混合流となって分離器6に送られる。分離器6で炭酸ガスが分離・回収され、この炭酸ガスは再び未処理の高湿潤廃棄物W1に供給されて再利用される。
(Third embodiment)
A third embodiment of the present invention is shown in FIG.
In the present embodiment, a pressure reducing valve 7 is arranged in a path from the reaction tank 5 to the separator 6 in place of the pressure exchanger 2 in the first embodiment.
The reacted high-humidity waste W2 sent out from the reaction tank 5 is depressurized by passing through the pressure reducing valve 7, and the carbon dioxide gas is separated from the high-humidity waste W2 and the mixed flow of the high-humidity waste W2 and the carbon dioxide gas. And sent to the separator 6. Carbon dioxide gas is separated and recovered by the separator 6, and this carbon dioxide gas is supplied again to the untreated high-humidity waste W1 and reused.

(第4の実施形態)
本発明の第4の実施形態を図4に示す。
本実施形態では、第1の実施形態において、反応槽5に炭酸ガスを供給するための圧縮機8を付加したものである。圧縮機8によって反応槽5の下部に供給された炭酸ガスは、バブリングによって反応槽内の高湿潤廃棄物W1と炭酸水とを混合して炭酸水と高湿潤廃棄物W1との均一かつ十分な接触を可能とする。
また、圧縮機8によって反応槽5の下部に炭酸ガスを供給することにより、反応槽に供給される高湿潤廃棄物W1が必要とする十分な量の炭酸ガスを供給することを可能とする。圧縮機8によって反応槽内に供給されて汚泥の水分に溶解しなかった炭酸ガスは反応槽5から排出されて再び圧縮機8に送られる。
(第5の実施形態)
本発明の第5の実施形態を図5に示す。
本実施形態は図1に示す第1の実施形態において、分離器6から排出される反応済み高湿潤廃棄物を脱水機に供給して脱水処理し、脱水済みの高湿潤廃棄物W3を得るものである。
高湿潤廃棄物W2は炭酸水との接触によって酸化処理され、水分を分離しやすくなっているため、脱水機9で脱水処理することにより高湿潤廃棄物W3の含水率が大きく低減される。
なお、第1〜4の実施形態においても同様に脱水機9を付加することにより脱水済みの高湿潤廃棄物W3を得ることができる。
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIG.
In this embodiment, the compressor 8 for supplying carbon dioxide gas to the reaction tank 5 in the first embodiment is added. The carbon dioxide gas supplied to the lower part of the reaction tank 5 by the compressor 8 is mixed with the highly humid waste W1 and carbonated water in the reaction tank by bubbling to make uniform and sufficient carbonated water and highly humid waste W1. Enable contact.
Further, by supplying carbon dioxide gas to the lower part of the reaction tank 5 by the compressor 8, it is possible to supply a sufficient amount of carbon dioxide gas required by the highly wet waste W1 supplied to the reaction tank. Carbon dioxide gas that has been supplied into the reaction tank by the compressor 8 and has not dissolved in the moisture of the sludge is discharged from the reaction tank 5 and sent to the compressor 8 again.
(Fifth embodiment)
A fifth embodiment of the present invention is shown in FIG.
In the present embodiment, in the first embodiment shown in FIG. 1, the reacted high-humidity waste discharged from the separator 6 is supplied to a dehydrator and dehydrated to obtain a dehydrated high-humid waste W3. It is.
Since the high-humidity waste W2 is oxidized by contact with carbonated water and the water is easily separated, the moisture content of the high-humidity waste W3 is greatly reduced by dehydrating the dehydrator 9.
In addition, also in the first to fourth embodiments, by adding the dehydrator 9 in the same manner, the dehydrated highly wet waste W3 can be obtained.

本発明によれば、高圧水蒸気を用いることなく、炭酸ガスを高湿潤廃棄物に供給し加圧して得られた炭酸ガスを溶解した水による酸化作用を利用するため、特許文献1、2記載の高圧水蒸気を用いる方法に比べると処理のための圧力及び温度をより下げることが可能となり、エネルギー消費量を低減できる。
また、本発明は特許文献3記載の方法のように、細胞壁を機械的に破壊するための処理設備を要しないため処理設備に係るコストを低減できるという効果がある。
According to the present invention, in order to use the oxidizing action by water in which carbon dioxide gas obtained by supplying and pressurizing carbon dioxide gas to high-humid waste without using high-pressure steam is used, Compared with the method using high-pressure steam, the pressure and temperature for the treatment can be further reduced, and the energy consumption can be reduced.
Moreover, since this invention does not require the processing equipment for mechanically destroying a cell wall like the method of patent document 3, it has the effect that the cost concerning a processing equipment can be reduced.

