JP2015086589A - Heat insulation panel for construction and fitting structure of heat insulation panel for construction - Google Patents

Heat insulation panel for construction and fitting structure of heat insulation panel for construction Download PDF

Info

Publication number
JP2015086589A
JP2015086589A JP2013226065A JP2013226065A JP2015086589A JP 2015086589 A JP2015086589 A JP 2015086589A JP 2013226065 A JP2013226065 A JP 2013226065A JP 2013226065 A JP2013226065 A JP 2013226065A JP 2015086589 A JP2015086589 A JP 2015086589A
Authority
JP
Japan
Prior art keywords
heat insulation
heat insulating
panel
insulation panel
hard foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013226065A
Other languages
Japanese (ja)
Inventor
佐藤 強
Tsuyoshi Sato
強 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2013226065A priority Critical patent/JP2015086589A/en
Publication of JP2015086589A publication Critical patent/JP2015086589A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation panel for construction whose heat insulating properties can be sufficiently secured and fitting structure of the heat insulation panel.SOLUTION: The present invention provides a heat insulation panel for construction with: one or a plurality of vacuum heat insulation materials; and a hard foam body which covers at least a part of peripheries of the one or the plurality of vacuum heat insulation materials, in which a fitting area to be fitted to a fitting ground of a building is formed at a hard foam body part where the vacuum heat insulation material does not exist over the whole thickness. As compression strength in 2% of a deformation rate of the hard foam body, 30kPa or more and 400kPa or less is desirable. As a proportional limit in a compression test of the hard foam body, 2% or more is preferable. It is desirable that the hard foam body uses hard urethane as a principal component. The present invention provides fitting structure of the heat insulation panel for construction which comprises: the heat insulation panel for construction, and a fitting tool which fits the heat insulation panel for construction to the fitting ground of the building, in which the heat insulation panel for construction is fixed to the fitting ground in the fitting area.

Description

本発明は、建築用断熱パネル及び建築用断熱パネルの取付構造に関する。   The present invention relates to a building heat insulation panel and a building heat insulation panel mounting structure.

断熱パネルとしては、複数の真空断熱体を発泡合成樹脂で被覆したものがある(特開平10−219865号公報参照)。この断熱パネルは、通常、発泡合成樹脂の表面に取付けられた面材を介して柱(取付下地)に固定される。この面材は、発泡合成樹脂の縦横の寸法よりも大きなものである。このように面材が発泡合成樹脂の寸法よりも大きいため、複数の断熱パネルを並設した場合、面材を介して固定した部分に発泡合成樹脂がない隙間が生じる。その結果、上記断熱パネルは、発泡合成樹脂が無い隙間に起因して断熱性を十分確保できないおそれがある。また、断熱パネルの歪みや変形を防止して強度を高めるために、木製の枠体や縦材を設けた場合、断熱パネルの製造工程が煩雑になると共に、木材は水分吸収や乾燥による反りや収縮による変形が起こりやすいので、長期使用においては部材間の隙間やガタつきが生じやすく、長期断熱性が維持できないおそれがある。さらに、断熱パネルが大きい場合、施工において断熱パネルの中央に柱や梁を這わせて固定することになるが、固定用の留具が真空断熱材を突き刺したり傷つけることで、真空ブレークを起こして断熱性を著しく低下させるおそれがある。   As the heat insulating panel, there is one in which a plurality of vacuum heat insulating bodies are covered with a foamed synthetic resin (see JP-A-10-21865). This heat insulation panel is usually fixed to a pillar (attachment base) through a face material attached to the surface of the foamed synthetic resin. This face material is larger than the vertical and horizontal dimensions of the foamed synthetic resin. Since the face material is larger than the size of the foamed synthetic resin as described above, when a plurality of heat insulating panels are arranged in parallel, a gap without the foamed synthetic resin is generated in a portion fixed through the face material. As a result, the heat insulation panel may not be able to ensure sufficient heat insulation due to a gap without foamed synthetic resin. In addition, when a wooden frame or vertical member is provided to prevent distortion and deformation of the heat insulation panel and increase the strength, the manufacturing process of the heat insulation panel becomes complicated, and the wood is warped by moisture absorption and drying. Since deformation due to shrinkage is likely to occur, gaps and backlash between members are likely to occur during long-term use, and long-term heat insulation may not be maintained. In addition, if the insulation panel is large, it will be fixed by placing a pillar or beam in the center of the insulation panel during construction, but the fixing fastener will pierce or damage the vacuum insulation material, causing a vacuum break. There is a risk of significantly reducing the heat insulation.

また、真空断熱材の施工方法としては、真空断熱材をその外被材で固定するものがある(特開2007−154585号公報参照)。この施工方法は、真空断熱材の減圧空間の真空ブレークを生じさせないために隣接する真空断熱材の端部で固定するものである。真空断熱材の端部は、コア材を有する独立空間であり、この端部が柱部分で重ね合わされ、独立空間のコア材が重なるように施工されている。このような形態の真空断熱材は、減圧空間とは別にコア材を有する独立空間が形成されたものであることから、製造工程が煩雑になると共にコア材の占有面積が小さくなるために断熱性が悪化するおそれがある。そればかりか、上記真空断熱材は、寸法のバラツキが大きく、端部の重ね合わせ部分で隙間が生じやすいため断熱性を十分に確保できないおそれがある。   Moreover, as a construction method of the vacuum heat insulating material, there is a method in which the vacuum heat insulating material is fixed with its jacket material (see Japanese Patent Application Laid-Open No. 2007-154585). This construction method is to fix at the end of the adjacent vacuum heat insulating material so as not to cause a vacuum break in the decompression space of the vacuum heat insulating material. The end portion of the vacuum heat insulating material is an independent space having a core material, and the end portion is overlapped with a pillar portion, and the core material in the independent space is overlapped. Since the vacuum heat insulating material in this form is formed with an independent space having a core material separately from the decompression space, the manufacturing process becomes complicated and the occupied area of the core material becomes small, so that the heat insulating property is reduced. May get worse. In addition, the vacuum heat insulating material has large dimensional variations, and a gap is likely to be generated at the overlapping portion of the end portions, so that there is a possibility that sufficient heat insulating properties cannot be ensured.

このように、従来の断熱パネルやその施工方法では十分に断熱性を確保できないおそれがある。   Thus, there is a possibility that the heat insulating property cannot be sufficiently secured by the conventional heat insulating panel and its construction method.

特開平10−219865号公報Japanese Patent Laid-Open No. 10-211985 特開2007−154585号公報JP 2007-154585 A

本発明は、上述のような事情に基づいてなされたものであり、断熱性を十分に確保できる建築用断熱パネル及び断熱パネルの取付構造を提供することを目的とする。   This invention is made | formed based on the above situations, and it aims at providing the attachment structure of the heat insulation panel for construction which can fully ensure heat insulation, and a heat insulation panel.

上記課題を解決するためになされた発明は、1又は複数の真空断熱材と、上記1又は複数の真空断熱材の周縁部の少なくとも一部を覆う硬質発泡体とを備える建築用断熱パネルであって、建築物の取付下地に取付られる取付領域が、全厚に亘って上記真空断熱材が存在しない硬質発泡体部分に形成されていることを特徴とする建築用断熱パネルである。   The invention made in order to solve the above-mentioned problems is a building insulation panel comprising one or more vacuum heat insulating materials and a hard foam covering at least part of the peripheral edge of the one or more vacuum heat insulating materials. And the attachment area | region attached to the attachment base | substrate of a building is the heat insulation panel for buildings characterized by being formed in the hard foam part in which the said vacuum heat insulating material does not exist over the whole thickness.

当該断熱パネルは、真空断熱材が存在しない硬質発泡体部分に形成された取付領域において建物の取付下地に固定することができる。そのため、当該断熱パネルは、真空断熱材として複雑な形状や構成を使用することなく一般的な真空断熱材を適用できるため、真空断熱材の製造工程が煩雑となることもなく、真空断熱材におけるコア材の占有面積が小さくなることもないため断熱性の悪化を防止できる。   The said heat insulation panel can be fixed to the attachment base | substrate of a building in the attachment area | region formed in the hard foam part in which a vacuum heat insulating material does not exist. Therefore, since the said heat insulation panel can apply a general vacuum heat insulating material, without using a complicated shape and structure as a vacuum heat insulating material, without the manufacturing process of a vacuum heat insulating material becoming complicated, in a vacuum heat insulating material. Since the area occupied by the core material is not reduced, the heat insulation can be prevented from deteriorating.

また、当該断熱パネルは、一般的な真空断熱材を適用し、この真空断熱材を硬質発泡体で覆うことで形成できるため寸法のバラツキが小さい。そのため、複数の断熱パネルを並設する場合に断熱パネルの側面同士を当接させて施工できるので、隣接する断熱パネル間の隙間を無くすことが可能となる。さらに、当該断熱パネルは、硬質発泡体部分の取付領域を有するため、従来のような面材を使用することなく、取付領域において建物の取付下地に固定することができる。また、取付領域の一部を削って寸法の微調整も可能である。この点においても、複数の断熱パネルを並設する場合、隣接する断熱パネル間の隙間を無くすことが可能となる。その結果、当該断熱パネルでは、断熱性を十分に確保することが可能となる。   Moreover, since the said heat insulation panel can be formed by applying a general vacuum heat insulating material and covering this vacuum heat insulating material with a hard foam, the variation in a dimension is small. Therefore, when a plurality of heat insulating panels are arranged side by side, the side surfaces of the heat insulating panels can be brought into contact with each other, so that a gap between adjacent heat insulating panels can be eliminated. Furthermore, since the said heat insulation panel has the attachment area | region of a hard foam part, it can fix to the attachment base | substrate of a building in an attachment area | region, without using a face material like the past. Further, it is possible to finely adjust the dimensions by cutting a part of the attachment region. Also in this respect, when a plurality of heat insulating panels are arranged side by side, it is possible to eliminate a gap between adjacent heat insulating panels. As a result, the heat insulating panel can sufficiently ensure heat insulating properties.

