WO2023182256A1 - Stator core manufacturing method, stator core, and motor - Google Patents

Stator core manufacturing method, stator core, and motor Download PDF

Info

Publication number
WO2023182256A1
WO2023182256A1 PCT/JP2023/010828 JP2023010828W WO2023182256A1 WO 2023182256 A1 WO2023182256 A1 WO 2023182256A1 JP 2023010828 W JP2023010828 W JP 2023010828W WO 2023182256 A1 WO2023182256 A1 WO 2023182256A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
forming
steel plate
plate
split
Prior art date
Application number
PCT/JP2023/010828
Other languages
French (fr)
Japanese (ja)
Inventor
信之 北
高史 米山
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Priority to CN202380014831.1A priority Critical patent/CN118339749A/en
Publication of WO2023182256A1 publication Critical patent/WO2023182256A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a method for manufacturing a stator core, a stator core, and a motor.
  • Patent Document 1 discloses a method for manufacturing a split laminated core in which processed bodies made up of a plurality of parts lined up in the circumferential direction are stacked.
  • a cutting process is performed to form a slit line and a bending line that cross a region of the workpiece that will become the annular portion.
  • a caulking is formed in the bending portion, which is the portion from the slit line to the bending line.
  • a stator core is manufactured by laminating stator core plates cut out from steel plates.
  • various processes are performed on the steel plate. For example, after a part of the steel plate is pushed out in the thickness direction to form a cut line, pushback processing may be performed to return the part of the steel plate to its original position.
  • the steel plate may be distorted due to stress during processing.
  • the shape of the steel plate may be distorted due to release of residual stress at the cut line portion.
  • the dimensional accuracy of the stator core plate cut out from the steel plate may decrease.
  • the dimensional accuracy of the stator core plate decreases in this way, the dimensional accuracy of the stator core manufactured using the stator core plate also decreases.
  • An object of the present invention is to cut out a stator core plate with high dimensional accuracy by suppressing distortion of the steel plate caused by the cutting line, and to manufacture a stator core with high dimensional accuracy.
  • the goal is to realize the following.
  • a method for manufacturing a stator core according to an exemplary embodiment of the present invention includes dividing a laminate in which a plurality of annular stator core plates punched from a steel plate are laminated in the thickness direction into a plurality of pieces in the circumferential direction.
  • This is a stator core manufacturing method in which a split core is formed by stacking a plurality of plate-shaped split core pieces in the thickness direction.
  • the stator core manufacturing method includes forming the split core pieces in a stator core plate forming region of the steel plate where the stator core plate is formed, and forming a plurality of split core pieces arranged in a circumferential direction.
  • a cut line is formed in the stator core plate forming region only at a circumferential boundary portion of the plurality of divided core piece forming regions by pushing out a circumferential end of the forming region in the thickness direction of the steel plate. and a push-back step of returning a portion of the split core piece forming region that was pushed out in the thickness direction in the cut line forming step to its original position on the steel plate.
  • a stator core is a stator in which a plurality of split cores each having a plurality of plate-shaped split core pieces laminated in the thickness direction are arranged circumferentially around a central axis. It is the core.
  • end surfaces of the divided core pieces adjacent to the divided core pieces of other divided cores in the circumferential direction are constituted by sheared surfaces and fractured surfaces that are aligned in the thickness direction.
  • the split core piece has an end face that forms a part of the outer periphery of the stator core and is formed by a sheared surface.
  • the stator core plate can be cut out with high dimensional accuracy by suppressing the distortion of the steel plate caused by the cutting line, and the stator core plate can be cut out with high dimensional accuracy. It is possible to manufacture a stator core having:
  • FIG. 1 is a diagram showing an example of a motor.
  • FIG. 2 is a perspective view showing an example of a stator core.
  • FIG. 3 is a diagram showing an example of a stator core plate.
  • FIG. 4 is a diagram showing an example of an end surface of one circumferential end of a split core piece.
  • FIG. 5 is a diagram showing an example of the end surface of the other circumferential end of the split core piece.
