JP2013204255A - Vacuum insulating panel - Google Patents

Vacuum insulating panel Download PDF

Info

Publication number
JP2013204255A
JP2013204255A JP2012072071A JP2012072071A JP2013204255A JP 2013204255 A JP2013204255 A JP 2013204255A JP 2012072071 A JP2012072071 A JP 2012072071A JP 2012072071 A JP2012072071 A JP 2012072071A JP 2013204255 A JP2013204255 A JP 2013204255A
Authority
JP
Japan
Prior art keywords
plate
vacuum heat
foam
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012072071A
Other languages
Japanese (ja)
Inventor
Junka Kobayashi
淳可 小林
Hiromaru Yamamoto
洋丸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2012072071A priority Critical patent/JP2013204255A/en
Publication of JP2013204255A publication Critical patent/JP2013204255A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum insulating panel with increased freedom of design.SOLUTION: A vacuum insulating panel with vacuum insulating materials stored inside foam comprises: plate-like foam having a plurality of vacuum insulating material storing chambers to store vacuum insulating materials; and a plurality of vacuum insulating materials stored in the vacuum insulating material storing chambers. The plate-like foam is made of rigid resin foam which has compressive strength of 0.3 MPa or larger, bending strength of 0.6 MPa or larger and density of not less than 35 kg/mand not more than 150 kg/m.

Description

本発明は、真空断熱パネルに関し、より詳しくは、真空断熱材を発泡体中に収容させてなる真空断熱パネルに関する。   The present invention relates to a vacuum heat insulating panel, and more particularly to a vacuum heat insulating panel in which a vacuum heat insulating material is accommodated in a foam.

近年、地球温暖化の観点から省エネルギーが強く望まれており、建築物についても省エネルギー化は緊急の課題となっている。
一般的な樹脂発泡体からなる断熱材であれば0.02W/m・K程度までの断熱性を実現する事が出来るが、この種の断熱材ではこの値がほぼ限界であり、特に寒冷地や酷暑地域の建築物に要望される断熱性能を発揮させることは難しい。
この為、この種の断熱材で所望の断熱性能を発揮させる場合には内壁だけでなく外張断熱を付加する必要が生じる場合があり、断熱材を厚く施工する必要性を生じさせるおそれを有する。
このことに対し、下記特許文献1にも示されているように一般的な樹脂発泡体に比べて断熱性能に優れた真空断熱材を建築物の断熱に利用することが検討されており、該真空断熱材を使用する事で断熱材の厚みを抑制しつつ断熱性能を従来のものよりも向上させることができる。
In recent years, energy saving is strongly desired from the viewpoint of global warming, and energy saving is an urgent issue for buildings as well.
A heat insulating material made of a general resin foam can achieve a heat insulating property up to about 0.02 W / m · K, but this value is almost the limit for this type of heat insulating material, especially in cold regions. It is difficult to achieve the heat insulation performance required for buildings in extremely hot regions.
For this reason, when desired heat insulation performance is exhibited with this type of heat insulating material, it may be necessary to add not only the inner wall but also external heat insulation, which may cause the need to install the heat insulating material thickly. .
On the other hand, as shown also in the following Patent Document 1, the use of a vacuum heat insulating material superior in heat insulating performance as compared with a general resin foam for heat insulation of a building has been studied, By using the vacuum heat insulating material, the heat insulating performance can be improved as compared with the conventional one while suppressing the thickness of the heat insulating material.

しかし、下記特許文献1においては、複数の胴縁を配置し、そこに規定枚数の真空断熱材を貼り付け、真空断熱材の貼れない場所には別途、発泡体を張りつけるなどの手間のかかる方法が採用されており、施工性に問題を有している。
このような問題に対して、下記特許文献2、3に記載されているように、樹脂発泡体からなる板状発泡体内に真空断熱材を収容させた真空断熱パネルの利用が検討されている。
However, in the following Patent Document 1, a plurality of body edges are disposed, a prescribed number of vacuum heat insulating materials are attached thereto, and a time-consuming method such as attaching a foam separately to a place where the vacuum heat insulating material cannot be attached. Is adopted, and there is a problem in workability.
In order to solve such a problem, as described in Patent Documents 2 and 3 below, use of a vacuum heat insulating panel in which a vacuum heat insulating material is accommodated in a plate-like foam made of a resin foam has been studied.

ところで、真空断熱材としては、ガス非透過性のシートで出来た袋体などの外装材中に多孔質な芯材が減圧密封されているものが一般的である。
従って、真空断熱材は、前記外装材に穴が開いたりすると内部の真空度が低下して断熱性も大きく低下することになる。
即ち、発泡体中に真空断熱材を収容させた前記真空断熱パネルは、真空断熱材と発泡体とを一体物として取り扱うことができて施工性が良好であるばかりでなく、真空断熱材が発泡体によってある程度保護されることから、施工時に真空断熱材が傷付いて真空度を低下させるおそれを抑制することができる。
By the way, as a vacuum heat insulating material, a porous core material is generally sealed under reduced pressure in an exterior material such as a bag made of a gas-impermeable sheet.
Accordingly, when the vacuum heat insulating material has a hole in the exterior material, the degree of vacuum inside is reduced and the heat insulating property is greatly reduced.
In other words, the vacuum heat insulating panel in which the vacuum heat insulating material is accommodated in the foam can handle the vacuum heat insulating material and the foam as one body and has good workability, and the vacuum heat insulating material is foamed. Since it is protected to some extent by the body, it is possible to suppress the risk of the vacuum heat insulating material being damaged during construction and reducing the degree of vacuum.

その一方で、前記芯材としては、セラミックスの粉体などといった樹脂発泡体に比べて高比重な材質のものが利用されたりしているために下記特許文献2,3に記載の真空断熱パネルを、例えば、所謂3×6(サブロク)サイズと呼ばれるような910mm×1820mmの大サイズなものにした場合、2人の作業者がそれぞれ長手方向両端部を持って搬送しようとした際には、その質量によって大きく撓んでしまったり、場合によっては中央部で折れてしまうおそれを有する。
また、ツーバーフォー住宅のように厚み約4cm、幅約10cmの枠材で形成された内壁内に真空断熱パネルを設置する場合、奥行き約10cm、幅数十cm、高さ数mの設置スペースに真空断熱パネルを縦置きすることになるが、この真空断熱パネルの厚みが、例えば、5cm程度で設置スペース内に余分な空間ができてしまうような場合には、真空断熱パネルを何らかの方法で堅固に固定しなければこの内壁内で大きく撓んでしまうおそれを有する。
On the other hand, as the core material, a material having a higher specific gravity than a resin foam such as ceramic powder is used. For example, in the case of a large size of 910 mm × 1820 mm, which is called a so-called 3 × 6 (sub-rock) size, when two workers try to carry with both ends in the longitudinal direction, There is a risk that it will be greatly bent by the mass, or in some cases it will break at the center.
In addition, when installing a vacuum heat insulation panel in an inner wall formed of a frame material with a thickness of about 4 cm and a width of about 10 cm as in a two bar four house, the installation space has a depth of about 10 cm, a width of several tens of cm, and a height of several meters. The vacuum insulation panel will be placed vertically. If the vacuum insulation panel has a thickness of about 5 cm, for example, and there will be an extra space in the installation space, the vacuum insulation panel will be solidified by some method. If it is not fixed to the inner wall, the inner wall may be greatly bent.

このようなことを防止すべく軽量な芯材が用いられた真空断熱材を発泡体中に収容させて真空断熱パネルとしたり、真空断熱パネルのサイズに制限を加えることも考えうるが、このような制限を設けるのは真空断熱パネルを使用する側にとって好ましいものではない。
即ち、従来の真空断熱パネルは、単に真空断熱材を発泡体中に収容させているだけで強度面での配慮がされておらず、利用方法が制限されるおそれを有している。
It can be considered that a vacuum heat insulating material using a lightweight core material to prevent such a situation is accommodated in a foam to form a vacuum heat insulating panel, or the size of the vacuum heat insulating panel is limited. Such a restriction is not preferable for the side using the vacuum heat insulation panel.
In other words, the conventional vacuum heat insulation panel simply accommodates the vacuum heat insulating material in the foam and is not considered in terms of strength, and there is a possibility that the method of use is limited.

特開2010−261157号公報JP 2010-261157 A 特開2009−236183号公報JP 2009-236183 A 特開2005−282840号公報JP 2005-282840 A

本発明は、上記のような問題を解決することを課題としており、設計上の自由度が高い真空断熱パネルの提供を課題としている。   This invention makes it a subject to solve the above problems, and makes the subject the provision of the vacuum heat insulation panel with a high design freedom.

上記課題を解決するための真空断熱パネルに係る本発明は、発泡体中に真空断熱材を収容させてなる真空断熱パネルであって、前記真空断熱材を収容させるための真空断熱材収容室が複数形成されている板状発泡体と前記真空断熱材収容室に収容させた複数の真空断熱材とを備え、前記板状発泡体が、圧縮強度0.3MPa以上、曲げ強度0.6MPa以上、密度35kg/m3以上150kg/m3以下の硬質樹脂発泡体で形成されていることを特徴としている。 The present invention relating to a vacuum heat insulating panel for solving the above-mentioned problems is a vacuum heat insulating panel in which a vacuum heat insulating material is accommodated in a foam, and a vacuum heat insulating material accommodating chamber for accommodating the vacuum heat insulating material. A plurality of formed plate-like foams and a plurality of vacuum heat insulating materials accommodated in the vacuum heat insulating material accommodation chamber, the plate-like foam has a compressive strength of 0.3 MPa or more, a bending strength of 0.6 MPa or more, It is characterized by being formed of a hard resin foam having a density of 35 kg / m 3 or more and 150 kg / m 3 or less.

本発明によれば真空断熱材を収容させる板状発泡体が所定の強度を有することから当該真空断熱パネルのサイズや収容させる真空断熱材に制約を受けるおそれを抑制させうる。
即ち、本発明によれば設計上の自由度が高い真空断熱パネルを提供し得る。
According to the present invention, since the plate-like foam for accommodating the vacuum heat insulating material has a predetermined strength, the size of the vacuum heat insulating panel and the risk of being restricted by the vacuum heat insulating material to be accommodated can be suppressed.
That is, according to the present invention, it is possible to provide a vacuum heat insulation panel having a high degree of design freedom.