上記硬質発泡体の変形率2%時の圧縮強度が30kPa以上400kPa以下であるとよい。ここで、当該断熱パネルは、真空断熱材を内蔵する分だけ重量が大きい。一方、当該断熱パネルによれば、変形率2%時の圧縮強度が上記範囲であることで、断熱パネルに枠や補強用の部材を設けなくても十分な強度が確保されている。そのため、当該断熱パネルの圧縮強度が上記範囲とされることで、当該断熱パネルを取付下地に取付けるために必要となる取付部分の強度を十分に確保できる。その結果、当該断熱パネルは、真空断熱材により重量が大きくなったとしても、取付下地(柱)に対して適切に支持することができる。   The compressive strength when the deformation rate of the hard foam is 2% is preferably 30 kPa or more and 400 kPa or less. Here, the heat insulation panel is heavy because the vacuum heat insulating material is incorporated. On the other hand, according to the said heat insulation panel, sufficient intensity | strength is ensured even if it does not provide a frame and the member for reinforcement in a heat insulation panel because the compressive strength at the time of a deformation rate of 2% is the said range. Therefore, when the compressive strength of the heat insulation panel is within the above range, it is possible to sufficiently secure the strength of the attachment portion necessary for attaching the heat insulation panel to the attachment base. As a result, even if the heat insulation panel is increased in weight by the vacuum heat insulating material, it can be appropriately supported with respect to the mounting base (column).

上記硬質発泡体の圧縮試験時の比例限度における変形率が2%以上であるとよい。このように圧縮試験時の比例限度における変形率が2%以上であることで、変形率2%時の圧縮強度が上記範囲であることと同様に、当該断熱パネルを取付下地に取付けたときの取付部分の強度を十分に確保できる。さらに、取付け及びその後の荷重が加わった際に、硬質発泡体に生じる応力を比例限度内にできるため、取付後の風圧力等の加重の増減による残留歪を防ぎ、留具周囲の取付領域の緩み等による隙間に起因する断熱性能の低下を抑えることができる。   The deformation rate at the proportional limit during the compression test of the hard foam is preferably 2% or more. Thus, when the deformation rate at the proportional limit at the time of the compression test is 2% or more, the compression strength when the deformation rate is 2% is in the above range, and the heat insulation panel is attached to the mounting base. Sufficient strength of the mounting portion can be secured. Furthermore, since stress generated in the rigid foam can be within the proportional limit when mounting and subsequent loads are applied, residual strain due to increase or decrease in load such as wind pressure after mounting is prevented, and the mounting area around the fastener is prevented. It is possible to suppress a decrease in heat insulation performance due to a gap due to loosening or the like.

上記硬質発泡体としては硬質ウレタンを主成分とするものが好ましい。このように発泡体が硬質ウレタンを主成分とすることで、目的とする強度(例えば圧縮強度や比例限度)が確保された硬質発泡体を適切に提供できる。これにより、当該断熱パネルによれば、取付領域の強度及び断熱パネルとしての強度を十分に確保でき、また当該断熱パネルの寸法を十分な強度をもって大きくすることができる。また、硬質ウレタンは、成形性や自己接着性に優れるため、真空断熱材と硬質発泡体とを隙間なく密着させることができ断熱性確保や結露防止の点で好ましい。   As said hard foam, what has hard urethane as a main component is preferable. As described above, when the foam contains hard urethane as a main component, it is possible to appropriately provide a hard foam in which target strength (for example, compressive strength or proportional limit) is ensured. Thereby, according to the said heat insulation panel, the intensity | strength of an attachment area | region and the intensity | strength as a heat insulation panel can fully be ensured, and the dimension of the said heat insulation panel can be enlarged with sufficient intensity | strength. Moreover, since hard urethane is excellent in moldability and self-adhesiveness, the vacuum heat insulating material and the hard foam can be brought into close contact with each other without any gap, and is preferable in terms of ensuring heat insulation and preventing condensation.

上記複数の真空断熱材が、略同一平面上に配設されているとよい。このように複数の真空断熱材が略同一平面上に配設されることで、並設された真空断熱材の間に真空断熱材が存在しない硬質発泡体部分を形成することが可能となる。そのため、上記硬質発泡体部分の位置を当該断熱パネルを取付下地に取付けるときの取付下地に対応する部分とすることで上記取付領域とすることができる。その結果、真空断熱材の真空ブレークを回避しつつ、当該断熱パネルの寸法を大きく確保できると共に、当該断熱パネルを取付下地に十分な取付強度をもって取付けることができる。   The plurality of vacuum heat insulating materials may be disposed on substantially the same plane. As described above, by arranging the plurality of vacuum heat insulating materials on substantially the same plane, it is possible to form a hard foam portion in which no vacuum heat insulating material exists between the vacuum heat insulating materials arranged side by side. Therefore, it can be set as the said attachment area | region by making the position of the said hard foam part into the part corresponding to the attachment base when the said heat insulation panel is attached to an attachment base. As a result, while avoiding the vacuum break of the vacuum heat insulating material, the size of the heat insulating panel can be ensured large, and the heat insulating panel can be attached to the mounting base with sufficient mounting strength.

上記複数の真空断熱材の枚数が2枚以上8枚以下であると良く、さらに好ましくは3枚以上6枚以下である。その配置は1列に並べても良く、複数列に並べて配置しても良い。   The number of the plurality of vacuum heat insulating materials may be 2 or more and 8 or less, and more preferably 3 or more and 6 or less. The arrangement may be arranged in one row or in a plurality of rows.

真空断熱材を作製する真空包装機は高額な設備であり、特に大型の物ほど高額となるため、真空包装機で作製可能な真空断熱材の最大寸法は一般的には0.5m×0.5m〜1m×1mである。一方で、日本国内で使用される断熱パネルの大きさは1820mm×910mmが極めて多く、さらに当該断熱パネルは303mm、455mm又は500mm程度間隔で配置された取付下地にビス打ち等の留具により取付けられる事が多い。当該断熱パネルは留具による真空断熱材の破袋を防ぐために取付下地と同じ間隔で真空断熱材が配置されない取付領域を設ける必要がある。このように、真空断熱材の枚数は、断熱パネルとして必要な大きさと取付下地位置を考慮して決められる取付領域の配置の仕方によって決められる。   A vacuum packaging machine for producing a vacuum heat insulating material is an expensive facility, and especially a large-sized product is more expensive. Therefore, the maximum size of a vacuum heat insulating material that can be produced by a vacuum packaging machine is generally 0.5 m × 0. 5 m to 1 m × 1 m. On the other hand, the size of heat insulation panels used in Japan is extremely large, 1820 mm x 910 mm, and the heat insulation panels are attached to attachment bases arranged at intervals of about 303 mm, 455 mm, or 500 mm with fasteners such as screwing. There are many things. In order to prevent the vacuum heat insulating material from being broken by the fastener, the heat insulating panel needs to be provided with a mounting region where the vacuum heat insulating material is not disposed at the same interval as the mounting base. As described above, the number of the vacuum heat insulating materials is determined by the manner of arrangement of the mounting regions determined in consideration of the size required for the heat insulating panel and the mounting base position.

取付領域は真空断熱材が配置されず全厚にわたって発泡樹脂体で構成された領域であり、当該発泡樹脂体に所定の強度性能をもたす事により、長期的に十分な取付強度を確保できる。また、当該断熱パネルの長さ方向と幅方向に真空断熱材の配置されない領域を作製しておいて、施工現場等で取り付ける際に、取付領域を長さ方向と幅方向のいずれを取付領域とするかを選択する方法も現場でのパネル割付の自由度が高くなり有益である。さらに、長さ方向と幅方向で真空断熱材の配置されない領域の間隔を変えておくと、取付下地の間隔の選択肢が増えて好ましい。この場合、取付領域としない部分は取付下地と同等の断熱材を固着させると断熱性能上好ましい。   The mounting region is a region formed of a foamed resin body over the entire thickness without the vacuum heat insulating material disposed, and by providing the foamed resin body with a predetermined strength performance, a sufficient mounting strength can be secured in the long term. . In addition, when an area in which the vacuum heat insulating material is not arranged in the length direction and the width direction of the heat insulation panel is prepared and attached at a construction site or the like, either the length direction or the width direction is set as the attachment area. The method of selecting whether to do so is also beneficial because it increases the degree of freedom of panel assignment on site. Furthermore, it is preferable to change the interval between the regions where the vacuum heat insulating material is not arranged in the length direction and the width direction because the choice of the interval of the mounting base increases. In this case, it is preferable in terms of heat insulation performance to fix the heat insulating material equivalent to the attachment base in the portion not used as the attachment region.

一般的な真空包装機で作製する真空断熱材の大きさでは、断熱パネルの長さより短いために長さ方向に真空断熱材の継ぎ目ができる事が多いが、硬質発泡体に適切な接着性と伸び性能を有する材料を選定する事により、各々の真空断熱材相互が硬質発泡体により強固かつ粘り強く連結された断熱パネルを得る事ができる。   The size of the vacuum insulation material produced by a general vacuum packaging machine is often shorter than the length of the heat insulation panel, so there are many cases where a vacuum insulation material seam can be formed in the length direction. By selecting a material having elongation performance, it is possible to obtain a heat insulating panel in which each vacuum heat insulating material is firmly and tenaciously connected by a hard foam.

上記課題を解決するためになされた別の発明は、当該建築用断熱パネルと、この断熱パネルを建築物の取付下地に取り付ける取付具とを備え、上記断熱パネルが上記取付領域において上記取付下地に固定されている断熱パネルの取付構造である。   Another invention made in order to solve the above-mentioned problem is provided with the said heat insulation panel for construction, and a fixture which attaches this heat insulation panel to the attachment base of a building, and the above-mentioned heat insulation panel is the above-mentioned attachment base in the above-mentioned attachment field. It is the mounting structure of the heat insulation panel currently fixed.

当該断熱パネルの取付構造は、当該断熱パネルを取付領域において取付下地に固定するものである。そのため、複数の断熱パネルを並設する場合、従来の断熱パネルを使用する場合に比べて、隣接する断熱パネル間の隙間を無くすことが可能となる結果、当該断熱パネルの取付構造では、断熱性を十分に確保ことが可能となる。   The mounting structure of the heat insulating panel fixes the heat insulating panel to the mounting base in the mounting region. Therefore, when a plurality of heat insulation panels are arranged side by side, it is possible to eliminate a gap between adjacent heat insulation panels as compared with the case where a conventional heat insulation panel is used. Can be secured sufficiently.

