JP4017473B2 - Insulation filling structure and filling method - Google Patents

Insulation filling structure and filling method Download PDF

Info

Publication number
JP4017473B2
JP4017473B2 JP2002234931A JP2002234931A JP4017473B2 JP 4017473 B2 JP4017473 B2 JP 4017473B2 JP 2002234931 A JP2002234931 A JP 2002234931A JP 2002234931 A JP2002234931 A JP 2002234931A JP 4017473 B2 JP4017473 B2 JP 4017473B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
divided
seismic
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002234931A
Other languages
Japanese (ja)
Other versions
JP2004076319A (en
Inventor
祐子 築山
陽輔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2002234931A priority Critical patent/JP4017473B2/en
Publication of JP2004076319A publication Critical patent/JP2004076319A/en
Application granted granted Critical
Publication of JP4017473B2 publication Critical patent/JP4017473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐震要素と外壁とが対向して配置された耐震壁部に形成された空間に断熱材を充填して外壁の屋内側に連続した断熱層を形成する充填構造に関するものである。
【0002】
【従来の技術】
鉄骨躯体を有する住宅では、建物の外周に配置された梁に沿って外壁パネルを取り付けると共に、該外壁パネルの屋内側の面に沿って断熱層を形成するのが一般的である。断熱層は、躯体を構成する柱と梁の間に枠からなる下地を形成し、該下地にグラスウール等の繊維系断熱材を充填して構成されている。そして、下地に繊維系断熱材を充填した後、屋内側に内壁を構成するための下地パネルを配置することで壁が構成されている。
【0003】
一方、鉄骨躯体では、壁の厚み方向に、即ち、外壁パネルと内壁材との間に或いは内壁材どうしの間に、対峙して配置された一対の柱と、上下に配置された一対の水平部材(例えば梁)と、一対の柱と一対の水平部材からなる空間に斜めに配置された複数の部材からなる耐震要素を配置して耐震壁部を構成することがある。この耐震要素は、外壁パネルに沿って断熱材を設置する以前に組立が完了しているのが一般的である。
【0004】
また適度な硬度と高い断熱性を有する硬質プラスチック系断熱材が提供されており、この断熱材を外壁に沿って屋内側に配置すると共に、該断熱材の更に屋内側の面に沿って内壁を施工することで、住宅に高い断熱性を付与して居住性を向上させ、且つ省エネルギー化を実現し得るようになっている。
【0005】
【発明が解決しようとする課題】
上記の如き耐震要素を有する耐震壁部では、外壁パネルの屋内側の面には僅かな隙間を持って耐震要素の斜め部材が配置されるため、極めて狭い空間に断熱材を配置することが要求されることになる。
【0006】
上記空間に繊維系断熱材のような軟質の断熱材を充填する場合、充填作業自体に大きな問題が生じることはないが、繊維系断熱材では充分な固定が出来ずに自重で沈下し、或いは座屈して断熱欠損が生じる虞がある。
【0007】
また耐震要素の室内側の面に硬質プラスチック系断熱材を設置することも考えられるが、この場合、内壁を設置するための下地を設置するためのスペースがなくなってしまうという問題が生じる。更に、硬質プラスチック系断熱材を充填しようとしても、耐震要素を構成する斜め部材が邪魔になって作業が阻害されるという問題が生じている。
【0008】
本発明の目的は、外壁パネルと耐震要素を構成する斜め部材との間に形成された狭い空間に合理的に断熱材を充填することが出来る耐震壁部に於ける断熱材の充填構造を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明に係る耐震壁部に於ける第1の断熱材の充填構造は、一対の柱の間に斜め部材を配置して形成される耐震要素と、該耐震要素に対向して配置される外壁の間であって、且つ、躯体を構成する前記一対の柱及び上下の水平部材の間に形成される空間に断熱材を充填する充填構造であって、前記空間は、一対の柱と上下の水平部材とによって区画設定される耐震壁面に対向しており、該耐震壁面は、前記柱に沿って上下方向に2分割乃至3分割され、夫々のうち1つ以上を更に前記水平部材に沿って横方 向に2分割乃至3分割されて前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定され、前記断熱材は、夫々の分割面に対応させた形状に形成されており、
各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填していることを特徴とするものである。
【0010】
また第2の断熱材の充填構造は、一対の柱の間に斜め部材を配置して形成される耐震要素と、該耐震要素に対向して配置される外壁の間であって、且つ、躯体を構成する前記一対の柱及び上下の水平部材の間に形成される空間に断熱材を充填する充填構造であって、前記空間は、一対の柱と上下の水平部材とによって区画設定される耐震壁面に対向しており、該耐震壁面は、前記水平部材に沿って横方向に2分割乃至3分割され、夫々のうち1つ以上を更に前記柱に沿って上下方向に2分割乃至3分割されて前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定され、前記断熱材は、夫々の分割面に対応させた形状に形成されており、各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填していることを特徴とするものである。
【0011】
また上記第1の又は第2の断熱材の充填構造に於いて、前記断熱材は、フェノール樹脂発泡体による成形体の表裏面に不織布による保護層を設けた積層板により形成されていることが好ましい。
【0012】
上記耐震壁部に於ける断熱材の充填構造(以下、単に「充填構造」という)では、一対の柱の間に形成された面を、上下方向に2〜3分割すると共に分割した2〜3の面のうち1つ以上を横方向に2〜3分割することで、好ましくは前記面を5〜7つの面、或いは90度回転させた5〜7つの面に分割し、且つ夫々の面の形状に対応させた形状の断熱材を形成して、夫々対応する面に順に嵌め込むことで、極めて狭い部位であっても円滑に充填することが出来る。
【0013】
本発明に係る第1の断熱材の充填方法は、一対の柱の間に予め斜め部材を配置して耐震要素を形成し、該耐震要素を上下の水平部材を含む躯体に配置すると共に該躯体に外壁を配置して、該外壁と耐震要素の間に、前記一対の柱と上下の水平部材により区画設定される耐震壁面に対向する空間を形成し、前記耐震壁面を、前記柱に沿って上下方向に2分割乃至3分割し、さらに、夫々のうち1つ以上を前記水平部材に沿って横方向に2分割乃至3分割して前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定すると共に、夫々の分割面に対応させた形状に形成される断熱材を形成し、各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填することを特徴とするものである。
【0014】
また第2の断熱材の充填方法は、一対の柱の間に予め斜め部材を配置して耐震要素を形成し、該耐震要素を上下の水平部材を含む躯体に配置すると共に該躯体に外壁を配置して、該外壁と耐震要素の間に、前記一対の柱と上下の水平部材により区画設定される耐震壁面に対向する空間を形成し、前記耐震壁面を、前記水平部材に沿って横方向に2分割乃至3分割し、さらに、夫々のうち1つ以上を前記柱に沿って縦方向に2分割乃至3分割して前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定すると共に、夫々の分割面に対応させた形状に形成される断熱材を形成し、各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填することを特徴とするものである。
【0015】
上記第1の又は第2の断熱材の充填方法に於いて、各断熱材の前記分割面に対応する位置への充填は、前記一対の柱に隣接する断熱材を前記対応する位置に配置した後にそれぞれの断熱材を隣接する柱の方向に向けて押圧し、次いで、一対の断熱材の間に配置される断熱材を配置することが好ましい。
【0016】
【発明の実施の形態】
以下、本発明に係る充填構造の好ましい実施形態について説明する。本発明に係る充填構造は、躯体を構成する一対の柱と上下の水平部材(例えば上下の梁)の間で且つ外壁パネルと対向して配置された耐震要素と外壁パネルとの間に形成された極めて狭い空間に合理的に断熱材を充填したものである。
【0017】
即ち、外壁に沿って配置された躯体を構成する耐震要素は、予め一対の柱の間に筋交い状に斜め部材が配置されて該柱に固定された状態で所定位置に取り付けられている。従って、躯体を構成する外周の梁に沿って外壁パネルを取り付けたとき、外壁パネルに対向する耐震要素の位置では、屋内側の面に斜め部材が存在することとなり、該斜め部材が耐震要素を構成する一対の柱の間の空間に対する遮蔽材となって、この空間に対して断熱材を充填する作業を阻害することになる。そして本発明は、このような問題を回避して合理的に断熱材を充填したものである。
【0018】
外壁パネルとしては特に限定するものではなく、軽量気泡コンクリート(ALC)パネルや、プレキャストコンクリート(PC)パネル等を利用することが可能である。しかし、軽量で断熱性が優れており且つ共鳴透過現象を防止して遮音性能を発揮し得ること等からALCパネルを用いることが好ましい。
【0019】
耐震要素は地震時の振動を吸収する機能を有するものであり、対峙して配置された一対の柱の間にブレース或いは筋交い等の斜め部材が配置される。このような耐震要素は、建物の設計段階で設定されるものであり、本発明では、如何なる構造の耐震要素が配置されたとしても、この耐震要素の構造を問うものではない。
【0020】
断熱材としては材料を特に限定するものではなく、適度な硬度と充分に高い気密性と断熱性を有するものであれば利用することが可能である。このような断熱材としては、硬質ウレタンフォームや押出発泡ポリスチレン或いはフェノール樹脂発泡体等の成形体や発泡体を含む硬質プラスチック系断熱材があり、何れも利用することが可能である。
【0021】
例えば、硬質ウレタンフォームや押出発泡ポリスチレンでは、厚さを選択することによって、住宅として充分な断熱性能と気密性能を発揮させることが可能であり、且つ弾性を有するパッキン材に圧接させで気密性を発揮するに耐える硬度を有している。
【0022】
しかし、硬質ウレタンフォームでは、経時的な断熱性能の低下や、火災時に爆燃性を有することや有毒ガスを発生するという課題を有し、発泡ポリスチレンでは、耐薬品性に劣るため、気密処理材が限定されることや燃え易いという課題も有する。
【0023】