  • FIG. 6 is a diagram illustrating an example of an end surface of a divided core piece that constitutes a part of the outer periphery of the stator core.
  • FIG. 7 is a diagram illustrating an example of a method for manufacturing the stator core according to the first embodiment.
  • FIG. 8 is a diagram showing an example of a steel plate before processing.
  • FIG. 8 is a diagram showing an example of a steel plate before processing.
  • FIG. 9 is a diagram showing an example of a steel plate in which a central hole is formed.
  • FIG. 10 is a diagram showing an example of a steel plate on which cut lines are formed.
  • FIG. 11 is an explanatory diagram of the incision line forming process.
  • FIG. 12 is an explanatory diagram of the pushback process.
  • FIG. 13 is an explanatory diagram of the stator core plate outer shape forming process.
  • FIG. 14 is a diagram illustrating an example of a method for manufacturing a stator core according to the second embodiment.
  • FIG. 15 is a diagram showing an example of a steel plate in which a first strain prevention hole and a second strain prevention hole are formed.
  • FIG. 16 is a diagram showing an example of a steel plate on which cut lines are formed.
  • FIG. 15 is a diagram showing an example of a steel plate in which a first strain prevention hole and a second strain prevention hole are formed.
  • FIG. 16 is a diagram showing an example of a steel plate on which cut lines are
  • FIG. 17 is a diagram showing an example of forming a convex cut line.
  • FIG. 18 is a diagram showing an example of forming a concave cut line.
  • FIG. 19 is an explanatory diagram of the stator core plate outer shape forming process.
  • FIG. 20 is a perspective view showing an example of the stator core after cutting.
  • the direction parallel to the central axis P of the stator 3 will be referred to as the "axial direction”
  • the direction orthogonal to the central axis P will be referred to as the "radial direction”
  • the direction along the arc centered on the central axis P will be referred to as the “axial direction.”
  • circumferential direction when the component is viewed from a predetermined direction, the counterclockwise direction is referred to as “one circumferential direction” and the clockwise direction is referred to as “the other circumferential direction.”
  • this definition of direction is not intended to limit the direction in which the motor 1 according to the present invention is used.
  • the "radial direction” and “circumferential direction” of the electromagnetic steel sheet mean the radial direction and circumferential direction centered on the center point of the central hole 5a punched in the electromagnetic steel sheet.
  • an electromagnetic steel plate is only called the steel plate 5.
  • fixation includes direct and indirect fixation of members.
  • FIG. 1 is a diagram showing an example of a motor 1 according to the first embodiment.
  • the motor 1 includes a housing 1a, a rotor 2, and a stator 3.
  • the rotor 2 rotates about a central axis P with respect to the stator 3.
  • the motor 1 is a so-called inner rotor type motor 1 in which a rotor 2 is rotatably disposed within a cylindrical stator 3 about a central axis P.
  • the rotor 2 includes a shaft 20, a rotor core 21, and a magnet 22.
  • the rotor 2 is located radially inward of the stator 3 and is rotatable with respect to the stator 3.
  • the rotor core 21 has a cylindrical shape and extends along the central axis P.
  • the rotor core 21 is constructed by laminating a plurality of steel plates 5 formed in a predetermined shape in the thickness direction.
  • the shaft 20 extending along the central axis P is fixed to the rotor core 21 while passing through the rotor core 21 in the axial direction. Thereby, the rotor core 21 rotates together with the shaft 20.
  • a plurality of magnets 22 are positioned at predetermined intervals in the circumferential direction.
  • the magnet 22 may be a ring magnet connected in the circumferential direction.
  • Stator 3 is housed within housing 1a.
  • the stator 3 has a cylindrical shape and is located radially outward of the rotor 2.
  • the stator 3 includes a stator core 31, a stator coil 36, and a bracket 37.
  • Stator core 31 has a cylindrical shape and extends in the axial direction.
  • the stator core 31 is composed of a plurality of stator core plates 4 formed in a predetermined shape and laminated in the thickness direction.
  • stator Core An example of the stator core 31 according to the first embodiment will be explained using FIGS. 2 to 6.