上記取付具が上記断熱パネルを上記取付下地に固定するときに上記断熱パネルを押圧するパネル取付部材を有し、上記取付領域の全てが上記パネル取付部材と接する面において上記パネル取付部材により押圧されることにより取り付けられるとよい。このように断熱パネルが取付領域の全てにおいて押圧されて取り付けられることで、真空断熱材が存在しないことで断熱性の劣る取付領域において、パネル取付部材が重なることで、パネル取付部材の断熱性により、構面全体として高い断熱性能を有するものとできる。その結果、隣接する断熱パネルに隙間が生じることを防止することができる。   The mounting tool includes a panel mounting member that presses the heat insulating panel when the heat insulating panel is fixed to the mounting base, and all of the mounting area is pressed by the panel mounting member on a surface in contact with the panel mounting member. It is good to be attached by doing. In this way, the heat insulation panel is pressed and attached in all of the attachment regions, and in the attachment region where heat insulation is inferior due to the absence of the vacuum heat insulating material, the panel attachment member overlaps, so that the heat insulation of the panel attachment member The entire construction surface can have high heat insulation performance. As a result, it is possible to prevent a gap from occurring between adjacent heat insulating panels.

ここで、「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上のものをいう。「変形率2%時の圧縮強度」とは、JIS K 7220「硬質発泡プラスチック−圧縮特性の求め方」:2006に準拠して測定した力−変形量曲線において、変形率が2%となる変形量における力のことである。「圧縮試験時の比例限度」とは、JIS K 7220「硬質発泡プラスチック−圧縮特性の求め方」:2006に準拠して測定した力−変形量曲線において、変形量と力が比例する範囲の上限を示す状態である。「硬質ウレタン」とは、発泡体が固くて比較的復元性の少ないものであり、本発明においては変形率2%時の圧縮強度が10kPa以上のものをいう。   Here, the “main component” refers to a component having the highest content, for example, a content of 50% by mass or more. “Compressive strength when the deformation rate is 2%” means JIS K 7220 “Hard foamed plastic-Determination of compression characteristics”: Deformation with a deformation rate of 2% in the force-deformation curve measured according to 2006 It is a force in quantity. “Proportional limit at the time of compression test” means JIS K 7220 “Rigid foamed plastic-Determination of compression characteristics”: upper limit of range in which deformation and force are proportional in force-deformation curve measured according to 2006 It is the state which shows. “Hard urethane” means a foam having a hard foam and relatively low restorability, and in the present invention, a compressive strength at a deformation rate of 2% is 10 kPa or more.

本発明によれば、長期にわたって断熱性を十分確保できる建築用断熱パネル及び断熱パネルの取付構造が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulation panel for buildings which can fully ensure heat insulation over a long period of time, and the attachment structure of a heat insulation panel are provided.

本発明の一実施形態に係る断熱パネルの取付構造の要部を示す模式的斜視図である。It is a typical perspective view which shows the principal part of the attachment structure of the heat insulation panel which concerns on one Embodiment of this invention. (A)は図1のX1−X1線に沿って切断した模式的断面図であり、(B)は図1のX2−X2線に沿って切断した模式的断面図である。(A) is a schematic cross-sectional view cut along line X1-X1 in FIG. 1, and (B) is a schematic cross-sectional view cut along line X2-X2 in FIG. 図1に示された断熱パネルの模式的断面図である。It is typical sectional drawing of the heat insulation panel shown by FIG. 図3に示された断熱パネルの真空断熱材の模式的斜視図である。It is a typical perspective view of the vacuum heat insulating material of the heat insulation panel shown by FIG. 図4のX3−X3線に沿う模式的断面図である。It is typical sectional drawing which follows the X3-X3 line | wire of FIG. 図4の真空断熱材の外包材の要部を拡大して示す模式的断面図である。It is typical sectional drawing which expands and shows the principal part of the outer packaging material of the vacuum heat insulating material of FIG. 図4の真空断熱材の外包材の接合部分を拡大して示す模式的断面図である。It is typical sectional drawing which expands and shows the junction part of the outer packaging material of the vacuum heat insulating material of FIG. 断熱パネルの製造方法を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the manufacturing method of a heat insulation panel. (A)は本発明の他の実施形態に係る断熱パネルを示す模式的断面図であり、(B)は当該断熱パネルの取付構造の要部を示す模式的断面図である。(A) is typical sectional drawing which shows the heat insulation panel which concerns on other embodiment of this invention, (B) is typical sectional drawing which shows the principal part of the attachment structure of the said heat insulation panel. (A)は本発明のさらに他の実施形態に係る断熱パネルを示す模式的断面図であり、(B)は当該断熱パネルの取付構造の要部を示す模式的断面図である。(A) is typical sectional drawing which shows the heat insulation panel which concerns on other embodiment of this invention, (B) is typical sectional drawing which shows the principal part of the attachment structure of the said heat insulation panel.

以下、本発明の建築用断熱パネル及び断熱パネルの取付構造について図面を参照しつつ詳説する。   Hereinafter, the heat insulating panel for construction and the mounting structure of the heat insulating panel of the present invention will be described in detail with reference to the drawings.

[建築用断熱パネルの取付構造]
図1及び図2の建築用断熱パネルの取付構造は、建築用断熱パネル1(以下「断熱パネル1」ともいう)を取付具2によって建築物の取付下地3に取り付けるものである。取付下地3としては、例えば従来木造の場合は柱、間柱、梁、横胴縁、枠組壁工法の場合はたて枠、上枠、下枠が挙げられる。この取付構造は、室内空間を確保する観点から外張り断熱工法に適用することが好ましい。また、この取付構造は、断熱パネル1をできるだけ大きな寸法で、断熱性と取付強度を維持したまま現場加工を無くして施工できるという利点がある。
[Building insulation panel construction structure]
1 and 2, the building heat insulation panel 1 (hereinafter also referred to as “heat insulation panel 1”) is attached to a building mounting base 3 by a fixture 2. Examples of the mounting base 3 include columns, studs, beams, horizontal trunk edges in the case of conventional wooden structures, and vertical frames, upper frames, and lower frames in the case of a framed wall construction method. This mounting structure is preferably applied to the outer heat insulating method from the viewpoint of securing the indoor space. In addition, this mounting structure has an advantage that the heat insulating panel 1 can be constructed with as large a dimension as possible without any on-site processing while maintaining heat insulating properties and mounting strength.

取付下地3が鉛直に掛け渡される場合は、木製の柱、間柱、たて枠、鉄骨製間柱が用いられる。木製の柱は、90mm×90mm〜150mm×150mmの断面のものがよく用いられ、木製の間柱としては巾30mm〜60mm、せいが60mm〜120mmの断面のものがよく用いられる。たて枠は、38mm×89mm〜38mm×286mmが用いられ、中でも38mm×89mmが特によく用いられる。鉄骨製の間柱としては、板厚が1.6mm〜4.0mmで断面が巾30mm〜150mm、せいが50mm〜150mmの角形鋼管、溝形鋼若しくはリップ溝形鋼がよく用いられ、中でもC−100×50×20のリップ溝形鋼が最もよく用いられる。また、断熱性強化のためにリップ溝形鋼の断面内の中空部には断熱材を充填するとなお好ましい。また、取付下地3が水平方向に掛け渡される場合は、木製の梁、横胴縁、上枠、下枠、鉄骨製の横胴縁となる。なお、断熱パネル1の方向は取付下地3の方向により制約を受けるものではない。断熱パネル1の寸法と取付領域の配置を適切に設計する事により、例えば取付下地3が鉛直方向に架け渡される場合は断熱パネル1の長辺方向を鉛直方向としても水平方向としても良いし、取付下地3が水平方向の場合も同様に断熱パネル1の長辺方向を水平方向・鉛直方向のいずれとしても良い。   When the mounting base 3 is stretched vertically, a wooden pillar, a stud, a vertical frame, and a steel-made stud are used. A wooden pillar having a cross section of 90 mm × 90 mm to 150 mm × 150 mm is often used, and a wooden pillar having a width of 30 mm to 60 mm and a cross section of 60 mm to 120 mm is often used. The length of the vertical frame is 38 mm × 89 mm to 38 mm × 286 mm, and 38 mm × 89 mm is particularly often used. As the steel pillars, square steel pipes, channel steels or lip channel steels having a plate thickness of 1.6 mm to 4.0 mm, a cross section of 30 mm to 150 mm, and a width of 50 mm to 150 mm are often used. 100 × 50 × 20 lip channel steel is most often used. Moreover, it is more preferable to fill the hollow portion in the cross section of the lip groove steel with a heat insulating material for enhancing the heat insulating property. Further, when the mounting base 3 is stretched in the horizontal direction, it becomes a wooden beam, a horizontal trunk edge, an upper frame, a lower frame, and a horizontal frame edge made of steel. In addition, the direction of the heat insulation panel 1 is not restricted by the direction of the mounting base 3. By appropriately designing the dimensions of the heat insulating panel 1 and the arrangement of the mounting region, for example, when the mounting base 3 is bridged in the vertical direction, the long side direction of the heat insulating panel 1 may be the vertical direction or the horizontal direction, Similarly, when the mounting base 3 is in the horizontal direction, the long side direction of the heat insulating panel 1 may be set in either the horizontal direction or the vertical direction.

〔断熱パネル〕
断熱パネル1は、外張り断熱工法に好適に使用することができるものである。断熱パネル1は、取付下地3間を橋渡すように固定されるものである。この断熱パネル1を外張り断熱工法に使用することで、断熱パネル1によって室内空間が狭小化することを防止できる。断熱パネル1は、4枚の真空断熱材4及び硬質発泡体5を備えている。断熱パネル1では、4枚の真空断熱材4が略同一平面上に2列×2列で配設されている。
[Insulation panel]
The heat insulation panel 1 can be used suitably for an outer-layer heat insulation construction method. The heat insulation panel 1 is fixed so as to bridge between the mounting bases 3. By using this heat insulation panel 1 for the outer heat insulation method, it is possible to prevent the indoor space from being narrowed by the heat insulation panel 1. The heat insulating panel 1 includes four vacuum heat insulating materials 4 and a hard foam 5. In the heat insulation panel 1, four vacuum heat insulating materials 4 are arranged in two rows × two rows on substantially the same plane.

