JP2015083524A - Single crystal growth apparatus - Google Patents

Single crystal growth apparatus Download PDF

Info

Publication number
JP2015083524A
JP2015083524A JP2013222300A JP2013222300A JP2015083524A JP 2015083524 A JP2015083524 A JP 2015083524A JP 2013222300 A JP2013222300 A JP 2013222300A JP 2013222300 A JP2013222300 A JP 2013222300A JP 2015083524 A JP2015083524 A JP 2015083524A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
conductor
cylindrical structure
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013222300A
Other languages
Japanese (ja)
Inventor
友希 高橋
Yuki Takahashi
友希 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013222300A priority Critical patent/JP2015083524A/en
Publication of JP2015083524A publication Critical patent/JP2015083524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal growth apparatus which makes it possible to gently set the temperature gradient of a crucible upper space and has excellent temperature responsiveness.SOLUTION: A single crystal growth apparatus comprises a crucible 11 having conductivity with raw material input into it, induction heating means 14 for induction-heating the crucible, and a nonmagnetic cylindrical structure body 12 provided at the upper part of the crucible, wherein a conductor 19 is provided at a side wall part of the cylindrical structure body 12.

Description

本発明は、単結晶の育成装置に関するものである。   The present invention relates to a single crystal growth apparatus.

LiNbOなどの酸化物単結晶をチョクラルスキー法(CZ法)で育成する単結晶育成装置において、誘導加熱コイルに熱が伝導するのを防ぐために、非磁性体製の輻射熱吸収板(22)、入れ子式に配置された石英製の内筒(12)及び外筒(14)を導電性坩堝(16)と誘導加熱コイル(20)との間に設けたものが知られている(特許文献1の[0022],[0026]及び図1参照)。 In a single crystal growth apparatus for growing an oxide single crystal such as LiNbO 3 by the Czochralski method (CZ method), a radiation heat absorbing plate (22) made of a non-magnetic material is used to prevent conduction of heat to the induction heating coil. Further, a quartz inner cylinder (12) and an outer cylinder (14) arranged in a nested manner are provided between a conductive crucible (16) and an induction heating coil (20) (Patent Literature). 1 [0022], [0026] and FIG. 1).

特開2008−81337号公報JP 2008-81337 A

ところで、酸化物単結晶などをCZ法で育成する場合に、坩堝の上部空間の温度勾配が急峻であると育成される単結晶に熱ストレスによるクラックや割れが発生する可能性があるため、坩堝の上部空間の温度勾配を引上げ方向及び径方向ともに緩やかに設定することが必要とされる。しかしながら、上記従来技術のように輻射熱吸収板や内筒・外筒を単に重畳的に設けただけでは、坩堝の上部空間の径方向の温度勾配はさほど改善されず、誘導加熱の温度応答性が却って悪化するという問題がある。   By the way, when growing an oxide single crystal or the like by the CZ method, cracks or cracks due to thermal stress may occur in the single crystal grown when the temperature gradient in the upper space of the crucible is steep. It is necessary to gently set the temperature gradient in the upper space of both the pulling direction and the radial direction. However, the radiant heat absorption plate, the inner cylinder, and the outer cylinder simply provided in a superimposed manner as in the prior art described above do not improve the radial temperature gradient in the upper space of the crucible so much that the temperature response of induction heating is improved. On the other hand, there is a problem of getting worse.

本発明が解決しようとする課題は、坩堝の上部空間の温度勾配を緩やかに設定できるとともに温度応答性も良好な単結晶育成装置を提供することである。   The problem to be solved by the present invention is to provide a single crystal growth apparatus which can set a temperature gradient in the upper space of the crucible gently and has good temperature responsiveness.

本発明は、原料が投入される導電性を有する坩堝と、前記坩堝を誘導加熱する誘導加熱手段と、前記坩堝の上部に設けられた非磁性の筒状構造体と、を備える単結晶育成装置において、前記筒状構造体の側壁部に導電体が設けられていることを特徴とし、これにより上記課題を解決する。   The present invention provides a single crystal growth apparatus comprising a conductive crucible into which raw materials are charged, induction heating means for induction heating the crucible, and a non-magnetic cylindrical structure provided on the crucible. In the present invention, a conductor is provided on a side wall portion of the cylindrical structure, thereby solving the above-mentioned problem.

上記発明において、前記筒状構造体の側壁部の内部に、気密性を有する空間が形成されていることが好ましい。   In the above invention, it is preferable that an airtight space is formed inside the side wall portion of the cylindrical structure.

上記発明において、前記導電体は、金属箔で構成することができ、また前記導電体は、前記空間の内部に設けることができる。   In the above invention, the conductor can be formed of a metal foil, and the conductor can be provided in the space.