  • FIG. 2 is a perspective view showing an example of the stator core 31.
  • the stator core 31 has a plurality of teeth 31b extending radially inward from a cylindrical yoke 31a.
  • the stator core 31 has a slot hole 31c in which a part of the stator coil 36 is accommodated between adjacent teeth 31b among the plurality of teeth 31b.
  • a bracket 37 is attached to the teeth 31b of the stator core 31.
  • the bracket 37 is made of an insulating material.
  • the bracket 37 is made of, for example, a resin material, but may be made of a material other than the resin material.
  • Stator coil 36 is wound on bracket 37.
  • the stator core 31 has a plurality of split cores 32 arranged annularly around the central axis P.
  • the plurality of split cores 32 are formed by dividing in the circumferential direction a laminate in which annular stator core plates 4 punched from steel plates 5 are stacked in the thickness direction.
  • Each split core 32 has a split yoke portion 32a that constitutes a part of a cylindrical yoke 31a, and one tooth 31b.
  • the divided yoke portions 32 a of the plurality of divided cores 32 constitute an annular yoke 31 a of the stator core 31 .
  • the circumferential end of the split yoke 32a in the split core 32 will be referred to as the circumferential end of the split core 32.
  • the circumferential ends of the split cores 32 and the circumferential ends of the split cores 32 circumferentially adjacent to the split cores 32 are in contact with each other.
  • FIG. 3 is a diagram showing an example of the stator core plate 4.
  • the stator core plate 4 has split core pieces 41 arranged in the circumferential direction.
  • the plurality of split core pieces 41 have the same shape when viewed in the thickness direction.
  • the divided core piece 41 includes a divided yoke piece 41a that constitutes a part of the divided yoke portion 32a, and a tooth piece 41b that constitutes a part of the teeth 31b.
  • the split core 32 is composed of a plurality of plate-shaped split core pieces 41 laminated in the thickness direction.
  • the plurality of split core pieces 41 are stacked in the thickness direction and are connected to each other by caulking portions 33c provided on the split yoke pieces 41a and the teeth pieces 41b, respectively.
  • the circumferential end of the split yoke piece 41a in the split core piece 41 will be referred to as the circumferential end of the split core piece 41.
  • An end of a split core piece 41 constituting the split core 32 is in contact with an end of a split core piece 41 forming the split core 32 adjacent to the split core 32 in the circumferential direction.
  • Each split core piece 41 has a convex portion 43 projecting in the circumferential direction at one end 42 in the circumferential direction.
  • the convex portion 43 is located at the radial center of the split yoke piece 41a.
  • Each split core piece 41 has a recess 45 recessed in one direction in the circumferential direction at the other end 44 in the circumferential direction.
  • the recess 45 is located at the radial center of the split yoke piece 41a.
  • Each split core piece 41 has an end face 46 at one end 42 in the circumferential direction, and an end face 47 at the other end 44 in the circumferential direction.
  • FIG. 4 is a diagram showing an example of an end surface 46 of one end 42 in the circumferential direction of the split core piece 41.
  • FIG. 5 is a diagram showing an example of an end surface 47 of the other end 44 in the circumferential direction of the split core piece 41.
  • the split core pieces 41 have end surfaces 46 and 47 adjacent to the split core pieces 41 of other split cores 32 in the circumferential direction at sheared surfaces Sp aligned in the thickness direction. and a fracture surface Fp.
  • FIG. 6 is a diagram showing an example of an end surface 48 that constitutes a part of the outer periphery of the stator core 31.
  • the end face 48 of the divided core piece 41 which constitutes a part of the outer periphery of the stator core 31, is constituted only by the sheared surface Sp.
  • stator core 31 (Method for Manufacturing Stator Core) Next, a method for manufacturing the stator core 31 according to the first embodiment will be described in detail with reference to FIGS. 7 to 14.
  • steps S1 to S5 are steps for forming the stator core plate 4 from the steel plate 5.
  • a steel plate processing device (not shown) performs punching, cutting line formation, and pushback processing on the steel plate 5 supplied from a steel plate supply device (not shown). As a result, the stator core plate 4 is formed from the steel plate 5.
