JP2015080412A5 - - Google Patents

Download PDF

Info

Publication number
JP2015080412A5
JP2015080412A5 JP2015012262A JP2015012262A JP2015080412A5 JP 2015080412 A5 JP2015080412 A5 JP 2015080412A5 JP 2015012262 A JP2015012262 A JP 2015012262A JP 2015012262 A JP2015012262 A JP 2015012262A JP 2015080412 A5 JP2015080412 A5 JP 2015080412A5
Authority
JP
Japan
Prior art keywords
magnetic pole
pole piece
connecting member
core
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015012262A
Other languages
Japanese (ja)
Other versions
JP5860555B2 (en
JP2015080412A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015012262A priority Critical patent/JP5860555B2/en
Priority claimed from JP2015012262A external-priority patent/JP5860555B2/en
Publication of JP2015080412A publication Critical patent/JP2015080412A/en
Publication of JP2015080412A5 publication Critical patent/JP2015080412A5/ja
Application granted granted Critical
Publication of JP5860555B2 publication Critical patent/JP5860555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

積層鉄心の製造方法Manufacturing method of laminated iron core

本発明は、環状の鉄心片を積層して形成する固定子用の積層鉄心の製造方法に関する。 The present invention relates to a method of manufacturing a laminated core for a stator formed by laminating annular core pieces.

従来、固定子用の積層鉄心(以下、単に固定子鉄心ともいう)は、薄板材料から打ち抜いた環状の鉄心片を積層して形成している。なお、積層鉄心の製造方法には、薄板材料から環状一体形の鉄心片を打ち抜いて形成する方法があるが、各磁極部への巻線作業を容易とするため、周方向に分断した複数の分割鉄心片を環状一体形(周方向一体型)の鉄心片と同じように打ち抜いて形成する方法もある(例えば、特許文献1参照)。 Conventionally, a laminated core for a stator (hereinafter also simply referred to as a stator core) is formed by laminating annular core pieces punched from a thin plate material. In addition, in the manufacturing method of the laminated core, there is a method of punching and forming an annular core piece from a thin plate material, but in order to facilitate winding work to each magnetic pole part, a plurality of parts separated in the circumferential direction are provided. There is also a method of punching and forming the divided core pieces in the same manner as the annular core piece (circumferentially integrated type) core piece (for example, see Patent Document 1).

特開2005−318763号公報JP 2005-318863 A

しかしながら、一般的な固定子鉄心は、周方向に隣り合う磁極部の先端部間が開口しており、変形し易い形状となっている。このため、以下に示すように、積層鉄心の製造工程において、変形が発生していた。 However, a general stator iron core has an opening between the tip portions of magnetic pole portions adjacent in the circumferential direction, and has a shape that is easily deformed. For this reason, as shown below, deformation occurred in the manufacturing process of the laminated core.

例えば、薄板材料に対し磁極片部の先端部の内形抜きがなされると、磁極片部先端は剛性が低下するため、この薄板材料を次の加工場所へ送る際に、磁極片部先端がばたつき(厚み方向への揺れ)を起こしてしまい、磁極片部がダイの開口縁や転積中の固定子鉄心に引っ掛かり、変形を起こしていた。 For example, if the inner shape of the tip of the magnetic pole piece is removed from the thin plate material, the rigidity of the tip of the magnetic pole piece decreases, so when the thin plate material is sent to the next processing location, Fluctuation (swaying in the thickness direction) occurred, and the magnetic pole piece was caught by the opening edge of the die and the stator core being rolled, causing deformation.

特に、打ち抜きスピードを上昇させると、形成される磁極片部の先端部の厚み方向のばたつきも大きくなるため、更に変形が起こり易くなり、また、薄板材料の板厚が薄く製品の外形が大きいものほど、変形の発生頻度が高くなっていた。
更に、固定子鉄心に溶接やモールド等を行う場合、固定子鉄心を加工装置へ取り付けるが、加工装置への着脱に際しては、磁極部の先端部をガイドとして使用するため、磁極部を構成する磁極片部の先端部を変形させてしまっていた。
上記した変形は、複数の分割鉄心片からなる鉄心片を積層して積層鉄心を製造する場合に起こり易かった。
In particular, if the punching speed is increased, the fluttering in the thickness direction of the tip of the magnetic pole piece formed will also increase, making the deformation more likely to occur, and the thickness of the thin plate material is thin and the product has a large outer shape As shown, the frequency of deformation increased.
Furthermore, when performing welding, molding, or the like on the stator core, the stator core is attached to the processing device, but when attaching to or detaching from the processing device, the tip of the magnetic pole portion is used as a guide. The tip of one part was deformed.
The above-described deformation is likely to occur when a laminated core is manufactured by stacking a plurality of divided core pieces.

本発明はかかる事情に鑑みてなされたもので、鉄心片の磁極片部の先端部の変形を防止し、製品不良による生産の中断をなくして、良好な品質の製品を効率的に製造可能な積層鉄心の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can prevent the deformation of the tip of the magnetic pole piece of the iron core piece, eliminate the interruption of production due to product failure, and efficiently manufacture a product of good quality. It aims at providing the manufacturing method of a laminated iron core.

前記目的に沿う第1の発明に係る積層鉄心の製造方法は、薄板材料から打ち抜いた環状の鉄心片を積層して形成する固定子用の積層鉄心の製造方法において、
前記薄板材料に予め設定した数のスロットを打ち抜いて各磁極片部の先側を除く輪郭を形成するスロット抜き工程と、
前記各磁極片部を半径方向特定箇所で折り曲げると共に、該各磁極片部の先側を連結するリング状の連結部材を、前記各磁極片部から部分的に剪断分離する切り曲げ工程と、
前記薄板材料において折り曲げた部位を押し戻すことにより、前記薄板材料と面一に成形して、前記各磁極片部の先側を、分離した前記連結部材の周縁に当接させるプッシュバック工程と、
前記鉄心片の外形を前記連結部材と共に打ち抜いて、前記磁極片部の先側が前記リング状の連結部材に当接した前記鉄心片を、先に打ち抜き形成された下層の鉄心片及び連結部材に積層する外形抜き積層工程とを有する。
The method for manufacturing a laminated core according to the first invention that meets the above-mentioned object is a method for producing a laminated core for a stator that is formed by laminating and forming annular core pieces punched from a thin plate material.
Slotting step of punching a preset number of slots in the thin plate material to form a contour excluding the front side of each magnetic pole piece part;
A bending process in which each of the magnetic pole piece portions is bent at a specific location in the radial direction, and a ring-shaped connecting member for connecting the tip side of each of the magnetic pole piece portions is partially sheared and separated from each of the magnetic pole piece portions;
A pushback step in which the bent portion of the thin plate material is pushed back to form the same surface as the thin plate material, and the front side of each of the magnetic pole piece portions is brought into contact with the peripheral edge of the separated connection member;
The outer shape of the iron core piece is punched together with the connecting member, and the iron core piece whose tip side of the magnetic pole piece abuts on the ring-shaped connecting member is stacked on the lower core piece and the connecting member formed by punching first. and a contour punching laminating step of.