またフェノール樹脂発泡体からなる断熱材としては、本件出願人が開発して既に国際出願(特願2000−558158)した技術(ネオマフォーム(登録商標))があり、断熱材として好ましく使用することが可能で、且つ気密材としても好ましく使用することが可能である。
【0024】
上記技術に係るフェノール樹脂発泡体は、フェノール樹脂基体部と、多数の微細気泡から形成される気泡部とを有する密度が10kg/m3 〜100kg/m3 のフェノールフォームであり、前記微細気泡が炭化水素を含有し且つ平均気泡径が5μm〜200μmの範囲にあり、大部分の微細気泡の気泡壁が滑らかなフェノール樹脂基体面で構成されている。そして、発泡剤が炭化水素であるにも関わらず、従来のフロン系発泡剤と遜色のない熱伝導率を持ち、且つ熱伝動率の経時的な変化もなく、圧縮強度等の機械的強度に優れ、脆性が改善される。
【0025】
上記フェノール樹脂発泡体では、高い断熱性と気密性を有し、且つこれらの性能を長期間維持し得る性質を有している。フェノール樹脂発泡体に於ける断熱性は、気泡径が5μm〜200μmの範囲、好ましくは10μm〜150μmと小さく、且つ独立気泡率を80%以上と高く保持することによって確保することが可能である。またフェノール樹脂発泡体は高い耐燃焼性を有しており、火炎が作用したとき、表面が炭化することで、着火することがなく、且つガスが発生することがない。
【0026】
例えば、フェノール樹脂発泡体の密度を27kg/m3 に設定した場合、20℃に於ける熱伝動率は0.02W/m・Kであり、圧縮強さは15N/cm2 、熱変形温度は200℃である。前記フェノール樹脂発泡体の性能は、押出発泡ポリスチレン3種が熱伝動率;0.028W/m・K、圧縮強さ;20N/cm2 、熱変形温度;80℃であることや、硬質ウレタンフォーム2種が熱伝動率;0.024W/m・K、圧縮強さ;8N/cm2 、熱変形温度;100℃であることと比較して充分に高い性能を有する。
【0027】
このため、フェノール樹脂発泡体からなる断熱材では、従来の押出発泡ポリスチレンや硬質ウレタンフォームの約2/3程度の厚さで略同等の断熱性能を発揮することが可能である。
【0028】
またフェノール樹脂発泡体は、比較的脆い材料であるため、少なくとも片面にクラフト紙や不織布からなる保護層を設けるのが一般的である。特に、本件出願人が開発して特許出願している特開平11−198332号公報に開示されたフェノール樹脂発泡体積層板は、保護層を形成する不織布を改良することによって接着性能を向上させたものであり、この不織布によってフェノール樹脂発泡体の強度を改善して、強度、断熱性共に優れた建築用断熱材料として提供されるものである。
【0029】
上記の如くフェノール樹脂発泡体の表裏面に保護層を設けた積層板からなる断熱材は、端面(小口面)はフェノール樹脂基体面が露出した状態となっている。このため、表裏面は保護層を構成する不織布を利用して貼着テープや貼着シートを貼り付けることが可能であるが、小口面は表裏面に比較して他の部材を貼着することが困難である。
【0030】
またフェノール樹脂発泡体の表裏面に不織布による保護層を設けた断熱材では、脆さが改善されて曲げ強度や引っ張り強度が向上する。このため、幅の狭い場所に配置されたとき、自立して、断熱材及び気密材としての機能を充分に発揮することが可能である。特に、幅が1m程度の狭い場所に配置されたとき、小口面が弾性を持ったパッキン材に圧接して自立することが可能であり有効である。
【0031】
上記断熱材は、耐震要素と外壁パネルとの間の空間であって、耐震要素の柱と梁とによって形成された面に配置されて断熱層を構成する。このとき、耐震要素の斜め部材が前記面の屋内側の面に配置されるため、前記面を複数の面に分割して面積の小さい分割面を設定し、各分割面に対応する形状の断熱材を形成することによって、これらの断熱材を斜め材の間を通して嵌め込むことが可能となる。
【0032】
耐震要素と外壁パネルとの間の空間に形成された面を分割する場合、個々の分割面は耐震要素を構成する斜め部材の間を通過し得る寸法と形状とであることが必要である。また面を分割するに際し、分割された分割面を必要以上に細分することは作業性を劣化させ、且つ断熱欠損が生じ易く、また気密性を確保するために面に嵌め込んだ後に隣接する断熱材を接続する作業が煩雑となり好ましくはない。
【0033】
本件発明者等の経験では、外壁パネルと内壁材との間に或いは内壁材どうしの間に、対峙して配置された一対の柱と、上下に配置された一対の水平部材(例えば梁)と、一対の柱と一対の水平部材からなる空間に斜めに配置された複数の部材とによって構成される長方形の面(以下、「耐震壁面」という)を、柱に沿って上下方向に2〜3分割し、更に、分割された2つ以上を更に2〜3分割することで充分であった。
【0034】
例えば、耐震壁面を上下方向に4分割した場合、個々の分割面は面積が小さくなるため、耐震要素の斜め部材の間を通し易くなる。しかし、通過させた断熱材を保持しておくのが困難となり、作業性に支障をきたす。また断熱材どうしの接続線が増加することとなり、断熱欠損が生じ易くなり好ましいものではない。
【0035】
また耐震壁面を上下方向に2〜3分割した場合、一方の断熱材を嵌め込んだ後、この断熱材を柱又は梁方向に付勢しながら他方の断熱材を嵌め込むことが可能であり、或いは上下方向に2つの断熱材を嵌め込んだ後、これらを夫々上下方向に付勢しながら、中央の断熱材を嵌め込むことが可能であり、比較的に容易な作業を実現することが可能である。
【0036】
特に、断熱材の小口面を、柱或いは梁と対向する小口面は表面に対し略垂直な面とし、他方の小口面であって他の断熱材と対向する小口面を互いに関連付けられた傾斜面とすることが好ましい。このような小口面を形成することで、耐震壁面に嵌め込む際に、一方の断熱材を押し込むことで、このとき作用する力の傾斜面による分力が柱や梁に対する押圧力として作用することが可能となる。
【0037】
次に、上記充填構造の好ましい実施例について図を用いて説明する。図1は耐震要素を設けた躯体の構成を説明する図である。図2は外壁パネルと耐震要素との位置関係を説明する模式平断面図である。図3は断熱材を充填した状態を説明する模式平面図である。図4は充填構造の例を説明する図である。図5は充填構造の例を説明する図である。図6は充填構造の参考例を説明する図である。
【0038】
図1に於いて、耐震要素Aは、予め設定された距離を持って一対の柱1が対峙して配置され、該柱1の間に水平部材2が配置され、更に、該水平部材2に対して各柱1から斜め部材3が配置されている。各部材2,3は、夫々端部が柱1に、また柱1と水平部材2に固定され、地震時に作用する水平力を吸収し得るように構成されている。
【0039】
上記耐震要素Aは、上部の梁4と床スラブ5に隠れた基礎梁、或いは下部の梁との間に配置されると共に、上端部が梁4に下端部が基礎梁或いは下部の梁に固定される。
【0040】
尚、耐震要素Aの形状は、上記形状にのみ限定されるものではなく、予め耐震性能に応じて種々設定されるものである。従って、柱1の間の距離や、水平部材2,斜め部材3の寸法や形状等は目的の耐震能力に応じて変化するものである。
【0041】
梁4の屋外側には複数の外壁パネル6が配置され、該外壁パネル6の上端部は図示しないイナズマプレートを介して梁4に取り付けられ、下端部は図示しない自重受け金具を介して基礎梁或いは下部の梁に支持されている。このようにして躯体に取り付けられた外壁パネル6によって外壁が構成されている。
【0042】
図2に示すように、躯体に耐震要素Aを取り付けると共に外壁パネル6を取り付けたとき、該耐震要素Aを構成する一対の柱1と梁4と床スラブ5とによって耐震壁面Bが構成される。この耐震壁面Bに断熱材を配置する場合、該耐震壁面Bと等しい平面寸法を持った断熱材を嵌め込もうとしても、水平部材2や斜め部材3が邪魔になって嵌め込むことが出来ない。
【0043】
このため、図3〜に示すように、面Bを上下方向に2〜3分割すると共に分割された2つ以上を、更に横方向に2〜3分割して複数の分割面を形成し、分割面に対応した形状を持った断熱材を形成することで、これらの断熱材は、耐震要素Aを構成する水平部材2,斜め部材3を通して容易に耐震壁面Bに嵌め込むことが可能となる。
【0044】
ここで、耐震壁面Bを分割する際の分割例について図4〜5によって説明する。尚、図4(a)には耐震要素Aを記載したが、他の図には耐震要素Aを記載することなく、単に耐震壁面Bのみを記載している。
【0045】
図4(a)は、耐震壁面Bを上下方向に2分割すると共に、夫々を横方向に3分割することで、6つの分割面11,12に分割したものである。前記分割面11,12は、上下方向で横方向の両端に形成された分割面11は互いに同一形状に形成され、また上下方向で横方向の中央に形成された分割面12は互いに同一形状に形成される。そして各分割面11,12に配置される断熱材11,12は、分割面11,12と同一の形状を持って形成される。
【0046】
同図(b)は、耐震壁面Bを上下方向に3分割すると共に、中分割面の上下の分割面を更に横方向に3分割することで、7つの分割面13〜15に分割したものである。前記分割面13〜15は、中分割面13は独立した形状で形成され、中分割面13の上下で横方向の両端に形成された分割面14は同一形状に形成され、中分割面13の上下で横方向の中央に形成された分割面15は同一形状に形成される。そして各分割面13〜15に配置される断熱材13〜15は、前記分割面13〜15と同一の形状を持って形成される。
【0047】
同図(c)は、耐震壁面Bを上下方向に2分割すると共に、上下の分割面を横方向に2分割することで、4つの分割面16に分割したものである。前記分割面16は、互いに同一形状に形成される。そして各分割面16に配置される断熱材16は、前記分割面16と同一の形状を持って形成される。このように、耐震壁面Bを4分割して断熱材を充填する場合、弾力性に富むポリエチレン系の断熱材であることが好ましい。しかし、硬質プラスチック系断熱材であっても、厚さが外壁パネル6と水平部材2,斜め部材3との間の距離の半分以下程度のものであれば充填することが可能である。
【0048】
5(a)は、耐震壁面Bを上下方向に3分割すると共に、各分割面を更に横方向に2分割することで、6つの分割面21,22に分割したものである。前記分割面21,22は、上下方向の中央に形成された中分割面21は互いに同一形状に形成され、中分割面21の上下で横方向に形成された分割面22は互いに同一形状に形成される。そして各分割面21,22に配置される断熱材21,22は、分割面21,22と同一の形状を持って形成される。
【0049】
同図(b)は、耐震壁面Bを横方向に3分割すると共に、中分割面の左右の分割面を更に上下方向に3分割することで、7つの分割面23〜25に分割したものである。前記分割面23〜25は、中分割面23は独立した形状で形成され、中分割面23の左右で上下方向の両端に形成された分割面24は同一形状に形成され、中分割面23の左右で上下方向の中央に形成された分割面25は同一形状に形成される。そして各分割面23〜25に配置される断熱材23〜25は、前記分割面23〜25と同一の形状を持って形成される。
【0050】
尚、上記実施例に於いて、4枚の断熱材11,14,22,24、2枚の断熱材12,21,25を夫々同一の形状としたが、必ずしもこの構成に限定するものではなく、各分割面を個別に独立した形状とし、夫々の形状に対応させた断熱材を形成しても良いことは当然である。
【0051】
更に、耐震壁面Bを分割する際の参考例として図6(a)〜(c)を上げることが可能である。即ち、同図(a)は、耐震壁面Bを上下方向に3分割すると共に、上下の分割面を更に斜め方向に2分割することで、5つの分割面27a,27bに分割したものである。前記分割面27a,27bは、中分割面27aは独立した形状で形成され、該中分割面27aの上下で斜め方向に形成された分割面27bは同一形状に形成される。そして各分割面27a,27bに配置される断熱材27a,27bは、前記分割面27a,27bと同一の形状を持って形成される。