  • FIG. 8 is a diagram showing an example of the steel plate 5 before processing. As shown in FIG. 8, it is possible to cut out a plurality of stator core plates 4 from a steel plate 5.
  • the steel plate 5 includes a stator core plate forming region 6 where the stator core plate 4 is formed.
  • the stator core plate forming region 6 includes a plurality of divided core piece forming regions 7 arranged in the circumferential direction.
  • the split core piece forming region 7 is an area where the split core pieces 41 are formed.
  • the stator core plate forming area 6 and the split core piece forming area 7 are illustrated by broken lines.
  • the stator core plate 4 is formed by punching the steel plate 5 along the outer periphery of the stator core plate forming region 6.
  • FIG. 9 is a diagram showing an example of a steel plate 5 in which a central hole 5a is formed.
  • the above-mentioned center hole punching process is performed by press working.
  • the center hole punching process is the same as the conventional manufacturing method of the stator core 31, so a detailed explanation will be omitted.
  • a cut line 9 is formed by making a cut in the steel plate 5.
  • the step of forming the cut line 9 on the steel plate 5 in this manner is the cut line forming step of step S2 shown in FIG.
  • the cut line 9 constitutes a part of the outer periphery of the divided core piece forming region 7.
  • the cut line forming step in the stator core plate forming region 6 of the steel plate 5, the circumferential ends of the plurality of split core piece forming regions 7 lined up in the circumferential direction are pushed out in the thickness direction of the steel plate 5, thereby forming the cuts.
  • a line 9 is formed.
  • the cut line 9 is formed only at the circumferential boundary portion 71 of the plurality of divided core piece forming regions 7. Furthermore, in this embodiment, the cut lines 9 are formed in all the boundary portions 71 within the stator core plate forming region 6.
  • the length of the cut line 9 is shorter than when the cut line 9 is formed in parts other than the boundary part. is suppressed. Therefore, the distortion of the steel plate 5 that occurs when forming the cut line 9 and the residual stress that remains in the steel plate 5 are suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator cores 31 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy.
  • FIG. 10 shows an example of a steel plate 5 on which a cut line 9 is formed.
  • a cut line 9 is formed in the stator core plate forming region 6, extending in the radial direction and aligned in the circumferential direction.
  • the plurality of cut lines 9 are formed using a pair of upper and lower tools W that sandwich a part of the steel plate 5 in the thickness direction, and a tool T that pushes a part of the steel plate 5 in the thickness direction.
  • the tool T is movable relative to the tool W in the thickness direction of the steel plate 5.
  • a part of the steel plate 5 in the thickness direction is sheared at the boundary portion 71 .
  • a sheared surface Sp is formed in the sheared portion.
  • a fracture surface Fp is formed when the stack of stator core plates 4 is divided into a plurality of split cores 32 in a dividing step to be described later.
  • the end surfaces 46 and 47 of the circumferential ends of the split core piece 41 have a sheared surface Sp and a fractured surface Fp in the thickness direction.
  • the divided core piece forming area 7 included in the stator core plate forming area 6 includes a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9, and a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9. and a convex shape forming region R1 located on the other side of the direction.
  • the stator core plate forming area 6 there are divided core piece forming areas 7 including a concave forming area R2 and a convex forming area R1, and a concave forming area R2 and a convex forming area R1.
  • the split core piece forming regions 7 not including the split core pieces are alternately located in the circumferential direction.
  • the portion of the split core piece forming region 7 that was pushed out in the thickness direction in the cut line forming step is returned to the original position of the steel plate 5.
  • the process of returning the portion pushed out in the thickness direction of the steel plate 5 to its original position on the steel plate 5 in this way is the pushback process of step S3 shown in FIG.
  • the tool S pushes the portion extruded by the tool T in one direction in the thickness direction in a direction opposite to the extrusion direction. Thereby, as shown in FIG. 12, the portion pushed out in the thickness direction is returned to its original position on the steel plate 5.