上記発明において、前記導電体は、前記坩堝の内周より内側に設けられることが好ましい。   In the above invention, the conductor is preferably provided on the inner side of the inner periphery of the crucible.

誘導加熱手段により坩堝を加熱すると固相原料が融解するが、これと同時に坩堝の上部の筒状構造体の側壁部に設けられた導電体も加熱される。これにより、坩堝の上部の雰囲気も加熱されるので、坩堝の上部空間の温度勾配を緩やかに設定することができる。また、誘導加熱手段により導電体が直接的に加熱されるので温度制御の応答性も向上する。   When the crucible is heated by induction heating means, the solid phase raw material is melted. At the same time, the conductor provided on the side wall portion of the cylindrical structure at the top of the crucible is also heated. Thereby, since the atmosphere of the upper part of a crucible is also heated, the temperature gradient of the upper space of a crucible can be set gently. In addition, since the conductor is directly heated by the induction heating means, the temperature control response is also improved.

本発明の一実施の形態に係る単結晶の育成方法で用いられる単結晶育成装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the single crystal growth apparatus used with the growth method of the single crystal which concerns on one embodiment of this invention. 図1の単結晶育成装置であって育成工程の最終段階を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the final stage of the growing process in the single crystal growing apparatus of FIG. 1. 図1の筒状構造体を示す拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a cylindrical structure in FIG. 1. 図1,3の導電体を示す斜視図である。It is a perspective view which shows the conductor of FIG.

以下、本発明の一実施の形態を図面に基づいて説明する。本発明の単結晶育成装置1は、原料が投入される導電性を有する坩堝11と、この坩堝11を誘導加熱する誘導加熱コイル14と、坩堝11の上部に設けられた非磁性の筒状構造体12と、筒状構造体12の側壁部に設けられた導電体19をと備えるものである。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The single crystal growing apparatus 1 of the present invention includes a conductive crucible 11 into which raw materials are charged, an induction heating coil 14 for induction heating the crucible 11, and a non-magnetic cylindrical structure provided on the top of the crucible 11. The body 12 and the conductor 19 provided on the side wall portion of the cylindrical structure 12 are provided.

本例の単結晶育成装置1に適用される単結晶としては、特に限定されないが、たとえばニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、チタン酸バリウム(BaTiO)などの酸化物単結晶、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)などのIII−V族窒化物単結晶、イットリウム・アルミニウム・ガーネット(YAG,YAl12)、ガドリニウム・ガリウム・ガーネット(GGG,GdGa12)、ガドリニウム・スカンジウム・ガリウム・ガーネット(GSGG,GdScGa12)、テルビウム・ガリウム・ガーネット(TGG,TbGa12)、テルビウム・アルミニウム・ガーネット(TAG,TbAl12)、テルビウム・スカンジウム・アルミニウム・ガーネット(TSAG,TbScAl12)、テルビウム・スカンジウム・ルテチウム・アルミニウム・ガーネット(TSLAG,TbSc2−xLuAl12)などのガーネット型単結晶などが挙げられる。 The single crystal is applied to a single crystal growing apparatus 1 of the present embodiment is not particularly limited, for example, lithium niobate (LiNbO 3), lithium tantalate (LiTaO 3), oxides such as barium titanate (BaTiO 3) Single crystal, group III-V nitride single crystal such as aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), yttrium aluminum garnet (YAG, Y 3 Al 5 O 12 ), gadolinium gallium Garnet (GGG, Gd 3 Ga 5 O 12 ), Gadolinium, Scandium, Gallium Garnet (GSGG, Gd 3 Sc 2 Ga 3 O 12 ), Terbium Gallium Garnet (TGG, Tb 3 Ga 5 O 12 ), Terbium aluminum garnet (TAG, Tb 3 A 5 O 12), terbium scandium aluminum garnet (TSAG, Tb 3 Sc 2 Al 3 O 12), terbium scandium lutetium aluminum garnet (TSLAG, Tb 3 Sc 2- x Lu x Al 3 O 12) Garnet-type single crystals such as

上記ニオブ酸リチウム単結晶や上記タンタル酸リチウムは、レーザー素子の非線形光学材料として用いられ、また圧電素子や表面弾性波素子などの圧電体として用いられる。上記チタン酸バリウム単結晶は、その高い光屈折性効果(フォトリフラクティブ効果)を利用して、位相共役鏡、レーザー共振器、光学画像解析機器などの光学応用機器に用いられる。   The lithium niobate single crystal or the lithium tantalate is used as a nonlinear optical material of a laser element, or as a piezoelectric body such as a piezoelectric element or a surface acoustic wave element. The barium titanate single crystal is used for optical application devices such as a phase conjugate mirror, a laser resonator, and an optical image analysis device by utilizing its high photorefractive effect (photorefractive effect).