【0052】
同図(b)は、耐震壁面Bを上下方向及び横方向を夫々3つに分け、中央に中抜き状の中央分割面28aを形成すると共に、該中央分割面28aと耐震壁面Bの隅部を結んで夫々台形状の上下分割面28bと、左右分割面28cを形成したものである。この場合、中央分割面28aは、図に示すように四角形であって良く、また円形,楕円形等の形状であって良い。
【0053】
同図(c)は、耐震壁面Bを上下方向及び横方向を夫々3つに分け、中央に中抜き状の中央分割面29aを形成すると共に、該中央分割面29aの周囲に夫々短辺が何れかの方向の1分割に対応する寸法を有し長辺が他方向の2分割に対応する寸法を持った長方形の分割面からなる上下分割面29bと左右分割面29cを形成したものである。
【0054】
上記の如き参考例では、耐震要素に対応する面を上下方向に2分割〜3分割すると共に、夫々のうち1つ以上を横方向に2分割〜3分割している
【0055】
次に、上記の如く分割することが可能な耐震壁面Bに断熱材を充填する手順について、図4(a)と図3を参照して説明する。尚、本発明に於いて、耐震壁面Bに配置される断熱材の材質及び厚さは特に限定するものではないが、本実施例では、適度な曲げ性と強度を有する硬質プラスチック系断熱材、特に、厚さ25mmのフェノール樹脂発泡体からなる断熱材を用いている。
【0056】
先ず、図4(a)に示すように耐震壁面Bが分割面11,12に分割されたとき、上記断熱材を分割面11,12と同一形状に形成して断熱材11,12を構成する。即ち、4枚の断熱材11と、2枚の断熱材12を形成する。その後、下側の横方向両側の断熱材11を、耐震要素Aを構成する斜め部材3の間を通して耐震壁面Bに嵌め込み、夫々両側の柱1に押し付ける。
【0057】
次いで、下側の中央の断熱材12を断熱材11の間に嵌め込む。このとき、両側の断熱材11を柱1の方向の押圧して断熱材12を押し込む。下側の断熱材11,12を耐震壁面Bに嵌め込んだ後に、上側の断熱材11,12を上記と同様の手順で嵌め込む。このとき、既に嵌め込まれている下側の断熱材11,12を下側に押圧させておき、更に、上側の断熱材11,12に撓みを発生させた状態で嵌め込み、下端部を下側の断熱材11,12に圧接させると共に上端部を梁に圧接させる。
【0058】
そして予め外壁パネル6に於ける断熱材11と断熱材12の接続部に対応する位置に配置されたスペーサー8、柱1に対応して配置されたスペーサー7に対応する部分を釘やビス等の固定具を打ち込むことで、各断熱材11,12をスペーサー7,8を介して外壁パネル6に固定する。これにより、断熱材11,12は、耐震壁面Bに於ける夫々の配置位置を安定して保持することが可能となる。尚、図3に於いて31は空気層である。
【0059】
上記の如く構成された充填構造では、耐震壁面Bに配置された断熱材11,12の外壁パネル6側の接続部に断熱材からなるスペーサー8が配置されるため、この接続部を介して熱が伝導されることがなく、良好な断熱性を保持することが可能である。
【0060】
特に、耐震壁面Bに於ける気密性を確保する場合、該耐震壁面Bに配置された複数の断熱材11,12を固定した後、隣接する断熱材11,12の継目32に気密性を有する金属フィルムや合成樹脂フィルムからなる気密テープ33を貼り付けることが好ましい。このように、継目32を気密テープ33によって塞ぐことで、高い気密性を発揮することが可能である。また予め柱1に図示しない弾性材料からなる気密パッキンを取り付けておき、この気密パッキンに断熱材11,12の小口面を圧接させるように構成することが好ましい。
【0061】
尚、上記実施例では、断熱材11,12の小口面を表面に対して垂直に形成したが、断熱材11と断熱材12が互いに接触する小口面を傾斜面として形成しても良い。この場合、断熱材12を断熱材11の間に押し込む際に付勢する力が、傾斜面の角度に従って分力を発生し、この分力によって断熱材11を柱1に圧接させることが可能となる。
【0062】
上記説明は耐震壁面Bを図4(a)のように分割した際の構造を説明したが、他の図に示すように分割した場合でも、断熱材12〜15、21〜25、27a,27b、28a〜28c、29a〜29cの形状や、充填する手順については実質的に同様である。
【0063】
【発明の効果】
以上詳細に説明したように本発明に係る充填構造では、耐震要素を構成する一対の柱の間と上下の梁或いは梁と床との間に形成された面を、上下方向に2〜3分割して分割面を形成すると共に、分割した2〜3の面のうち1つ以上を更に横方向に2〜3分割した分割面を形成することで、断熱材を充填すべき面を好ましくは5〜7つの分割面、或いは90度回転させた5〜7つの分割面に分割することが出来る。そして夫々の分割面の形状に対応させた断熱材を形成して、夫々対応する分割面に順に嵌め込むことで、狭い部位であっても円滑に充填することが出来る。
【0064】
従って、異なる仕様を持った耐震要素毎に、該耐震要素を構成する柱間の寸法が変化した場合であっても、この寸法の変化に関わらず、断熱材を充填する際の原理は同一であり、如何なる寸法の耐震要素であっても対応することが出来る。
【0065】
また断熱材を充填すべき面を最小限の分割数での充填を実現することが出来、断熱材の製造数は最小限となり、部材数が増大することなく、合理的な構造とすることが出来る。
【図面の簡単な説明】
【図1】耐震要素を設けた躯体の構成を説明する図である。
【図2】外壁パネルと耐震要素との位置関係を説明する模式平断面図である。
【図3】断熱材を充填した状態を説明する模式平面図である。
【図4】充填構造の例を説明する図である。
【図5】充填構造の例を説明する図である。
【図6】充填構造の参考例を説明する図である。
【符号の説明】
A 耐震要素
B 耐震壁面
1 柱
2 水平部材
3 斜め部材
4 梁
5 床スラブ
6 外壁パネル
7,8 スペーサー
11〜16,21〜25,27a,27b,28a〜28c,29a〜29c分割面、断熱材
31 空気層
32 継目
33 気密テープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filling structure in which a space formed in a seismic wall portion in which a seismic element and an outer wall face each other are filled with a heat insulating material to form a continuous heat insulating layer on the indoor side of the outer wall.
[0002]
[Prior art]
In a house having a steel frame, it is common to attach an outer wall panel along a beam arranged on the outer periphery of a building and to form a heat insulating layer along the indoor side surface of the outer wall panel. The heat insulating layer is formed by forming a base made of a frame between columns and beams constituting the frame, and filling the base with a fiber heat insulating material such as glass wool. And the wall is comprised by arrange | positioning the base panel for comprising an inner wall indoors after filling a fiber-type heat insulating material in a base.
[0003]
On the other hand, in the steel frame, a pair of columns arranged opposite to each other in the thickness direction of the wall, that is, between the outer wall panel and the inner wall material, or between the inner wall materials, and a pair of horizontal plates arranged vertically. A seismic wall portion may be configured by arranging members (for example, beams) and seismic elements composed of a plurality of members arranged obliquely in a space composed of a pair of columns and a pair of horizontal members. This seismic element is typically assembled prior to installing insulation along the outer wall panels.
[0004]
Further, a hard plastic heat insulating material having an appropriate hardness and high heat insulating property is provided, and the heat insulating material is disposed on the indoor side along the outer wall, and the inner wall is further disposed along the indoor side surface of the heat insulating material. By constructing, it is possible to give high heat insulation to the house, improve the comfort, and realize energy saving.
[0005]
[Problems to be solved by the invention]
In the seismic wall with seismic elements as described above, the diagonal members of the seismic elements are arranged with a slight gap on the indoor side surface of the outer wall panel, so it is necessary to arrange heat insulation in an extremely narrow space Will be.
[0006]
When filling the space with a soft heat insulating material such as a fiber-based heat insulating material, no major problem occurs in the filling operation itself, but the fiber-based heat insulating material cannot be sufficiently fixed and sinks under its own weight, or There is a risk of buckling and heat insulation defects.