本発明によれば、圧力交換器によって圧力エネルギーを回収し、また、熱交換器によって熱エネルギーを回収してそれぞれ再利用することができるのでエネルギー消費を低減することができる。
本発明において使用する炭酸ガスは、高圧状態の後に減圧された段階で、高湿潤廃棄物と容易に分離するため、炭酸ガスを回収し、再利用することが容易である。
また、本発明においては炭酸ガスを閉鎖系で循環使用するため、臭気成分が環境に放出されることがない。
According to the present invention, the pressure energy can be recovered by the pressure exchanger, and the heat energy can be recovered and reused by the heat exchanger, so that energy consumption can be reduced.
Since the carbon dioxide used in the present invention is easily separated from the highly humid waste at the stage where the pressure is reduced after the high pressure state, the carbon dioxide is easily recovered and reused.
Further, in the present invention, since carbon dioxide is circulated and used in a closed system, odor components are not released to the environment.

本発明の方法を下水汚泥に適用すると、下水汚泥をコンポスト化する場合には汚泥の含水率を低くすることが可能なため、重量が少なくハンドリングが容易になるという効果がある。
また、リンを回収する場合、リンの濃度が上昇しているため回収が容易になるという効果もある。
また、高湿潤廃棄物の細胞壁を破壊することにより、機械的な脱水処理をすることなく、そのままメタン発酵工程に持ち込んでメタン発酵を効果的に行うことが可能となる。
When the method of the present invention is applied to sewage sludge, when composting the sewage sludge, it is possible to reduce the moisture content of the sludge, so that there is an effect that the weight is small and handling becomes easy.
Further, when phosphorus is collected, there is an effect that the collection becomes easy because the concentration of phosphorus is increased.
In addition, by destroying the cell wall of the highly humid waste, it is possible to carry out methane fermentation effectively by bringing it into the methane fermentation process without mechanical dehydration.

1 加圧ポンプ
2 圧力交換器
3 熱交換器
4 加熱器
5 反応槽
6 分離器
7 減圧弁
8 圧縮機
9 脱水機
10 熱媒加熱器
11 伝熱管
W1 未処理の高湿潤廃棄物
W2 反応済みの高湿潤廃棄物
W3 脱水後の高湿潤廃棄物
DESCRIPTION OF SYMBOLS 1 Pressurization pump 2 Pressure exchanger 3 Heat exchanger 4 Heater 5 Reaction tank 6 Separator 7 Pressure reducing valve 8 Compressor 9 Dehydrator 10 Heat medium heater 11 Heat transfer tube W1 Untreated high-humid waste W2 Reacted Highly humid waste W3 Highly humid waste after dehydration

Claims (13)