前記目的に沿う第2の発明に係る積層鉄心の製造方法は、薄板材料から打ち抜いた環状の鉄心片を積層して形成する固定子用の積層鉄心の製造方法において、
前記薄板材料に予め設定した数のスロットを打ち抜いて各磁極片部の先側を除く輪郭を形成するスロット抜き工程と、
前記各磁極片部の先側を連結するリング状の連結部材を、前記各磁極片部から部分的に剪断分離する分離工程と、
前記連結部材を押し戻すことにより、前記薄板材料と面一に成形して、前記各磁極片部の先側を、分離した前記連結部材の周縁に当接させるプッシュバック工程と、
前記鉄心片の外形を前記連結部材と共に打ち抜いて、前記磁極片部の先側が前記リング状の連結部材に当接した前記鉄心片を、先に打ち抜き形成された下層の鉄心片及び連結部材に積層する外形抜き積層工程とを有する。
The method for manufacturing a laminated core according to the second invention that meets the above-mentioned object is a method for producing a laminated core for a stator that is formed by laminating and forming annular core pieces punched from a thin plate material.
Slotting step of punching a preset number of slots in the thin plate material to form a contour excluding the front side of each magnetic pole piece part;
A separation step of partially shearing and separating the ring-shaped connecting member for connecting the front side of each magnetic pole piece part from each magnetic pole piece part;
A pushback step in which the connecting member is pushed back to form the same material as the thin plate material, and the front side of each magnetic pole piece is brought into contact with the peripheral edge of the separated connecting member;
The outer shape of the iron core piece is punched together with the connecting member, and the iron core piece whose tip side of the magnetic pole piece abuts on the ring-shaped connecting member is stacked on the lower core piece and the connecting member formed by punching first. and a contour punching laminating step of.

第1、第2の発明に係る積層鉄心の製造方法において、前記プッシュバック工程での前記連結部材の外周縁は、前記磁極片部の半径方向内側に当接し、該連結部材の内周輪郭が円形であるのがよい。
第1、第2の発明に係る積層鉄心の製造方法において、前記薄板材料は、予めロータが打ち抜き除去されてもよい。
第1、第2の発明に係る積層鉄心の製造方法において、前記スロット抜き工程の前工程で、前記各磁極片部を基部で連結する環状ヨーク片部は、前記各スロットの位置で切り曲げ分離することもできる。
In the method for manufacturing a laminated core according to the first and second inventions, an outer peripheral edge of the connecting member in the pushback step is in contact with a radially inner side of the magnetic pole piece, and an inner peripheral contour of the connecting member is It should be circular.
In the method for manufacturing a laminated core according to the first and second inventions, the thin plate material may be previously punched and removed from the rotor.
In the method for manufacturing a laminated core according to the first and second inventions, in the previous step of the slot removing step, the annular yoke piece portion that connects the magnetic pole piece portions at the base portion is cut and separated at the position of each slot. You can also

本発明に係る積層鉄心の製造方法は、リング状の連結部材を各磁極片部から部分的に剪断分離した後、磁極片部側又は連結部材側をプッシュバックして、各磁極片部の先側を、各磁極片部から分離したリング状の連結部材の周縁に当接させているので、打ち抜き後における磁極片部の先側のばたつきを防止でき、周方向に隣り合う磁極片部の先端部間の開口をなくした状態で、薄板材料を搬送できる。これにより、例えば、薄板材料を次の打ち抜き場所へ送る際に、磁極片部がダイの開口縁に引っ掛かることによる磁極片部の変形を防止できる。
また、外形抜き積層工程では、鉄心片の外形を連結部材と共に打ち抜いて、先に打ち抜き形成された下層の鉄心片及び連結部材に積層するので、例えば、積層しようとする鉄心片の磁極片部が、先に打ち抜かれた鉄心片の磁極片部に引っ掛かることを防止できる。
そして、連結部材をリング状にして内径側(半径方向内側)を開口させている場合、切り曲げ工程又は分離工程や、プッシュバック工程において、内径側へパンチによる剪断応力を逃がすことができ、鉄心片が薄板材料と面一に形成された変形の無い積層鉄心を製造することができる。
なお、製造された積層鉄心は、各磁極部の先側に、リング状の連結部材を積層して形成された積層連結部材を配置しているので、固定子鉄心に溶接やモールド等を行う場合においても、各磁極部の先側を連結する積層連結部材をガイドとして利用でき、加工装置への着脱時に、ガイドとして使用される磁極片部の変形を、生じにくくさせることができる。
また、内径側を開口させた連結部材を積層する場合、打ち抜き時に、リング状の連結部材の内径側へ剪断応力を逃がしているので、積層連結部材を容易に取り外すことができる。
従って、鉄心片の磁極片部の先端部の変形を防止し、製品不良による生産の中断を抑制、更には防止できるので、良好な品質の製品を効率的に製造できる。
In the method for manufacturing a laminated core according to the present invention, after the ring-shaped connecting member is partially sheared and separated from each magnetic pole piece, the magnetic pole piece side or the connecting member side is pushed back, Side is in contact with the peripheral edge of a ring-shaped connecting member separated from each magnetic pole piece, so that flapping on the front side of the magnetic pole piece after punching can be prevented, and the tip of the magnetic pole piece adjacent to the circumferential direction The thin plate material can be conveyed in a state where the opening between the parts is eliminated. Thereby, for example, when the thin plate material is sent to the next punching place, the deformation of the magnetic pole piece due to the magnetic pole piece being caught by the opening edge of the die can be prevented.
In the outer punching and laminating step, the outer shape of the iron core piece is punched together with the connecting member, and is laminated on the lower iron core piece and the connecting member previously formed by punching. , It can be prevented from being caught by the magnetic pole piece of the core piece punched out first.
And, when the connecting member is ring-shaped and the inner diameter side (radially inner side) is opened, the shear stress due to the punch can be released to the inner diameter side in the cutting and bending process, the separation process, and the pushback process, and the iron core It is possible to manufacture a laminated core without deformation, in which the pieces are formed flush with the thin plate material.
In addition, since the manufactured laminated core has a laminated connecting member formed by laminating ring-shaped connecting members on the front side of each magnetic pole part, when welding or molding is performed on the stator core In this case, the laminated connecting member that connects the front sides of the magnetic pole portions can be used as a guide, and deformation of the magnetic pole piece portion used as the guide can be made difficult to occur when the magnetic connecting portion is attached to or detached from the processing apparatus.
Further, when the connecting members having the inner diameter side opened are laminated, since the shearing stress is released to the inner diameter side of the ring-shaped connecting member at the time of punching, the laminated connecting member can be easily removed.
Accordingly, deformation of the tip end portion of the magnetic pole piece portion of the iron core piece can be prevented, production interruption due to product failure can be suppressed and further prevented, and a product of good quality can be efficiently manufactured.

また、本発明に係る積層鉄心の製造方法において、連結部材の外周縁が磁極片部の半径方向内側に当接し、連結部材の内周輪郭が円形である場合、連結部材の内周輪郭を滑らかな形状(突出部の無い形状)にでき、薄板材料の搬送の際に、連結部材が引っ掛かることも防止できる。
そして、薄板材料は、予めロータが打ち抜き除去されている場合、薄板材料の有効利用が図れる。
更に、スロット抜き工程の前工程で、各磁極片部を基部で連結する環状ヨーク片部が、各スロットの位置で切り曲げ分離されている場合、鉄心片は分割されて引っ掛かりが発生し易い形状であるが、連結部材により、各磁極片部を一体として保持することができるため、本発明の効果がより顕著になる。
Further, in the method for manufacturing a laminated core according to the present invention, when the outer peripheral edge of the connecting member is in contact with the radially inner side of the magnetic pole piece and the inner peripheral contour of the connecting member is circular, the inner peripheral contour of the connecting member is smooth. It is possible to prevent the connecting member from being caught when the thin plate material is conveyed.
When the rotor is punched and removed in advance, the thin plate material can be effectively used.
Furthermore, when the annular yoke piece connecting the magnetic pole pieces at the base portion is cut and separated at the position of each slot in the previous step of the slot extraction process, the iron core piece is divided and is likely to be caught. However, since the magnetic pole piece portions can be held together by the connecting member, the effect of the present invention becomes more remarkable.