断熱パネル1の寸法は、取付下地3の中心間の距離W1に応じて決定すればよい。ここで、取付下地3の中心間距離W1は、ある程度決まっており、200mm以上1000mm以下が好ましく、300mm以上610mm以下がより好ましい。具体的には、455mm、303mmである。図では示されていないが、通常は柱が910mm〜7280mm程度で配置され、取付下地3としての間隔が303mmや455mm等の所定間隔となるように、当該柱の間に間柱が配置されることが多い。そのため、断熱パネル1の水平寸法W2は、水平方向に2枚の真空断熱材4を使用する場合、例えば取付下地3の中心間距離W1の2倍である910mm前後、606mm前後とされる。断熱パネル1の垂直寸法は、例えば水平寸法W2の1倍以上3倍以下とされ、2倍前後が好ましい。断熱パネル1の厚み寸法T1は、通常、10mm以上100mm以下、25mm以上75mm以下が好ましい。   What is necessary is just to determine the dimension of the heat insulation panel 1 according to the distance W1 between the centers of the mounting base 3. FIG. Here, the center-to-center distance W1 of the mounting base 3 is determined to some extent, and is preferably 200 mm or more and 1000 mm or less, and more preferably 300 mm or more and 610 mm or less. Specifically, they are 455 mm and 303 mm. Although not shown in the figure, the columns are usually arranged at about 910 mm to 7280 mm, and the columns are arranged between the columns so that the interval as the mounting base 3 is a predetermined interval such as 303 mm or 455 mm. There are many. Therefore, when using two vacuum heat insulating materials 4 in the horizontal direction, the horizontal dimension W2 of the heat insulation panel 1 is, for example, about 910 mm and about 606 mm, which are twice the center distance W1 of the mounting base 3. The vertical dimension of the heat insulation panel 1 is, for example, not less than 1 and not more than 3 times the horizontal dimension W2, and is preferably around 2 times. As for thickness dimension T1 of the heat insulation panel 1, 10 mm or more and 100 mm or less are usually preferable 25 mm or more and 75 mm or less.

<真空断熱材>
真空断熱材4は、断熱パネル1の断熱性を高めるものである。この真空断熱材4の水平方向寸法W3は、取付下地3の中心間の距離W1よりも小さく、取付下地3の対向面間距離W4よりも大きい。図4及び図5に示すように、真空断熱材4は、コア材6及び外包材7を備えている。
<Vacuum insulation>
The vacuum heat insulating material 4 enhances the heat insulating property of the heat insulating panel 1. The horizontal dimension W3 of the vacuum heat insulating material 4 is smaller than the distance W1 between the centers of the mounting base 3 and larger than the distance W4 between the opposing surfaces of the mounting base 3. As shown in FIGS. 4 and 5, the vacuum heat insulating material 4 includes a core material 6 and an outer packaging material 7.

(コア材)
コア材6は、真空断熱材4における断熱性を確保するものである。このコア材6としては、例えば繊維集合体、粉末、発泡体等を使用することができ、中でも繊維集合体が好ましい。
(Core material)
The core material 6 ensures heat insulation in the vacuum heat insulating material 4. As the core material 6, for example, a fiber assembly, powder, foam, or the like can be used, and among these, a fiber assembly is preferable.

繊維集合体としては、交絡、融着又は接着によって繊維間を結合した板又は不織布がある。このうち、不織布が好ましく、繊維を厚さと直交する方向に配向させ、所定の空隙間距離を有した状態で、繊維同士を結合させた不織布がより好ましい。このような不織布であれば、繊維の固体熱伝導率による厚さ方向への伝熱を抑え、コア材としての熱伝導率を抑え断熱性が向上する。   Examples of the fiber assembly include a plate or a nonwoven fabric in which fibers are bonded by entanglement, fusion, or adhesion. Among these, a nonwoven fabric is preferable, and a nonwoven fabric in which fibers are bonded in a state in which fibers are oriented in a direction orthogonal to the thickness and has a predetermined gap distance is more preferable. With such a non-woven fabric, heat transfer in the thickness direction due to the solid thermal conductivity of the fibers is suppressed, and the thermal conductivity as the core material is suppressed and the heat insulation is improved.

また、複数の不織布を積層体とすることが好ましい。積層体とすることによって、厚さと直交する方向に配向した繊維を減らし、また各不織布間において繊維の接触が減ることにより、繊維の固体熱伝導率による厚さ方向への伝熱を抑えることができ、コア材としての熱伝導率を抑え断熱性を向上できる。   Moreover, it is preferable to make a some nonwoven fabric into a laminated body. By using a laminate, the number of fibers oriented in the direction perpendicular to the thickness is reduced, and the contact of fibers between the nonwoven fabrics is reduced, thereby suppressing the heat transfer in the thickness direction due to the solid thermal conductivity of the fibers. It is possible to improve the heat insulation by suppressing the thermal conductivity as the core material.

不織布において、繊維の集積層であるフリースの形成方法としては、乾式法、湿式法(湿式抄造法)、スパンボンド法等があり、このうち、微細セルロールファイバーを他の繊維間に分散させて固定するには湿式法が好ましい。また、繊維同士を結合させる主な方法としては、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、水流絡合法があり、このうち、真空状態でガス化するバインダー成分を使用せず、繊維同士の接点が少なくても十分な強度が保てる観点から、サーマルボンド法が好ましい。   In the nonwoven fabric, as a method of forming the fleece which is an accumulation layer of fibers, there are a dry method, a wet method (wet paper making method), a spun bond method, etc. Among them, fine cellulose fibers are dispersed between other fibers. A wet method is preferred for fixing. In addition, as the main method for bonding fibers, there are a chemical bond method, a thermal bond method, a needle punch method, and a hydroentanglement method, and among these, without using a binder component that gasifies in a vacuum state, The thermal bond method is preferable from the viewpoint that sufficient strength can be maintained even with a small number of contacts.

繊維集合体は、主体繊維及び微細セルロースファイバーを含んでおり、バインダー繊維を含んでいてもよく、その他の非繊維成分を含んでいてもよい。   The fiber aggregate includes main fibers and fine cellulose fibers, may include binder fibers, and may include other non-fiber components.

コア材6のための粉末としては、例えば珪酸カルシウム、パーライト、シリカ等の無機粉末、ポリメチルメタクリレート(PMMA)等の有機粉末などが挙げられる。   Examples of the powder for the core material 6 include inorganic powders such as calcium silicate, pearlite, and silica, and organic powders such as polymethyl methacrylate (PMMA).

コア材6のための発泡体としては、例えば発泡ウレタン樹脂等の樹脂発泡体等が挙げられる。   Examples of the foam for the core material 6 include a resin foam such as a foamed urethane resin.

(外包材)
外包材7は、真空状態でコア材6を内部に封入するものである。この外包材7は、一対のラミネートシート70の周縁部7Aを熱融着することで袋状とされている。
(Outer packaging material)
The outer packaging material 7 encloses the core material 6 in a vacuum state. The outer packaging material 7 is formed into a bag shape by heat-sealing the peripheral edge portions 7A of the pair of laminate sheets 70.

(ラミネートシート)
ラミネートシート70は、ガスバリア性を有するものである。このラミネートシート70は、図6に示すように積層体71、及びこの積層体71に接着された熱融着層72を備えている。ラミネートシート70の材質は、ガスバリア性を有しているものなら特に限定されず、単層でも複数層でも良い。複数層の場合、樹脂フィルムやアルミフィルム等の各種フィルムが接着剤層と共に積層される。
(Laminated sheet)
The laminate sheet 70 has a gas barrier property. As shown in FIG. 6, the laminate sheet 70 includes a laminate 71 and a heat fusion layer 72 bonded to the laminate 71. The material of the laminate sheet 70 is not particularly limited as long as it has gas barrier properties, and may be a single layer or a plurality of layers. In the case of a plurality of layers, various films such as a resin film and an aluminum film are laminated together with the adhesive layer.

(積層体)
積層体71は、一対のガスバリアフィルム73を、第1接着剤層74を介して接着したものである。
(Laminate)
The laminated body 71 is obtained by bonding a pair of gas barrier films 73 via a first adhesive layer 74.

(一対のガスバリアフィルム)
一対のガスバリアフィルム73は、樹脂フィルム75、及びこの樹脂フィルム75の一方の面75Aに積層される無機物層76を有する。一対のガスバリアフィルム73は、互いの無機物層76を対向させた状態で第1接着剤層74を介して積層されている。すなわち、積層体71は、樹脂フィルム75、無機物層76、第1接着剤層74、無機物層76及び樹脂フィルム75がこの順序で積層されたものである。
(A pair of gas barrier films)
The pair of gas barrier films 73 includes a resin film 75 and an inorganic layer 76 laminated on one surface 75 </ b> A of the resin film 75. The pair of gas barrier films 73 are laminated via the first adhesive layer 74 with the inorganic layers 76 facing each other. That is, the laminated body 71 is obtained by laminating a resin film 75, an inorganic layer 76, a first adhesive layer 74, an inorganic layer 76, and a resin film 75 in this order.

第1接着剤層74は、エポキシ樹脂を主成分とするものである。この第1接着剤層74は、エポキシ樹脂以外に、本発明の効果を損なわない範囲において他の任意成分を含んでいてもよい。   The first adhesive layer 74 is mainly composed of an epoxy resin. This 1st adhesive bond layer 74 may contain other arbitrary components in the range which does not impair the effect of this invention other than an epoxy resin.

(熱融着層)
図7に示すように、熱融着層72は、加圧加熱することでラミネートシート70同士を熱融着するものである。この熱融着層72は、第2接着剤層77を介して樹脂フィルム75の他方の面75Bに接着されている。第2接着剤層77としては、第1接着剤層74と同様にエポキシ樹脂を使用することができる。
(Heat-fusion layer)
As shown in FIG. 7, the heat-sealing layer 72 heat-bonds the laminate sheets 70 by pressurizing and heating. The heat sealing layer 72 is bonded to the other surface 75 </ b> B of the resin film 75 through the second adhesive layer 77. As the second adhesive layer 77, an epoxy resin can be used similarly to the first adhesive layer 74.