高湿潤廃棄物に炭酸ガスを供給した後、
加圧して炭酸ガスを高湿潤廃棄物中の水に溶解させ、
前記炭酸ガスを溶解させた水と高湿潤廃棄物中の固形物とを反応させる
ことを特徴とする高湿潤廃棄物の処理方法。
After supplying carbon dioxide to highly humid waste,
Pressurize to dissolve carbon dioxide in water in highly humid waste,
A method for treating high-humidity waste, characterized by reacting water in which the carbon dioxide gas is dissolved with solids in high-humidity waste.
前記反応後の高湿潤廃棄物を減圧して炭酸ガスを分離することを特徴とする請求項1に記載の高湿潤廃棄物の処理方法。 2. The method for treating highly humid waste according to claim 1, wherein the highly humid waste after the reaction is decompressed to separate carbon dioxide. 前記炭酸ガスを溶解させた水と高湿潤廃棄物中の固形物との反応を促進するために、高湿潤廃棄物を加熱することを特徴とする請求項1または請求項2に記載の高湿潤廃棄物の処理方法。   The high-humidity waste according to claim 1 or 2, wherein the high-humidity waste is heated in order to promote a reaction between the water in which the carbon dioxide gas is dissolved and the solid matter in the high-humidity waste. Waste disposal method. 高湿潤廃棄物に炭酸ガスを供給する装置と、
前記装置より得られる高湿潤廃棄物と炭酸ガスとの混合物を加圧し、炭酸ガスを高湿潤廃棄物中の水に溶解させる装置と、
前記装置で炭酸ガスを溶解させた水と高湿潤廃棄物中の固形物とを反応させる反応槽と
を設けたことを特徴とする高湿潤廃棄物の処理装置。
A device for supplying carbon dioxide to highly humid waste,
An apparatus for pressurizing a mixture of high-humidity waste and carbon dioxide obtained from the apparatus, and dissolving the carbon dioxide in water in the high-humidity waste;
An apparatus for treating high-humidity waste, comprising a reaction tank for reacting water in which carbon dioxide gas is dissolved in the apparatus with solid matter in high-humidity waste.
前記反応槽から排出される高湿潤廃棄物を減圧する装置を設けたことを特徴とする、請求項4に記載の高湿潤廃棄物の処理装置 The apparatus for treating high-humidity waste according to claim 4, further comprising a device for depressurizing high-humidity waste discharged from the reaction tank. 前記高湿潤廃棄物を減圧する装置から排出される高湿潤廃棄物と炭酸ガスとの混合物から炭酸ガスを分離するための炭酸ガス分離装置を設けたことを特徴とする請求項5に記載の高湿潤廃棄物の処理装置。 6. The high carbon dioxide gas separation device according to claim 5, further comprising a carbon dioxide gas separation device for separating carbon dioxide gas from a mixture of high wet waste material and carbon dioxide gas discharged from a device for depressurizing the high moisture waste material. Wet waste treatment equipment. 前記炭酸ガス分離装置において分離した炭酸ガスを前記高湿潤廃棄物と炭酸ガスとを混合する装置において使用される炭酸ガスとして使用することを特徴とする請求項6に記載の高湿潤廃棄物の処理装置。   The treatment of high-humidity waste according to claim 6, wherein the carbon dioxide separated in the carbon dioxide separation device is used as carbon dioxide used in an apparatus for mixing the high-humidity waste and carbon dioxide. apparatus. 高湿潤廃棄物と炭酸ガスとの混合物の加圧と高湿潤廃棄物の減圧とを圧力交換器で行うこと特徴とする請求項5〜7のいずれかに記載の高湿潤廃棄物処理装置。   The high-humidity waste treatment apparatus according to any one of claims 5 to 7, wherein the pressurization of the mixture of the high-humidity waste and carbon dioxide gas and the decompression of the high-humidity waste are performed by a pressure exchanger. 前記反応槽から排出される高湿潤廃棄物を減圧する装置が減圧弁であることを特徴とする請求項5〜7のいずれかに記載の高湿潤廃棄物処理装置。   The apparatus for treating high-humidity waste according to any one of claims 5 to 7, wherein the apparatus for depressurizing high-humidity waste discharged from the reaction tank is a pressure reducing valve. 反応槽に供給される高湿潤廃棄物を加熱する、または反応槽にて高湿潤廃棄物を加熱するための加熱器を設けたことを特徴とする請求項4〜9のいずれかに記載の高湿潤廃棄物の処理装置。   A high heater according to any one of claims 4 to 9, further comprising a heater for heating the high-humidity waste supplied to the reaction tank or heating the high-humidity waste in the reaction tank. Wet waste treatment equipment. 前記反応槽から排出される高湿潤廃棄物と前記反応槽に供給される高湿潤廃棄物とを熱交換させるための熱交換器を設けたことを特徴とする請求項10に記載の高湿潤廃棄物の処理装置。   The high-humidity waste according to claim 10, further comprising a heat exchanger for exchanging heat between the high-humidity waste discharged from the reaction tank and the high-humidity waste supplied to the reaction tank. Material processing equipment. 前記反応槽に炭酸ガスを供給し、反応槽から排出される炭酸ガスを反応槽に供給する炭酸ガス循環経路を設けたことを特徴とする請求項4〜11のいずれかに記載の高湿潤廃棄物の処理装置。   The high-humidity waste according to any one of claims 4 to 11, further comprising a carbon dioxide circulation path for supplying carbon dioxide to the reaction tank and supplying carbon dioxide discharged from the reaction tank to the reaction tank. Material processing equipment. 請求項4〜12のいずれかに記載の高湿潤廃棄物の処理装置から排出された高湿潤廃棄物を脱水する脱水機を設けたことを特徴とする高湿潤廃棄物の脱水処理装置。   A dewatering apparatus for high-humidity waste, comprising a dehydrator for dehydrating high-humidity waste discharged from the high-humidity waste processing apparatus according to any one of claims 4 to 12.
JP2013233597A 2013-11-12 2013-11-12 Method and apparatus for treating highly humid waste Active JP6132203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233597A JP6132203B2 (en) 2013-11-12 2013-11-12 Method and apparatus for treating highly humid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233597A JP6132203B2 (en) 2013-11-12 2013-11-12 Method and apparatus for treating highly humid waste

Publications (2)