(a)真空断熱材を示す概略斜視図。(b)真空断熱材を示す概略正面図。(c)真空断熱材の断面構造を示す概略断面図(図(b)のX−X’線矢視断面図)。(A) The schematic perspective view which shows a vacuum heat insulating material. (B) The schematic front view which shows a vacuum heat insulating material. (C) Schematic sectional view showing a sectional structure of the vacuum heat insulating material (sectional view taken along line X-X ′ in FIG. 5B). (a)板状発泡体と真空断熱材との概略正面図。(b)板状発泡体と真空断熱材とを用いて真空断熱パネルを作製する様子を示した概略斜視図。(c)真空断熱パネルの概略正面図。(A) The schematic front view of a plate-shaped foam and a vacuum heat insulating material. (B) The schematic perspective view which showed a mode that a vacuum heat insulation panel was produced using a plate-shaped foam and a vacuum heat insulating material. (C) The schematic front view of a vacuum heat insulation panel. (a)第二実施形態の真空断熱パネルを示す概略正面図。(b)真空断熱パネルの断面構造を示す概略断面図(図(a)のX−X’線矢視断面図)。(A) The schematic front view which shows the vacuum heat insulation panel of 2nd embodiment. (B) The schematic sectional drawing which shows the cross-section of a vacuum heat insulation panel (X-X 'arrow sectional drawing of a figure (a)). (a)第三実施形態の真空断熱パネルを示す概略正面図。(b)真空断熱パネルの断面構造を示す概略断面図(図(a)のY−Y’線矢視断面図)。(A) The schematic front view which shows the vacuum heat insulation panel of 3rd embodiment. (B) The schematic sectional drawing which shows the cross-section of a vacuum heat insulation panel (Y-Y 'arrow sectional drawing of a figure (a)). 断熱工法を説明するための概略斜視図。The schematic perspective view for demonstrating the heat insulation construction method. (a)実施例1の真空断熱パネルを示す概略正面図。(b)図(a)におけるZ−Z線概略断面図。(A) The schematic front view which shows the vacuum heat insulation panel of Example 1. FIG. (B) ZZ schematic sectional drawing in Fig.1 (a). (a)実施例2の真空断熱パネルを示す概略正面図。(b)図(a)におけるZ−Z線概略断面図。(A) The schematic front view which shows the vacuum heat insulation panel of Example 2. FIG. (B) ZZ schematic sectional drawing in Fig.1 (a).

以下に図を参照しつつ、本発明の実施の形態について説明する。
本実施形態の真空断熱パネルは、発泡体中に真空断熱材を収容させてなり、板状形状を有している。
また、本実施形態の真空断熱パネルは、前記真空断熱材を収容させるための真空断熱材収容室が複数形成されている板状発泡体と前記真空断熱材収容室に収容させた複数の真空断熱材とを備え、前記板状発泡体が、圧縮強度0.3MPa以上、曲げ強度0.6MPa以上、密度35kg/m3以上150kg/m3以下の硬質樹脂発泡体で形成されている。
Embodiments of the present invention will be described below with reference to the drawings.
The vacuum heat insulation panel of this embodiment has a plate-like shape in which a vacuum heat insulating material is accommodated in a foam.
Further, the vacuum heat insulation panel of the present embodiment includes a plate-like foam in which a plurality of vacuum heat insulating material accommodation chambers for accommodating the vacuum heat insulating material are formed, and a plurality of vacuum heat insulations accommodated in the vacuum heat insulating material accommodation chambers. The plate-like foam is formed of a hard resin foam having a compressive strength of 0.3 MPa or more, a bending strength of 0.6 MPa or more, and a density of 35 kg / m 3 or more and 150 kg / m 3 or less.

まず、本実施形態の真空断熱パネルに用いられる真空断熱材について説明する。
図1(a)は、本実施形態の真空断熱パネルに用いる真空断熱材10を示す概略斜視図であり、図1(b)は、この真空断熱材10の概略正面図である。
そして、図1(c)は、図1(b)において仮想線で示したX−X’線矢視断面を示した概略断面図である。
First, the vacuum heat insulating material used for the vacuum heat insulation panel of this embodiment is demonstrated.
FIG. 1A is a schematic perspective view showing a vacuum heat insulating material 10 used in the vacuum heat insulating panel of this embodiment, and FIG. 1B is a schematic front view of the vacuum heat insulating material 10.
And FIG.1 (c) is the schematic sectional drawing which showed the XX 'arrow cross section shown by the virtual line in FIG.1 (b).

この断面図にも示されているように、前記真空断熱材(符号10)は、芯材(符号11)と該芯材を減圧密封するためのガス非透過性の外装材(符号12)とを備え、全体形状が矩形板状となっている。
本実施形態における前記芯材としては、特に限定されるものではないが、通常、気層比率90%前後の多孔体をシート状または板状に加工したものを採用することができ、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの連続気泡体や、グラスウールやロックウール、アルミナ繊維、シリカアルミナ繊維、シリカ繊維などの繊維体、パーライトや湿式シリカ、乾式シリカなどの粉体といった従来公知の素材が用いられてなる芯材を利用することができる。
As shown in this sectional view, the vacuum heat insulating material (reference numeral 10) includes a core material (reference numeral 11) and a gas-impermeable exterior material (reference numeral 12) for sealing the core material under reduced pressure. The overall shape is a rectangular plate.
The core material in the present embodiment is not particularly limited, but it is usually possible to employ a porous body having an air-layer ratio of about 90% processed into a sheet or plate, such as urethane foam, Conventionally known materials such as open cell bodies such as styrene foam and phenol foam, fiber bodies such as glass wool, rock wool, alumina fibers, silica alumina fibers and silica fibers, powders such as perlite, wet silica and dry silica are used. Can be used.

また、前記外装材も特に限定されるものではないが、表面保護層/ガスバリア層/ヒートシール層の3層構造を有する金属ラミネートフィルムなどを用いることができ、該外装材として金属ラミネートフィルムを用いる場合には、前記ヒートシール層が、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリアクリロニトリル等の熱可塑性樹脂あるいはそれらの混合樹脂で形成されたものを採用することができる。
また、前記金属ラミネートフィルムとしては、前記ガスバリア層がアルミニウム箔や銅箔などの金属箔、アルミニウムや銅等の金属原子の蒸着膜によって形成されたものを採用することができる。
さらに、前記金属ラミネートフィルムとしては、前記表面保護層が、ポリアミドフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等で形成されたものを採用することができる。
Further, the exterior material is not particularly limited, but a metal laminate film having a three-layer structure of surface protective layer / gas barrier layer / heat seal layer can be used, and a metal laminate film is used as the exterior material. In such a case, the heat seal layer is formed of a thermoplastic resin such as low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polyacrylonitrile, or a mixed resin thereof. Can do.
In addition, as the metal laminate film, a film in which the gas barrier layer is formed by a metal foil such as an aluminum foil or a copper foil, or a vapor deposition film of metal atoms such as aluminum or copper can be employed.
Furthermore, as the metal laminate film, a film in which the surface protective layer is formed of a polyamide film, a polyethylene terephthalate film, a polypropylene film, or the like can be employed.

一方で前記板状発泡体を形成する硬質樹脂発泡体としては、アクリル樹脂発泡体、ポリウレタン樹脂発泡体、ポリスチレン樹脂発泡体、フェノール樹脂発泡体、ポリ塩化ビニル樹脂発泡体などを採用することが可能であり、強度の観点からポリ塩化ビニル樹脂発泡体やアクリル樹脂発泡体が好ましく、燃焼時などにおける安全性などの観点からアクリル樹脂発泡体がより好ましい。   On the other hand, acrylic resin foam, polyurethane resin foam, polystyrene resin foam, phenol resin foam, polyvinyl chloride resin foam, etc. can be adopted as the hard resin foam that forms the plate-like foam. From the viewpoint of strength, a polyvinyl chloride resin foam and an acrylic resin foam are preferable, and an acrylic resin foam is more preferable from the viewpoint of safety during combustion.

この点に関して従来使用されている発泡体について具体的に説明すると、同程度の密度の発泡体で比較した場合、例えば、フェノール樹脂発泡体では0.18MPa程度である。
そして、比較的強度の高いポリスチレン系樹脂発泡体で0.35MPa程度、ポリ塩化ビニル樹脂発泡体で0.49MPa程度となっている。
一方でアクリル樹脂発泡体は、例えば、同程度の密度(25倍程度の発泡倍率)のもので80%以上の独立気泡率を有するものであれば、5%圧縮応力は0.35MPa以上となり、10倍程度の発泡倍率で、80%以上の独立気泡率を有するものであれば、1.5MPa以上の5%圧縮応力を発揮させることができる。
When the foam conventionally used in this respect is concretely demonstrated, when compared with the foam of the comparable density, it is about 0.18 MPa, for example in a phenol resin foam.
And it is about 0.35 MPa with a polystyrene resin foam having a relatively high strength, and about 0.49 MPa with a polyvinyl chloride resin foam.
On the other hand, if the acrylic resin foam has, for example, the same density (expanding ratio of about 25 times) and a closed cell ratio of 80% or more, the 5% compression stress becomes 0.35 MPa or more, If it has an expansion ratio of about 10 times and a closed cell ratio of 80% or more, 5% compression stress of 1.5 MPa or more can be exhibited.

このような優れた強度をより確実に発揮させる上においては、前記アクリル樹脂発泡体として、メタクリル酸メチル50質量%以上70質量%以下、(メタ)アクリル酸14質量%以上30質量%以下、及び、スチレン10質量%以上20質量%以下含有するモノマー混和液と尿素又は尿素誘導体からなる発泡剤とを含む重合性溶液が重合されて発泡されたものを採用することが好ましい。
なお、モノマー混和物に含有させる「(メタ)アクリル酸」とは、「アクリル酸」であっても、「メタクリル酸」であっても良いこと意味し、モノマー混和物には、アクリル酸のみ単独で含有させても、メタクリル酸のみ単独で含有させてもよく、さらにはアクリル酸とメタクリル酸との両方を含有させてもよい。
なお、前記のように「(メタ)アクリル酸」のモノマー混和物における含有量は14質量%以上30質量%以下であることが好ましいものであるが、この「(メタ)アクリル酸」として「アクリル酸」と「メタクリル酸」との両方を前記モノマー混和物に含有させる場合であれば、これらの合計量が上記範囲内であることが好ましい。
以下に具体的な実施形態を説明するが、本発明はこれらに限定されるのもではない。
In order to exhibit such excellent strength more reliably, as the acrylic resin foam, methyl methacrylate 50 mass% to 70 mass%, (meth) acrylic acid 14 mass% to 30 mass%, and It is preferable to employ a polymerized solution containing a monomer mixture containing 10% by mass or more and 20% by mass or less of styrene and a foaming agent composed of urea or a urea derivative.
“(Meth) acrylic acid” contained in the monomer mixture means “acrylic acid” or “methacrylic acid”. In the monomer mixture, only acrylic acid is used alone. Or methacrylic acid alone, or both acrylic acid and methacrylic acid.
As described above, the content of “(meth) acrylic acid” in the monomer mixture is preferably 14% by mass or more and 30% by mass or less, and “(meth) acrylic acid” is “acrylic”. In the case where both the “acid” and “methacrylic acid” are contained in the monomer mixture, the total amount thereof is preferably within the above range.
Specific embodiments will be described below, but the present invention is not limited thereto.