<硬質発泡体>
図3に示すように、硬質発泡体5は、真空断熱材4を囲繞するものである。このように、硬質発泡体5により真空断熱材4を囲繞することで、真空断熱材4と硬質発泡体5が一体化し、断熱パネル1の軽量化を図りつつ十分な強度を確保することができる。硬質発泡体5における真空断熱材4の周縁部は、真空断熱材4が存在しない硬質発泡体である。上記周縁部のうち水平方向のサイドの部分は、建築物の取付下地3に取付られる取付領域50を構成する。この取付領域50の寸法W5は、取付下地3の幅寸法W7の半分以下が好ましい。具体的には、取付領域50の寸法W5は、10mm以上30mm以下が好ましい。取付領域50の寸法W5が10mm未満であると、断熱パネル1を取付下地3に取付けるときの作業性が悪化するおそれがある。一方、取付領域50の寸法W5が30mmを超えると、断熱パネル1における硬質発泡体5の占有体積が大きくなって断熱性が低下するおそれがある。図3のように真空断熱材4が同一平面上に4枚(断面図では2枚)配設されると、上記周縁部のうちの真空断熱材4の間の領域(硬質発泡体5における中央部)もまた、取付領域51を構成する。この取付領域51の寸法W6は、取付下地3の幅寸法W7よりも小さいことが好ましく、取付領域50の寸法W5は1倍以上3倍以下が好ましく、2倍前後がより好ましい。具体的には、取付領域51の寸法W6は、20mm以上60mm以下とされる。取付領域51の寸法W6が20mm未満であると、断熱パネル1を取付下地3に取付けるときの作業性が悪化するおそれがある。一方、取付領域51の寸法W6が60mmを超えると、断熱パネル1における硬質発泡体5の占有体積が大きくなって断熱性が低下するおそれがある。
<Rigid foam>
As shown in FIG. 3, the hard foam 5 surrounds the vacuum heat insulating material 4. Thus, by surrounding the vacuum heat insulating material 4 with the hard foam 5, the vacuum heat insulating material 4 and the hard foam 5 are integrated, and sufficient strength can be ensured while reducing the weight of the heat insulating panel 1. . The peripheral part of the vacuum heat insulating material 4 in the hard foam 5 is a hard foam in which the vacuum heat insulating material 4 does not exist. The part of the side part of the horizontal direction among the said peripheral parts comprises the attachment area | region 50 attached to the attachment base 3 of a building. The dimension W5 of the mounting region 50 is preferably less than half of the width dimension W7 of the mounting base 3. Specifically, the dimension W5 of the attachment region 50 is preferably 10 mm or greater and 30 mm or less. When the dimension W5 of the attachment region 50 is less than 10 mm, workability when attaching the heat insulation panel 1 to the attachment base 3 may be deteriorated. On the other hand, if the dimension W5 of the attachment region 50 exceeds 30 mm, the occupied volume of the hard foam 5 in the heat insulation panel 1 may be increased, and the heat insulation may be deteriorated. When four vacuum heat insulating materials 4 are arranged on the same plane as shown in FIG. 3 (two in the sectional view), the region between the vacuum heat insulating materials 4 in the peripheral portion (the center in the hard foam 5). Part) also constitutes the attachment region 51. The dimension W6 of the attachment area 51 is preferably smaller than the width dimension W7 of the attachment base 3, and the dimension W5 of the attachment area 50 is preferably 1 to 3 times and more preferably about 2 times. Specifically, the dimension W6 of the attachment region 51 is set to 20 mm or more and 60 mm or less. When the dimension W6 of the attachment region 51 is less than 20 mm, workability when attaching the heat insulation panel 1 to the attachment base 3 may be deteriorated. On the other hand, when the dimension W6 of the attachment region 51 exceeds 60 mm, the occupied volume of the hard foam 5 in the heat insulation panel 1 may be increased, and the heat insulation may be deteriorated.

硬質発泡体5における真空断熱材4の表面側の厚み寸法T2,T3は、真空断熱材4の厚み寸法T4の0.25倍以上2倍以下が好ましく、さらに好ましくは0.25倍以上1.25倍以下である。また、具体的な寸法としては、T2、T3は5mm以上40mm以下が好ましく、さらに好ましくは10mm以上30mm以下である。最低寸法は所定のパネル強度を得ると共に硬質発泡体5の充填性を確保するために必要であり、最大寸法は施工性や価格上の制約から決まる。硬質発泡体5の厚み寸法T2,T3を上記範囲とすることで、硬質発泡体5(真空断熱材4)の厚み寸法T1が大きくなることを抑制すると共に断熱パネル1の重量が大きくなることを抑制し、断熱パネル1の強度を適切に確保することができる。   The thickness dimensions T2 and T3 on the surface side of the vacuum heat insulating material 4 in the hard foam 5 are preferably 0.25 to 2 times the thickness dimension T4 of the vacuum heat insulating material 4, and more preferably 0.25 to 1 times. 25 times or less. As specific dimensions, T2 and T3 are preferably 5 mm or more and 40 mm or less, and more preferably 10 mm or more and 30 mm or less. The minimum dimension is necessary for obtaining a predetermined panel strength and ensuring the filling property of the hard foam 5, and the maximum dimension is determined by workability and cost constraints. By setting the thickness dimensions T2 and T3 of the rigid foam 5 within the above range, the thickness dimension T1 of the rigid foam 5 (vacuum heat insulating material 4) is suppressed from being increased and the weight of the thermal insulation panel 1 is increased. It can suppress and can ensure the intensity | strength of the heat insulation panel 1 appropriately.

硬質発泡体5は、例えば樹脂を主成分とする発泡体である。主成分となる樹脂としては、例えばウレタン樹脂、ポリスチレン、ポリエチレンやポリプロピレン等のポリオレフィン、フェノール樹脂、ポリ塩化ビニル、ユリア樹脂、シリコーン樹脂、ポリイミド、メラミン樹脂等が挙げられ、ウレタン樹脂、ポリスチレン及びポリオレフィンが好ましく、ウレタン樹脂がより好ましく、硬質ウレタン樹脂がさらに好ましい。この硬質発泡体5は、本発明の効果を損なわない範囲において、他の任意成分を含んでいてもよい。任意成分としては、公知の添加剤を使用することができる。   The hard foam 5 is a foam mainly composed of a resin, for example. Examples of the main resin include urethane resins, polystyrenes, polyolefins such as polyethylene and polypropylene, phenol resins, polyvinyl chloride, urea resins, silicone resins, polyimides, melamine resins, and the like. Preferably, a urethane resin is more preferable, and a hard urethane resin is more preferable. The hard foam 5 may contain other optional components as long as the effects of the present invention are not impaired. As the optional component, known additives can be used.

硬質発泡体5の気泡構造としては、独立気泡率の高いものを用いることが、真空断熱材4のガスバリア性確保の点で好ましい。また、発泡ガスに空気より熱伝導率の低いガス(二酸化炭素、炭化水素、HFC、HFO等)を用いることで、気泡内部に込め硬質発泡体の断熱性を高めることができる。   As the cell structure of the hard foam 5, it is preferable to use a material having a high closed cell rate in terms of securing the gas barrier property of the vacuum heat insulating material 4. Further, by using a gas (carbon dioxide, hydrocarbon, HFC, HFO, etc.) having a lower thermal conductivity than air as the foaming gas, it is possible to enhance the heat insulation of the hard foam by placing it inside the bubbles.

硬質発泡体5の密度としては、25kg/m以上75kg/m以下が好ましい。硬質発泡体5の密度を上記範囲とすることで、断熱パネル1の軽量化を図りつつ十分な強度と断熱性を確保することができる。 The density of the hard foam 5 is preferably 25 kg / m 3 or more and 75 kg / m 3 or less. By setting the density of the hard foam 5 within the above range, it is possible to ensure sufficient strength and heat insulation while reducing the weight of the heat insulation panel 1.

硬質発泡体5の変形率2%時の圧縮強度としては、断熱パネル1に求められる強度として10kPa以上ある必要があり、30kPa以上400kPa以下が好ましく、60kPa以上300kPa以下がより好ましく、80kPa以上300kPa以下がさらに好ましい。パネル取付部材20の配置や巾、留具21等を増やす必要や、取付けに要する工数やコストがかかる点、断熱パネル1の取付強度を十分に確保できない場合があることから上記圧縮強度は30kPa以上が良い。一方、上記圧縮強度が400kPaを超えると、密度を高くする必要があるためにコストが高くなるおそれがあり、また施工性も劣る。   The compressive strength when the deformation ratio of the hard foam 5 is 2% needs to be 10 kPa or more as the strength required for the heat insulating panel 1, preferably 30 kPa to 400 kPa, more preferably 60 kPa to 300 kPa, more preferably 80 kPa to 300 kPa. Is more preferable. The compression strength is 30 kPa or more because it is necessary to increase the arrangement and width of the panel mounting member 20, the fasteners 21, the number of steps and cost required for mounting, and the mounting strength of the heat insulating panel 1 may not be sufficiently secured. Is good. On the other hand, if the compressive strength exceeds 400 kPa, it is necessary to increase the density, which may increase the cost, and the workability is also inferior.

硬質発泡体5の圧縮試験時の比例限度における変形率としては、2%以上が好ましく、5%以上がより好ましく、7%以上がさらに好ましい。上記比例強度が2%未満であると、断熱パネル1に繰り返し荷重が加えられた場合に耐久性を十分に確保できないおそれがある。特にこの建築用断熱パネル1を変形率2%以下の変形が持続的に生じた状態で取り付ける場合、この状態でさらに、風圧力、地震力、振動等の外力が加わるが、変形率2%の状態が比例限度内であれば、外力の荷重の増減による残留歪を防ぎ、留具21の周囲の取付領域50,51の緩み等の隙間に起因する断熱性能の低下を抑えることができるため好ましい。   The deformation rate at the proportional limit during the compression test of the hard foam 5 is preferably 2% or more, more preferably 5% or more, and further preferably 7% or more. If the proportional strength is less than 2%, the durability may not be sufficiently ensured when a load is repeatedly applied to the heat insulating panel 1. In particular, when this thermal insulation panel 1 is mounted in a state in which deformation with a deformation rate of 2% or less has occurred continuously, external forces such as wind pressure, seismic force, and vibration are further applied in this state, but the deformation rate is 2%. If the state is within the proportional limit, it is preferable because residual strain due to increase / decrease in the load of external force can be prevented, and deterioration of heat insulation performance due to gaps such as loosening of the attachment regions 50 and 51 around the fastener 21 can be suppressed. .