本発明の第1の実施の形態に係る製造方法で製造された固定子鉄心の斜視図である。It is a perspective view of the stator core manufactured with the manufacturing method which concerns on the 1st Embodiment of this invention. 同固定子鉄心の側断面図である。It is a sectional side view of the same stator core. 本発明の第1の実施の形態に係る積層鉄心の製造方法のヨーク部切り曲げ工程とヨーク部プッシュバック工程とスロット抜き工程の説明図である。It is explanatory drawing of the yoke part cutting bending process, yoke part pushback process, and slot extraction process of the manufacturing method of the laminated core which concerns on the 1st Embodiment of this invention. 同積層鉄心の製造方法の切り曲げ工程とプッシュバック工程の説明図である。It is explanatory drawing of the cutting process and pushback process of the manufacturing method of the laminated iron core. (A)、(B)はそれぞれ同積層鉄心の製造方法の切り曲げ工程の詳細説明図、(C)〜(E)はそれぞれ同積層鉄心の製造方法のプッシュバック工程の詳細説明図である。(A), (B) is detailed explanatory drawing of the cutting and bending process of the manufacturing method of the laminated core, respectively, (C)-(E) is detailed explanatory drawing of the pushback process of the manufacturing method of the laminated iron core, respectively. 同積層鉄心の製造方法のかしめ部形成工程と外形抜き積層工程の説明図である。It is explanatory drawing of the crimping part formation process of the manufacturing method of the same laminated iron core, and an outline extraction lamination process. 本発明の第2の実施の形態に係る積層鉄心の製造方法のスロット抜き工程と切り曲げ工程とプッシュバック工程の説明図である。It is explanatory drawing of the slot extraction process, the cutting and bending process, and the pushback process of the manufacturing method of the laminated iron core which concerns on the 2nd Embodiment of this invention. 同積層鉄心の製造方法のかしめ部形成工程と外形抜き積層工程の説明図である。It is explanatory drawing of the crimping part formation process of the manufacturing method of the same laminated iron core, and an outline extraction lamination process. 本発明の第3の実施の形態に係る積層鉄心の製造方法の切り曲げ工程とプッシュバック工程の説明図である。It is explanatory drawing of the bending process and pushback process of the manufacturing method of the laminated core which concerns on the 3rd Embodiment of this invention. (A)、(B)はそれぞれ同積層鉄心の製造方法の分離工程の詳細説明図である。(A), (B) is detail explanatory drawing of the isolation | separation process of the manufacturing method of the same laminated iron core, respectively. (A)〜(C)はそれぞれ同積層鉄心の製造方法のプッシュバック工程の詳細説明図である。(A)-(C) are the detailed explanatory drawings of the pushback process of the manufacturing method of the same laminated iron core, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、図1、図2を参照しながら、本発明の第1の実施の形態に係る製造方法で製造された積層鉄心について説明する。この積層鉄心は、固定子用の積層鉄心(以下、単に固定子鉄心ともいう)10であり、回転子鉄心(ロータ)の外側に隙間を有して配置された固定子鉄心、いわゆるインナーロータ型に使用するステータである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, a laminated iron core manufactured by the manufacturing method according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. This laminated iron core is a laminated iron core (hereinafter also simply referred to as a stator iron core) 10 for a stator, and a so-called inner rotor type stator iron core disposed with a gap outside the rotor iron core (rotor). It is a stator used for

固定子鉄心10は、固定子鉄心10を周方向に複数個(ここでは、9個)に分割した分割積層鉄心11を環状に並べて形成されるものである。
この各分割積層鉄心11は、複数(通常多数)の分割鉄心片12をかしめ積層して形成されるものであり、円弧状の分割ヨーク部13と、この分割ヨーク部13の内側中央に一体的に連接する磁極部14とを有している。
各分割鉄心片12は、両側に連結部15、16が形成された分割ヨーク片部17と、分割ヨーク片部17の中央内側に一体的に連接する磁極片部18とを有している。なお、連結部15には凸部が、また連結部16には凸部に嵌合する凹部が、それぞれ形成されている。
The stator core 10 is formed by annularly arranging divided laminated cores 11 obtained by dividing the stator core 10 into a plurality of pieces (here, 9 pieces) in the circumferential direction.
Each of the divided laminated cores 11 is formed by caulking and laminating a plurality (usually a large number) of divided core pieces 12, and is integrated with the arc-shaped divided yoke portion 13 and the inner center of the divided yoke portion 13. And a magnetic pole portion 14 connected to the.
Each of the divided core pieces 12 includes a divided yoke piece portion 17 having connecting portions 15 and 16 formed on both sides, and a magnetic pole piece portion 18 that is integrally connected to the center inner side of the divided yoke piece portion 17. The connecting portion 15 is formed with a convex portion, and the connecting portion 16 is formed with a concave portion that fits into the convex portion.

固定子鉄心10の半径方向内側(各磁極部14の先側)には、複数(通常多数)のリング(環)状の連結部材19を積層して形成されるリング状の積層連結部材20が配置されている。この連結部材19は、その内周輪郭21が円形のもの(内側円)で、半径方向の幅が、例えば、0.5〜10mm程度である。なお、連結部材19は、磁極片部18の半径方向内側に位置する先側から一旦切り離(分離)された外周縁22を、磁極片部18の先端面23に当接させている。 A ring-shaped laminated connecting member 20 formed by laminating a plurality of (usually many) ring-shaped connecting members 19 on the radially inner side of the stator core 10 (the front side of each magnetic pole portion 14). Has been placed. The connecting member 19 has a circular inner periphery 21 (inner circle) and a radial width of, for example, about 0.5 to 10 mm. The connecting member 19 abuts the outer peripheral edge 22 once separated (separated) from the front side located radially inward of the magnetic pole piece 18 on the tip surface 23 of the magnetic pole piece 18.

そして、隣り合う分割積層鉄心11を連結するため、固定子鉄心10に溶接やモールド等を行うことで、固定子鉄心10が完成する。
このように、固定子鉄心10の製造が完了した後に、固定子鉄心10から積層連結部材20を除去する。なお、積層連結部材20は、前記したように、磁極部14から事前に切り離されて(剪断されて)いるため、固定子鉄心10の軸方向から積層連結部材20に力を加えることで、固定子鉄心10から積層連結部材20を、容易に取り外すことができる。
And in order to connect the adjacent division | segmentation laminated | stacked cores 11, the stator core 10 is completed by performing welding, a mold, etc. to the stator core 10. FIG.
Thus, after the manufacture of the stator core 10 is completed, the laminated connecting member 20 is removed from the stator core 10. In addition, since the lamination | stacking connection member 20 was previously cut | disconnected (sheared) from the magnetic pole part 14 as mentioned above, it is fixed by applying force to the lamination | stacking connection member 20 from the axial direction of the stator core 10. The laminated connecting member 20 can be easily removed from the core 10.