(第一実施形態)
以下に、図2を参照しつつ本発明の真空断熱パネルの第一の実施形態について説明する。
なお、図2(a)は、本実施形態の真空断熱パネル1を構成する真空断熱材10と板状発泡体20を示す概略正面図であり、図2(b)は、前記真空断熱材10を収容させるための真空断熱材収容室たる貫通孔20aが形成された板状発泡体20に真空断熱材10を収容させて真空断熱パネル1を形成させる工程を板状発泡体20の一部を拡大して示した概略斜視図である。
また、図2(c)は、図2(b)の工程によって出来上がった真空断熱パネル1を縦置きした様子を示した概略正面図である。
本実施形態においては、図1に示すように前記真空断熱材10の前記外装材としてガス非透過性のアルミラミネートフィルムからなる袋体12が採用されている。
(First embodiment)
Below, 1st embodiment of the vacuum heat insulation panel of this invention is described, referring FIG.
2A is a schematic front view showing the vacuum heat insulating material 10 and the plate-like foam 20 constituting the vacuum heat insulating panel 1 of this embodiment, and FIG. 2B is the vacuum heat insulating material 10. The step of accommodating the vacuum heat insulating material 10 in the plate-like foam 20 in which the through-hole 20a serving as the vacuum heat insulating material accommodating chamber for housing the vacuum heat insulating panel 1 is formed is a part of the plate-like foam 20. It is the schematic perspective view expanded and shown.
Moreover, FIG.2 (c) is the schematic front view which showed a mode that the vacuum heat insulation panel 1 completed by the process of FIG.2 (b) was installed vertically.
In the present embodiment, as shown in FIG. 1, a bag body 12 made of a gas-impermeable aluminum laminate film is employed as the exterior material of the vacuum heat insulating material 10.

なお、本実施形態の前記真空断熱材10としては、芯材11が袋体12の内部に減圧密封されたものが用いられている。
そして、前記芯材11には、平面視における輪郭形状が略正方形となる矩形板状の多孔質体が採用されている。
前記袋体12は、前記芯材11を収容可能な内容積を有しており、より具体的には、平面視略正方形の前記芯材11の一辺の長さよりも広幅で、前記一辺の長さの2倍以上の長さを有する長方形のアルミラミネートフィルムが長手方向中央部に折り目を設ける形で前記ヒートシール層を内向きにして半折され、且つ、前記折り目を介して一方側と他方側とをそれぞれの端縁を揃えるようにして重ね合わせ、前記折り目を除いた3辺の内の2辺が熱融着によってヒートシールされて袋状に形成されたものである。
そして、前記真空断熱材10は、前記袋体12のヒートシールがされていない開口箇所から該袋体内部に前記芯材11を収容させて内部を真空引きした後に該開口箇所を他の2辺と同様にヒートシールすることによって該袋体中に芯材を減圧密封させたものである。
In addition, as the said vacuum heat insulating material 10 of this embodiment, what the core material 11 sealed under reduced pressure inside the bag body 12 is used.
The core material 11 is a rectangular plate-shaped porous body having a substantially square outline shape in plan view.
The bag body 12 has an internal volume that can accommodate the core material 11, and more specifically, is wider than the length of one side of the core material 11 that is substantially square in plan view, and the length of the one side. A rectangular aluminum laminate film having a length more than twice the length is half-folded with the heat seal layer facing inward in the form of a crease at the center in the longitudinal direction, and one side and the other through the crease The two sides of the three sides excluding the crease are heat-sealed by heat-sealing to form a bag shape.
And the said vacuum heat insulating material 10 accommodates the said core material 11 in the inside of this bag body from the opening location where the heat sealing of the said bag body 12 is not carried out, and evacuates the inside, and this opening location is made into other 2 sides. The core material is sealed under reduced pressure in the bag body by heat-sealing in the same manner as described above.

従って、本実施形態の真空断熱材10は、前記アルミラミネートフィルムが合掌状態でヒートシールされることによって形成された合掌シール12aが4つの側面部の内の3つの側面部において形成されており、該合掌シール12aが前記芯材11の密封されている部分の外縁から外側に向けて突出するように形成されている。
即ち、本実施形態の真空断熱材は、芯材11の密封されている部分よりも外側に合掌シール12aを有することでその平面視における形状が前記芯材11よりも一回り大きな矩形となっている。
Therefore, in the vacuum heat insulating material 10 of this embodiment, the palm seal 12a formed by heat-sealing the aluminum laminate film in a palm state is formed on three side surfaces of the four side surfaces, The joint seal 12 a is formed so as to protrude outward from the outer edge of the sealed portion of the core member 11.
That is, the vacuum heat insulating material of the present embodiment has a joint seal 12 a outside the sealed portion of the core material 11, so that the shape in plan view is a rectangle that is slightly larger than the core material 11. Yes.

なお、前記のような長方形のアルミラミネートフィルムに代えて、例えば、前記芯材11よりも一回り大きな正方形の2枚のアルミラミネートフィルムを前記ヒートシール層を内向きにして2枚重ね合わせ、一辺を開口させて残り3辺をシールすることによって得られる袋体も図に示している袋体12と同様に真空断熱材の外装材として利用可能である。
なお、この場合には、開口部をシールして得られる真空断熱材には、芯材の密封されている部分の外側に全周にわたって合掌シールが形成されることになるが、当該合掌シールは2枚のアルミラミネートフィルムによって形成されているためにこの突出した合掌シール12aを芯材収容部分に沿わせて折り畳んで用いることができ、実用上の問題を生じるおそれは低い。
In place of the rectangular aluminum laminate film as described above, for example, two aluminum laminate films having a square shape slightly larger than the core material 11 are stacked with the heat seal layer facing inward, A bag body obtained by opening and sealing the remaining three sides can also be used as an exterior material for a vacuum heat insulating material in the same manner as the bag body 12 shown in the figure.
In this case, the vacuum heat insulating material obtained by sealing the opening portion is formed with a palm seal over the entire circumference outside the sealed portion of the core material. Since it is formed of two aluminum laminate films, the protruding joint seal 12a can be folded along the core housing portion and used, and there is little possibility of causing a practical problem.

本実施形態においては、前記合掌シール12aを折り畳んだ状態で真空断熱材10を収容させるべく前記芯材11よりも一回り大きな矩形の貫通孔20aを複数有する平面視縦長長方形の板状発泡体20と該板状発泡体20の貫通孔20aに収容された複数の真空断熱材10とで真空断熱パネル1が構成されている。
より具体的には、本実施形態の真空断熱パネル1は、縦方向に3個、横方向に2個の合計6個の貫通孔20aが備えられ、前記真空断熱材10以上の厚みを有する板状の枠体(以下「板状枠材20x」ともいう)単体で構成された板状発泡体20を有し、該板状発泡体20の各貫通孔20aに前記真空断熱材10が収容されて形成されている。
In the present embodiment, the plate-like foam body 20 having a vertically long rectangular shape in plan view having a plurality of rectangular through holes 20a that are slightly larger than the core material 11 so as to accommodate the vacuum heat insulating material 10 in a state where the palm seal 12a is folded. And the vacuum heat insulation panel 1 is comprised by the several vacuum heat insulating material 10 accommodated in the through-hole 20a of this plate-shaped foam 20. FIG.
More specifically, the vacuum heat insulation panel 1 of the present embodiment includes a total of six through-holes 20a, three in the vertical direction and two in the horizontal direction, and has a thickness equal to or greater than that of the vacuum heat insulating material 10. Plate-like foam body 20 (hereinafter also referred to as “plate-like frame material 20x”), and the vacuum heat insulating material 10 is accommodated in each through-hole 20a of the plate-like foam body 20. Is formed.

即ち、本実施形態における板状枠材20xは、当該板状枠材20xの平面視における輪郭形状を確定する矩形枠状の外枠部20bと、該外枠部20bの内側の空間を6つに仕切る桟部20cとを有し、前記桟部20cは、前記空間を左右に仕切るべく縦方向に延びる1本の縦桟部20c1と、前記空間を上中下の3段に仕切る2本の横桟部c2とを有している。
なお、該板状枠材20xは前記外枠部20bや前記桟部20cとが別体となっているものではなく、圧縮強度0.3MPa以上、曲げ強度0.6MPa以上、密度35kg/m3以上150kg/m3以下の特性を有する一枚の板状のアクリル発泡ボードに打抜加工を施して前記貫通孔20aを形成させたもので外枠部20bと桟部20cとは一体構成されたものとなっている。
本実施形態においては、このような強度を有する板状枠材20xに真空断熱材10を収容させることから強度に優れた真空断熱パネルを得ることができる。
That is, the plate-like frame member 20x in the present embodiment includes six rectangular frame-like outer frame portions 20b that define the outline shape of the plate-like frame member 20x in plan view, and six spaces inside the outer frame portion 20b. The crosspiece 20c is divided into a vertical crosspiece 20c1 extending in the vertical direction to partition the space left and right, and two pieces that divide the space into upper, middle, and lower three stages. And a horizontal crosspiece c2.
The plate-like frame member 20x is not separated from the outer frame portion 20b and the crosspiece portion 20c, and has a compressive strength of 0.3 MPa or more, a bending strength of 0.6 MPa or more, and a density of 35 kg / m 3. The outer frame portion 20b and the crosspiece portion 20c are integrally formed by punching a single plate-like acrylic foam board having a characteristic of 150 kg / m 3 or less to form the through hole 20a. It has become a thing.
In this embodiment, since the vacuum heat insulating material 10 is accommodated in the plate-shaped frame member 20x having such strength, a vacuum heat insulating panel having excellent strength can be obtained.

本実施形態においては、このような強度を有する板状枠材20xに真空断熱材10を収容させることから強度に優れた真空断熱パネルを得ることができる。   In this embodiment, since the vacuum heat insulating material 10 is accommodated in the plate-shaped frame member 20x having such strength, a vacuum heat insulating panel having excellent strength can be obtained.

なお、本明細書に記載の「圧縮強度」とは、JIS K7220:2006「硬質発泡プラスチック−圧縮特性の求め方」記載の方法により測定した値を意図している。
すなわち、断面100mm×100mm、厚み50mmの試験片を5個用意し、テンシロン万能試験機UCT−10T((株)オリエンテック製)を用いて、圧縮速度を5mm/minとして10%圧縮した時の5%圧縮時において測定される圧縮強さを下記式に基づいて求め、5個の試験片の内、最大の値を示した試験片と最小の値を示した試験片とを除いた3個の試験片の圧縮強さを算術平均して求めることができる。

σ5= F5/A0×103

σ5 : 圧縮強さ(kPa)
5 : 変形率5%以内に到達した最大の力(N)
0 : 試験片の初めの断面積(mm2
The “compressive strength” described in the present specification is intended to be a value measured by the method described in JIS K7220: 2006 “Rigid Foamed Plastic-Determination of Compression Properties”.
That is, five test pieces having a cross-section of 100 mm × 100 mm and a thickness of 50 mm were prepared, and 10% compression was performed using a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.) with a compression speed of 5 mm / min. Three compressive strengths measured at the time of 5% compression are calculated based on the following formula, and three of the five test pieces are excluded from the test piece showing the maximum value and the test piece showing the minimum value. The compressive strength of the test piece can be obtained by arithmetic averaging.