<取付具>
図1及び図2に示すように、取付具2は、建物の取付下地3に断熱パネル1を固定するためのものである。この取付具2は、パネル取付部材20及び留具21を含む。
<Mounting tool>
As shown in FIG.1 and FIG.2, the fixture 2 is for fixing the heat insulation panel 1 to the mounting base 3 of a building. The fixture 2 includes a panel attachment member 20 and a fastener 21.

(パネル取付部材)
パネル取付部材20は、断熱パネル1を取付下地3に固定するときに断熱パネル1を押圧すると共に、サイディング材等の外装材を取付け、この外装材と断熱パネル1との間に通気用の空間を確保するものである。このパネル取付部材20の幅は、当該パネル取付部材20と断熱パネル1間に所定の摩擦力を生じさせるために必要となる取付具2による締付力により取付領域50,51の硬質発泡体5に発生する応力が30kPa以上400kPa以下でかつこの応力による当該硬質発泡体5の変形率が2%以内となるために必要な面積を考慮して決定するのが好ましい。また、取付下地3の幅もパネル取付部材20の幅と同様に当該取付下地3と断熱パネル1間に必要な摩擦力を考慮して決定するのが好ましいが、取付下地3の幅が予め決まっており小さ過ぎる場合は、留具21のピッチを細かくして、パネル取付部材20と断熱パネル1との間に働く摩擦力がより広範囲に発生するようにすれば良い。
(Panel mounting member)
The panel mounting member 20 presses the heat insulating panel 1 when fixing the heat insulating panel 1 to the mounting base 3, attaches an external material such as a siding material, and a space for ventilation between the external material and the heat insulating panel 1. Is to secure. The width of the panel mounting member 20 is set so that the rigid foam 5 in the mounting regions 50 and 51 is formed by the tightening force of the mounting tool 2 required to generate a predetermined frictional force between the panel mounting member 20 and the heat insulating panel 1. It is preferable to determine in consideration of the area necessary for the stress generated in the above to be 30 kPa or more and 400 kPa or less and the deformation rate of the hard foam 5 due to this stress to be within 2%. The width of the mounting base 3 is preferably determined in consideration of the frictional force required between the mounting base 3 and the heat insulating panel 1 in the same manner as the width of the panel mounting member 20, but the width of the mounting base 3 is determined in advance. If it is too small, the pitch of the fasteners 21 may be reduced so that the frictional force acting between the panel mounting member 20 and the heat insulating panel 1 is generated in a wider range.

なお、パネル取付部材20の方向は、取付下地3や断熱パネル1の方向により限定されるものではない。断熱パネル1の寸法と取付領域50,51の配置を適切に設計し、さらに留具21の配置を適切に設計する事により、水平方向・鉛直方向のいずれとする事も可能である。ただし、通気用の空間を確保すると言う点からは、取付下地3は鉛直方向に配置するのが良い。このようなパネル取付部材20としては、例えば木材、鉄骨が挙げられるが、木材を用いると断熱性を確保しやすく好ましい。   The direction of the panel mounting member 20 is not limited by the direction of the mounting base 3 or the heat insulating panel 1. By appropriately designing the dimensions of the heat insulation panel 1 and the arrangement of the attachment regions 50 and 51 and further appropriately designing the arrangement of the fasteners 21, it is possible to set either the horizontal direction or the vertical direction. However, the mounting base 3 is preferably arranged in the vertical direction from the viewpoint of securing a ventilation space. Examples of such a panel mounting member 20 include wood and steel frames, but it is preferable to use wood because it is easy to ensure heat insulation.

また、断熱パネル1の表面に透湿防水シートを貼ったり、断熱パネル1の目地に気密テープを貼ったりして、建物内の気密を確保する事が一般的に行われる。この場合、パネル取付部材20は透湿防水シートや気密テープなどを介して断熱パネル1を押圧する事になるので、摩擦係数への影響を適切に評価する必要がある。   Further, it is generally performed to secure airtightness in a building by sticking a moisture-permeable waterproof sheet on the surface of the heat insulation panel 1 or sticking an airtight tape on the joint of the heat insulation panel 1. In this case, since the panel mounting member 20 presses the heat insulation panel 1 via a moisture-permeable waterproof sheet, an airtight tape, or the like, it is necessary to appropriately evaluate the influence on the friction coefficient.

(留具)
留具21は、パネル取付部材20及び断熱パネル1を貫通し、パネル取付部材20と共に断熱パネル1を取付下地3に固定するものである。この留具21は、少なくとも先端部を取付下地3に突き刺さり又は螺合できるようにパネル取付部材20及び断熱パネル1の合計厚みよりも大きな長さ寸法を有していればよい。留具21としては、例えばネジ、ボルト、釘等を使用することができる。中でも、ネジを用いると外力が加わっても緩みが生じにくく、パネル取付部材2と断熱パネル1との間、及び断熱パネル1と取付下地3との間に長期的に安定した摩擦力を得られ安定した支持が可能となるために好ましい。ネジの軸径としては、4〜6φ程度のものが好ましい。ネジの中でも、ドリルネジを用いると、下穴をあける必要がなく施工性に優れ好ましい。なお、図1及び図2には、留具21としてネジを使用した例を示している。
(Fastener)
The fastener 21 penetrates the panel mounting member 20 and the heat insulating panel 1 and fixes the heat insulating panel 1 to the mounting base 3 together with the panel mounting member 20. The fastener 21 only needs to have a length dimension larger than the total thickness of the panel mounting member 20 and the heat insulating panel 1 so that at least the tip end can be stabbed or screwed into the mounting base 3. As the fastener 21, for example, a screw, a bolt, a nail or the like can be used. In particular, if screws are used, loosening is unlikely to occur even when an external force is applied, and a long-term stable frictional force can be obtained between the panel mounting member 2 and the heat insulating panel 1 and between the heat insulating panel 1 and the mounting base 3. This is preferable because stable support is possible. The shaft diameter of the screw is preferably about 4 to 6φ. Among the screws, use of a drill screw is preferable because it does not require a pilot hole and is excellent in workability. 1 and 2 show an example in which a screw is used as the fastener 21. FIG.

<断熱パネルの取付方法>
留具21により、パネル取付部材20と取付下地3とで、断熱パネル1を押圧し、パネル取付部材20と断熱パネル1との間、及び取付下地3と断熱パネル1との間の摩擦力により、断熱パネル1を固定することが好ましい。この摩擦力を得るための応力は、パネル取付部材20の配置間隔、巾、留具21の配置間隔、パネル取付部材20の厚さ等により増減するが、これらを適切に設計して取付領域50,51の硬質発泡体部分に発生する応力を30kPa以上400kPa以下程度とし取付領域50,51の押圧による変化率が2%以内とすることが好ましい。断熱パネル1の厚さは一般に10mm〜100mmであり、2%の変形は0.2mm〜2mmに相当するが、この程度の変形であれば、断熱パネル1、断熱パネル1の取付部は健全に保たれ、周辺の部位に生じる緩み等の影響も十分に小さい。また、隙間の空気を静止状態となるように断熱パネル1の屋外側の面を透湿防水シート等で覆うことにより、目地の隙間の影響を抑えることができる。なお、断熱パネル1表面の取付領域50,51に対応する位置に、取付領域50,51であることを示す表示を設けても良い。表示は着色、線引き、模様、マーク等、取付領域50,51が断熱パネル1の表面から見てわかるものであれば良い。
<Insulating panel mounting method>
The fastener 21 presses the heat insulating panel 1 between the panel mounting member 20 and the mounting base 3, and the frictional force between the panel mounting member 20 and the heat insulating panel 1 and between the mounting base 3 and the heat insulating panel 1. It is preferable to fix the heat insulation panel 1. The stress for obtaining the frictional force increases or decreases depending on the arrangement interval and width of the panel attachment member 20, the arrangement interval of the fastener 21, the thickness of the panel attachment member 20, and the like. , 51 is preferably about 30 to 400 kPa, and the rate of change due to pressing of the attachment regions 50 and 51 is preferably within 2%. The thickness of the heat insulation panel 1 is generally 10 mm to 100 mm, and the deformation of 2% corresponds to 0.2 mm to 2 mm. If this degree of deformation, the heat insulation panel 1 and the mounting portion of the heat insulation panel 1 are sound. It is kept, and the influence of the looseness etc. which arises in the surrounding part is also small enough. Further, by covering the outdoor side surface of the heat insulating panel 1 with a moisture permeable waterproof sheet or the like so that the air in the gap is in a stationary state, the influence of the joint gap can be suppressed. In addition, you may provide the display which shows that it is the attachment area | regions 50 and 51 in the position corresponding to the attachment area | regions 50 and 51 of the heat insulation panel 1 surface. The display may be any color, line drawing, pattern, mark, or the like as long as the attachment regions 50 and 51 are seen from the surface of the heat insulation panel 1.

[断熱パネルの製造方法]
断熱パネルの製造方法は、まず図8(A)に示すように、4枚(断面図では2枚)の真空断熱材4を容器8にセットする。この容器8は、枠体80にスペーサ81を固定したものである。4枚の真空断熱材4は、スペーサ81上に載置されることで同一平面上に配置される。
[Insulation panel manufacturing method]
First, as shown in FIG. 8 (A), the heat insulating panel manufacturing method sets four (two in the sectional view) vacuum heat insulating materials 4 in a container 8. This container 8 has a spacer 81 fixed to a frame body 80. The four vacuum heat insulating materials 4 are placed on the same plane by being placed on the spacer 81.