[0007]
In addition, it is conceivable to install a hard plastic heat insulating material on the indoor side surface of the seismic element, but in this case, there is a problem that there is no space for installing a base for installing the inner wall. Furthermore, even if it is going to fill with a hard plastic type heat insulating material, the problem that the diagonal member which comprises an earthquake-resistant element becomes obstructive and the operation | work is inhibited.
[0008]
It is an object of the present invention to provide a heat insulating material filling structure in a seismic wall that can reasonably be filled with a heat insulating material in a narrow space formed between an outer wall panel and an oblique member constituting a seismic element. There is to do.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, a first heat insulating material filling structure in a seismic wall according to the present invention includes a seismic element formed by arranging an oblique member between a pair of columns, and the seismic element. A space between the outer walls arranged opposite to each other and between the pair of pillars constituting the casing and the upper and lower horizontal members is filled with a heat insulating material, and the space is , Facing the seismic wall surface defined by a pair of pillars and upper and lower horizontal members, the seismic wall surface being divided into two or three in the vertical direction along the pillars, one or more of each further set as a plurality of divided surfaces that can pass between the diagonal member of the along said horizontal member is divided into two or three portions sideways direction seismic element, said heat insulating material is made to correspond to the divided surfaces of the respective Formed into a shape,
Each heat insulating material is filled in a space corresponding to the dividing surface in the space through the diagonal members .
[0010]
Further, the second heat insulating material filling structure is provided between an earthquake-resistant element formed by arranging an oblique member between a pair of pillars and an outer wall arranged to face the earthquake-resistant element, and a housing. The space formed between the pair of pillars and the upper and lower horizontal members is filled with a heat insulating material, and the space is divided by the pair of pillars and the upper and lower horizontal members. The seismic wall surface is divided into two or three parts in the lateral direction along the horizontal member, and one or more of them are further divided into two or three parts in the vertical direction along the pillar. Are set as a plurality of divided surfaces that can pass between the diagonal members of the seismic element, and the heat insulating material is formed in a shape corresponding to each divided surface, and each heat insulating material is interposed between the diagonal members. Through the space to fill the position corresponding to the dividing surface respectively And it is characterized in Rukoto.
[0011]
Moreover, in the said 1st or 2nd heat insulating material filling structure, the said heat insulating material is formed with the laminated board which provided the protective layer by the nonwoven fabric on the front and back of the molded object by a phenol resin foam. preferable.
[0012]
In the insulating material filling structure (hereinafter simply referred to as “filling structure”) in the earthquake-resistant wall portion, the surface formed between the pair of pillars is divided into 2 to 3 in the vertical direction and 2 to 3 divided. By dividing one or more of the planes into 2 to 3 in the lateral direction, preferably the plane is divided into 5 to 7 planes, or 5 to 7 planes rotated by 90 degrees, and By forming the heat insulating material having a shape corresponding to the shape and sequentially fitting the corresponding heat insulating material, it is possible to smoothly fill even a very narrow portion.
[0013]
In the first heat insulating material filling method according to the present invention, an oblique member is arranged in advance between a pair of pillars to form an earthquake resistant element, and the earthquake resistant element is arranged in a casing including upper and lower horizontal members and the casing. An outer wall is disposed between the outer wall and the seismic element to form a space facing the seismic wall defined by the pair of columns and the upper and lower horizontal members, and the seismic wall along the column Divided into two or three in the vertical direction, and one or more of them can be divided into two or three in the horizontal direction along the horizontal member so as to pass between the diagonal members of the seismic element In addition to setting as a surface, a heat insulating material formed in a shape corresponding to each divided surface is formed, and each heat insulating material is filled in a position corresponding to the divided surface in the space between the oblique members. It is characterized by.