σ 5 = F 5 / A 0 × 10 3

σ 5 : Compression strength (kPa)
F 5 : Maximum force reached within a deformation rate of 5% (N)
A 0 : Initial cross-sectional area of the test piece (mm 2 )

また、「曲げ強度」とは、JIS K7221−1:2006「硬質発泡プラスチック−曲げ試験−第1部:たわみ特性の求め方」記載の方法により測定した値を意図している。
すなわち、上端に5Rの丸みを持たせた2つの支点が距離100mm隔てて設けられた支持台をテンシロン万能試験機UCT−10T((株)オリエンテック製)にセットし、且つ、前記支点間中央部の上方に下端が5Rに加工された加圧くさびをセットして、幅25mm×長さ120mm×厚み20mmの試験体を、25mm×120mmの面が上面側となるようにして前記支持台上に載置し、該試験体を上面側から前記加圧くさびで10mm/minの速度で押圧して3点曲げを行いえられた結果に基づいて下記式によって「曲げ強さ」を求めることができる。
なお、当該曲げ強さは、5個の試験体について測定を行い、最小値と最大値を除いた3個の試験体の平均値を算出して求めることができる。

R=(1.5FR×L/bd2)×106

R:曲げ強さ(kPa)
FR:最大荷重(kN)
L:支点間距離(mm)
b:試験片の幅(mm)
d:試験片の厚み(mm)
Further, the “bending strength” is intended to be a value measured by the method described in JIS K7222-1: 2006 “Hard foamed plastic—bending test—Part 1: Determination of deflection characteristics”.
That is, a support base provided with two fulcrum points with a 5R roundness at the upper end and separated by a distance of 100 mm is set on a Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), and the center between the fulcrum points Set the pressure wedge with the lower end processed to 5R above the part, and place the test piece of width 25mm x length 120mm x thickness 20mm on the support base so that the surface of 25mm x 120mm is the upper surface side The “bending strength” can be obtained by the following equation based on the result of three-point bending by pressing the test body from the upper surface side with the pressure wedge at a speed of 10 mm / min. it can.
In addition, the said bending strength can be calculated | required by measuring about 5 test bodies and calculating the average value of 3 test bodies except the minimum value and the maximum value.

R = (1.5FR × L / bd 2 ) × 10 6

R: Bending strength (kPa)
FR: Maximum load (kN)
L: Distance between fulcrums (mm)
b: Width of test piece (mm)
d: Test piece thickness (mm)

さらに、「密度」とは、JIS K 7222:2005「発泡プラスチック及びゴム−見掛け密度の求め方」記載の方法で測定した値を意図している。
すなわち、100cm3以上の試験片を材料の元のセル構造を変えないように切断し、その質量を測定し、次式により算出することができる。

密度(kg/m3)=試験片質量(g)/試験片体積(mm3)×106

なお、測定用の試験片は、温度23±2 ℃、湿度50±5%の雰囲気条件に16時間以上放置したものを用いる。
Furthermore, “density” intends a value measured by the method described in JIS K 7222: 2005 “Foamed Plastics and Rubber—How to Obtain Apparent Density”.
That is, a test piece of 100 cm 3 or more can be cut so as not to change the original cell structure of the material, the mass thereof can be measured, and the following equation can be calculated.

Density (kg / m 3 ) = Test piece mass (g) / Test piece volume (mm 3 ) × 10 6

In addition, the test piece for measurement uses what was left to stand for 16 hours or more on the atmospheric condition of temperature 23 +/- 2 degreeC and humidity 50 +/- 5%.

本実施形態において前記板状発泡体20を構成すべく用いられる板状枠材20xは、図にも示したように縦長長方形に形成されているが、その大きさとしては、縦方向寸法が425mm以上2500mm以下で、横方向寸法が210mm以上1200mm以下であることが好ましい。
そして、板状枠材20xの厚みは4mm以上75mm以下であることが好ましく、前記板状発泡体20としては、この板状枠材20xを単一、又は、複数積層させて該板状枠材20xと縦横が同じような大きさで厚みを10mm以上100mm以下とすることが好ましい。
なお、板状発泡体20が上記のような大きさを有することが好ましいのは、上記範囲よりも小さな板状発泡体では、一般的な真空断熱材の内で比較的高比重なものを選択して貫通孔に収容させたとしても、得られる真空断熱パネルが自重で撓んでしまうという問題自体が発生し難いためである。
また、板状発泡体20が上記のような大きさを有することが好ましいのは、前記範囲を超えて大きな板状発泡体を用いて真空断熱パネルを形成させたとしても、このような真空断熱パネルは、通常の建築物においての利用範囲が狭く、また、取り扱い難くなるおそれを有するためである。
即ち、板状発泡体20が上記のような大きさを有することが好ましいのは、本発明の効果をより顕著に発揮させるためであり、上記のような大きさを有する板状発泡体を用いることで、強度に優れ、取り扱い容易で、利用範囲の広い真空断熱パネルを得られ易いためである。
In the present embodiment, the plate-like frame member 20x used to constitute the plate-like foam 20 is formed in a vertically long rectangle as shown in the figure, and the size thereof is 425 mm in the vertical direction. It is preferably 2500 mm or less and the lateral dimension is 210 mm or more and 1200 mm or less.
The thickness of the plate-like frame member 20x is preferably 4 mm or more and 75 mm or less. As the plate-like foam 20, the plate-like frame member 20x may be a single or a plurality of laminated plate-like frame members. It is preferable that the vertical and horizontal dimensions are the same as 20x and the thickness is 10 mm or more and 100 mm or less.
In addition, it is preferable that the plate-like foam 20 has the above-mentioned size. For a plate-like foam smaller than the above range, one having a relatively high specific gravity among general vacuum heat insulating materials is selected. This is because the problem itself that the obtained vacuum heat insulation panel is bent by its own weight hardly occurs even if it is accommodated in the through hole.
Moreover, it is preferable that the plate-like foam 20 has the above-mentioned size even if the vacuum heat-insulating panel is formed using a large plate-like foam exceeding the above range. This is because panels have a narrow range of use in ordinary buildings and may be difficult to handle.
That is, it is preferable that the plate-like foam 20 has the above-mentioned size in order to exhibit the effect of the present invention more remarkably, and the plate-like foam having the above-mentioned size is used. This is because it is easy to obtain a vacuum heat insulation panel having excellent strength, easy handling, and a wide range of use.

また、板状発泡体20は、複数の前記貫通孔が互いに5mm以上の距離を隔てて備えられていることが好ましい。
即ち、前記縦桟部20c1や横桟部20c2は、正面視における形成幅が5mm以上であることが好ましい。
なお、板状発泡体20の桟部20cが5mm以上であることが好ましいのは、この桟部20cが5mm未満では、真空断熱材10を収容させる際などにおいて破損を生じるおそれを有するためである。
一方で、桟部20cを過度に広幅にすると真空断熱材の占める割合が低くなって真空断熱パネルに対して求められる断熱性を十分に発揮させることが難しくなってしまうおそれを有する。
このことから、桟部20cの幅(隣接する貫通孔20aの間の距離)は、断熱性、および、施工性を考慮して100mm以下とすることが好ましく、50mm以下とすることがより好ましい。
なお、本実施形態においては、前記のような硬質樹脂発泡体を板状発泡体20の形成材料に採用していることで、下限値ギリギリの5mm幅程度の桟部20cを形成させることができ、全体に占める真空断熱材の割合を向上させることができる。
さらに、本実施形態の前記板状発泡体20は、外枠20bが10 mm以上の幅を有することが好ましく、くぎ打ちなどの施工性を考慮すると該外枠20bが50mm〜150mm幅とされていることがより好ましい。
Moreover, it is preferable that the plate-like foam 20 is provided with a plurality of the through holes separated from each other by a distance of 5 mm or more.
That is, it is preferable that the vertical beam portion 20c1 and the horizontal beam portion 20c2 have a formation width of 5 mm or more in a front view.
In addition, it is preferable that the crosspiece 20c of the plate-like foam 20 is 5 mm or more because, if the crosspiece 20c is less than 5 mm, there is a risk of breakage when the vacuum heat insulating material 10 is accommodated. .
On the other hand, if the crosspiece 20c is excessively wide, the proportion of the vacuum heat insulating material is reduced, and it may be difficult to sufficiently exhibit the heat insulating properties required for the vacuum heat insulating panel.
From this, the width of the crosspiece 20c (distance between adjacent through holes 20a) is preferably 100 mm or less, more preferably 50 mm or less in consideration of heat insulation and workability.
In the present embodiment, by using the hard resin foam as described above as the material for forming the plate-like foam 20, it is possible to form the crosspiece 20c having a width of about 5 mm which is the lower limit value. The ratio of the vacuum heat insulating material to the whole can be improved.
Furthermore, the plate-like foam 20 of the present embodiment preferably has an outer frame 20b having a width of 10 mm or more, and considering the workability such as nailing, the outer frame 20b has a width of 50 mm to 150 mm. More preferably.

本実施形態においては、板状発泡体20が板状枠材20xのみで構成されているために、真空断熱材を収容させるための真空断熱材収容室は、当該板状発泡体20の表裏両面に開口した前記貫通孔20aで形成されている。
したがって、本実施形態においては、この真空断熱材収容室から真空断熱材が落下しないようにするために前記真空断熱材10の側面部を前記外枠部20bや前記桟部20cの側面部と接着固定させて前記貫通孔20aの内部に収容させている。
即ち、本実施形態の真空断熱パネル1は、前記真空断熱材10が、もっぱら側面部を硬質樹脂発泡体によって保護させていることになる。
In the present embodiment, since the plate-like foam 20 is composed only of the plate-like frame member 20x, the vacuum heat insulating material accommodation chamber for accommodating the vacuum heat insulating material is both front and back surfaces of the plate-like foam 20. It is formed by the through-hole 20a that is open to the top.
Therefore, in this embodiment, in order to prevent the vacuum heat insulating material from dropping from the vacuum heat insulating material accommodation chamber, the side surface portion of the vacuum heat insulating material 10 is bonded to the side surface portion of the outer frame portion 20b or the crosspiece portion 20c. It is fixed and accommodated in the through hole 20a.
That is, in the vacuum heat insulating panel 1 of the present embodiment, the vacuum heat insulating material 10 protects the side surface portion with the hard resin foam.