次に、図8(B)に示すように、容器8に樹脂原料を充填することで発泡樹脂層52を形成する。樹脂原料としては、ウレタン樹脂が好ましい。樹脂を発泡させる方法としては、例えば低沸点溶剤を利用する方法、空気を混入させる方法、発泡剤を混入させて重合させる方法が挙げられる。発泡樹脂層52は、原料樹脂を発泡させることで所定の密度、例えば25kg/m以上75kg/m以下とされる。なお、一般的には、当該容器8内で原料樹脂を発泡させる場合は、上下面に型板をあてがい、上下の型板をプレス機等によりプレスし、所定の発泡圧に耐え所定の寸法形状を得るようにする。 Next, as shown in FIG. 8B, the foamed resin layer 52 is formed by filling the container 8 with a resin raw material. As the resin raw material, a urethane resin is preferable. Examples of the method of foaming the resin include a method using a low boiling point solvent, a method of mixing air, and a method of polymerizing by mixing a foaming agent. The foamed resin layer 52 has a predetermined density, for example, 25 kg / m 3 or more and 75 kg / m 3 or less by foaming the raw material resin. In general, when the raw material resin is foamed in the container 8, the upper and lower surfaces are assigned with mold plates, and the upper and lower mold plates are pressed with a press machine or the like to withstand a predetermined foaming pressure and have a predetermined size and shape. To get.

次いで、所定時間経過後、図8(C)に示すように、スペーサ81を取り外すと共に天地を反転した後、図8(D)に示すように、容器8に樹脂原料を充填することで硬質発泡体5を形成する。この場合も上下面に型板をあてがい、プレス機等でプレスするのが一般的である。最後に、枠体80を取り外すことにより断熱パネル1を得る。このようにして得られた断熱パネル1は、所望の寸法となるように断熱パネル1周縁部の取付領域50,51を削ったり切断することもできる。   Next, after a predetermined time has elapsed, as shown in FIG. 8C, after removing the spacer 81 and inverting the top and bottom, the container 8 is filled with a resin raw material as shown in FIG. Form body 5. In this case as well, it is common to apply a template to the upper and lower surfaces and press with a press or the like. Finally, the heat insulation panel 1 is obtained by removing the frame 80. The heat insulation panel 1 obtained in this way can also cut and cut | disconnect the attachment area | regions 50 and 51 of the heat insulation panel 1 peripheral part so that it may become a desired dimension.

[利点]
当該断熱パネル1は、真空断熱材4が存在しない硬質発泡体部分に形成された取付領域50,51において建物の取付下地3に固定することができる。これにより施工時に留具21で真空断熱材4を突き刺したり傷つけることによる真空ブレークを防止し、断熱効果を低下させるトラブルを防ぐことができる。そのため、当該断熱パネル1は、真空断熱材4として複雑な形状や構成を使用することなく一般的な真空断熱材4を適用できるため、真空断熱材4の製造工程が煩雑になることもない。また、真空断熱材4の相互間の硬質発泡体5を接着性と伸び性能に優れたウレタン樹脂とすると、曲げ強度及び可撓性はさらに増大し好ましい。このような構成にすると真空断熱材4の相互間の硬質発泡体5の部分は断熱パネル1全体の中で強度上の弱点ではなくなり、可撓性確保の点から極めて好ましいものとなる。すなわち、真空断熱材4は硬質発泡体5に比べ硬く、真空断熱材4を内包する部分は可撓性に劣るが、真空断熱材4の相互間の領域がヒンジ状に変形可能となるため、断熱パネル1全体として可撓性に優れたものとなる。また、3本以上の取付下地3に跨って断熱パネル1を取り付ける場合、例えば、鉛直方向に3本の取付下地3が配置された場合、左から1本目と2本目の面と2本目と3本目の面が同一面とならずに相互の面の間に角度がつく場合があるが、このような場合も本発明の断熱パネル1は取付下地3上の取付領域50,51部分は可撓性に優れるため施工が容易であるばかりか、真空断熱材1の曲げ変形を抑える事ができるため、当該真空断熱材4の真空ブレークを起こし断熱性を低下させる事もなく好ましい。
[advantage]
The said heat insulation panel 1 can be fixed to the attachment base 3 of a building in the attachment area | regions 50 and 51 formed in the hard foam part in which the vacuum heat insulating material 4 does not exist. Thereby, the vacuum break by piercing or scratching the vacuum heat insulating material 4 with the fastener 21 at the time of construction can be prevented, and the trouble which reduces the heat insulation effect can be prevented. Therefore, since the said heat insulation panel 1 can apply the general vacuum heat insulating material 4 without using a complicated shape and structure as the vacuum heat insulating material 4, the manufacturing process of the vacuum heat insulating material 4 does not become complicated. Moreover, when the hard foam 5 between the vacuum heat insulating materials 4 is made of urethane resin excellent in adhesiveness and elongation performance, the bending strength and flexibility are further increased, which is preferable. With such a configuration, the portion of the hard foam 5 between the vacuum heat insulating materials 4 is not a weak point in strength in the entire heat insulating panel 1, and is extremely preferable from the viewpoint of ensuring flexibility. That is, the vacuum heat insulating material 4 is harder than the hard foam 5 and the portion containing the vacuum heat insulating material 4 is inferior in flexibility, but the region between the vacuum heat insulating materials 4 can be deformed into a hinge shape, The heat insulation panel 1 as a whole is excellent in flexibility. Moreover, when attaching the heat insulation panel 1 straddling the 3 or more attachment base | substrates 3, for example, when the three attachment base | substrates 3 are arrange | positioned in the perpendicular direction, the 1st, 2nd surface, 2nd and 3 from the left In some cases, the main surface is not the same surface but an angle is formed between the surfaces. In such a case, the heat insulation panel 1 of the present invention is flexible in the mounting regions 50 and 51 on the mounting base 3. Since it is excellent in performance, the construction is easy and the bending deformation of the vacuum heat insulating material 1 can be suppressed. Therefore, it is preferable without causing a vacuum break of the vacuum heat insulating material 4 and reducing the heat insulating property.

また、当該断熱パネル1は、一般的な真空断熱材4を適用し、この真空断熱材4を硬質発泡体5で覆うことで形成できるため寸法のバラツキが小さい。そのため、複数の断熱パネル1を並設する場合の隣接する断熱パネル1間の隙間を無くすことが可能となる。さらに、当該断熱パネル1は、取付領域50,51を有する硬質発泡体5を備えているため、従来のよう面材を使用することなく、取付領域50,51において建物の取付下地3に固定することができる。この点においても、複数の断熱パネル1を並設する場合、隣接する断熱パネル1間の隙間を無くすことが可能となる。その結果、当該断熱パネル1では、断熱性を十分に確保することが可能となる。また、ウレタン単独の断熱パネルに比べ、長期的な寸法変化が小さく、経時変化による隙間の発生を有利に抑えることができる。   Moreover, since the said heat insulation panel 1 can be formed by applying the general vacuum heat insulating material 4 and covering this vacuum heat insulating material 4 with the hard foam 5, the variation in a dimension is small. Therefore, it is possible to eliminate a gap between adjacent heat insulation panels 1 when a plurality of heat insulation panels 1 are arranged side by side. Furthermore, since the said heat insulation panel 1 is equipped with the hard foam 5 which has the attachment area | regions 50 and 51, it fixes to the attachment foundation | substrate 3 of a building in the attachment area | regions 50 and 51, without using a face material like the past. be able to. Also in this respect, when a plurality of heat insulation panels 1 are arranged in parallel, it is possible to eliminate a gap between adjacent heat insulation panels 1. As a result, the heat insulation panel 1 can sufficiently ensure heat insulation. Further, the long-term dimensional change is small as compared with a heat insulating panel made of urethane alone, and the generation of a gap due to a change with time can be advantageously suppressed.

当該断熱パネル1の取付構造は、当該断熱パネル1を取付領域50,51において取付下地3に固定するものである。そのため、複数の断熱パネル1を並設する場合、従来の断熱パネルを使用する場合に比べて、隣接する断熱パネル1間の隙間を無くすことが可能となる結果、当該断熱パネル1の取付構造では、断熱性を十分に確保ことが可能となる。   The mounting structure of the heat insulating panel 1 is to fix the heat insulating panel 1 to the mounting base 3 in the mounting regions 50 and 51. Therefore, when arranging a plurality of heat insulating panels 1 in parallel, it becomes possible to eliminate a gap between adjacent heat insulating panels 1 as compared with the case of using a conventional heat insulating panel. It is possible to ensure sufficient heat insulation.

<他の実施形態>
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<Other embodiments>
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The

例えば、断熱パネルは、図9(A)及び図9(B)又は図10(A)及び図10(B)に示すような形態であってもよい。   For example, a form as shown to FIG. 9 (A) and FIG. 9 (B) or FIG. 10 (A) and FIG. 10 (B) may be sufficient as a heat insulation panel.

図9(A)の断熱パネル9Aは、4枚の真空断熱材4を有し、これらの真空断熱材4の一面41Aにおける大部分が露出したものである。この断熱パネル9Aは、真空断熱材4の周縁部42が硬質発泡体5Aで被覆され、真空断熱材4の周辺部(硬質発泡体5Aの周縁部及び中央部)が硬質発泡体部分とされている。図9(B)に示すように、硬質発泡体部分は、断熱パネル9Aを取付具2を用いて取付下地3に固定するときの取付領域50A,51Aを構成している。この断熱パネル9Aは、真空断熱材4の一面41Aの大部分が露出するように硬質発泡体5が形成されていることから、軽量化及び材料コストの低減を図ることが可能となる。   The heat insulation panel 9A in FIG. 9A has four vacuum heat insulating materials 4, and most of one surface 41A of these vacuum heat insulating materials 4 is exposed. In this heat insulating panel 9A, the peripheral part 42 of the vacuum heat insulating material 4 is covered with the hard foam 5A, and the peripheral part of the vacuum heat insulating material 4 (the peripheral part and the central part of the hard foam 5A) is the hard foam part. Yes. As shown in FIG. 9B, the hard foam portion constitutes attachment regions 50 </ b> A and 51 </ b> A when the heat insulating panel 9 </ b> A is fixed to the attachment base 3 using the fixture 2. Since the hard foam 5 is formed on the heat insulating panel 9A so that most of the one surface 41A of the vacuum heat insulating material 4 is exposed, the weight can be reduced and the material cost can be reduced.