続いて、本発明の第1の実施の形態に係る積層鉄心の製造方法について説明する。なお、製造する固定子鉄心10は、インナーロータ型に使用するステータであるため、以下の説明においては、磁極片部18の先側が半径方向内側となる。
まず、図3に示すように、幅方向両側に予め設定した間隔でパイロット孔26が形成され、予めロータ27が打ち抜き除去された板厚0.15〜0.5mm程度の薄板材料28(電磁鋼板)を、ヨーク部切り曲げ工程に搬送する。
ここでは、図3の二点鎖線で示す環状配置された複数の分割鉄心片12の分割ヨーク片部17の形成領域において、隣接する分割鉄心片12の連結部15、16を剪断分離すると共に、分離した一方側の連結部16を曲げ加工する。
なお、図3に示す符号29は、剪断分離された部位の切り曲げ線を示している。
Then, the manufacturing method of the laminated core which concerns on the 1st Embodiment of this invention is demonstrated. In addition, since the stator core 10 to be manufactured is a stator used for an inner rotor type, in the following description, the front side of the magnetic pole piece 18 is the radially inner side.
First, as shown in FIG. 3, a thin plate material 28 (electromagnetic steel sheet) having a plate thickness of about 0.15 to 0.5 mm in which pilot holes 26 are formed at predetermined intervals on both sides in the width direction and the rotor 27 is punched and removed in advance. ) Is conveyed to the yoke cutting process.
Here, in the formation region of the split yoke piece 17 of the plurality of split core pieces 12 arranged in a ring shape shown by the two-dot chain line in FIG. 3, the connecting portions 15 and 16 of the adjacent split core pieces 12 are sheared and separated, The separated connecting portion 16 on one side is bent.
In addition, the code | symbol 29 shown in FIG. 3 has shown the cutting / bending line of the site | part separated by shearing.

次に、上記したヨーク部切り曲げ工程が終了した薄板材料28を、ヨーク部プッシュバック工程へ搬送する。
ここでは、ヨーク部切り曲げ工程において曲げ加工した部位30を、平パンチ又はストリッパ下面(図示しない)によって押し戻すことにより、切り曲げした部位30を、薄板材料28と面一、即ち、切り曲げした部位30の表裏面を、薄板材料28の表裏面に一致させる。なお、符号31は、周方向に複数分割した分割鉄心片12からなる環状の鉄心片(固定子鉄心10を構成する1層の鉄心片)である。
上記したヨーク部切り曲げ工程及びヨーク部プッシュバック工程は、例えば、特開2005−318763号公報に記載の方法で実施できるが、この方法に限定されない。
Next, the thin plate material 28 that has been subjected to the yoke section cutting and bending process is conveyed to the yoke section pushback process.
Here, the portion 30 bent in the yoke cutting step is pushed back by a flat punch or a stripper lower surface (not shown), so that the cut portion 30 is flush with the thin plate material 28, that is, a portion that is cut and bent. The front and back surfaces of 30 are matched with the front and back surfaces of the thin plate material 28. In addition, the code | symbol 31 is the cyclic | annular core piece (1 layer core piece which comprises the stator core 10) which consists of the division | segmentation core piece 12 divided into multiple pieces by the circumferential direction.
The yoke part cutting and bending process and the yoke part pushback process described above can be performed by, for example, the method described in Japanese Patent Application Laid-Open No. 2005-318863, but are not limited to this method.

続いて、ヨーク部プッシュバック工程が終了した薄板材料28を、スロット抜き工程へ搬送する。
ここでは、薄板材料28に予め設定した数(ここでは、9個)のスロット32を打ち抜き形成すると同時に、隣接する磁極片部18の先端位置より半径方向内側まで打ち抜いて凹部33を設け、磁極片部18の先端を除く輪郭を形成する。なお、図3、図4に示すように、磁極片部18の先端面23で構成される内孔34から、半径方向内側へ突出する凹部33の突出代は、例えば、連結部材19の半径方向の幅の10〜50%程度である。
以上に示したように、各磁極片部18を半径方向外側に位置する基部で連結する環状ヨーク片部は、スロット抜き工程の前工程で、各スロット32の位置で切り曲げ分離され、各磁極片部18の先端は、連結部材19で連結される。
ここで、スロット抜き工程を、ヨーク部切り曲げ工程の前工程として行ってもよく、その場合、スロットが先に形成されるので、切り曲げ加工時のパンチにかかる負荷を小さくすることができ、その結果、刃物寿命を伸ばすことができる。
Subsequently, the thin plate material 28 that has been subjected to the yoke push-back process is conveyed to the slot removing process.
Here, a preset number (9 in this case) of slots 32 are punched and formed in the thin plate material 28, and at the same time, the recess 33 is provided by punching from the tip position of the adjacent magnetic pole piece 18 to the inside in the radial direction. A contour excluding the tip of the portion 18 is formed. As shown in FIGS. 3 and 4, the protrusion margin of the concave portion 33 protruding inward in the radial direction from the inner hole 34 formed by the tip surface 23 of the magnetic pole piece 18 is, for example, the radial direction of the connecting member 19. It is about 10 to 50% of the width.
As described above, the annular yoke piece connecting each magnetic pole piece 18 with the base located radially outward is cut and separated at the position of each slot 32 in the previous step of the slot removing process. The tips of the pieces 18 are connected by a connecting member 19.
Here, the slot extraction process may be performed as a pre-process of the yoke cutting process, and in that case, since the slot is formed first, the load applied to the punch during the cutting process can be reduced, As a result, the tool life can be extended.

そして、上記したスロット抜き工程が終了した薄板材料28を、磁極片部18の切り曲げ工程へ搬送する。
ここでは、図4、図5(A)、(B)に示すように、パンチ35とダイ36によって、各磁極片部18の先側を連結するリング状の連結部材19を、各磁極片部18の先端部37から、磁極片部18の内孔34に沿って部分的に剪断分離すると共に、パンチ35の下降により、磁極片部18をその半径方向中央部(半径方向特定箇所)で折り曲げ、磁極片部18の先端部37を下方に向ける。
なお、ダイ36には、磁極片部18の先端部37の曲げ成形をサポートするため、バネ38によって上方へ付勢されるプッシュバックスライダ39が設けられている。また、番号40は、薄板材料28を上方から押さえるストリッパプレートである。
Then, the thin plate material 28 that has been subjected to the above-described slot removing process is conveyed to the cutting and bending process of the magnetic pole piece 18.
Here, as shown in FIGS. 4, 5 </ b> A, and 5 </ b> B, the ring-shaped connecting member 19 that connects the front side of each magnetic pole piece portion 18 by the punch 35 and the die 36 is connected to each magnetic pole piece portion. 18 is partially sheared and separated from the tip 37 of the magnetic pole piece 18 along the inner hole 34 of the magnetic pole piece 18, and the magnetic pole piece 18 is bent at the center in the radial direction (specific location in the radial direction) by the lowering of the punch 35. The tip 37 of the magnetic pole piece 18 is directed downward.
The die 36 is provided with a pushback slider 39 that is urged upward by a spring 38 to support bending of the tip 37 of the magnetic pole piece 18. Reference numeral 40 denotes a stripper plate for pressing the thin plate material 28 from above.