(第二実施形態)
次いで、図3を参照しつつ、本発明の第2の実施形態について説明する。
前記第一実施形態の真空断熱パネルにおいては、一枚の板状枠材20xのみで板状発泡体20を構成させていたが、本実施形態においては、2枚の板状枠材20x’,20x”を積層して真空断熱材を収容させるための板状発泡体20を形成させている点において第一実施形態と異なっている。
なお、これらの板状枠材20x’,20x”は、形成させている貫通孔20a’の大きさが前記芯材11よりも一回り大きなものである点など、その他の事項は、ほぼ第一実施形態の板状枠材20xと同様に形成されている。
また、この第二実施形態における前記板状枠材20x’,20x”は、外周縁を揃えて積層した際に、第一実施形態の板状枠材20xと同形状になるように形成されている。
即ち、本実施形態においては、2枚の板状枠材20x’,20x”で一つの板状枠材20xを形成させうるようになっており、前記2枚の板状枠材20x’,20x”は、互いの貫通孔20a’形成位置を共通させている。
なお、互いの貫通孔20a’重なり合ってできる一つの貫通孔20aが真空断熱材収容室となる点も第一実施形態と同じである。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.
In the vacuum heat insulation panel of the first embodiment, the plate-like foam 20 is constituted by only one plate-like frame member 20x. However, in this embodiment, two plate-like frame members 20x ′, This is different from the first embodiment in that a plate-like foam 20 for accommodating a vacuum heat insulating material is formed by stacking 20x ″.
These plate-like frame members 20x ′ and 20x ″ are substantially the same as those described above, except that the size of the through-hole 20a ′ formed is slightly larger than that of the core member 11. It is formed similarly to the plate-like frame member 20x of the embodiment.
Further, the plate-like frame members 20x ′ and 20x ″ in the second embodiment are formed to have the same shape as the plate-like frame member 20x of the first embodiment when the outer peripheral edges are aligned and laminated. Yes.
That is, in the present embodiment, one plate-like frame member 20x can be formed by two plate-like frame members 20x ′, 20x ″, and the two plate-like frame members 20x ′, 20x ”are formed. "" Makes the through holes 20a 'common to each other.
In addition, it is the same as that of 1st embodiment also in the point which one through-hole 20a formed by mutually overlapping through-hole 20a 'becomes a vacuum heat insulating material accommodation chamber.

この第二実施形態においては、2枚の板状枠材20xを積層して用いるために、前記のような合掌シール12aを有する真空断熱材10を用いるのに際して、前記第一実施形態のように合掌シール12aを折り畳んで使用する必要がなく、むしろこの合掌シール12aをたたまずに、外向きに突出した状態のままにしておいて、この合掌シール12を2枚の板状枠材20xの間に挟み込んで板状発泡体20に対する真空断熱材10の固定に利用させることができる。
即ち、図3に示すように、2枚の板状枠材20x’,20x”の合計厚みを、前記真空断熱材10の厚み以上とし、且つ、一方の板状枠材20x’を合掌シール12aの形成位置から真空断熱材10の表面までの厚み以上とし、他方の板状枠材20x”の厚みを合掌シール12aの形成位置から真空断熱材10の裏面までの厚み以上とすることで、この2枚の板状枠材20x’,20x”を積層して得られる板状発泡体20の両面において真空断熱材10が突出することを防止することができ、第一実施形態と同様に貫通孔20aの中に真空断熱材10を収容させた状態にすることができる。
In the second embodiment, since the two plate-like frame members 20x are stacked and used, when the vacuum heat insulating material 10 having the joint seal 12a as described above is used, as in the first embodiment. There is no need to use the joint seal 12a in a folded state. Rather, the joint seal 12a is left in an outwardly projecting state, and the joint seal 12 is attached to the two plate-like frame members 20x. It can be used for fixing the vacuum heat insulating material 10 to the plate-like foam 20 by being sandwiched between them.
That is, as shown in FIG. 3, the total thickness of the two plate-like frame members 20x ′ and 20x ″ is equal to or greater than the thickness of the vacuum heat insulating material 10, and one plate-like frame member 20x ′ is connected to the joint seal 12a. By making the thickness of the other plate-shaped frame member 20x ″ more than the thickness from the formation position of the palm seal 12a to the back surface of the vacuum heat insulating material 10, It is possible to prevent the vacuum heat insulating material 10 from protruding on both surfaces of the plate-like foam 20 obtained by laminating the two plate-like frame members 20x ′ and 20x ″, and the through hole as in the first embodiment. It can be set as the state which accommodated the vacuum heat insulating material 10 in 20a.

この第二実施形態においては、例えば、ホットメルト接着剤、反応硬化型接着剤、感圧接着剤といった接着剤を使って合掌シール12aと板状枠材20x’,20x”との接着を実施し、前記貫通孔20a’の内部に真空断熱材10を固定させることができる。
このとき、例えば、2枚の板状枠材20x’,20x”のそれぞれ片面に接着剤を塗布しておいて、一方の板状枠材20x’(以下「第一板状枠材20x’」ともいう)を接着剤塗布面が上向きとなるように台上に載置し、この第一板状枠材20x’の貫通孔20aに真空断熱材10の芯材密封箇所を嵌め込んで該貫通孔周囲の桟部表面に合掌シール12aの片面を接着させた後で、この第一板状枠材20x’に接着剤塗布面を下向きにしたもう一つの板状枠材20x”(以下「第二板状枠材20x” 」ともいう)を積層させて該第二板状枠材20x”と前記第一板状枠材20x’とを接着させるとともに該第二板状枠材20x”と前記真空断熱材10とを前記合掌シール12aを使って接着させればよい。
In the second embodiment, for example, the joint seal 12a and the plate-shaped frame members 20x ′ and 20x ″ are bonded using an adhesive such as a hot melt adhesive, a reaction curable adhesive, or a pressure sensitive adhesive. The vacuum heat insulating material 10 can be fixed inside the through hole 20a ′.
At this time, for example, an adhesive is applied to one side of each of the two plate-like frame members 20x ′ and 20x ″, and one plate-like frame member 20x ′ (hereinafter “first plate-like frame member 20x ′”) is applied. (Also referred to as “adhesive”) is placed on a table so that the adhesive application surface faces upward, and the core material sealing portion of the vacuum heat insulating material 10 is fitted into the through hole 20a of the first plate-like frame member 20x ′. After bonding one side of the joint seal 12a to the surface of the crosspiece around the hole, another plate-shaped frame member 20x ″ (hereinafter referred to as “the first plate-shaped frame member 20x ′) with the adhesive-coated surface facing downward. And the second plate frame material 20x ″ and the first plate frame material 20x ′ are bonded together, and the second plate frame material 20x ″ and the above What is necessary is just to adhere | attach the vacuum heat insulating material 10 using the said palm seal 12a.

なお、板状枠材20x’,20x”と合掌シール12aとの間の接着力をより強固なものとするためには、前記板状枠材20x’,20x”として厚み方向中央部の密度よりも表層部の密度の方が高いものを用いることが好ましい。
このような表層部の密度が中央部よりも高い板状枠材20x’,20x”を得るには、所謂樹脂発泡ボードや樹脂発泡シートにおいて表面スキン層と呼ばれる高密度な層を表層部に形成させる手法を採用すればよい。
In order to further strengthen the adhesive force between the plate-shaped frame members 20x ′ and 20x ″ and the joint seal 12a, the plate-shaped frame members 20x ′ and 20x ″ are more dense than the central portion in the thickness direction. Also, it is preferable to use one having a higher density of the surface layer portion.
In order to obtain such plate-like frame members 20x 'and 20x "whose surface layer part has a higher density than the central part, a high-density layer called a surface skin layer is formed on the surface layer part in a so-called resin foam board or resin foam sheet. It is sufficient to adopt a technique for making them.

当該板状枠材20x’,20x”が前記のようにアクリル樹脂発泡体で一旦前記貫通孔の形成されていない板状体(アクリル発泡ボード)を形成させた後に該板状体に打抜加工が施されて前記貫通孔20aを形成させたものであれば、前記板状体作製時に従来の手法を採用して形成させることができる。
即ち、アクリル系樹脂発泡体を型枠内で発泡させた際に、発泡後に型枠ごと急冷することで表面スキン層を形成することができる。
即ち、型枠と接する表面の密度を内部よりも高くさせて表面スキン層を形成させることができる。
又は、このアクリル発泡ボードの作製時や前記打抜加工時に厚み方向に圧力を加えて前記表面スキン層を形成させてもよい。
The plate-like frame members 20x ′ and 20x ″ are made of an acrylic resin foam as described above and once formed into a plate-like body (acrylic foam board) in which the through holes are not formed, the plate-like body is punched. Can be formed by adopting a conventional method when the plate-shaped body is manufactured.
That is, when the acrylic resin foam is foamed in the mold, the surface skin layer can be formed by quenching the entire mold after foaming.
That is, the surface skin layer can be formed by making the density of the surface in contact with the mold higher than the inside.
Alternatively, the surface skin layer may be formed by applying pressure in the thickness direction during the production of the acrylic foam board or during the punching process.

(第三実施形態)
次いで、図4を参照しつつ、本発明の第3の実施形態について説明する。
この第三実施形態の真空断熱パネル1は、第一板状枠材20x’と第二板状枠材20x”とを積層させることによって一つの板状枠材20xを形成させ、該板状枠材20xで真空断熱材10を収容させるための板状発泡体20を構成させている点においては第二実施形態の真空断熱パネルと同じである。
一方で、この第三実施形態の真空断熱パネル1は、板状枠材と同じ硬質樹脂発泡体からなる2枚の薄板材20y’,20y”によって前記板状枠材20x’,20x”が挟み込まれたサンドイッチ構造を有し、前記貫通孔20aが前記板状枠材の両面において前記薄板材20y’,20y”で閉塞されて前記真空断熱材収容室が閉空間とされている点において第二実施形態の真空断熱パネルと相違している。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG.
The vacuum heat insulation panel 1 of this third embodiment forms a single plate frame member 20x by laminating a first plate frame member 20x ′ and a second plate frame member 20x ″, and the plate frame In the point which comprises the plate-shaped foam 20 for accommodating the vacuum heat insulating material 10 with the material 20x, it is the same as the vacuum heat insulating panel of 2nd embodiment.
On the other hand, in the vacuum heat insulation panel 1 of the third embodiment, the plate-like frame members 20x ′ and 20x ″ are sandwiched between two thin plate members 20y ′ and 20y ″ made of the same hard resin foam as the plate-like frame member. Second, in that the through-hole 20a is closed by the thin plate materials 20y ′ and 20y ″ on both sides of the plate-shaped frame member, and the vacuum heat insulating material accommodation chamber is closed. It is different from the vacuum heat insulation panel of the embodiment.

即ち、本実施形態の真空断熱パネル1は、図4正面視手前側から奥側に向かって厚み方向に順に第一の薄板材20y’(以下、「第一薄板材20y’」ともいう)、第一板状枠材20x’第二板状枠材20x”、第二の薄板材20y”(以下、「第二薄板材20y”」ともいう)の4層構成の板状発泡体20が形成されている。
前記薄板材20y’,20y”は、前記板状発泡体と同じ大きさを有し、その一枚の厚みは、通常、当該薄板材と前記板状枠材とによって形成される前記板状発泡体の1/2未満とされ、好ましくは板状枠材の厚み以下とされる。
That is, the vacuum heat insulation panel 1 of the present embodiment includes a first thin plate material 20y ′ (hereinafter also referred to as “first thin plate material 20y ′”) in order from the front side toward the back side in FIG. A plate-like foam 20 having a four-layer structure of a first plate-like frame member 20x ′, a second plate-like frame member 20x ″, and a second thin plate member 20y ″ (hereinafter also referred to as “second thin plate member 20y ″”) is formed. Has been.
The thin plate materials 20y ′ and 20y ″ have the same size as the plate-shaped foam, and the thickness of one sheet is usually the plate-shaped foam formed by the thin plate material and the plate-shaped frame material. The thickness is less than ½ of the body, preferably not more than the thickness of the plate-like frame material.