上記窒化アルミニウムなどのIII−V族窒化物は、広いバンドギャップが必要とされる深紫外線発光ダイオードや半導体レーザー等の短波長発光素子の基板材料として用いられ、また耐圧が高く、オン抵抗が低く、高温環境下での特性の低下が小さいといった利点を有する電子デバイスの基板材料として用いられる。   Group III-V nitrides such as aluminum nitride are used as substrate materials for short-wavelength light emitting devices such as deep ultraviolet light emitting diodes and semiconductor lasers that require a wide band gap, and also have high withstand voltage and low on-resistance. It is used as a substrate material for an electronic device having the advantage that the deterioration in characteristics under a high temperature environment is small.

上記YAG単結晶は、ネオジウムNdなどの元素を添加することで固体レーザー媒質として用いられ、上記GGG単結晶や上記GSGG単結晶は、通信用アイソレータに使用される磁性ガーネット薄膜を形成するための基板材料として用いられ、上記TGG単結晶、上記TAG単結晶、上記TSAG単結晶及び上記TSLAG単結晶は、レーザー加工機用光アイソレータに使用されるファラデー回転子材料として用いられる。   The YAG single crystal is used as a solid-state laser medium by adding an element such as neodymium Nd, and the GGG single crystal or the GSGG single crystal is a substrate for forming a magnetic garnet thin film used for a communication isolator. The TGG single crystal, the TAG single crystal, the TSAG single crystal, and the TSLAG single crystal are used as a Faraday rotator material used for an optical isolator for a laser beam machine.

これら酸化物単結晶、窒化物単結晶、ガーネット型単結晶は、チョクラルスキー法(CZ法)に代表される融液引き上げ方法により育成することができ。図1は、本例の単結晶育成装置1を示す図である。同図に示すように、単結晶育成装置1は、主として、イリジウム製の導電性を有する坩堝11と、坩堝11の上部に設けられたセラミックス製の非磁性の筒状構造体12と、坩堝11を包囲するように設けられたセラミックス製の非磁性の保温筒体13と、保温筒体13の外周に設けられた誘導加熱装置(不図示)の誘導加熱コイル14と、先端に種結晶2を装着するチャックを有する引上げワイヤ15と、引上げワイヤ15の基端が接続されて当該引上げワイヤ15を回転させながら巻取る巻取装置16と、坩堝11及び保温筒体13を載置する基台17と、を密閉された炉体18内に備える。   These oxide single crystals, nitride single crystals, and garnet single crystals can be grown by a melt pulling method represented by the Czochralski method (CZ method). FIG. 1 is a diagram showing a single crystal growth apparatus 1 of this example. As shown in the figure, the single crystal growth apparatus 1 is mainly composed of an iridium-made conductive crucible 11, a ceramic non-magnetic cylindrical structure 12 provided on the crucible 11, and a crucible 11. Ceramic non-magnetic heat insulating cylinder 13 provided so as to surround, induction heating coil 14 of an induction heating device (not shown) provided on the outer periphery of the heat insulating cylinder 13, and seed crystal 2 at the tip A pulling wire 15 having a chuck to be mounted, a winding device 16 to which the base end of the pulling wire 15 is connected and rotating the pulling wire 15, and a base 17 on which the crucible 11 and the heat insulating cylinder 13 are placed. In a sealed furnace body 18.

誘導加熱コイル14は、図示しない誘導加熱装置からの高周波電流が供給されることにより坩堝11に誘導電流を生じさせ、坩堝11を原料3の融点以上の所定温度に加熱する。そして、坩堝11には育成目的たる単結晶の原料3(固相)が投入され、誘導加熱コイル14を含む誘導加熱装置により融解されて液相とされる。図1においては液相とされた原料を符号3で示している。   The induction heating coil 14 generates an induction current in the crucible 11 when supplied with a high-frequency current from an induction heating device (not shown), and heats the crucible 11 to a predetermined temperature equal to or higher than the melting point of the raw material 3. The crucible 11 is charged with a single crystal raw material 3 (solid phase) to be grown and melted by an induction heating device including an induction heating coil 14 to be in a liquid phase. In FIG. 1, a raw material in a liquid phase is denoted by reference numeral 3.

坩堝11を包囲するように設けられた保温筒体13は、誘導加熱コイル14によって加熱された坩堝11の熱が誘導加熱コイル14に伝熱するのを抑制するものであり、高さ方向において少なくとも坩堝11の側面を包囲し、さらに坩堝11から引き上げられる単結晶4の下端部も包囲する高さとされている。なお、本発明の単結晶育成装置においては、この保温筒体13は必ずしも必須ではないため必要に応じて省略してもよい。   The heat insulating cylinder 13 provided so as to surround the crucible 11 is to suppress the heat of the crucible 11 heated by the induction heating coil 14 from being transferred to the induction heating coil 14, and at least in the height direction. The height is set so as to surround the side surface of the crucible 11 and also to surround the lower end portion of the single crystal 4 pulled up from the crucible 11. In the single crystal growth apparatus of the present invention, the heat insulating cylinder 13 is not necessarily essential, and may be omitted as necessary.