  • the plurality of cut lines 9 are formed at the boundary portion 71 of the divided core piece forming region 7 . That is, the stator core plate forming region 6 includes a plurality of cut lines 9 arranged in the circumferential direction. A pushback process is performed for each boundary portion 71. As a result, all the cut lines 9 are formed by the pushback process.
  • a stator core plate forming region 6 in which the stator core plate 4 will be formed is punched out of the steel plate 5.
  • the steel plate 5 is punched to have the outer shape of the stator core 31 when viewed in the axial direction.
  • an annular stator core plate 4 is formed in which the split core pieces 41 that become the split cores 32 are connected in the circumferential direction. It is possible to cut out the stator core plate 4 with less distortion in shape from the steel plate 5 with less distortion.
  • the step of forming the outer shape of the stator core plate 4 in this manner is the stator core plate outer shape forming step of step S5 shown in FIG.
  • a caulked portion 33c shown in FIG. 2 is formed on the stator core plate 4.
  • the caulking portion 33c forms a convex portion in the split core piece forming region 7, which is a portion of the stator core 31 that will become the split core piece 41, protruding in one direction in the thickness direction and having a concave portion on the other side in the thickness direction. It can be obtained by The step of forming the caulked portion 33c in this manner is the caulked portion forming step of step S6 shown in FIG.
  • stator core plates 4 are obtained by laminating a plurality of stator core plates 4 in the thickness direction while caulking the caulked portions 33c of adjacent stator core plates 4 in the lamination direction.
  • the process of stacking the stator core plates 4 in the thickness direction in this manner is the stator core plate stacking process of step S7 shown in FIG.
  • the boundary portion 71 between the adjacent split core pieces 41 is split. That is, the laminate is divided into a plurality of divided cores 32.
  • the step of dividing the laminated body of the stator core plate 4 into a plurality of split cores 32 in this manner is the dividing step of step S8 shown in FIG.
  • the split core 32 is formed by separating the stacked stator core plates 4 at the boundary between adjacent split core pieces 41. Note that, as long as it can be divided into a plurality of split cores 32, the component of the force applied to the stacked body is not limited to the component in the direction perpendicular to the stacking direction.
  • stator core 31 having coils is obtained by rejoining the split cores 32 in the same combination as when they were split.
  • the method for manufacturing the stator core 31 involves dividing a laminate in which a plurality of annular stator core plates 4 punched from a steel plate 5 are laminated in the thickness direction into a plurality of pieces in the circumferential direction.
  • This is a method of manufacturing a stator core 31 in which a split core 32 is formed by stacking a plurality of plate-shaped split core pieces 41 in the thickness direction.
  • the method for manufacturing the stator core 31 is such that split core pieces 41 are formed in a stator core plate forming region 6 in which the stator core plate 4 of the steel plate 5 is formed, and a plurality of split core pieces are arranged in the circumferential direction.
  • the method includes a cut line forming step S2 to form a cut line, and a push back step S3 to return the portion of the split core piece forming region 7 that was pushed out in the thickness direction in the cut line forming step S2 to its original position on the steel plate 5.
  • the portion of the stator core plate forming region 6 where the cut line 9 is formed is limited to only the boundary portion 71 of the split core piece forming region 7.
  • the length of the cut line 9 is suppressed compared to the case where the cut line 9 is also formed in a portion other than the boundary portion. Therefore, the distortion of the steel plate 5 that occurs when forming the cut line 9 and the residual stress that remains in the steel plate 5 are suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator cores 31 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy.
  • stator core plate forming region 6 in which the stator core plate 4 is formed is punched out from the steel plate 5.
  • This further includes a stator core plate outer shape forming step S5 of forming the outer shape of the stator core plate 4.
  • stator core plate 4 With less distortion in shape from the steel plate 5 with less distortion.
  • the stator core 31 is a stator core 31 in which a plurality of split cores 32 each having a plurality of plate-shaped split core pieces 41 laminated in the thickness direction are arranged in a circumferential direction around a central axis. .