本実施形態の真空断熱パネル1は、第一実施形態、第二実施形態の真空断熱パネルに比べ、同じ真空断熱材を用いる場合でも厚みが厚くなってしまうものの前記薄板材20y’,20y”によって真空断熱材収容室が閉空間とされるために運搬中などにおいて真空断熱材10が落下したりするおそれが低く、且つ、工具等が真空断熱材に当たってその真空度を低下させるおそれを抑制させることができる。   Although the vacuum heat insulation panel 1 of this embodiment becomes thick even if it uses the same vacuum heat insulation material compared with the vacuum heat insulation panel of 1st embodiment and 2nd embodiment, by said thin plate material 20y ', 20y' '. Since the vacuum heat insulating material storage chamber is a closed space, there is a low risk that the vacuum heat insulating material 10 will fall during transportation and the like, and the risk that the tool etc. will hit the vacuum heat insulating material and reduce its vacuum will be suppressed. Can do.

この薄板材20y’,20y”と板状枠材20x’,20x”との固定については、接着剤、両面テープ、面ファスナなどを用いて表面どうしを接合させるようにしてもよく、タッカー等の工具を使って側面部においてステープルで固定させるようにしてもよい。
さらには、釘、螺子、リベットなどを第一薄板材20y’から第二薄板材20y”まで貫通させるようにして薄板材と板状枠材とを固定させてもよい。
即ち、接着剤や両面テープを用いる場合には、薄板材と板状枠材とを広い面積を使って接合させることができるために得られる真空断熱パネルを強度に優れたものとし得る一方でステープル、釘、螺子、面ファスナーなどを使った場合には真空断熱パネルを必要に応じて分解容易なものとすることができるため、用途に応じて薄板材と板状枠材との接合手段を選択すればよい。
For fixing the thin plate members 20y ', 20y "and the plate-like frame members 20x', 20x", the surfaces may be joined using an adhesive, a double-sided tape, a hook-and-loop fastener, etc. You may make it fix with a staple in a side part using a tool.
Furthermore, the thin plate material and the plate-shaped frame material may be fixed so that nails, screws, rivets and the like are penetrated from the first thin plate material 20y ′ to the second thin plate material 20y ″.
That is, when an adhesive or double-sided tape is used, the vacuum insulation panel obtained because the thin plate member and the plate-like frame member can be joined using a large area can be made excellent in strength while being stapled. When using nails, screws, hook-and-loop fasteners, etc., the vacuum insulation panel can be easily disassembled as necessary, so the joining method between the thin plate and plate frame can be selected according to the application. do it.

なお、例えば、薄板材の表面に接着剤を塗布して板状枠材に接着させるような場合において、その接着強度を良好にさせる上において前記板状枠材と同様に該薄板材も表面スキン層を形成させたものを用いることが好適である。   For example, in the case where an adhesive is applied to the surface of the thin plate material and bonded to the plate frame material, the thin plate material is also surface skin as in the case of the plate frame material in order to improve the adhesive strength. It is preferable to use a layer formed.

次いで、この第三実施形態の真空断熱パネルに関し、大きさ910mm×1820mmの真空断熱パネルを作製する場合を例にして説明する。
まず、910mm×1820mmの内法を有する型枠を用意し、これにアクリル系モノマー、尿素系発泡剤、重合開始剤などを含んだ重合性溶液を流し入れ、尿素の分解開始温度(約130℃)よりも低い温度(例えば、50〜80℃)で前記アクリル系モノマーを重合させ、発泡性重合体を形成させた後に、前記尿素の分解開始温度以上にこの発泡性重合体を加熱して両面に表面スキン層の形成された910mm×1820mm、密度35kg/m3以上150kg/m3以下のアクリル発泡ボードを作製する。
同様にして、合計4枚のアクリル発泡ボードを作製し、その内2枚は切削加工、又は、打抜加工によって貫通孔20a’を形成させて前記板状枠材20x’、20x”とする。
残りの2枚を前記薄板材20y’,20y”として用い、この内の1枚(例えば、第二薄板材20y”)の片面に接着剤を塗布し、前記板状枠材20x’、20x”の内の一枚(例えば、第二板状枠材20x”)と外縁を正確に揃えて貼り合せる。
そして、この第二板状枠材20x”の貫通孔20a’に真空断熱材10を収容させる。
このとき、真空断熱材10の合掌シール12aに接着剤を塗布しておいて、第二板状枠材20x”の外枠部20bや桟部20cに対して合掌シール12aを接着固定させることが好ましい。
その後、残りの第一板状枠材20x’の片面に接着剤を塗布し、この接着剤塗布面が第二板状枠材20x”との接着面となるようにして第二板状枠材20x”に接着させる。
このとき、真空断熱材10の合掌シール12aは、第一板状枠材20x’に対しても接着固定されることになる。
そして、残りの第一薄板材20y’を接着固定して第三実施形態の真空断熱パネル1を作製することができる。
Next, the vacuum heat insulation panel of the third embodiment will be described by taking as an example a case where a vacuum heat insulation panel having a size of 910 mm × 1820 mm is produced.
First, a mold having an internal method of 910 mm × 1820 mm is prepared, and a polymerizable solution containing an acrylic monomer, a urea foaming agent, a polymerization initiator, etc. is poured into this, and the decomposition start temperature of urea (about 130 ° C.) After the acrylic monomer is polymerized at a lower temperature (for example, 50 to 80 ° C.) to form a foamable polymer, the foamable polymer is heated to a temperature higher than the decomposition start temperature of urea to An acrylic foam board having a surface skin layer of 910 mm × 1820 mm and a density of 35 kg / m 3 to 150 kg / m 3 is produced.
Similarly, a total of four acrylic foam boards are produced, and two of them are formed into the plate-shaped frame members 20x ′ and 20x ″ by forming through holes 20a ′ by cutting or punching.
The remaining two sheets are used as the thin plate materials 20y ′ and 20y ″, and an adhesive is applied to one side (for example, the second thin plate material 20y ″), and the plate frame materials 20x ′ and 20x ″ are applied. 1 (for example, the second plate-shaped frame member 20x ″) and the outer edge are aligned and bonded together.
And the vacuum heat insulating material 10 is accommodated in through-hole 20a 'of this 2nd plate-shaped frame material 20x ".
At this time, an adhesive is applied to the joint seal 12a of the vacuum heat insulating material 10, and the joint seal 12a is adhered and fixed to the outer frame portion 20b and the crosspiece portion 20c of the second plate-like frame member 20x ″. preferable.
Thereafter, an adhesive is applied to one side of the remaining first plate-shaped frame member 20x ′, and the second plate-shaped frame member is formed so that the adhesive-coated surface becomes an adhesive surface with the second plate-shaped frame member 20x ″. Adhere to 20x ".
At this time, the joint seal 12a of the vacuum heat insulating material 10 is bonded and fixed also to the first plate-like frame member 20x ′.
And the vacuum insulation panel 1 of 3rd embodiment can be produced by adhere | attaching and fixing the remaining 1st thin plate material 20y '.

なお、得られる真空断熱パネル1の表面強度がさほど重要視されない場合であれば、薄板材20y’,20y”には板状枠材との接着面側にのみ表面スキン層が備えられていればよく、例えば、両面に表面スキン層を形成させた1枚のアクリル発泡ボードをスライスサーで厚み方向に2分割して2枚の薄板材として用いてもよい。   If the surface strength of the vacuum heat insulating panel 1 to be obtained is not so important, the thin plate members 20y ′ and 20y ″ may have a surface skin layer only on the side of the surface to be bonded to the plate-like frame member. For example, one acrylic foam board having a surface skin layer formed on both sides may be divided into two in the thickness direction by a slicer and used as two thin plates.

また、ここではアクリル発泡ボードを板状枠材や薄板材として用いることを例示しているが、板状枠材や薄板材は、所定の強度を有するものであれば、その材質をアクリル樹脂発泡体に限定するものではない。
また、ここでは詳細に説明はしないが、薄板材は樹脂発泡体に限らず、非発泡な樹脂シート、紙などであってもよい。
Also, here, the use of an acrylic foam board as a plate-like frame material or thin plate material is exemplified, but if the plate-like frame material or thin plate material has a predetermined strength, the material is made of an acrylic resin foam. It is not limited to the body.
Although not described in detail here, the thin plate material is not limited to the resin foam, and may be a non-foamed resin sheet, paper, or the like.

なお、これらの実施形態に係る真空断熱パネル1は、アクリル発泡ボードなどを予め作製しておきさえすれば、該アクリル発泡ボードに貫通孔を形成させたりする作業は、断熱工事を行う施工現場で実施することができ、簡便な方法で作製可能なものである。
従って、板状発泡体20への真空断熱材10の収容を、施工現場で実施することができることから真空断熱材10に異常がないかどうかを確認しつつ真空断熱パネルを作製することができ、断熱性に優れた壁や床などを確実に形成させ得る。
In addition, as long as the vacuum heat insulation panel 1 which concerns on these embodiment has produced the acrylic foam board etc. beforehand, the operation | work which forms a through-hole in this acrylic foam board is the construction site which performs heat insulation construction. It can be implemented and can be produced by a simple method.
Therefore, it is possible to produce a vacuum heat insulation panel while confirming whether the vacuum heat insulating material 10 is normal because the vacuum heat insulating material 10 can be accommodated in the plate-like foam 20 at the construction site. Walls and floors with excellent heat insulation can be reliably formed.

(その他の事例)
なお、本発明は、上記例示以外の種々の態様を採用することができる。
例えば、板状発泡体は、矩形板状である必要はなく、三角形、五角形以上の多角形、円形、L字型あるいはこれらを組み合わせてなる任意の形状とすることができる。
また、本実施形態においては、真空断熱材を収容させる板状発泡体を、板状枠材や薄板材といった平面的な部材を組み合わせて形成させているが、例えば、成形型を用いて、第三実施形態における板状枠材と薄板材とが組み合わされたような3次元構造物を2枚作製して、第三実施形態において示したような真空断熱パネルを作製することも可能である。
さらに、上記において直接的な記載の無い事項でも真空断熱材、樹脂発泡体、真空断熱パネルなどに関して従来公知の事項については、これを本発明においても採用可能なものである。
(Other cases)
In addition, various aspects other than the said illustration can be employ | adopted for this invention.
For example, the plate-like foam does not have to be a rectangular plate shape, and may be a triangle, a pentagon or more polygon, a circle, an L shape, or any combination thereof.
Further, in the present embodiment, the plate-like foam that accommodates the vacuum heat insulating material is formed by combining planar members such as a plate-like frame material and a thin plate material. It is also possible to produce a vacuum heat insulation panel as shown in the third embodiment by producing two three-dimensional structures in which the plate frame material and the thin plate material in the third embodiment are combined.
Furthermore, even in matters not directly described above, conventionally known matters relating to the vacuum heat insulating material, the resin foam, the vacuum heat insulating panel, etc. can be adopted in the present invention.