[0014]
In addition, the second heat insulating material filling method includes forming an earthquake-resistant element by arranging an oblique member between a pair of columns in advance, arranging the earthquake-resistant element in a casing including upper and lower horizontal members, and attaching an outer wall to the casing. A space is formed between the outer wall and the seismic element so as to oppose the seismic wall surface defined by the pair of pillars and the upper and lower horizontal members, and the seismic wall surface is laterally moved along the horizontal member. Further, one or more of each is divided into two or three in the longitudinal direction along the pillar and set as a plurality of divided surfaces that can pass between the diagonal members of the earthquake-resistant element. And forming a heat insulating material formed in a shape corresponding to each divided surface, and filling each heat insulating material at a position corresponding to the divided surface in the space through between the oblique members. To do.
[0015]
In the filling method of the first or second heat insulating material, the heat insulating material adjacent to the pair of pillars is disposed at the corresponding position for filling each heat insulating material into the position corresponding to the divided surface. It is preferable to press each heat insulating material in the direction of the adjacent column later, and then arrange a heat insulating material arranged between the pair of heat insulating materials.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the filling structure according to the present invention will be described. The filling structure according to the present invention is formed between the seismic element and the outer wall panel disposed between the pair of columns constituting the housing and the upper and lower horizontal members (for example, upper and lower beams) and facing the outer wall panel. In addition, a very narrow space is rationally filled with heat insulating material.
[0017]
In other words, the seismic elements constituting the housing arranged along the outer wall are attached to predetermined positions in a state in which diagonal members are arranged in advance in a bracing manner between a pair of columns and fixed to the columns. Therefore, when the outer wall panel is attached along the outer peripheral beam constituting the frame, there is an oblique member on the surface on the indoor side at the position of the earthquake resistant element facing the outer wall panel. It becomes a shielding material with respect to the space between a pair of pillars to constitute, and the work of filling the space with a heat insulating material is obstructed. The present invention avoids such problems and is reasonably filled with a heat insulating material.
[0018]
The outer wall panel is not particularly limited, and a lightweight cellular concrete (ALC) panel, a precast concrete (PC) panel, or the like can be used. However, it is preferable to use an ALC panel because it is lightweight and has excellent heat insulation properties, and can exhibit a sound insulation performance by preventing a resonance transmission phenomenon.
[0019]
The seismic element has a function of absorbing vibration at the time of an earthquake, and an oblique member such as a brace or a brace is arranged between a pair of columns arranged facing each other. Such a seismic element is set at the design stage of a building, and in the present invention, the structure of the seismic element is not questioned regardless of the structure of the seismic element.
[0020]
The material for the heat insulating material is not particularly limited, and any material can be used as long as it has appropriate hardness, sufficiently high airtightness and heat insulating properties. As such a heat insulating material, there is a hard plastic type heat insulating material including a molded body such as rigid urethane foam, extruded foamed polystyrene, or a phenol resin foam or a foamed body, and any of them can be used.
[0021]
For example, in rigid urethane foam and extruded polystyrene, by selecting the thickness, it is possible to demonstrate sufficient heat insulation performance and airtight performance as a house, and it is possible to achieve airtightness by pressing against an elastic packing material. Hard enough to withstand.
[0022]
However, rigid urethane foam has problems such as deterioration of heat insulation performance over time, deflagration in fire and generation of toxic gas, and foamed polystyrene has poor chemical resistance. There is also a problem that it is limited and easily burns.
[0023]
In addition, as a heat insulating material made of a phenol resin foam, there is a technology (Neoma Foam (registered trademark)) developed by the present applicant and already applied for international application (Japanese Patent Application No. 2000-558158), and can be preferably used as a heat insulating material. In addition, it can be preferably used as an airtight material.
[0024]
Phenolic resin foam according to the above techniques, and the phenol resin base portion, density and a bubble portion formed from a large number of fine bubbles are phenol foam of 10kg / m 3 ~100kg / m 3 , the fine bubbles It contains hydrocarbons, has an average cell diameter in the range of 5 μm to 200 μm, and the cell walls of most of the fine cells are composed of a smooth phenol resin substrate surface. Despite the fact that the blowing agent is a hydrocarbon, it has a thermal conductivity comparable to that of conventional chlorofluorocarbon-based blowing agents, and there is no change in the thermal conductivity over time, resulting in a mechanical strength such as compressive strength. Excellent and improved brittleness.
[0025]
The phenol resin foam has high heat insulating properties and airtightness, and has the property of maintaining these performances for a long period of time. The heat insulating property in the phenol resin foam can be ensured by keeping the bubble diameter as small as 5 μm to 200 μm, preferably as small as 10 μm to 150 μm and keeping the closed cell ratio as high as 80% or more. Moreover, the phenol resin foam has high combustion resistance, and when the flame acts, the surface is carbonized, so that no ignition occurs and no gas is generated.
[0026]
For example, when the density of the phenol resin foam is set to 27 kg / m 3 , the heat transfer rate at 20 ° C. is 0.02 W / m · K, the compressive strength is 15 N / cm 2 , and the heat distortion temperature is 200 ° C. As for the performance of the phenol resin foam, three kinds of extruded foamed polystyrene have a heat transfer rate; 0.028 W / m · K, a compressive strength; 20 N / cm 2 , a heat distortion temperature; Two types have sufficiently high performance as compared with thermal conductivity: 0.024 W / m · K, compressive strength: 8 N / cm 2 , heat distortion temperature: 100 ° C.
[0027]
For this reason, a heat insulating material made of a phenol resin foam can exhibit substantially the same heat insulating performance with a thickness of about 2/3 that of conventional extruded polystyrene or rigid urethane foam.
[0028]
Moreover, since a phenol resin foam is a comparatively brittle material, it is common to provide the protective layer which consists of a kraft paper or a nonwoven fabric at least on one side. In particular, the phenol resin foam laminate disclosed in Japanese Patent Application Laid-Open No. 11-198332, which has been developed and patented by the present applicant, has improved adhesive performance by improving the nonwoven fabric forming the protective layer. This nonwoven fabric improves the strength of the phenol resin foam and is provided as a heat insulating material for buildings having excellent strength and heat insulating properties.
[0029]
As described above, the heat insulating material made of the laminated plate in which the protective layer is provided on the front and back surfaces of the phenol resin foam has a state in which the end surface (small edge surface) is exposed to the phenol resin substrate surface. For this reason, it is possible to attach a sticking tape or a sticking sheet using the nonwoven fabric which constitutes a protective layer on the front and back sides, but the other side sticks other members compared to the front and back sides. Is difficult.
[0030]
Moreover, in the heat insulating material which provided the protective layer by the nonwoven fabric on the front and back of a phenol resin foam, brittleness is improved and bending strength and tensile strength improve. For this reason, when it arrange | positions in a place with a narrow width | variety, it can become independent and can fully exhibit the function as a heat insulating material and an airtight material. In particular, when it is arranged in a narrow place with a width of about 1 m, it is possible and effective for the small facet to be brought into pressure contact with an elastic packing material.
[0031]
The said heat insulating material is a space between an earthquake-resistant element and an outer wall panel, Comprising: It arrange | positions on the surface formed with the column and beam of the earthquake-resistant element, and comprises a heat insulation layer. At this time, since the diagonal members of the seismic element are arranged on the indoor side surface of the surface, the surface is divided into a plurality of surfaces to set a divided surface with a small area, and the heat insulation having a shape corresponding to each divided surface By forming the material, these heat insulating materials can be fitted between the diagonal materials.
[0032]
When dividing the surface formed in the space between the seismic element and the outer wall panel, it is necessary that each divided surface has a size and shape that can pass between the diagonal members constituting the seismic element. Further, when dividing the surface, dividing the divided surface more than necessary degrades the workability, and heat insulation defects are likely to occur, and in order to ensure airtightness, the adjacent heat insulation The operation of connecting the materials becomes complicated, which is not preferable.
[0033]
In the experience of the inventors of the present invention, a pair of columns arranged opposite to each other between the outer wall panel and the inner wall material or between the inner wall materials, and a pair of horizontal members (for example, beams) arranged vertically A rectangular surface (hereinafter referred to as “earthquake-resistant wall surface”) composed of a plurality of members disposed obliquely in a space composed of a pair of pillars and a pair of horizontal members is vertically arranged along the pillars by 2 to 3 It was sufficient to divide and further divide the two or more divided two or more.