Publication Number Publication Date
JP2015093231A true JP2015093231A (en) 2015-05-18
JP6132203B2 JP6132203B2 (en) 2017-05-24

Family

ID=53196017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233597A Active JP6132203B2 (en) 2013-11-12 2013-11-12 Method and apparatus for treating highly humid waste

Country Status (1)

Country Link
JP (1) JP6132203B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967490A (en) * 2016-06-27 2016-09-28 东方电气集团东方锅炉股份有限公司 Method and continuous system for treating wet organic waste
JP2021529091A (en) * 2018-07-06 2021-10-28 ビヨンド ザ ドーム、インコーポレイテッド Supercritical oxidation of waste

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009410A (en) * 1999-06-28 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Method for solubilization treatment of organic waste
JP2001129520A (en) * 1999-11-09 2001-05-15 Niigata Eng Co Ltd Method for treating organic waste
JP2004313846A (en) * 2003-04-11 2004-11-11 Ishikawajima Harima Heavy Ind Co Ltd Solubilization treatment method for organic waste
JP2005246287A (en) * 2004-03-05 2005-09-15 Sangaku Renkei Kiko Kyushu:Kk Reducing method of amount of biological sludge
JP2009233637A (en) * 2008-03-28 2009-10-15 Sumitomo Heavy Ind Ltd Sludge treatment apparatus and sludge treatment method
JP2012081453A (en) * 2010-10-14 2012-04-26 Tokyo Electron Ltd Water treatment apparatus, and water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009410A (en) * 1999-06-28 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Method for solubilization treatment of organic waste
JP2001129520A (en) * 1999-11-09 2001-05-15 Niigata Eng Co Ltd Method for treating organic waste
JP2004313846A (en) * 2003-04-11 2004-11-11 Ishikawajima Harima Heavy Ind Co Ltd Solubilization treatment method for organic waste
JP2005246287A (en) * 2004-03-05 2005-09-15 Sangaku Renkei Kiko Kyushu:Kk Reducing method of amount of biological sludge
JP2009233637A (en) * 2008-03-28 2009-10-15 Sumitomo Heavy Ind Ltd Sludge treatment apparatus and sludge treatment method
JP2012081453A (en) * 2010-10-14 2012-04-26 Tokyo Electron Ltd Water treatment apparatus, and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967490A (en) * 2016-06-27 2016-09-28 东方电气集团东方锅炉股份有限公司 Method and continuous system for treating wet organic waste
JP2021529091A (en) * 2018-07-06 2021-10-28 ビヨンド ザ ドーム、インコーポレイテッド Supercritical oxidation of waste

Also Published As

Publication number Publication date
JP6132203B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
TWI391334B (en) Organic waste disposal equipment and treatment methods
KR101871428B1 (en) Apparatus for treating sewage sludge and method using the same
KR100948494B1 (en) A method for pretreatment of waste sludge
RU2586332C1 (en) Eco-friendly and highly effective method for preparing solid fuel using organic waste with high water content and combine thermoelectric power system operating with fuel described
CN112474707A (en) Efficient single-stage washing method and harmless treatment process for fly ash
KR20200077310A (en) Apparatus and Method of Producing Methane Gas using Sewage Sludge
RU2009122667A (en) DEVICE AND METHOD FOR PRODUCING ENERGY CARRIER FROM WET BIOMASS
JP6132203B2 (en) Method and apparatus for treating highly humid waste
KR101889896B1 (en) High performance dehydration and drying system for high moisture sludge
JP2008173612A (en) Waste treatment apparatus and method
Leghari et al. Research advancements in nutrients and heavy metals, its speciation and behavior during hydrothermal carbonization of sludge–A critical review
KR101189177B1 (en) Apparatus and method of a waste heat recovering for solid-liquid slurry from organic sludges
CN113277697A (en) Device and method for drying sludge by combining microbubble ozonation with low temperature
CN203999298U (en) Sludge treatment equipment
KR101565704B1 (en) Solid fuel production apparatus using sludge
JPH10109013A (en) Magnesium oxide and regenerated sulfuric acid recovering type flue gas desulfurization apparatus
JP2006281074A (en) Organic sludge treatment method
CN109943364B (en) High-salt high-COD chemical hazardous waste treatment and recycling method
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JP2007260551A (en) Organic waste treatment apparatus and method
KR101068846B1 (en) System and method for treatment waste water
CN209923082U (en) Organic sewage treatment system
JP4686163B2 (en) Organic waste treatment methods
JP2006061861A (en) Apparatus and method for treating organic sludge
JP2004275813A (en) Treatment method for sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6132203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350