(断熱工法)
本実施形態の真空断熱パネルは、例えば、図5に示すような断熱工法に有用であるといえる。
この図5は、内壁の断熱工法について示した図であり符号100は縦枠を表し、符合110は、前記縦枠100に裏打ちされた合板を表している。
そして、本実施形態によって得られる真空断熱パネル1は前記縦枠間に収容させる形で縦置きして用いられる。
(Insulation method)
It can be said that the vacuum heat insulation panel of this embodiment is useful for the heat insulation construction method as shown in FIG. 5, for example.
FIG. 5 is a diagram showing the heat insulation method for the inner wall. Reference numeral 100 represents a vertical frame, and reference numeral 110 represents a plywood lined on the vertical frame 100.
And the vacuum heat insulation panel 1 obtained by this embodiment is vertically installed and used between the said vertical frames.

この時、例えば、建築物が2×6(ツーバイシックス)工法で形成されたもので前記縦枠100の合板110からの厚みが140mmであり、且つ求められる断熱性能から真空断熱パネル1の厚みが50mm程度であった場合には内部に90mmの余分な空間を形成させることになる。
そうすると、従来の真空断熱パネルであれば、何らかの詰め物をしないと真空断熱パネルが大きく撓んでしまい、真空断熱材が曲がって内部に空間が形成されて断熱性能を低下させるおそれがあったが、本実施形態においては、真空断熱材を収容する板状発泡体が優れた強度を有するために撓みの発生が抑制されうる。
なお、本実施形態の真空断熱パネルを用いる場合でも、大きな空隙が形成される場合に詰め物をして直立状態の安定化を図ることが好ましい点については同じであり、本発明は詰め物を否定するものではない。
At this time, for example, the building is formed by 2 × 6 (two-by-six) construction method, the thickness of the vertical frame 100 from the plywood 110 is 140 mm, and the thickness of the vacuum heat insulation panel 1 is determined from the required heat insulation performance. When it is about 50 mm, an extra space of 90 mm is formed inside.
Then, if it is a conventional vacuum heat insulation panel, the vacuum heat insulation panel will be greatly bent without any padding, and the vacuum heat insulation material may bend and a space is formed inside, which may deteriorate the heat insulation performance. In the embodiment, since the plate-like foam containing the vacuum heat insulating material has excellent strength, the occurrence of bending can be suppressed.
In addition, even when using the vacuum heat insulation panel of the present embodiment, it is the same in that it is preferable to stabilize the upright state by stuffing when a large gap is formed, and the present invention denies the stuffing. It is not a thing.

また、本実施形態の真空断熱パネルは、搬送時における撓みについても抑制されることから、搬送時に真空断熱材が曲がって断熱性能を低下させることを抑制させ得る。
従って、壁内のみならず、根太間、大引間といった床断熱などに利用される場合においても有効なものである。
また、本実施形態の真空断熱パネルは根太間や大引間といった床下のみならず天井裏に複数配列して建築物の断熱構造を形成させることができる。
例えば、軸組建築物であれば、垂木、梁、柱、間柱などの間に配列することができる。
また、前記ツーバイシックスやツーバイフォーなどの木造枠組壁構法による建築物であれば、内壁以外においても利用でき、枠材間に複数配列して床、天井、外壁などに断熱構造を形成させることができる。
Moreover, since the vacuum heat insulation panel of this embodiment is also suppressed about the bending | flexion at the time of conveyance, it can suppress that a vacuum heat insulating material bends at the time of conveyance, and reduces heat insulation performance.
Therefore, it is effective not only in the wall but also in the case of use for floor insulation such as a joisting room and a large drawing room.
Moreover, the vacuum heat insulation panel of this embodiment can be arranged in multiple numbers not only under the floors, such as joists and large draws, but in the ceiling, and can form the heat insulation structure of a building.
For example, in the case of a framed building, it can be arranged between rafters, beams, columns, studs, and the like.
In addition, if the building is based on a wooden framework wall construction method such as the above-mentioned two-by six or two-by-four, it can be used for other than the inner wall, and a plurality of frames can be arranged between the frame members to form a heat insulating structure on the floor, ceiling, outer wall, etc. .

また、本実施形態の製造方法によって得られる真空断熱パネルは、コンクリート土間にヒーターを埋設した床下暖房を備えた建築物の前記土間コンクリート中に埋設して利用することも可能であり、各種断熱工法に利用可能なものである。   Moreover, the vacuum heat insulation panel obtained by the manufacturing method of the present embodiment can be used by being embedded in the soil concrete of a building having underfloor heating in which a heater is embedded between concrete soils. Is available.

次いで、本発明の実施例について具体的に説明する。
(硬質樹脂発泡体の作製)
1.重合性溶液の作製
メタクリル酸メチル62質量部、メタクリル酸23質量部、スチレン15質量部、重合開始剤t−ブチルヒドロパーオキサイド0.48質量部、塩化セチルトリメチルアンモニウム0.04質量部、ギ酸カルシウム0.15質量部、硫酸ナトリウム0.58質量部、N,N−ジメチルアニリン0.48質量部、そして発泡剤 尿素5質量部からなる重合性モノマー混合溶液を35℃で加熱撹拌した。
その後、残渣の無機塩を除去する事により重合性溶液を調製した。
Next, specific examples of the present invention will be described.
(Production of hard resin foam)
1. Preparation of polymerizable solution 62 parts by weight of methyl methacrylate, 23 parts by weight of methacrylic acid, 15 parts by weight of styrene, 0.48 parts by weight of polymerization initiator t-butyl hydroperoxide, 0.04 parts by weight of cetyltrimethylammonium chloride, calcium formate A polymerizable monomer mixed solution consisting of 0.15 parts by mass, sodium sulfate 0.58 parts by mass, N, N-dimethylaniline 0.48 parts by mass, and blowing agent urea 5 parts by mass was heated and stirred at 35 ° C.
Thereafter, a polymerizable solution was prepared by removing residual inorganic salts.

2.発泡性重合体の作製
前記重合性溶液15 kgを2.5cm×100cm×50cmの内法を有するテフロン製の直方体状の型枠に入れた。
該型枠を内部に温水が循環する設計となっている金属製の直方体の熱板で挟みこみ、56.0℃で4.5時間、50.0℃で20時間、58.5℃で9時間加熱することにより発泡性重合体(樹脂密度1150kg/m3)を得た。
2. Production of Expandable Polymer 15 kg of the polymerizable solution was placed in a Teflon rectangular parallelepiped mold having an internal method of 2.5 cm × 100 cm × 50 cm.
The mold is sandwiched between hot plates of metal cuboid designed to circulate hot water inside, 56.0 ° C for 4.5 hours, 50.0 ° C for 20 hours, and 58.5 ° C for 9 hours. A foamable polymer (resin density 1150 kg / m 3 ) was obtained by heating for a period of time.

3.アクリル系樹脂発泡体の作製
該発泡性重合体を、100cm×200cm×7cmの金型にいれ、140℃にて60分、170℃にて40分と段階的に加熱し、樹脂中の発泡剤を分解させることでアクリル系樹脂発泡体を得た。
3. Preparation of Acrylic Resin Foam The foamable polymer is placed in a 100 cm × 200 cm × 7 cm mold and heated stepwise at 140 ° C. for 60 minutes and 170 ° C. for 40 minutes to form a foaming agent in the resin. Was decomposed to obtain an acrylic resin foam.

このアクリル系樹脂発泡体に対して前記のような「圧縮強度」、「曲げ強度」、及び、「密度」の測定を実施したところ以下のような結果となった。
圧縮強度:2.17MPa
曲げ強度:2.75MPa
密度:98kg/m3
When the “compressive strength”, “bending strength”, and “density” were measured on the acrylic resin foam, the following results were obtained.
Compressive strength: 2.17 MPa
Bending strength: 2.75 MPa
Density: 98kg / m 3

(実施例1)
先のアクリル系樹脂発泡体によって大きさ900 mm角、厚み5 mmで250 mm角の貫通孔が縦方向に3個、横方向に3個の合計9個配列された板状枠材を2枚と、900 mm角、厚み10 mmの薄板材2枚とを作製した。
これに250 mm角、厚み10 mmの真空断熱材9枚を収容させる形で図6に示すように第三実施形態に例示のものと同様の構成を有する真空断熱パネルを作製した。
なお、板状枠材の外枠部の幅は45 mm、桟部の幅は30 mmとした。
得られた真空断熱パネルの総質量は2.8 kgで断熱性能を調べるため、熱貫流率を測定したところ熱貫流率は、0.74W/m2・Kであった。

なお、本明細書記載の「熱貫流率」とは、JIS A 1420(建築用構成材の断熱性測定方法-校正熱箱法及び保護熱箱法)付属書Bの方法に準じて測定したものをいう。
具体的には、900 mm(縦)×900 mm(横)×30 mm(厚み)の真空断熱パネルを作製し、以下の条件で測定した値である。
<試験条件>
熱流方向 : 上向き
設定温度 : 加熱箱内空気 35 ℃
恒温室内空気 15 ℃
気流 : 加熱箱側 0.5 m/s 以下
恒温室側 自然対流
Example 1
Two pieces of plate-like frame material in which a total of nine through-holes of 900 mm square, 5 mm thickness and 250 mm square, 3 in the vertical direction and 3 in the horizontal direction are arranged by the previous acrylic resin foam And two thin plate materials of 900 mm square and 10 mm thickness.
A vacuum heat insulation panel having the same configuration as that exemplified in the third embodiment as shown in FIG. 6 was prepared in such a manner that nine vacuum heat insulation materials of 250 mm square and 10 mm thickness were accommodated therein.
Note that the width of the outer frame portion of the plate-shaped frame member was 45 mm, and the width of the crosspiece portion was 30 mm.
The total mass of the obtained vacuum heat insulation panel was 2.8 kg, and in order to investigate the heat insulation performance, when the heat transmissivity was measured, the heat transmissivity was 0.74 W / m 2 · K.