[0034]
For example, when the seismic wall surface is divided into four in the vertical direction, the area of each divided surface becomes small, so that it becomes easy to pass between the diagonal members of the seismic element. However, it is difficult to hold the heat insulating material that has been passed through, which hinders workability. In addition, the number of connecting lines between the heat insulating materials increases, and heat insulation defects are likely to occur, which is not preferable.
[0035]
In addition, when the seismic wall surface is divided into 2 to 3 in the vertical direction, after inserting one heat insulating material, it is possible to insert the other heat insulating material while urging this heat insulating material in the column or beam direction, Alternatively, it is possible to insert a central heat insulating material while urging them in the vertical direction after fitting two heat insulating materials in the vertical direction, thereby realizing a relatively easy work. It is.
[0036]
In particular, the small edge surface of the heat insulating material is a surface that is substantially perpendicular to the surface of the small edge surface that faces the column or beam, and the other small edge surface that is associated with the small edge surface that faces the other heat insulating material. It is preferable that By forming such a small face, when one heat insulating material is pushed into the seismic wall, the component force due to the inclined surface of the acting force acts as a pressing force on the column or beam. Is possible.
[0037]
Next, a preferred embodiment of the filling structure will be described with reference to the drawings. FIG. 1 is a diagram for explaining the structure of a housing provided with an earthquake-resistant element. FIG. 2 is a schematic plan sectional view for explaining the positional relationship between the outer wall panel and the seismic element. FIG. 3 is a schematic plan view illustrating a state in which the heat insulating material is filled. FIG. 4 is a diagram for explaining an example of the filling structure. FIG. 5 is a diagram illustrating an example of a filling structure. FIG. 6 is a diagram for explaining a reference example of the filling structure.
[0038]
In FIG. 1, the seismic element A has a pair of columns 1 facing each other with a preset distance, a horizontal member 2 is disposed between the columns 1, and On the other hand, diagonal members 3 are arranged from the respective pillars 1. Each of the members 2 and 3 is fixed to the column 1 and to the column 1 and the horizontal member 2 respectively, and is configured to be able to absorb the horizontal force that acts during an earthquake.
[0039]
The seismic element A is arranged between the upper beam 4 and the foundation beam or the lower beam hidden by the floor slab 5, and the upper end is fixed to the beam 4 and the lower end is fixed to the foundation beam or the lower beam. Is done.
[0040]
In addition, the shape of the seismic element A is not limited to the above-mentioned shape, and is variously set in advance according to the seismic performance. Therefore, the distance between the pillars 1 and the dimensions and shapes of the horizontal member 2 and the diagonal member 3 vary depending on the target seismic capacity.
[0041]
A plurality of outer wall panels 6 are arranged on the outdoor side of the beam 4, the upper end portion of the outer wall panel 6 is attached to the beam 4 via an unillustrated Inazuma plate, and the lower end portion is connected to a foundation beam via a self-weight receiving bracket (not shown). Or it is supported by the lower beam. The outer wall is configured by the outer wall panel 6 attached to the housing in this way.
[0042]
As shown in FIG. 2, when the seismic element A and the outer wall panel 6 are attached to the housing, the seismic wall B is constituted by the pair of columns 1, the beam 4 and the floor slab 5 constituting the seismic element A. . When a heat insulating material is disposed on the seismic wall B, even if a heat insulating material having a plane dimension equal to that of the seismic wall B is to be fitted, the horizontal member 2 and the diagonal member 3 cannot be fitted. .
[0043]
For this reason, as shown in FIGS. 3 to 5 , the surface B is divided into 2 to 3 in the vertical direction and two or more divided into 2 or 3 in the horizontal direction to form a plurality of divided surfaces, By forming the heat insulating material having a shape corresponding to the divided surface, these heat insulating materials can be easily fitted into the earthquake-resistant wall B through the horizontal member 2 and the oblique member 3 constituting the earthquake-resistant element A. .
[0044]
Here, the example of a division | segmentation at the time of dividing | segmenting the earthquake-resistant wall surface B is demonstrated with FIGS. In addition, although the earthquake-resistant element A was described in FIG. 4 (a), only the earthquake-resistant wall surface B is described in the other figures, without describing the earthquake-resistant element A.
[0045]
FIG. 4A shows a case where the seismic wall B is divided into six divided surfaces 11 and 12 by dividing the earthquake resistant wall B into two in the vertical direction and dividing each into three in the horizontal direction. The dividing surfaces 11 and 12 are formed in the same shape with the dividing surfaces 11 formed at both ends in the horizontal direction in the vertical direction, and the dividing surfaces 12 formed in the center in the horizontal direction in the vertical direction have the same shape. It is formed. And the heat insulating materials 11 and 12 arrange | positioned at each division surface 11 and 12 are formed with the same shape as the division surfaces 11 and 12. FIG.
[0046]
The figure (b) divides the earthquake-resistant wall surface B into three in the vertical direction, and further divides the upper and lower divided surfaces of the middle divided surface into three in the horizontal direction, thereby dividing into seven divided surfaces 13-15. is there. The dividing surfaces 13 to 15 are formed such that the middle dividing surface 13 has an independent shape, and the dividing surfaces 14 formed at both ends in the lateral direction above and below the middle dividing surface 13 are formed in the same shape. The dividing surface 15 formed vertically and horizontally in the center is formed in the same shape. And the heat insulating materials 13-15 arrange | positioned at each division surface 13-15 are formed with the same shape as the said division surfaces 13-15.
[0047]
FIG. 4C shows the seismic wall surface B divided into four divided surfaces 16 by dividing the earthquake resistant wall surface B into two vertically and dividing the upper and lower divided surfaces into two horizontally. The dividing surfaces 16 are formed in the same shape. And the heat insulating material 16 arrange | positioned at each division surface 16 is formed with the same shape as the said division surface 16. Thus, when the earthquake-resistant wall surface B is divided into four and filled with the heat insulating material, it is preferable that the heat insulating material is a polyethylene-based heat insulating material rich in elasticity. However, even if it is a hard plastic type heat insulating material, it can be filled if the thickness is about half or less of the distance between the outer wall panel 6 and the horizontal member 2 and the diagonal member 3.
[0048]
5 (a) is, together with the three split the seismic wall B in the vertical direction, by a respective divided surfaces further bisected laterally, but divided into six division surfaces 21, 22. The dividing surfaces 21 and 22 are formed so that the middle dividing surface 21 formed at the center in the vertical direction has the same shape, and the dividing surfaces 22 formed in the horizontal direction above and below the middle dividing surface 21 have the same shape. Is done. And the heat insulating materials 21 and 22 arrange | positioned at each division surface 21 and 22 are formed with the same shape as the division surfaces 21 and 22. FIG.
[0049]
The figure (b) divides the seismic wall B into three in the horizontal direction and further divides the left and right divided surfaces of the middle divided surface into three in the vertical direction to divide into seven divided surfaces 23-25. is there. The dividing surfaces 23 to 25 are formed in an independent shape, and the dividing surfaces 24 formed on the left and right sides of the dividing surface 23 are formed in the same shape. The dividing surfaces 25 formed at the center in the vertical direction on the left and right are formed in the same shape. And the heat insulating materials 23-25 arrange | positioned at each division surface 23-25 are formed with the same shape as the said division surfaces 23-25.
[0050]
In the above embodiment, the four heat insulating materials 11, 14, 22 , 24, and the two heat insulating materials 12, 21, 25 have the same shape, but the present invention is not necessarily limited to this configuration. Of course, each of the divided surfaces may have an independent shape, and a heat insulating material corresponding to each shape may be formed.
[0051]
Furthermore, FIGS. 6A to 6C can be raised as reference examples when dividing the earthquake-resistant wall surface B. FIG. That is, FIG. 4A shows the seismic wall B divided into three parts in the vertical direction, and the upper and lower divided surfaces are further divided into two in the oblique direction, thereby dividing the seismic wall surface B into five divided surfaces 27a and 27b. The dividing surfaces 27a and 27b are formed in an independent shape with respect to the middle dividing surface 27a, and the dividing surfaces 27b formed in an oblique direction above and below the middle dividing surface 27a are formed in the same shape. And the heat insulating materials 27a and 27b arrange | positioned at each division surface 27a and 27b are formed with the same shape as the said division surfaces 27a and 27b.