ここで、部分的に剪断分離とは、連結部材19を磁極片部18の先端部37から半抜きしているか、もしくは完全に切り離すと共に、磁極片部18の先端部37から連結部材19が落下しないように、磁極片部18の先端面23と、連結部材19の外周縁22とを、薄板材料28の厚み方向で重複させることを意味する。具体的には、図5(B)に示すように、磁極片部18の先端面23と、連結部材19の外周縁22との厚み方向の重複代Xが、薄板材料28の厚みTの30〜80%程度となるように行う。この重複代が80%を超える場合、パンチの下降距離が短くなり、連結部材を磁極片部から完全に切り離せなくなる。一方、重複代が30%未満の場合、重複代が少な過ぎて、各磁極片部が連結部材を支持する力が弱くなり、連結部材が落下する恐れがある。従って、下限を40%、上限を60%とすることが好ましい。 Here, the partial shear separation means that the connecting member 19 is half-extracted from the tip end portion 37 of the magnetic pole piece portion 18 or completely separated, and the connecting member 19 falls from the tip end portion 37 of the magnetic pole piece portion 18. This means that the front end surface 23 of the magnetic pole piece 18 and the outer peripheral edge 22 of the connecting member 19 are overlapped in the thickness direction of the thin plate material 28 so as not to occur. Specifically, as shown in FIG. 5B, the overlap X in the thickness direction between the tip surface 23 of the magnetic pole piece 18 and the outer peripheral edge 22 of the connecting member 19 is 30 which is the thickness T of the thin plate material 28. It is performed so as to be about 80%. When this overlap margin exceeds 80%, the lowering distance of the punch is shortened, and the connecting member cannot be completely separated from the magnetic pole piece. On the other hand, if the overlap allowance is less than 30%, the overlap allowance is too small, and the force with which each magnetic pole piece supports the connecting member becomes weak, and the connecting member may fall. Therefore, it is preferable to set the lower limit to 40% and the upper limit to 60%.

なお、重複代Xの調整は、連結部材19を磁極片部18の先端部37の下方まで打ち抜くことなく実施できるが、連結部材19を磁極片部18の先端部37の下方まで打ち抜いた後、磁極片部18の弾性力とプッシュバックスライダ39により実施することもできる。
また、連結部材19の半径方向の幅は、前記したように、例えば、0.5〜10mm程度とする。この半径方向の幅が0.5mm未満の場合、連結部材の幅が狭過ぎて、例えば、スロット形成の際に連結部材が切断される恐れがある。一方、半径方向の幅が10mmを超える場合、例えば、中央部の打ち抜き片をロータ製造に使用する際に、材料を十分に確保できなくなる。従って、下限を0.5mm、上限を7mmとすることが好ましい。
The overlap margin X can be adjusted without punching the connecting member 19 below the tip 37 of the magnetic pole piece 18, but after punching the connecting member 19 below the tip 37 of the magnetic pole piece 18, It can also be implemented by the elastic force of the magnetic pole piece 18 and the pushback slider 39.
Further, as described above, the radial width of the connecting member 19 is, for example, about 0.5 to 10 mm. When the width in the radial direction is less than 0.5 mm, the width of the connecting member is too narrow, and for example, the connecting member may be cut during slot formation. On the other hand, when the width in the radial direction exceeds 10 mm, for example, when the punched piece at the center is used for manufacturing the rotor, the material cannot be sufficiently secured. Therefore, it is preferable that the lower limit is 0.5 mm and the upper limit is 7 mm.

なお、上記した磁極片部18の切り曲げ工程は、各磁極片部18と連結部材19とを剪断分離し、かつ曲げ加工可能な装置構成であれば、上記した実施の形態の構成に限定されるものではない。
また、磁極片部の折り曲げ位置は、磁極片部の半径方向中央部に限定されるものではなく、磁極片部の先端部を下方に向けることができる特定箇所であれば、磁極片部の先側又は基側(基部)でもよい。
そして、上記した切り曲げ工程の代わりに、リング状の連結部材を各磁極片部から部分的に剪断分離する分離工程を行ってもよい。この場合、ダイとストリッパプレートで磁極片部を挟み付けると共に、ダイとパンチで連結部材を打ち抜く。
Note that the above-described cutting and bending process of the magnetic pole piece 18 is limited to the configuration of the above-described embodiment as long as each magnetic pole piece 18 and the connecting member 19 are sheared and can be bent. It is not something.
In addition, the bending position of the magnetic pole piece is not limited to the central portion in the radial direction of the magnetic pole piece, and the tip of the magnetic pole piece is limited to a specific location where the tip of the magnetic pole piece can be directed downward. It may be the side or the base (base).
Then, instead of the above-described cutting and bending step, a separation step of partially shearing the ring-shaped connecting member from each magnetic pole piece portion may be performed. In this case, the magnetic pole piece is sandwiched between the die and the stripper plate, and the connecting member is punched out with the die and the punch.

このように、切り曲げ工程が終了した薄板材料28を、磁極片部18のプッシュバック工程へ搬送する。
ここでは、図4、図5(C)〜(E)に示すように、薄板材料28をダイ41とストリッパプレート42とで挟み付け、磁極片部18の折り曲げた部位、即ち半径方向中央部を、ストリッパプレート42の下面で面打ちして押し戻すことにより、磁極片部18を薄板材料28と面一に成形する。なお、面一とは、切り曲げた磁極片部18の表裏を、薄板材料28の表裏面に一致させることを意味する。
これにより、各磁極片部18の先端部37の先端面23全体を、分離した連結部材19の外周縁22に当接させることができる。
In this way, the thin plate material 28 that has been subjected to the cutting and bending process is conveyed to the pushback process of the magnetic pole piece 18.
Here, as shown in FIGS. 4 and 5C to 5E, the thin plate material 28 is sandwiched between the die 41 and the stripper plate 42, and the bent portion of the magnetic pole piece portion 18, that is, the central portion in the radial direction is formed. Then, the magnetic pole piece 18 is formed flush with the thin plate material 28 by hitting and pushing back on the lower surface of the stripper plate 42. Here, the term “equal” means that the front and back surfaces of the cut and bent magnetic pole piece portions 18 are matched with the front and back surfaces of the thin plate material 28.
Thereby, the entire distal end surface 23 of the distal end portion 37 of each magnetic pole piece portion 18 can be brought into contact with the outer peripheral edge 22 of the separated connecting member 19.

上記したプッシュバック工程が終了した薄板材料28を、かしめ部形成工程へ搬送する。
ここでは、図6に示すように、各分割鉄心片12に、複数のかしめ部43を形成する。このかしめ部43は、半抜きかしめ、V字かしめ等、周知のかしめ構造を適用できる。なお、最下部の分割鉄心片のかしめ部は、周知の通り、かしめ貫通孔としておく(図2参照)。
このかしめ部形成工程は、その次に行う外形抜き積層工程の上流側であれば、設置位置は任意であるが、例えば、分割鉄心片をかしめ以外の手段で連結する場合(例えば、溶接、ピン)には、かしめ部形成工程を省略することもできる。
The thin plate material 28 that has been subjected to the push-back process is conveyed to the caulking part forming process.
Here, as shown in FIG. 6, a plurality of caulking portions 43 are formed in each divided core piece 12. For this caulking portion 43, a well-known caulking structure such as half-cut caulking or V-shaped caulking can be applied. As is well known, the caulking portion of the lowermost divided core piece is a caulking through hole (see FIG. 2).
The caulking portion forming step is optional in the upstream side of the subsequent outline punching and laminating step. For example, when the divided core pieces are connected by means other than caulking (for example, welding, pin ), The caulking portion forming step can be omitted.