これに対して、坩堝11の上部に設けられた筒状構造体12は、坩堝11から引き上げられた単結晶4の温度を適切に制御するためのものであり、高さ方向において少なくとも、その下端縁が坩堝11の上端縁以下であり、その上端縁が、図2に示す育成工程の最終段階において引き上げられた単結晶の直胴部の上端までを包囲する高さとされている。また、筒状構造体12の径方向の位置は、引上げワイヤ15と同芯であり、後述する導電体19の外周部が坩堝11の内径より内側になる内径及び外形とされている。この筒状構造体12の詳細は後述する。   On the other hand, the cylindrical structure 12 provided in the upper part of the crucible 11 is for appropriately controlling the temperature of the single crystal 4 pulled up from the crucible 11, and at least the lower end thereof in the height direction. The edge is equal to or lower than the upper edge of the crucible 11, and the upper edge is set to a height that surrounds the upper end of the straight body of the single crystal pulled up in the final stage of the growth process shown in FIG. Further, the radial position of the cylindrical structure 12 is concentric with the pulling wire 15, and has an inner diameter and an outer shape in which an outer peripheral portion of a conductor 19 described later is inside the inner diameter of the crucible 11. Details of the cylindrical structure 12 will be described later.

引上げワイヤ15の先端(図1において下端)には種結晶2を装着するチャック(不図示)が設けられ、巻上装置16によって所定の回転速度で回転しながら、所定の巻上速度で上昇する。これら回転速度と巻上速度は、育成目的とする単結晶の育成条件に応じて適宜の値に決定される。なお、引上げ工程において種結晶2と融液3とは所定の回転速度で相対的に回転すればよいので、坩堝11を載置する基台17に回転機構を設けて坩堝11のみを回転させてもよいし、坩堝11と引上げワイヤ15の両方を回転させてもよい。   A chuck (not shown) for mounting the seed crystal 2 is provided at the tip (lower end in FIG. 1) of the pulling wire 15 and is rotated at a predetermined hoisting speed while being rotated at a predetermined rotating speed by the hoisting device 16. . These rotation speed and winding speed are determined to be appropriate values according to the growth conditions of the single crystal to be grown. In the pulling process, the seed crystal 2 and the melt 3 need only be relatively rotated at a predetermined rotational speed. Therefore, a rotation mechanism is provided on the base 17 on which the crucible 11 is placed, and only the crucible 11 is rotated. Alternatively, both the crucible 11 and the pulling wire 15 may be rotated.

本例の単結晶育成装置1にて実施される単結晶の育成工程は、窒素やアルゴンなどの不活性ガス雰囲気で実施することが好ましいため、炉体18の一端には不活性ガスを導入する導入口181が設けられ、炉体18の他端には炉内に導入された不活性ガスを導出する導出口182が設けられている。なお、単結晶の育成工程の雰囲気圧力は、単結晶の種類に応じた適切な範囲があるので、導入口181から導入され導出口182から導出される不活性ガスを、炉体18の内部がその適切な圧力範囲になるように流量制御する。   Since the single crystal growth step performed in the single crystal growth apparatus 1 of this example is preferably performed in an inert gas atmosphere such as nitrogen or argon, an inert gas is introduced into one end of the furnace body 18. An introduction port 181 is provided, and a discharge port 182 through which the inert gas introduced into the furnace is led out is provided at the other end of the furnace body 18. Since the atmospheric pressure in the single crystal growth process has an appropriate range according to the type of single crystal, the inert gas introduced from the inlet port 181 and led out from the outlet port 182 is transferred to the interior of the furnace body 18. The flow rate is controlled so as to be within the appropriate pressure range.