[0052]
FIG. 4 (b) shows that the seismic wall B is divided into three in the vertical direction and the lateral direction, and a central split surface 28a having a hollow shape is formed at the center, and the central split surface 28a and the corners of the seismic wall B are formed. Are formed to form a trapezoidal upper and lower divided surface 28b and a left and right divided surface 28c, respectively. In this case, the central dividing surface 28a may be a quadrangle as shown in the figure, or may be a circle, an ellipse or the like.
[0053]
FIG. 4C shows that the seismic wall surface B is divided into three in the vertical direction and in the horizontal direction, and a hollow center-divided surface 29a is formed at the center, and short sides are formed around the center-divided surface 29a. The upper and lower divided surfaces 29b and the left and right divided surfaces 29c are formed of rectangular divided surfaces having a dimension corresponding to one division in any direction and a long side having a dimension corresponding to two divisions in the other direction. .
[0054]
In the above-described reference example, the two divided to 3 divides the surface corresponding to the seismic elements in the vertical direction, it is divided into two to three divided one or more of the respective laterally.
[0055]
Next, the procedure for filling the seismic wall B that can be divided as described above with a heat insulating material will be described with reference to FIGS. In the present invention, the material and thickness of the heat insulating material disposed on the earthquake-resistant wall B are not particularly limited, but in this example, a hard plastic heat insulating material having appropriate bendability and strength, In particular, a heat insulating material made of a phenol resin foam having a thickness of 25 mm is used.
[0056]
First, as shown in FIG. 4A, when the earthquake-resistant wall B is divided into the divided surfaces 11 and 12, the heat insulating materials 11 and 12 are configured by forming the heat insulating material in the same shape as the divided surfaces 11 and 12. . That is, four heat insulating materials 11 and two heat insulating materials 12 are formed. Thereafter, the heat insulating material 11 on both sides in the lower lateral direction is fitted into the earthquake-resistant wall B through the slanting members 3 constituting the earthquake-resistant element A and pressed against the pillars 1 on both sides.
[0057]
Next, the lower center heat insulating material 12 is fitted between the heat insulating materials 11. At this time, the heat insulating material 12 is pressed by pressing the heat insulating materials 11 on both sides in the direction of the pillar 1. After the lower heat insulating materials 11 and 12 are fitted into the seismic wall B, the upper heat insulating materials 11 and 12 are fitted in the same procedure as described above. At this time, the lower heat insulating materials 11 and 12 already fitted are pressed downward, and further, the upper heat insulating materials 11 and 12 are fitted in a bent state, and the lower end portion is placed on the lower side. The heat insulating materials 11 and 12 are pressed and the upper end is pressed to the beam.
[0058]
In addition, a portion corresponding to the spacer 8 disposed in advance corresponding to the connecting portion of the heat insulating material 11 and the heat insulating material 12 in the outer wall panel 6 and the spacer 7 disposed corresponding to the column 1 is made of a nail or a screw. By driving a fixing tool, the heat insulating materials 11 and 12 are fixed to the outer wall panel 6 via the spacers 7 and 8. Thereby, the heat insulating materials 11 and 12 can hold | maintain each arrangement position in the earthquake-resistant wall surface B stably. In FIG. 3, reference numeral 31 denotes an air layer.
[0059]
In the filling structure configured as described above, the spacer 8 made of a heat insulating material is arranged at the connecting portion on the outer wall panel 6 side of the heat insulating materials 11 and 12 arranged on the earthquake-resistant wall surface B. Is not conducted, and good heat insulation can be maintained.
[0060]
In particular, when securing the airtightness in the seismic wall surface B, after fixing the plurality of heat insulating materials 11 and 12 arranged on the seismic wall surface B, the joint 32 of the adjacent heat insulating materials 11 and 12 has airtightness. It is preferable to apply an airtight tape 33 made of a metal film or a synthetic resin film. Thus, by sealing the joint 32 with the airtight tape 33, it is possible to exhibit high airtightness. Further, it is preferable that an airtight packing made of an elastic material (not shown) is attached to the column 1 in advance, and the small face surfaces of the heat insulating materials 11 and 12 are pressed against the airtight packing.
[0061]
In addition, in the said Example, although the small edge surface of the heat insulating materials 11 and 12 was formed perpendicular | vertical with respect to the surface, you may form the small edge surface which the heat insulating material 11 and the heat insulating material 12 mutually contact as an inclined surface. In this case, the force energized when the heat insulating material 12 is pushed between the heat insulating materials 11 generates a component force according to the angle of the inclined surface, and the heat insulating material 11 can be pressed against the column 1 by this component force. Become.
[0062]
Although the above description has explained the structure when the seismic wall B is divided as shown in FIG. 4 (a), the heat insulating materials 12-15, 21-25, 27a, 27b even when divided as shown in other figures. , 28a to 28c, 29a to 29c, and the filling procedure are substantially the same.
[0063]
【The invention's effect】
As described above in detail, in the filling structure according to the present invention, the surface formed between the pair of columns and the upper and lower beams or the beam and the floor constituting the seismic element is divided into 2 to 3 in the vertical direction. And forming a divided surface, and forming a divided surface obtained by further dividing one or more of the divided two to three in the lateral direction, preferably the surface to be filled with the heat insulating material. It can be divided into ˜7 divided planes or 5-7 divided planes rotated 90 degrees. Then, by forming a heat insulating material corresponding to the shape of each divided surface and fitting in order on each corresponding divided surface, even a narrow portion can be filled smoothly.
[0064]
Therefore, even if the dimensions between the columns constituting the seismic element change for each seismic element having different specifications, the principle for filling the heat insulating material is the same regardless of the change in this dimension. Yes, any size seismic element can be accommodated.
[0065]
In addition, the surface to be filled with the heat insulating material can be filled with the minimum number of divisions, the number of heat insulating materials can be minimized, and the structure can be made rational without increasing the number of members. I can do it.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram illustrating a configuration of a housing provided with seismic elements.
FIG. 2 is a schematic plan sectional view for explaining the positional relationship between an outer wall panel and a seismic element.
FIG. 3 is a schematic plan view illustrating a state in which a heat insulating material is filled.
FIG. 4 is a diagram illustrating an example of a filling structure.
FIG. 5 is a diagram illustrating an example of a filling structure.
FIG. 6 is a diagram illustrating a reference example of a filling structure.
[Explanation of symbols]
A Seismic element B Seismic wall 1 Pillar 2 Horizontal member 3 Diagonal member 4 Beam 5 Floor slab 6 Outer wall panel 7, 8 Spacer 11-16, 21-25, 27a, 27b, 28a-28c, 29a-29c Dividing surface, Insulating material 31 Air layer 32 Seam 33 Airtight tape

Claims (6)

一対の柱の間に斜め部材を配置して形成される耐震要素と、該耐震要素に対向して配置される外壁の間であって、且つ、躯体を構成する前記一対の柱及び上下の水平部材の間に形成される空間に断熱材を充填する充填構造であって、
前記空間は、一対の柱と上下の水平部材とによって区画設定される耐震壁面に対向しており、該耐震壁面は、前記柱に沿って上下方向に2分割乃至3分割され、夫々のうち1つ以上を更に前記水平部材に沿って横方向に2分割乃至3分割されて前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定され、
前記断熱材は、夫々の分割面に対応させた形状に形成されており、
各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填していることを特徴とする断熱材の充填構造。
The pair of pillars that are formed between the pair of pillars and that are formed by arranging an oblique member between the pair of pillars, and the outer wall that is disposed to face the earthquake-resistant elements , and that constitute the housing, and the upper and lower horizontal parts. A filling structure for filling a space formed between members with a heat insulating material,
The space is opposed to a seismic wall surface defined by a pair of columns and upper and lower horizontal members, and the seismic wall surface is divided into two or three in the vertical direction along the column, one of each Two or more are further divided into two or three in the horizontal direction along the horizontal member and set as a plurality of divided surfaces that can pass between the diagonal members of the seismic element,
The heat insulating material is formed in a shape corresponding to each divided surface,
A heat insulating material filling structure , wherein each heat insulating material is filled in a space corresponding to the dividing surface in the space through the slanting members .