そして、上記したかしめ部形成工程が終了した薄板材料28を、外形抜き積層工程へ搬送する。
ここでは、図6に示すように、鉄心片31の外形を打ち抜いて、この鉄心片31を連結部材19と共に分離成形し、先に打ち抜き形成された下層の鉄心片31及び連結部材19に積層して、積層方向に隣り合う鉄心片31同士を結合する。
なお、積層するに際しては、各鉄心片の転積やスキューを行うこともできる。なお、転積やスキューについては周知であるので、説明を省略する。
Then, the thin plate material 28 that has been subjected to the above-described caulking portion forming step is conveyed to the outer shape stacking step.
Here, as shown in FIG. 6, the outer shape of the iron core piece 31 is punched out, and the iron core piece 31 is separated and formed together with the connecting member 19, and is laminated on the lower iron core piece 31 and the connecting member 19 that are previously punched and formed. Then, the core pieces 31 adjacent to each other in the stacking direction are joined together.
In addition, when laminating, each core piece can be transposed and skewed. In addition, since transposition and skew are well known, description is abbreviate | omitted.

以上の方法によって製造された図1、図2に示す固定子鉄心10を、金型装置(図示しない)から排出して、最終工程へ搬送する。
金型装置から排出された固定子鉄心10の各分割積層鉄心11は、積層連結部材20により一体に形成されるので、金型装置からの排出が極めてスムーズとなる。
そして、隣り合う分割積層鉄心11を連結するため、固定子鉄心10に溶接やモールド等を行った後、固定子鉄心10から積層連結部材20を除去する。また、組立てにあっては、各分割積層鉄心11の積層連結部24、25の凸部及び凹部を結合させることによって、容易に環状に形成できる。その後、この固定子鉄心10を製品として出荷する。
The stator core 10 shown in FIGS. 1 and 2 manufactured by the above method is discharged from a mold apparatus (not shown) and conveyed to the final process.
Since each of the laminated laminated cores 11 of the stator core 10 discharged from the mold apparatus is integrally formed by the laminated connecting member 20, the discharge from the mold apparatus becomes extremely smooth.
And in order to connect the adjacent division | segmentation laminated | stacked iron core 11, after performing welding, a mold, etc. to the stator core 10, the lamination | stacking connection member 20 is removed from the stator core 10. FIG. Moreover, in the assembly, it can be easily formed into an annular shape by connecting the convex portions and the concave portions of the laminated connecting portions 24 and 25 of each divided laminated iron core 11. Thereafter, the stator core 10 is shipped as a product.

次に、本発明の第2の実施の形態に係る積層鉄心の製造方法について説明するが、この方法を用いて製造する固定子用の積層鉄心(以下、単に固定子鉄心ともいう)は、前記した固定子鉄心10とは、使用する鉄心片の形状が異なるのみであるため、同一部材には同一番号を付し、詳しい説明を省略する。
図7、図8に示すように、固定子鉄心を構成する鉄心片50は、周方向に複数に分割されていない環状一体形のものである。このため、図7に示すように、幅方向両側に予め設定した間隔でパイロット孔26が形成され、中央部が打ち抜かれた板厚0.15〜0.5mm程度の薄板材料51(薄板材料28と同一構成)を、直接、スロット抜き工程に搬送する。なお、スロット抜き工程では、前記実施の形態と同様の方法で、スロット32を形成する。
Next, a method for manufacturing a laminated core according to the second embodiment of the present invention will be described. A laminated core for a stator manufactured using this method (hereinafter also simply referred to as a stator core) The stator core 10 is different from the stator core 10 only in the shape of the core piece to be used.
As shown in FIGS. 7 and 8, the iron core piece 50 constituting the stator iron core is an annular integrated piece that is not divided into a plurality of pieces in the circumferential direction. For this reason, as shown in FIG. 7, pilot holes 26 are formed at predetermined intervals on both sides in the width direction, and a thin plate material 51 (thin plate material 28) having a thickness of about 0.15 to 0.5 mm punched at the center. Are transported directly to the slot extraction step. In the slot removing step, the slot 32 is formed by the same method as in the above embodiment.

そして、スロット抜き工程が終了した薄板材料51を、図7に示す切り曲げ工程とプッシュバック工程、及び図8に示すかしめ部形成工程と外形抜き積層工程へと順次搬送し、前記実施の形態と同様の方法で、連結部材19及びかしめ部43の形成と外形抜きを行うことにより、固定子鉄心が製造される(図1に示す固定子鉄心10を構成する隣り合う分割積層鉄心11の積層連結部24、25が無い固定子鉄心)。
上記した方法で製造した固定子鉄心から、積層された連結部材19で構成された積層連結部材を取り外して、製品として出荷する。
Then, the thin plate material 51 that has been subjected to the slot removing process is sequentially conveyed to the cutting and bending process and the pushback process shown in FIG. In the same manner, the stator core is manufactured by forming the connecting member 19 and the caulking portion 43 and removing the outer shape (stacked connection of adjacent divided laminated cores 11 constituting the stator core 10 shown in FIG. 1). Stator core without parts 24, 25).
The laminated connecting member composed of the laminated connecting members 19 is removed from the stator core manufactured by the method described above and shipped as a product.

続いて、本発明の第3の実施の形態に係る積層鉄心の製造方法について説明するが、この製造方法は、前記した第1の実施の形態に係る積層鉄心の製造方法とは、製造する鉄心片を構成する分割鉄心片の形状(特に、磁極片部の形状)のみが異なるため、この異なる部分の製造方法についてのみ説明する。
図9に示すように、固定子鉄心を構成する鉄心片60は、この鉄心片60を周方向に複数(18個)分割した分割鉄心片61で構成されるものである。なお、各分割鉄心片61は、両側に連結部(図示しない)が形成された分割ヨーク片部62と、分割ヨーク片部62の中央内側に一体的に連接する磁極片部63とを有している。ここで、隣り合う磁極片部63の間隔は、大きく開いている。
Subsequently, a manufacturing method of the laminated core according to the third embodiment of the present invention will be described. This manufacturing method is different from the manufacturing method of the laminated core according to the first embodiment described above. Since only the shape of the split core piece constituting the piece (particularly the shape of the magnetic pole piece part) is different, only the manufacturing method of this different part will be described.
As shown in FIG. 9, the core piece 60 which comprises a stator core is comprised by the division | segmentation core piece 61 which divided this core piece 60 into multiple (18 pieces) in the circumferential direction. Each of the divided core pieces 61 includes a divided yoke piece portion 62 having connecting portions (not shown) formed on both sides, and a magnetic pole piece portion 63 integrally connected to the center inner side of the divided yoke piece portion 62. ing. Here, the space | interval of the adjacent magnetic pole piece part 63 is opened large.

磁極片部63は、スロット抜き工程において、スロット64を打ち抜き形成する。このスロット64の打ち抜きは、隣接する磁極片部63の半径方向外側に位置する基端から、半径方向内側に位置する先端部を除く部分までの領域(図9に示す間隔が広い斜線領域)に対して行う。
これにより、磁極片部63の先側を除く輪郭を形成すると共に、鉄心片60の内側にリング状の連結部材65が配置され、この連結部材65が、各磁極片部63の先端及び先端部66の側面を連結する(図9に示す間隔が狭い斜線領域)。なお、連結部材65の内周輪郭67は円形となっている。
ここで、各磁極片部63の先端部66の側面へ突出する連結部材65の周縁部68の突出量(半径方向の突出量)は、例えば、各磁極片部63の先端から、磁極片部63の半径方向の幅の1〜20%程度である。
The magnetic pole piece 63 is formed by punching the slot 64 in the slot punching process. The punching of the slot 64 is performed in a region from the proximal end located on the radially outer side of the adjacent magnetic pole piece 63 to the portion excluding the distal end located on the radially inner side (a hatched region having a wide interval shown in FIG. 9). Against.
As a result, a contour excluding the tip side of the magnetic pole piece portion 63 is formed, and a ring-shaped connecting member 65 is disposed inside the iron core piece 60, and the connecting member 65 serves as a tip and a tip portion of each magnetic pole piece portion 63. The side surfaces of 66 are connected (shaded area with a narrow interval shown in FIG. 9). The inner peripheral contour 67 of the connecting member 65 is circular.
Here, the protrusion amount (the protrusion amount in the radial direction) of the peripheral portion 68 of the connecting member 65 protruding to the side surface of the tip portion 66 of each magnetic pole piece portion 63 is, for example, from the tip of each magnetic pole piece portion 63 to the magnetic pole piece portion. It is about 1 to 20% of the width of 63 in the radial direction.