図3は、本例の筒状構造体12の一例を示す拡大縦断面図、図4は、本例の導電体19を示す斜視図である。本例の筒状構造体12は、いずれもアルミナやジルコニアなどのセラミックス製の、内側筒状体122,外側筒状体123,上部環状体124及び下部環状体125を構成部品とする。内側筒状体122と外側筒状体123は、高さが同じで直径が異なるものであり、上部環状体124と下部環状体125は後述する環状凹部127の有無を除き同じ形状のものである。上部環状体124及び下部環状体125それぞれの一方の面には、連続した環状凸部126が形成され、この環状凸部126の幅(径方向寸法)は、内側筒状体122と外側筒状体123で形成される環状空間121の幅(径方向寸法)に応じた寸法とされている。また、下部環状体125の環状凸部126が形成された面には、連続した環状凹部127が形成され、この環状凹部127は、導電体19の厚さに応じた寸法とされている。環状凹部127は、導電体19が引上げワイヤ15と同芯となる位置に形成されている。   FIG. 3 is an enlarged longitudinal sectional view showing an example of the cylindrical structure 12 of this example, and FIG. 4 is a perspective view showing the conductor 19 of this example. The cylindrical structure 12 of this example includes an inner cylindrical body 122, an outer cylindrical body 123, an upper annular body 124, and a lower annular body 125, all of which are made of ceramics such as alumina and zirconia. The inner cylindrical body 122 and the outer cylindrical body 123 have the same height and different diameters, and the upper annular body 124 and the lower annular body 125 have the same shape except for the presence or absence of an annular recess 127 described later. . A continuous annular protrusion 126 is formed on one surface of each of the upper annular body 124 and the lower annular body 125, and the width (radial dimension) of the annular protrusion 126 has an inner cylindrical body 122 and an outer cylindrical body. The dimensions are determined according to the width (diameter dimension) of the annular space 121 formed by the body 123. Further, a continuous annular recess 127 is formed on the surface of the lower annular body 125 where the annular projection 126 is formed, and the annular recess 127 has a size corresponding to the thickness of the conductor 19. The annular recess 127 is formed at a position where the conductor 19 is concentric with the pulling wire 15.

図4に示す導電体19は、イリジウム箔などの金属から構成された導電性を有する筒状体であり、筒状構造体12の環状空間121に設け得るように、その高さが環状空間の高さより低く、その径が内側筒状体122の外径より大きく外側筒状体123の内径より小さく形成されている。導電体19の下端縁は下部環状体125の環状凹部127に勘合され、これにより導電体19は筒状構造体12に固定される。なお、導電体19は導電性を有する材料であれば足りるので材料種や厚さは特に限定されない。   The conductor 19 shown in FIG. 4 is a conductive cylindrical body made of a metal such as iridium foil, and the height thereof is such that the annular space 121 can be provided in the annular space 121 of the cylindrical structure 12. The diameter is lower than the height, and the diameter is larger than the outer diameter of the inner cylindrical body 122 and smaller than the inner diameter of the outer cylindrical body 123. The lower end edge of the conductor 19 is fitted into the annular recess 127 of the lower annular body 125, whereby the conductor 19 is fixed to the cylindrical structure 12. In addition, since the conductor 19 should just be a material which has electroconductivity, a material seed | species and thickness are not specifically limited.

そして、図3に示すように、予め環状凹部127に導電体19の下端縁を勘合固定した下部環状体125を準備し、内側筒状体122と外側筒状体123を同芯状に配置した状態で、両者122,123の上部と下部のそれぞれに上部環状体124及び下部環状体125を接着剤などの手段で固定する。これにより、側壁部の内部に気密性を有する環状空間121が形成され、この環状空間121に導電体19が設けられた筒状構造体12を得ることができる。なお、環状空間121の内部に窒素などの不活性ガスを封入することが望ましいが、空気であってもよい。   And as shown in FIG. 3, the lower annular body 125 which fitted and fixed the lower end edge of the conductor 19 to the annular recessed part 127 beforehand was prepared, and the inner side cylindrical body 122 and the outer side cylindrical body 123 were arrange | positioned concentrically. In this state, the upper annular body 124 and the lower annular body 125 are fixed to the upper and lower portions of the both 122 and 123 by means such as an adhesive. Thereby, the annular space 121 having airtightness is formed inside the side wall portion, and the cylindrical structure 12 in which the conductor 19 is provided in the annular space 121 can be obtained. Although it is desirable to enclose an inert gas such as nitrogen in the annular space 121, air may be used.

上記のように構成された単結晶育成装置1を用いて所望の単結晶を育成する方法を説明する。最初に、固相の原料を坩堝11に投入するとともに、引上げワイヤ15のチャックに種結晶2を装着する。坩堝11に投入する原料は、育成目的とする単結晶の体積(外径×引上げ長さ)に応じた体積以上とする。次いで、炉体18内を密閉し、導入口181から不活性ガスを導入するとともに導出口182から当該不活性ガスを導出しながら炉体18内を所定圧に維持し、図外の誘導加熱装置を作動して誘導加熱コイル14に電流を流し坩堝11を原料の融点以上に加熱する。これにより、固相の原料が融解して液相となるので、巻取装置16を作動してその液面まで種結晶2を下降し、種結晶2を液相原料に接触させる。   A method of growing a desired single crystal using the single crystal growth apparatus 1 configured as described above will be described. First, the solid phase raw material is charged into the crucible 11 and the seed crystal 2 is mounted on the chuck of the pulling wire 15. The raw material thrown into the crucible 11 is set to a volume or more according to the volume of the single crystal to be grown (outer diameter x pulling length). Next, the inside of the furnace body 18 is sealed, an inert gas is introduced from the inlet 181 and the inside of the furnace body 18 is maintained at a predetermined pressure while the inert gas is led out from the outlet 182. Is operated to pass an electric current through the induction heating coil 14 to heat the crucible 11 to the melting point or higher of the raw material. As a result, the solid phase raw material is melted to become a liquid phase, so that the winding device 16 is operated to lower the seed crystal 2 to the liquid surface, thereby bringing the seed crystal 2 into contact with the liquid phase raw material.