一対の柱の間に斜め部材を配置して形成される耐震要素と、該耐震要素に対向して配置される外壁の間であって、且つ、躯体を構成する前記一対の柱及び上下の水平部材の間に形成される空間に断熱材を充填する充填構造であって、The pair of pillars that are formed between the pair of pillars and that are formed by arranging an oblique member between the pair of pillars, and the outer wall that is disposed to face the earthquake-resistant elements, and that constitute the housing, and the horizontal top and bottom A filling structure for filling a space formed between members with a heat insulating material,
前記空間は、一対の柱と上下の水平部材とによって区画設定される耐震壁面に対向しており、該耐震壁面は、前記水平部材に沿って横方向に2分割乃至3分割され、夫々のうち1つ以上を更に前記柱に沿って上下方向に2分割乃至3分割されて前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定され、  The space is opposed to a seismic wall surface defined by a pair of pillars and upper and lower horizontal members, and the seismic wall surface is laterally divided into three or three along the horizontal member, One or more are further divided into two or three in the vertical direction along the pillar and set as a plurality of divided surfaces that can pass between the diagonal members of the seismic element,
前記断熱材は、夫々の分割面に対応させた形状に形成されており、  The heat insulating material is formed in a shape corresponding to each divided surface,
各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填していることを特徴とする断熱材の充填構造。  A heat insulating material filling structure, wherein each heat insulating material is filled in a space corresponding to the dividing surface in the space through the slanting members.
前記断熱材は、フェノール樹脂発泡体による成形体の表裏面に不織布による保護層を設けた積層板により形成されていることを特徴とする請求項1又は請求項2に記載の断熱材の充填構造。The said heat insulating material is formed with the laminated board which provided the protective layer by the nonwoven fabric in the front and back of the molded object by a phenol resin foam, The filling structure of the heat insulating material of Claim 1 or Claim 2 characterized by the above-mentioned. . 一対の柱の間に予め斜め部材を配置して耐震要素を形成し、An oblique member is arranged in advance between a pair of columns to form an earthquake resistant element,
該耐震要素を上下の水平部材を含む躯体に配置すると共に該躯体に外壁を配置して、該外壁と耐震要素の間に、前記一対の柱と上下の水平部材により区画設定される耐震壁面に対向する空間を形成し、  The seismic element is disposed on a housing including upper and lower horizontal members, and an outer wall is disposed on the housing, and the seismic wall surface defined by the pair of columns and the upper and lower horizontal members is disposed between the outer wall and the seismic element. Forming an opposing space,
前記耐震壁面を、前記柱に沿って上下方向に2分割乃至3分割し、さらに、夫々のうち1つ以上を前記水平部材に沿って横方向に2分割乃至3分割して前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定すると共に、夫々の分割面に対応させた形状に形成される断熱材を形成し、  The seismic wall surface is divided into two or three parts in the vertical direction along the pillar, and one or more of them are divided into two or three parts in the horizontal direction along the horizontal member, and the seismic elements are slanted. Set as a plurality of divided surfaces that can pass between the members, and form a heat insulating material formed in a shape corresponding to each divided surface,
各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填することを特徴とする断熱材の充填方法。  Filling each heat insulating material at a position corresponding to the dividing surface in the space through the slanting member.
一対の柱の間に予め斜め部材を配置して耐震要素を形成し、An oblique member is arranged in advance between a pair of columns to form an earthquake resistant element,
該耐震要素を上下の水平部材を含む躯体に配置すると共に該躯体に外壁を配置して、該外壁と耐震要素の間に、前記一対の柱と上下の水平部材により区画設定される耐震壁面に対向する空間を形成し、  The seismic element is disposed on a housing including upper and lower horizontal members and an outer wall is disposed on the housing, and the seismic wall surface defined by the pair of columns and the upper and lower horizontal members is disposed between the outer wall and the seismic element. Forming an opposing space,
前記耐震壁面を、前記水平部材に沿って横方向に2分割乃至3分割し、さらに、夫々のうち1つ以上を前記柱に沿って縦方向に2分割乃至3分割して前記耐震要素の斜め部材の間を通過可能な複数の分割面として設定すると共に、夫々の分割面に対応させた形状に形成される断熱材を形成し、  The seismic wall surface is divided into two or three parts in the horizontal direction along the horizontal member, and one or more of them are divided into two or three parts in the vertical direction along the pillar. Set as a plurality of divided surfaces that can pass between the members, and form a heat insulating material formed in a shape corresponding to each divided surface,
各断熱材を前記斜め部材の間を通じて前記空間にて分割面に対応する位置にそれぞれ充填することを特徴とする断熱材の充填方法。  Filling each heat insulating material at a position corresponding to the dividing surface in the space through the slanting member.
各断熱材の前記分割面に対応する位置への充填は、Filling the position corresponding to the divided surface of each heat insulating material,
前記一対の柱に隣接する断熱材を前記対応する位置に配置した後にそれぞれの断熱材を隣接する柱の方向に向けて押圧し、  After placing the heat insulating material adjacent to the pair of columns at the corresponding position, press each heat insulating material toward the direction of the adjacent column,
次いで、一対の断熱材の間に配置される断熱材を配置することを特徴とする請求項4又  Then, the heat insulating material arrange | positioned between a pair of heat insulating materials is arrange | positioned. は請求項5に記載の断熱材の充填方法。Is a filling method of a heat insulating material according to claim 5.
JP2002234931A 2002-08-12 2002-08-12 Insulation filling structure and filling method Expired - Lifetime JP4017473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234931A JP4017473B2 (en) 2002-08-12 2002-08-12 Insulation filling structure and filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234931A JP4017473B2 (en) 2002-08-12 2002-08-12 Insulation filling structure and filling method

Publications (2)

Publication Number Publication Date
JP2004076319A JP2004076319A (en) 2004-03-11
JP4017473B2 true JP4017473B2 (en) 2007-12-05

Family

ID=32019598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234931A Expired - Lifetime JP4017473B2 (en) 2002-08-12 2002-08-12 Insulation filling structure and filling method

Country Status (1)

Country Link
JP (1) JP4017473B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146400A (en) * 2005-11-24 2007-06-14 Asahi Kasei Construction Materials Co Ltd Outside insulation wall structure of building
JP6622986B2 (en) * 2015-06-22 2019-12-18 倉敷紡績株式会社 Thermal insulation structure of building
JP6768457B2 (en) * 2016-11-11 2020-10-14 トヨタホーム株式会社 Insulation structure of bearing wall and how to attach insulation material of bearing wall
JP6930870B2 (en) * 2017-07-20 2021-09-01 トヨタホーム株式会社 Fireproof wall structure and construction method of fireproof wall structure
JP6909094B2 (en) * 2017-08-07 2021-07-28 トヨタホーム株式会社 Fireproof wall structure
JP6940382B2 (en) * 2017-11-21 2021-09-29 トヨタホーム株式会社 Fireproof wall

Also Published As

Publication number Publication date
JP2004076319A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4017473B2 (en) Insulation filling structure and filling method
JP2014173256A (en) Heat insulation structure of inner wall part and inner wall panel
KR101448010B1 (en) floor construct device for preventing noise
JP5179992B2 (en) Thermal insulation and airtight structure of the outer wall
JP4017462B2 (en) Thermal insulation structure of outer wall
JP4878891B2 (en) Thermal insulation panel for roof and roof structure
JP4001524B2 (en) Hermetic structure and method for forming hermetic structure
JP4043315B2 (en) Residential airtight structure
JP4849833B2 (en) Insulated and airtight structure of steel beams
JP2000297474A (en) Panel for wall
KR20020036692A (en) Fire and soundproof panel
JP4878765B2 (en) Hermetic structure and composite hermetic insulation and elastic foam
JP4827901B2 (en) Ceiling insulation structure
KR200196534Y1 (en) The panel of excluding sounds
JP4293896B2 (en) Airtight insulation structure around the outer wall opening
JPH0960145A (en) External facing for building and external facing panel for building
CN217353788U (en) Building shock insulation structure system
JP7464368B2 (en) Thermal insulation construction and thermal insulation construction method
JP4766790B2 (en) Insulation structure of steel beam
JP2004076317A (en) Heat insulation structure and fixing metal bar for ceiling
JP7141840B2 (en) Insulation structure, building and insulation installation method
JP2004076318A (en) Curtain wall structure and construction method of heat insulating material
JPH11280199A (en) Partition panel
JP2588805Y2 (en) Thermal insulation panel and thermal insulation wall structure using the same
JP2015102176A (en) Building composite heat insulation panel and attachment structure of building composite heat insulation panel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4017473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term