In addition, the "heat transmissivity" described in this specification is a value measured according to the method of Appendix B of JIS A 1420 (Measurement method of thermal insulation of building components-calibration heat box method and protective heat box method). Say.
Specifically, it is the value measured by producing a vacuum heat insulation panel of 900 mm (length) × 900 mm (width) × 30 mm (thickness) under the following conditions.
<Test conditions>
Heat flow direction: Upward set temperature: Air in heating box 35 ° C
Air in constant temperature room 15 ℃
Airflow: Heating box side 0.5 m / s or less
Constant temperature side natural convection

(実施例2)
先のアクリル系樹脂発泡体を型枠内で発泡させた際に、発泡後に型枠ごと10℃の冷水で急冷することで表面スキン層(表面密度146 kg/m3、中央密度98 kg/m3 )を形成させた点、及び、板状枠材を、外枠部の形成幅が(タテ100 mm×ヨコ57 mm)、桟部の幅が(タテ60 mm×ヨコ40 mm)とし、タテ130 mm×ヨコ125 mmの貫通孔が縦方向に4個、横方向に5個の合計20個配列されたものとした点、及び、タテ130 mm×ヨコ125 mm、厚み10mmの真空断熱材20枚を用いた点以外は実施例1と同様にして、図7に示すような真空断熱パネルを作製した。
得られた真空断熱パネルの総質量は3.1kgで熱貫流率は、0.73W/m2・Kであった。
(Example 2)
When the above acrylic resin foam is foamed in the mold, the surface skin layer (surface density 146 kg / m 3 , center density 98 kg / m) is obtained by quenching the mold with the cold water at 10 ° C. after foaming. 3 ) The plate frame material is formed with a width of the outer frame portion (vertical 100 mm × width 57 mm) and a crosspiece width (vertical 60 mm × width 40 mm). It is assumed that a total of 20 through holes of 130 mm × width 125 mm are arranged in the vertical direction and 5 in the horizontal direction, and the vacuum heat insulating material 20 having a length of 130 mm × width 125 mm, thickness 10 mm. A vacuum heat insulating panel as shown in FIG. 7 was produced in the same manner as in Example 1 except that the sheet was used.
The total mass of the obtained vacuum heat insulation panel was 3.1 kg, and the heat permeability was 0.73 W / m 2 · K.

これらの実施例に係る真空断熱パネルは、撓みも少なく、強度に優れたものであった。
したがって、本発明によれば、収容させる真空断熱材の種類や当該真空断熱パネルのサイズ等が強度面から制約されることを抑制させうることがわかる。
The vacuum heat insulation panels according to these examples were less bent and excellent in strength.
Therefore, according to this invention, it turns out that it can suppress that the kind of vacuum heat insulating material to accommodate, the size of the said vacuum heat insulation panel, etc. are restrict | limited from an intensity | strength surface.

1 真空断熱パネル
10 真空断熱材
11 芯材
12 袋体
12a 合掌シール
20 板状発泡体
20x 板状枠材
21a 貫通孔
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulation panel 10 Vacuum heat insulating material 11 Core material 12 Bag body 12a Joint seal 20 Plate-shaped foam 20x Plate-shaped frame material 21a Through-hole

Claims (5)

発泡体中に真空断熱材を収容させてなる真空断熱パネルであって、
前記真空断熱材を収容させるための真空断熱材収容室が複数形成されている板状発泡体と前記真空断熱材収容室に収容させた複数の真空断熱材とを備え、前記板状発泡体が、圧縮強度0.3MPa以上、曲げ強度0.6MPa以上、密度35kg/m3以上150kg/m3以下の硬質樹脂発泡体で形成されていることを特徴とする真空断熱パネル。
A vacuum heat insulation panel in which a vacuum heat insulating material is accommodated in a foam,
A plate-like foam in which a plurality of vacuum heat-insulating material accommodating chambers for accommodating the vacuum heat-insulating material are formed; and a plurality of vacuum heat-insulating materials accommodated in the vacuum heat-insulating material-containing chamber, A vacuum heat insulating panel formed of a hard resin foam having a compressive strength of 0.3 MPa or more, a bending strength of 0.6 MPa or more, and a density of 35 kg / m 3 or more and 150 kg / m 3 or less.
前記真空断熱材収容室となる貫通孔を複数有し、前記硬質樹脂発泡体によって長方形に形成された板状枠材が用いられ、縦方向寸法が425mm以上2500mm以下で、横方向寸法が210mm以上1200mm以下で、厚みが4mm以上75mm以下であり複数の前記貫通孔が互いに5mm以上の距離を隔てて備えられている前記板状枠材が、単一、又は、複数積層されて前記板状発泡体が形成されており、該板状発泡体が縦方向寸法425mm以上2500mm以下、横方向寸法210mm以上1200mm以下、厚み10mm以上100mm以下の長方形に形成されている請求項1記載の真空断熱パネル。   A plate-shaped frame member having a plurality of through holes serving as the vacuum heat insulating material accommodation chamber and formed in a rectangular shape by the hard resin foam is used. The vertical dimension is 425 mm or more and 2500 mm or less, and the lateral dimension is 210 mm or more. The plate-like foam is formed by laminating a single or a plurality of the plate-like frame members having a thickness of 1200 mm or less, a thickness of 4 mm or more and 75 mm or less, and a plurality of the through holes spaced apart from each other by 5 mm or more. The vacuum insulation panel according to claim 1, wherein a body is formed, and the plate-like foam is formed in a rectangular shape having a vertical dimension of 425 mm to 2500 mm, a horizontal dimension of 210 mm to 1200 mm, and a thickness of 10 mm to 100 mm. 前記板状発泡体が、該板状発泡体の1/2未満の厚みを有する2枚の薄板材によって前記板状枠材が挟み込まれたサンドイッチ構造を有し、前記貫通孔が前記板状枠材の両面において前記薄板材で閉塞されて前記真空断熱材収容室が閉空間とされている請求項2記載の真空断熱パネル。   The plate-like foam has a sandwich structure in which the plate-like frame member is sandwiched between two thin plate members having a thickness less than ½ of the plate-like foam, and the through hole is formed in the plate-like frame. The vacuum heat insulation panel according to claim 2, wherein the vacuum heat insulation material accommodation chamber is closed by being closed with the thin plate material on both surfaces of the material. 前記硬質樹脂発泡体が、メタクリル酸メチル50質量%以上70質量%以下、(メタ)アクリル酸14質量%以上30質量%以下、及び、スチレン10質量%以上20質量%以下含有するモノマー混和液と尿素又は尿素誘導体からなる発泡剤とを含む重合性溶液が重合されて発泡されたアクリル樹脂発泡体である請求項1乃至3のいずれか1項に記載の真空断熱パネル。   A monomer mixture containing the hard resin foam in an amount of 50 to 70% by weight of methyl methacrylate, 14 to 30% by weight of (meth) acrylic acid, and 10 to 20% by weight of styrene; The vacuum heat insulation panel according to any one of claims 1 to 3, which is an acrylic resin foam obtained by polymerizing and foaming a polymerizable solution containing a foaming agent made of urea or a urea derivative. 前記アクリル樹脂発泡体によって少なくとも前記板状枠材が形成されており、前記板状枠材として厚み方向中央部の密度よりも表層部の密度の方が高い板状枠材が備えられている請求項4記載の真空断熱パネル。   The plate-shaped frame material is formed at least by the acrylic resin foam, and the plate-shaped frame material is provided with a plate-shaped frame material having a density of a surface layer portion higher than a density of a central portion in a thickness direction. Item 5. The vacuum insulation panel according to Item 4.
JP2012072071A 2012-03-27 2012-03-27 Vacuum insulating panel Pending JP2013204255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072071A JP2013204255A (en) 2012-03-27 2012-03-27 Vacuum insulating panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072071A JP2013204255A (en) 2012-03-27 2012-03-27 Vacuum insulating panel

Publications (1)

Publication Number Publication Date
JP2013204255A true JP2013204255A (en) 2013-10-07

Family

ID=49523654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072071A Pending JP2013204255A (en) 2012-03-27 2012-03-27 Vacuum insulating panel

Country Status (1)

Country Link
JP (1) JP2013204255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086589A (en) * 2013-10-30 2015-05-07 旭有機材工業株式会社 Heat insulation panel for construction and fitting structure of heat insulation panel for construction
CN106223499A (en) * 2016-07-15 2016-12-14 北京奥克森节能环保科技有限公司 A kind of manufacture method of composite building thermal insulation template
JP2017012372A (en) * 2015-06-30 2017-01-19 大倉工業株式会社 Simple floor mat and packaged body of simple floor mat
JP2018053497A (en) * 2016-09-27 2018-04-05 マグ・イゾベール株式会社 Heat insulation panel and construction method thereof
KR20200093479A (en) * 2020-07-17 2020-08-05 전준우 Sandwich Panel and Method of Wall Construction using Sandwich Panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282840A (en) * 2004-03-31 2005-10-13 Achilles Corp Vacuum adiabatic panel and method for manufacturing the same
JP2006045256A (en) * 2004-07-30 2006-02-16 Sekisui Chem Co Ltd Thermoplastic acrylic resin foam and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282840A (en) * 2004-03-31 2005-10-13 Achilles Corp Vacuum adiabatic panel and method for manufacturing the same
JP2006045256A (en) * 2004-07-30 2006-02-16 Sekisui Chem Co Ltd Thermoplastic acrylic resin foam and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086589A (en) * 2013-10-30 2015-05-07 旭有機材工業株式会社 Heat insulation panel for construction and fitting structure of heat insulation panel for construction
JP2017012372A (en) * 2015-06-30 2017-01-19 大倉工業株式会社 Simple floor mat and packaged body of simple floor mat
CN106223499A (en) * 2016-07-15 2016-12-14 北京奥克森节能环保科技有限公司 A kind of manufacture method of composite building thermal insulation template
JP2018053497A (en) * 2016-09-27 2018-04-05 マグ・イゾベール株式会社 Heat insulation panel and construction method thereof
KR20200093479A (en) * 2020-07-17 2020-08-05 전준우 Sandwich Panel and Method of Wall Construction using Sandwich Panel
KR102370603B1 (en) * 2020-07-17 2022-03-03 전준우 Sandwich Panel and Method of Wall Construction using Sandwich Panel

Similar Documents

Publication Publication Date Title
JP2013204255A (en) Vacuum insulating panel
BRPI0607914A2 (en) composite building panel, method for building a building, building, method for doing business between a composite building panel manufacturer and a customer, and, frame rafter
AU2014380921B2 (en) High strength thermal barrier panel for an H.V.A.C. unit housing
US9284728B2 (en) Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
JP2013174849A (en) Incombustible sound absorption panel
US20070209867A1 (en) Soundproof panel for impact sound insulation
JP2009092222A (en) Vacuum thermal insulation panel and warming box
JP5991233B2 (en) Inner wall insulation structure and inner wall panel
JP5101197B2 (en) Plate-like body connector, simple partition structure and simple partition set
KR101611949B1 (en) insulation
JPH0617493A (en) Heat and sound insulating panel
JP2007138635A (en) Heat insulation floor substrate panel
CA2629650A1 (en) Metallized polymeric film reflective insulation material
JP6539306B2 (en) Thermal insulation panel, thermal insulation method and thermal insulation structure of concrete frame
JP5663321B2 (en) Vacuum insulation
JP6866269B2 (en) Honeycomb panel
JP6441705B2 (en) Soundproof material
JP2006161553A (en) Composite structure for absorbing impact and noise, and inter-layer floor structure of building
JP2000234402A (en) Wall panel structure
JP5941738B2 (en) Insulation
JP2013072266A (en) Building panel
WO2007055449A1 (en) Structure for preventing noise and vibration with liquid box
JP5736097B2 (en) Method for constructing heat shield building and heat shield building
JP3193063U (en) Panel material
JP2011111753A (en) Structure for fixing heat insulating panel, and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151023