種結晶2の下端が坩堝11内の液相原料に接触したら、巻取装置16によって引上げワイヤ15を所定速度で回転させながら所定速度で引上げを開始する。引上げ当初は、育成される単結晶4の外形が徐々に拡径するように種結晶2の回転速度と引上げ速度を制御し、種結晶2の直下に肩部を形成する。育成される単結晶4の外形が目的とする外形に達したら、種結晶の回転速度と引上げ速度を制御して直胴部を形成する。そして、図2に示すように所定の引上げ長さに達したら誘導加熱装置による加熱を停止するとともに巻取装置16を停止し、育成された単結晶4を取り出す。これにより目的とする単結晶を得ることができる。   When the lower end of the seed crystal 2 comes into contact with the liquid phase raw material in the crucible 11, the winding device 16 starts pulling up at a predetermined speed while rotating the pulling wire 15 at a predetermined speed. At the beginning of pulling, the rotation speed and pulling speed of the seed crystal 2 are controlled so that the outer shape of the single crystal 4 to be grown gradually increases, and a shoulder is formed immediately below the seed crystal 2. When the outer shape of the single crystal 4 to be grown reaches the target outer shape, the straight body portion is formed by controlling the rotation speed and pulling speed of the seed crystal. Then, as shown in FIG. 2, when the predetermined pulling length is reached, heating by the induction heating device is stopped and the winding device 16 is stopped, and the grown single crystal 4 is taken out. Thereby, the target single crystal can be obtained.

本例の単結晶育成装置によれば、誘導加熱コイル14を含む誘導加熱装置により坩堝11を加熱する際に、筒状構造体12の側壁部に設けられた導電体19に対しても誘導加熱コイル14からの磁力が作用する。これにより導電体19が加熱され、筒状に形成された当該導電体19の中心軸が引上げワイヤ15と同芯、すなわち育成される単結晶の中心軸と同軸に設けられているので、坩堝11の上部空間における径方向の温度分布が均一となる。また、誘電加熱コイル14からの磁力は導電体19の下端部ほど強く、上端部にしたがって弱くなるので、坩堝11の上部空間における引上げ軸方向の温度分布は上方にしたがって徐々に低温になる。その結果、坩堝11の液面から育成された単結晶4は、筒状構造体12の内側を通過する際に、径方向においては均一な温度分布で、引上げ軸方向においては徐々に低温となる緩やかな温度分布で冷却される。これにより熱ストレスによるクラックや割れの発生が抑制される。   According to the single crystal growth apparatus of this example, when the crucible 11 is heated by the induction heating apparatus including the induction heating coil 14, the induction heating is performed on the conductor 19 provided on the side wall portion of the cylindrical structure 12. The magnetic force from the coil 14 acts. Thereby, the conductor 19 is heated, and the central axis of the conductor 19 formed in a cylindrical shape is provided concentrically with the pulling wire 15, that is, coaxially with the central axis of the single crystal to be grown. The temperature distribution in the radial direction in the upper space is uniform. Further, the magnetic force from the dielectric heating coil 14 is stronger at the lower end portion of the conductor 19, and becomes weaker along the upper end portion. As a result, the single crystal 4 grown from the liquid surface of the crucible 11 has a uniform temperature distribution in the radial direction and gradually becomes low in the pulling axis direction when passing through the inside of the cylindrical structure 12. Cooled with a gentle temperature distribution. Thereby, generation | occurrence | production of the crack by the heat stress and a crack is suppressed.

また本例の単結晶育成装置1によれば、筒状構造体12の側壁部の内部に気密性を有する環状空間121が形成され、環状空間内に不活性ガスなどの気体が封入されているので、導電体19の加熱によって適切な温度分布となった坩堝11の上部空間の温度を維持することができる。   Moreover, according to the single crystal growing apparatus 1 of the present example, the annular space 121 having airtightness is formed inside the side wall portion of the cylindrical structure 12, and a gas such as an inert gas is enclosed in the annular space. Therefore, it is possible to maintain the temperature of the upper space of the crucible 11 that has an appropriate temperature distribution by heating the conductor 19.