図10(A)の断熱パネル9Bは、4枚の真空断熱材4を有し、これらの真空断熱材4の両面41A,41Bにおける大部分が露出したものである。この断熱パネル9Bは、真空断熱材4の周縁部42が硬質発泡体5Bで被覆され、真空断熱材4の周辺部が硬質発泡体部分されている。図10(B)に示すように、硬質発泡体部分は、断熱パネル9Bを取付具2を用いて取付下地3に固定するときの取付領域50B,51Bを構成している。この断熱パネル9Bは、真空断熱材4の両面41A,41Bの大部分が露出するように硬質発泡体5が形成されていることから、軽量化及び材料コストの低減をさらに図ることが可能となる。   The heat insulating panel 9B of FIG. 10A has four vacuum heat insulating materials 4, and most of the both surfaces 41A and 41B of these vacuum heat insulating materials 4 are exposed. As for this heat insulation panel 9B, the peripheral part 42 of the vacuum heat insulating material 4 is coat | covered with the hard foam 5B, and the peripheral part of the vacuum heat insulating material 4 is a hard foam part. As shown in FIG. 10B, the hard foam portion constitutes attachment regions 50 </ b> B and 51 </ b> B when the heat insulating panel 9 </ b> B is fixed to the attachment base 3 using the fixture 2. In this heat insulation panel 9B, since the hard foam 5 is formed so that most of both surfaces 41A and 41B of the vacuum heat insulating material 4 are exposed, it is possible to further reduce the weight and reduce the material cost. .

断熱パネル1の製造方法は、図8(A)〜図8(D)を参照して説明した方法に限定されず、他の方法であってもよい。例えば、1枚の断熱パネル1を個別に製造する方法に代えて、連続した断熱パネルを形成した後に所望の寸法に切断することで個別の断熱パネルを製造する方法であってもよい。また、他の製造方法としては、容器(型枠)内にサイコロ状のスペーサを所定間隔で敷いた上で硬質発泡体の原液を流し込み、真空断熱材の表裏の硬質発泡体部分を1回で形成することもできる。この場合、サイコロ状のスペーサに当該断熱パネルの硬質発泡体と同一の材料を用いると、スペーサによる断熱材や強度上の影響を無視することが可能となり好ましい。また、このときの真空断熱材は4枚であると良く、中央から流し込んだ原液が真空断熱材間の隙間を通って硬質発泡体が全体に行き渡り易くなるので好ましい。   The manufacturing method of the heat insulation panel 1 is not limited to the method demonstrated with reference to FIG. 8 (A)-FIG. 8 (D), Other methods may be sufficient. For example, it may replace with the method of manufacturing the heat insulation panel 1 of 1 sheet separately, and may be the method of manufacturing an individual heat insulation panel by cut | disconnecting to a desired dimension, after forming a continuous heat insulation panel. Also, as another manufacturing method, after a dice-like spacer is laid in a container (form) at a predetermined interval, a hard foam undiluted solution is poured, and the hard foam parts on the front and back of the vacuum heat insulating material are formed once. It can also be formed. In this case, it is preferable to use the same material as the hard foam of the heat insulating panel for the dice-shaped spacer, because it is possible to ignore the heat insulating material and the influence on the strength due to the spacer. In addition, the number of vacuum heat insulating materials at this time is preferably four, which is preferable because the undiluted solution poured from the center passes through the gaps between the vacuum heat insulating materials and the hard foam easily spreads over the whole.

本発明によれば、断熱性を十分確保できる建築用断熱パネル及び断熱パネルの取付構造が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the mounting structure of the heat insulation panel for construction which can fully ensure heat insulation, and a heat insulation panel is provided.

1 断熱パネル
2 取付具
20 パネル取付部材
21 留具
3 取付下地
4 真空断熱材
5,5A,5B 硬質発泡体
50,51,50A,51A,50B,51B 取付領域
W2 断熱パネルの幅寸法
W5,W6 取付領域の寸法
W7 取付下地の幅寸法
DESCRIPTION OF SYMBOLS 1 Heat insulation panel 2 Attaching tool 20 Panel attachment member 21 Fastening tool 3 Mounting base 4 Vacuum heat insulating material 5, 5A, 5B Hard foam 50, 51, 50A, 51A, 50B, 51B Mounting area W2 Width dimension of heat insulating panel W5, W6 Mounting area dimensions W7 Mounting base width

Claims (8)

1又は複数の真空断熱材と、
上記1又は複数の真空断熱材の周縁部の少なくとも一部を覆う硬質発泡体と
を備える建築用断熱パネルであって、
建築物の取付下地に取付られる取付領域が、全厚に亘って上記真空断熱材が存在しない硬質発泡体部分に形成されていることを特徴とする建築用断熱パネル。
One or more vacuum insulation materials;
A thermal insulation panel comprising: a hard foam covering at least a part of a peripheral edge of the one or more vacuum heat insulating materials,
A building heat insulating panel, characterized in that a mounting region to be mounted on a mounting base of a building is formed in a hard foam portion where the vacuum heat insulating material does not exist over the entire thickness.
上記硬質発泡体の変形率2%時の圧縮強度が30kPa以上400kPa以下である請求項1に記載の建築用断熱パネル。   The heat insulation panel for buildings according to claim 1, wherein the compression strength when the deformation rate of the hard foam is 2% is 30 kPa or more and 400 kPa or less. 上記硬質発泡体の圧縮試験時の比例限度における変形率が2%以上である請求項1に記載の建築用断熱パネル。   The heat insulation panel for buildings according to claim 1, wherein a deformation rate at a proportional limit during compression test of the hard foam is 2% or more. 上記硬質発泡体が硬質ウレタンを主成分とする請求項1、請求項2又は請求項3に記載の建築用断熱パネル。   The heat insulation panel for buildings according to claim 1, wherein the hard foam has hard urethane as a main component. 上記複数の真空断熱材が略同一平面上に配設されている請求項1から請求項4のいずれか1項に記載の建築用断熱パネル。   The heat insulation panel for buildings according to any one of claims 1 to 4, wherein the plurality of vacuum heat insulating materials are disposed on substantially the same plane. 上記複数の真空断熱材の枚数が2枚以上8枚以下である請求項5に記載の建築用断熱パネル。   The architectural heat insulation panel according to claim 5, wherein the number of the plurality of vacuum heat insulating materials is 2 or more and 8 or less. 請求項1から請求項6のいずれか1項に記載の建築用断熱パネルと、この建築用断熱パネルを建築物の取付下地に取り付ける取付具とを備え、
上記断熱パネルが上記取付領域において上記取付下地に固定されている建築用断熱パネルの取付構造。
A heat insulating panel for building according to any one of claims 1 to 6, and a fixture for attaching the heat insulating panel for building to a mounting base of a building,
A structure for mounting a heat insulating panel for building, wherein the heat insulating panel is fixed to the mounting base in the mounting region.
上記取付具が上記断熱パネルを上記取付下地に固定するときに上記断熱パネルを押圧するパネル取付部材を有し、
上記取付領域が上記パネル取付部材と接する面において上記パネル取付部材により押圧されることにより取り付けられる請求項7に記載の建築用断熱パネルの取付構造。
A panel mounting member that presses the heat insulation panel when the fixture fixes the heat insulation panel to the mounting base;
The heat insulating panel mounting structure for building according to claim 7, wherein the mounting region is mounted by being pressed by the panel mounting member on a surface in contact with the panel mounting member.
JP2013226065A 2013-10-30 2013-10-30 Heat insulation panel for construction and fitting structure of heat insulation panel for construction Pending JP2015086589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013226065A JP2015086589A (en) 2013-10-30 2013-10-30 Heat insulation panel for construction and fitting structure of heat insulation panel for construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013226065A JP2015086589A (en) 2013-10-30 2013-10-30 Heat insulation panel for construction and fitting structure of heat insulation panel for construction

Publications (1)

Publication Number Publication Date
JP2015086589A true JP2015086589A (en) 2015-05-07

Family

ID=53049676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013226065A Pending JP2015086589A (en) 2013-10-30 2013-10-30 Heat insulation panel for construction and fitting structure of heat insulation panel for construction

Country Status (1)

Country Link
JP (1) JP2015086589A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140687A (en) * 1996-11-12 1998-05-26 Achilles Corp Heat insulating wall structure
JP2010018968A (en) * 2008-07-09 2010-01-28 Achilles Corp Building vacuum heat-insulating board
JP2013204255A (en) * 2012-03-27 2013-10-07 Sekisui Plastics Co Ltd Vacuum insulating panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140687A (en) * 1996-11-12 1998-05-26 Achilles Corp Heat insulating wall structure
JP2010018968A (en) * 2008-07-09 2010-01-28 Achilles Corp Building vacuum heat-insulating board
JP2013204255A (en) * 2012-03-27 2013-10-07 Sekisui Plastics Co Ltd Vacuum insulating panel

Similar Documents

Publication Publication Date Title
US9284728B2 (en) Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
JP2009162038A (en) Heat insulation panel for building and its manufacturing method
JP2010242298A (en) Light-weight steel partition wall
JP5991233B2 (en) Inner wall insulation structure and inner wall panel
JP2015102176A (en) Building composite heat insulation panel and attachment structure of building composite heat insulation panel
JP2015086589A (en) Heat insulation panel for construction and fitting structure of heat insulation panel for construction
JP4017473B2 (en) Insulation filling structure and filling method
JP2007138635A (en) Heat insulation floor substrate panel
KR101745172B1 (en) Floor Impact Sound Cushioning of Multi-story Buildings
JP4878891B2 (en) Thermal insulation panel for roof and roof structure
JP2012012860A (en) Interior building material with heat insulation material
JP4001524B2 (en) Hermetic structure and method for forming hermetic structure
JP4442540B2 (en) Wooden frame bearing wall structure and its construction method
JP2000145114A (en) Double floor
JP7064705B2 (en) Urethane insulation bearing wall
JP2006348551A (en) Vibration damping material
JP4309899B2 (en) Insulation for outer joints such as steel columns and heat insulation structure using the same
JP4043315B2 (en) Residential airtight structure
JPH1162042A (en) Structure of heat insulation panel
JP5783412B2 (en) Waterproof sheet fixing structure
JP4849833B2 (en) Insulated and airtight structure of steel beams
JP2000073605A (en) Viscoelastic wall
JP2013014912A (en) Wall panel and manufacturing and construction method thereof
JP2018204405A (en) Floor heat insulation structure and method for constructing the same
JP2003027619A (en) Beam structure of steel-framed house, and steel-framed house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128