そして、図10(A)、(B)に示す分離工程において、パンチ69とダイ70により、リング状の連結部材65を、各磁極片部63から部分的に剪断分離する。なお、ダイ70には、連結部材65の落下を防ぐため、バネ71によって上方へ付勢されるプッシュバックスライダ72が設けられており、図11(A)に示すように、各磁極片部63の先端部66の先端面73と、連結部材65の外周縁74との厚み方向の重複代X1を、薄板材料75(薄板材料28と同一構成)の厚みT1の30〜80%程度としている。
また、連結部材65は、各磁極片部63の先端部66の側面まで接続しているため、パンチには、スロット64内まで突出した形状のもの(図9に示す二点鎖線)を使用する。
次に、剪断分離された連結部材65を、図11(A)〜(C)に示すプッシュバック工程において、ダイ76とストリッパプレート77の下面で面打ちして押し戻すことにより、連結部材65の周縁部68を薄板材料75と面一に成形する。
なお、ここでは、連結部材65に対し、分離工程とプッシュバック工程を行ったが、各磁極片部63に対して、前記した切り曲げ工程とプッシュバック工程を行ってもよい。
10A and 10B, the ring-shaped connecting member 65 is partially sheared and separated from each magnetic pole piece 63 by the punch 69 and the die 70. The die 70 is provided with a pushback slider 72 urged upward by a spring 71 in order to prevent the connecting member 65 from falling. As shown in FIG. The overlap margin X1 in the thickness direction between the distal end surface 73 of the distal end portion 66 and the outer peripheral edge 74 of the connecting member 65 is about 30 to 80% of the thickness T1 of the thin plate material 75 (same configuration as the thin plate material 28).
Further, since the connecting member 65 is connected to the side surface of the tip 66 of each magnetic pole piece 63, the punch has a shape protruding into the slot 64 (two-dot chain line shown in FIG. 9). .
Next, in the pushback process shown in FIGS. 11A to 11C, the connection member 65 that has been sheared and separated is pressed back by pressing the lower surface of the die 76 and the stripper plate 77, so that the peripheral edge of the connection member 65 is returned. The part 68 is formed flush with the thin plate material 75.
Here, the separation process and the pushback process are performed on the connecting member 65, but the above-described cutting and bending process and pushback process may be performed on each magnetic pole piece 63.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の積層鉄心の製造方法を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態においては、連結部材の内周輪郭が円形の場合について説明したが、これに限定されるものではなく、例えば、楕円形や多角形等でもよい。
また、前記実施の形態においては、固定子鉄心がインナーロータ型に使用するステータである場合について説明したが、回転子鉄心の内側に隙間を有して配置された固定子鉄心、いわゆるアウターロータ型に使用するステータでもよい。この場合、固定子鉄心の半径方向外側に、複数の磁極部が突出するが、この磁極部を構成する磁極片部から分離した連結部材は、その内周縁が磁極片部の半径方向外側(先側)に当接するように、磁極片部の先端部を外側から取り囲むように配置される。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the manufacturing method of the laminated core of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In the said embodiment, although the case where the inner peripheral outline of a connection member was circular was demonstrated, it is not limited to this, For example, an ellipse, a polygon, etc. may be sufficient.
In the above-described embodiment, the case where the stator core is a stator used for the inner rotor type has been described. However, the stator core disposed with a gap inside the rotor core, so-called outer rotor type It may be a stator used for the above. In this case, a plurality of magnetic pole portions protrude outward in the radial direction of the stator core, but the connecting member separated from the magnetic pole piece portion constituting the magnetic pole portion has an inner peripheral edge radially outward of the magnetic pole piece portion. The tip of the magnetic pole piece is disposed so as to surround from the outside so as to abut on the side.

10:積層鉄心、11:分割積層鉄心、12:分割鉄心片、13:分割ヨーク部、14:磁極部、15、16:連結部、17:分割ヨーク片部、18:磁極片部、19:連結部材、20:積層連結部材、21:内周輪郭、22:外周縁、23:先端面、24、25:積層連結部、26:パイロット孔、27:ロータ、28:薄板材料、29:切り曲げ線、30:部位、31:鉄心片、32:スロット、33:凹部、34:内孔、35:パンチ、36:ダイ、37:先端部、38:バネ、39:プッシュバックスライダ、40:ストリッパプレート、41:ダイ、42:ストリッパプレート、43:かしめ部、50:鉄心片、51:薄板材料、60:鉄心片、61:分割鉄心片、62:分割ヨーク片部、63:磁極片部、64:スロット、65:連結部材、66:先端部、67:内周輪郭、68:周縁部、69:パンチ、70:ダイ、71:バネ、72:プッシュバックスライダ、73:先端面、74:外周縁、75:薄板材料、76:ダイ、77:ストリッパプレート 10: laminated iron core, 11: divided laminated iron core, 12: divided iron core piece, 13: divided yoke part, 14: magnetic pole part, 15, 16: connecting part, 17: divided yoke piece part, 18: magnetic pole piece part, 19: Connecting member, 20: Laminated connecting member, 21: Inner peripheral contour, 22: Outer peripheral edge, 23: Tip surface, 24, 25: Laminated connecting portion, 26: Pilot hole, 27: Rotor, 28: Thin plate material, 29: Cutting Bending line, 30: part, 31: iron core piece, 32: slot, 33: recess, 34: inner hole, 35: punch, 36: die, 37: tip, 38: spring, 39: pushback slider, 40: Stripper plate, 41: Die, 42: Stripper plate, 43: Caulking section, 50: Iron core piece, 51: Thin plate material, 60: Iron core piece, 61: Divided iron core piece, 62: Divided yoke piece, 63: Magnetic pole piece 64: Slot, 65 Connecting member, 66: tip portion, 67: inner peripheral contour, 68: peripheral portion, 69: punch, 70: die, 71: spring, 72: pushback slider, 73: tip surface, 74: outer peripheral edge, 75: thin plate Material, 76: Die, 77: Stripper plate

Claims (4)