また本例の単結晶育成装置1によれば、誘導加熱コイル14からの磁力が導電体19に直接作用するので、育成過程において温度条件を変更するために誘導加熱コイル14への供給電力を制御すると、その温度応答性が良好となる。   Further, according to the single crystal growth apparatus 1 of this example, since the magnetic force from the induction heating coil 14 directly acts on the conductor 19, the power supplied to the induction heating coil 14 is controlled in order to change the temperature condition during the growth process. Then, the temperature responsiveness becomes favorable.

なお、上述した実施の形態ではCZ法により単結晶を育成したが、フラックス法やカイロポーラス法など液相から単結晶を引き上げる方法であっても同様の作用効果を奏する。また、上述した実施の形態では筒状構造体12の側壁部に環状空間121を形成したが、必要に応じてこれを省略してもよい。   In the above-described embodiment, the single crystal is grown by the CZ method. However, the same effect can be obtained even by a method of pulling up the single crystal from the liquid phase, such as a flux method or a cairoporous method. In the above-described embodiment, the annular space 121 is formed in the side wall portion of the cylindrical structure 12, but this may be omitted as necessary.

上述した実施の形態に係る単結晶育成装置1を用いて、坩堝11の上部空間の温度分布をシミュレーションしたところ、引上げ軸方向の温度勾配は5℃/mm(液面が最高温度で上部にしたがって低下する)、径方向の温度勾配が2℃/mm(中心が最高温度で周囲にしたがって低下する)であった。図1に示す単結晶育成装置1から筒状構造体12を取り外したものを比較例1とし、同様に坩堝11の上部空間の温度分布をシミュレーションしたところ、引上げ軸方向の温度勾配が10℃/mm、径方向の温度勾配が4℃/mmであった。また、特許文献1に開示された輻射熱吸収板と内筒・外筒とを重畳的に設けた単結晶育成装置を他の比較例2とし、同様に坩堝11の上部空間の温度分布をシミュレーションしたところ、引上げ軸方向の温度勾配が6.7℃/mm、径方向の温度勾配が3.8℃/mmであった。これらの結果から、本例のように筒状構造体12及び導電体19を設けることで温度分布が径方向にも引上げ軸方向にも緩やかになることが確認された。   When the temperature distribution in the upper space of the crucible 11 was simulated using the single crystal growth apparatus 1 according to the above-described embodiment, the temperature gradient in the pulling axis direction was 5 ° C./mm (the liquid level was the highest temperature and the upper surface was The temperature gradient in the radial direction was 2 ° C./mm (the center decreased at the highest temperature according to the surroundings). A structure obtained by removing the cylindrical structure 12 from the single crystal growth apparatus 1 shown in FIG. 1 is referred to as Comparative Example 1, and similarly, the temperature distribution in the upper space of the crucible 11 is simulated. mm, and the temperature gradient in the radial direction was 4 ° C./mm. Moreover, the single crystal growth apparatus provided with the radiation heat absorbing plate and the inner cylinder / outer cylinder disclosed in Patent Document 1 in a superimposed manner was used as another comparative example 2, and the temperature distribution in the upper space of the crucible 11 was similarly simulated. However, the temperature gradient in the pulling axis direction was 6.7 ° C./mm, and the temperature gradient in the radial direction was 3.8 ° C./mm. From these results, it was confirmed that the temperature distribution becomes gentle both in the radial direction and in the pulling-up axis direction by providing the cylindrical structure 12 and the conductor 19 as in this example.

また上記比較例2について、誘導加熱コイル14の出力を1%上昇させた場合に炉内の温度分布が安定するまでの時間を計測したところ30分を要したが、本例の単結晶育成装置1では20分で炉内の温度分布が安定した。この結果から、本例のように筒状構造体12及び導電体19を設けることで、誘電加熱による温度応答性が向上することが確認された。   Moreover, about the said comparative example 2, when the output of the induction heating coil 14 was raised 1%, when time until temperature distribution in a furnace was stabilized was measured, 30 minutes were required, but the single crystal growth apparatus of this example In 1, the temperature distribution in the furnace was stabilized in 20 minutes. From this result, it was confirmed that the temperature responsiveness by dielectric heating is improved by providing the cylindrical structure 12 and the conductor 19 as in this example.

1…単結晶育成装置
11…坩堝
12…筒状構造体
121…環状空間
122…内側筒状体
123…外側筒状体
124…上部環状体
125…下部環状体
126…環状凸部
127…環状凹部
13…保温筒体
14…誘電加熱コイル
15…引上げワイヤ
16…巻取装置
17…基台
18…炉体
181…導入口
182…導出口
19…筒状導電体
DESCRIPTION OF SYMBOLS 1 ... Single crystal growth apparatus 11 ... Crucible 12 ... Cylindrical structure 121 ... Cylindrical space 122 ... Inner cylindrical body 123 ... Outer cylindrical body 124 ... Upper annular body 125 ... Lower annular body 126 ... Annular convex part 127 ... Annular concave part DESCRIPTION OF SYMBOLS 13 ... Thermal insulation cylinder 14 ... Dielectric heating coil 15 ... Pulling wire 16 ... Winding device 17 ... Base 18 ... Furnace 181 ... Inlet 182 ... Outlet 19 ... Cylindrical conductor

Claims (5)

原料が投入される導電性を有する坩堝と、
前記坩堝を誘導加熱する誘導加熱手段と、
前記坩堝の上部に設けられた非磁性の筒状構造体と、を備える単結晶育成装置において、
前記筒状構造体の側壁部に導電体が設けられている単結晶育成装置。
A conductive crucible into which raw materials are charged;
Induction heating means for induction heating the crucible;
In a single crystal growth apparatus provided with a nonmagnetic cylindrical structure provided at the top of the crucible,
A single crystal growing apparatus in which a conductor is provided on a side wall portion of the cylindrical structure.
前記筒状構造体の側壁部の内部に、気密性を有する空間が形成されている請求項1に記載の単結晶育成装置。   The single crystal growing apparatus according to claim 1, wherein an airtight space is formed inside the side wall portion of the cylindrical structure. 前記導電体は、金属箔で構成されている請求項1又は2に記載の単結晶育成装置。   The single crystal growing apparatus according to claim 1, wherein the conductor is made of a metal foil. 前記導電体は、前記空間の内部に設けられている請求項2に記載の単結晶育成装置。   The single crystal growing apparatus according to claim 2, wherein the conductor is provided inside the space. 前記導電体は、前記坩堝の内周より内側に設けられている請求項1〜4のいずれか一項に記載の単結晶育成装置。   The single-crystal growing apparatus according to any one of claims 1 to 4, wherein the conductor is provided on an inner side than an inner periphery of the crucible.
JP2013222300A 2013-10-25 2013-10-25 Single crystal growth apparatus Pending JP2015083524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013222300A JP2015083524A (en) 2013-10-25 2013-10-25 Single crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013222300A JP2015083524A (en) 2013-10-25 2013-10-25 Single crystal growth apparatus

Publications (1)

Publication Number Publication Date
JP2015083524A true JP2015083524A (en) 2015-04-30

Family

ID=53047367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013222300A Pending JP2015083524A (en) 2013-10-25 2013-10-25 Single crystal growth apparatus

Country Status (1)

Country Link
JP (1) JP2015083524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441938A (en) * 2018-03-06 2018-08-24 同济大学 Special-shaped thermal-field device suitable for crystal growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441938A (en) * 2018-03-06 2018-08-24 同济大学 Special-shaped thermal-field device suitable for crystal growth

Similar Documents

Publication Publication Date Title
EP2857562B1 (en) Sic single-crystal ingot and production method for same
US20180171506A1 (en) Seed crystal holder, crystal growing device, and crystal growing method
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP2015000834A (en) Garnet type single crystal and method for producing the same
US9982365B2 (en) Method for producing SiC single crystal
JP2015083524A (en) Single crystal growth apparatus
JP7113478B2 (en) Crucible and Single Crystal Growth Apparatus and Growth Method
JP6065810B2 (en) Method for producing non-magnetic garnet single crystal substrate
JP2015137204A (en) single crystal growth apparatus
US9234296B2 (en) Apparatus having heat insulating cylinder with step portion for manufacturing semiconductor single crystal
JP6861557B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method
WO2015012190A1 (en) METHOD FOR PRODUCING SiC SUBSTRATES
JP2018002568A (en) Raising method of lithium tantalate single crystal
KR101679157B1 (en) Method for producing sic single crystal
JP2018203563A (en) Production method of magnetostrictive material
JP5573753B2 (en) SiC growth equipment
CN112051694A (en) Wavelength conversion device
JP2015086113A (en) Single crystal manufacturing device and manufacturing method for single crystal
JP2007001775A (en) Method for production of ferroelectric crystal
JP2015083523A (en) Growing method of single crystal
JP6235875B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal manufacturing apparatus
JP2017114725A (en) Method for raising lithium tantalate single crystal
JP2022099960A (en) Method for manufacturing oxide single crystal, and electrode used for method for manufacturing the same
JP2016175791A (en) Method for manufacturing single crystal
JP6520642B2 (en) Method of growing lithium tantalate single crystal