薄板材料から打ち抜いた環状の鉄心片を積層して形成する固定子用の積層鉄心の製造方法において、
前記薄板材料に予め設定した数のスロットを打ち抜いて各磁極片部の先側を除く輪郭を形成するスロット抜き工程と、
前記各磁極片部を半径方向特定箇所で折り曲げると共に、該各磁極片部の先側を連結するリング状の連結部材を、前記各磁極片部から部分的に剪断分離する切り曲げ工程と、
前記薄板材料において折り曲げた部位を押し戻すことにより、前記薄板材料と面一に成形して、前記各磁極片部の先側を、分離した前記連結部材の周縁に当接させるプッシュバック工程と、
前記鉄心片の外形を前記連結部材と共に打ち抜いて、前記磁極片部の先側が前記リング状の連結部材に当接した前記鉄心片を、先に打ち抜き形成された下層の鉄心片及び連結部材に積層する外形抜き積層工程とを有することを特徴とする積層鉄心の製造方法。
In the method of manufacturing a laminated core for a stator that is formed by laminating annular core pieces punched from a thin plate material,
Slotting step of punching a preset number of slots in the thin plate material to form a contour excluding the front side of each magnetic pole piece part;
A bending process in which each of the magnetic pole piece portions is bent at a specific location in the radial direction, and a ring-shaped connecting member for connecting the tip side of each of the magnetic pole piece portions is partially sheared and separated from each of the magnetic pole piece portions;
A pushback step in which the bent portion of the thin plate material is pushed back to form the same surface as the thin plate material, and the front side of each of the magnetic pole piece portions is brought into contact with the peripheral edge of the separated connection member;
The outer shape of the iron core piece is punched together with the connecting member, and the iron core piece whose tip side of the magnetic pole piece abuts on the ring-shaped connecting member is stacked on the lower core piece and the connecting member formed by punching first. A laminated iron core manufacturing method comprising:
薄板材料から打ち抜いた環状の鉄心片を積層して形成する固定子用の積層鉄心の製造方法において、
前記薄板材料に予め設定した数のスロットを打ち抜いて各磁極片部の先側を除く輪郭を形成するスロット抜き工程と、
前記各磁極片部の先側を連結するリング状の連結部材を、前記各磁極片部から部分的に剪断分離する分離工程と、
前記連結部材を押し戻すことにより、前記薄板材料と面一に成形して、前記各磁極片部の先側を、分離した前記連結部材の周縁に当接させるプッシュバック工程と、
前記鉄心片の外形を前記連結部材と共に打ち抜いて、前記磁極片部の先側が前記リング状の連結部材に当接した前記鉄心片を、先に打ち抜き形成された下層の鉄心片及び連結部材に積層する外形抜き積層工程とを有することを特徴とする積層鉄心の製造方法。
In the method of manufacturing a laminated core for a stator that is formed by laminating annular core pieces punched from a thin plate material,
Slotting step of punching a preset number of slots in the thin plate material to form a contour excluding the front side of each magnetic pole piece part;
A separation step of partially shearing and separating the ring-shaped connecting member for connecting the front side of each magnetic pole piece part from each magnetic pole piece part;
A pushback step in which the connecting member is pushed back to form the same material as the thin plate material, and the front side of each magnetic pole piece is brought into contact with the peripheral edge of the separated connecting member;
The outer shape of the iron core piece is punched together with the connecting member, and the iron core piece whose tip side of the magnetic pole piece abuts on the ring-shaped connecting member is stacked on the lower core piece and the connecting member formed by punching first. A laminated iron core manufacturing method comprising:
請求項1又は2記載の積層鉄心の製造方法において、前記薄板材料は、予めロータが打ち抜き除去されていることを特徴とする積層鉄心の製造方法。 3. The method for manufacturing a laminated core according to claim 1, wherein a rotor is punched and removed from the thin plate material in advance. 請求項1〜のいずれか1項に記載の積層鉄心の製造方法において、前記スロット抜き工程の前工程で、前記各磁極片部を基部で連結する環状ヨーク片部は、前記各スロットの位置で切り曲げ分離されていることを特徴とする積層鉄心の製造方法。 The method of manufacturing a laminated core according to any one of claims 1 to 3 in the previous step of the slot punching step, annular yoke piece for connecting the respective pole piece at the base, the position of each slot A method of manufacturing a laminated iron core, characterized by being cut and bent by
JP2015012262A 2015-01-26 2015-01-26 Manufacturing method of laminated iron core Active JP5860555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015012262A JP5860555B2 (en) 2015-01-26 2015-01-26 Manufacturing method of laminated iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015012262A JP5860555B2 (en) 2015-01-26 2015-01-26 Manufacturing method of laminated iron core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010109497A Division JP5688919B2 (en) 2010-05-11 2010-05-11 Manufacturing method of laminated iron core

Publications (3)

Publication Number Publication Date
JP2015080412A JP2015080412A (en) 2015-04-23
JP2015080412A5 true JP2015080412A5 (en) 2015-06-11
JP5860555B2 JP5860555B2 (en) 2016-02-16

Family

ID=53011360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015012262A Active JP5860555B2 (en) 2015-01-26 2015-01-26 Manufacturing method of laminated iron core

Country Status (1)

Country Link
JP (1) JP5860555B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578614B (en) * 2014-12-30 2017-02-22 河南宝天机电科技有限公司 Manufacturing method for stator and rotor punching sheets of large-sized and medium-sized high-voltage motor
JP6761319B2 (en) * 2016-10-05 2020-09-23 株式会社三井ハイテック How to manufacture iron core pieces
JP6797039B2 (en) 2017-01-25 2020-12-09 株式会社三井ハイテック Laminated iron core manufacturing method and laminated iron core manufacturing equipment
WO2023182257A1 (en) * 2022-03-24 2023-09-28 ニデック株式会社 Stator core manufacturing method, stator core, and motor
WO2023182256A1 (en) * 2022-03-24 2023-09-28 ニデック株式会社 Stator core manufacturing method, stator core, and motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138953A (en) * 1987-11-26 1989-05-31 Toshiba Corp Manufacture of stator for rotary electric machine
JPH0650939B2 (en) * 1988-06-27 1994-06-29 三菱電機株式会社 Electric motor stator manufacturing method
DE3929331C1 (en) * 1989-09-04 1990-12-13 Buehler Gmbh Nachf Geb Process for producing and winding stator laminations intended for electric motors with internal rotors
JP4472417B2 (en) * 2004-04-30 2010-06-02 株式会社三井ハイテック Method for manufacturing laminated iron core and mold apparatus

Similar Documents

Publication Publication Date Title
JP5860555B2 (en) Manufacturing method of laminated iron core
JP5688919B2 (en) Manufacturing method of laminated iron core
JP5379522B2 (en) Manufacturing method of split core pieces
US8286331B2 (en) Method for manufacturing laminated core
JP2015080412A5 (en)
JP4886375B2 (en) Laminated core manufacturing method
JP6683428B2 (en) Method for manufacturing laminated core processed body and method for manufacturing laminated core
JP5719979B1 (en) Laminated iron core manufacturing apparatus and laminated iron core manufacturing method
US10587172B2 (en) Manufacturing method for laminated iron core and manufacturing device for laminated iron core
JP6934714B2 (en) Manufacturing method of laminated iron core and laminated iron core
WO2012114577A1 (en) Method of manufacturing stator core, and stator core
US9647518B2 (en) Method for manufacturing laminated iron core
JP2005318763A (en) Method of manufacturing laminated core and mold apparatus
JP6320857B2 (en) Manufacturing method of laminated iron core
WO2019066036A1 (en) Production method for core for rotary electric machine
JP2010178487A (en) Manufacturing method for laminated core and forward metal mold device
JP5248972B2 (en) Method for manufacturing laminated iron core and mold apparatus
JP2014176127A (en) Laminated core and manufacturing method thereof
JP5697640B2 (en) Laminated core manufacturing method and laminated core manufacturing apparatus
JP2014104503A (en) Shaving method of punching product, manufacturing method and manufacturing device
JP2015220935A (en) Manufacturing method for rotor core and manufacturing apparatus
JP2008278753A (en) Method of manufacturing laminated core and metal mold device
WO2023182257A1 (en) Stator core manufacturing method, stator core, and motor
JP7357811B2 (en) Split core, rotating electrical machine, split core manufacturing method, and rotating electrical machine manufacturing method
JP6586286B2 (en) Manufacturing method of laminated iron core