  • End surfaces 46 and 47 of the split core piece 41 in the stator core 31 that are circumferentially adjacent to the split core pieces 41 of the other split core 32 are constituted by a sheared surface Sp and a fractured surface Fp that are aligned in the thickness direction.
  • An end surface 48 forming a part of the outer periphery of the stator core 31 is formed by a sheared surface Sp.
  • the stator core 31 having these end faces is formed using the stator core plate 4 in which the distortion and residual stress of the steel plate 5 are suppressed. Therefore, the stator core 31 having the above-described configuration has high dimensional accuracy.
  • the motor 1 includes a stator core 31.
  • the motor 1 can be efficiently manufactured using the stator core 31 having high dimensional accuracy.
  • Embodiment 2 a method for manufacturing the stator core 31 according to Embodiment 2 will be described using FIGS. 14 to 20.
  • the manufacturing method according to the second embodiment differs from the manufacturing method according to the first embodiment in that it includes a distortion prevention hole forming step. Note that in the description of the second embodiment, detailed descriptions of parts common to the manufacturing method according to the first embodiment will be omitted.
  • steps S11, S14, S15, and steps S17 to S19 are the same as steps S1, S3, S4, and steps S6 to S8 in FIG. Therefore, detailed description of steps S11, S14, S15, and steps S17 to S19 will be omitted.
  • the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed in the steel plate 5 between the center hole punching step and the cut line forming step.
  • the step of forming the first strain prevention hole 81 and the second strain prevention hole 82 in the steel plate 5 in this way is the strain prevention hole forming step of step S12 shown in FIG.
  • FIG. 15 is a diagram showing an example of the steel plate 5 in which the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed.
  • the first strain prevention hole 81 is formed in the steel plate 5 at a position radially outward of the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7 and connected to the boundary portion 71. Ru. Further, the second strain prevention hole 82 is formed in the steel plate 5 at a position that is radially inward of the boundary portion 71 and connected to the boundary portion 71 .
  • the second distortion prevention hole 82 is located within the stator core plate forming region 6.
  • the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed, for example, by press working.
  • the stator core plate forming area 6 includes a plurality of split core piece forming areas 7 arranged in the circumferential direction. Therefore, the stator core plate forming region 6 includes a plurality of boundary portions 71 between circumferentially adjacent split core piece forming regions 7. In this embodiment, the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed in all the boundary portions 71.
  • the second distortion prevention hole 82 has a larger opening area than the first distortion prevention hole 81. Therefore, in the radially inner portion of the cut line 9 formed in the boundary portion 71, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be efficiently suppressed.
  • the first distortion prevention hole 81 has an elliptical shape that is elongated in the circumferential direction.
  • the second distortion prevention hole 82 has a circular shape.
  • the first distortion prevention hole 81 may have a shape other than an ellipse, such as a circular shape or a rectangular shape.
  • the second distortion prevention hole 82 may have a shape other than a circular shape, such as a rectangular shape, for example.
  • the cut line 9 constitutes a part of the outer periphery of the divided core piece forming region 7. Moreover, the cut line 9 is formed in the steel plate 5 at a position connecting the first distortion prevention hole 81 and the second distortion prevention hole 82. Specifically, the plurality of cut lines 9 are formed at the boundary portion 71 of the divided core piece forming region 7 .
  • the first strain prevention hole 81 and the second strain prevention hole 82 formed in the steel plate 5 are used to prevent the boundary portion 71 from forming the cut line 9 at the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7. It is possible to suppress distortion from occurring in the vicinity. Furthermore, it is possible to suppress the force applied to the steel plate 5 from remaining in the vicinity of the boundary portion 71. Moreover, since the cut line 9 connecting the two distortion prevention holes 81 and 82 is formed while suppressing the length of the cut line 9, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator core plates 4 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy.
  • the circumferential end portions of the plurality of split core piece forming regions 7 arranged in the circumferential direction are is extruded in the thickness direction.
  • the cut line 9 is formed only in the circumferential boundary portion 71 of the plurality of divided core piece forming regions 7 in the stator core plate forming region 6.
  • the cut lines 9 are formed in all the boundary parts 71 within the stator core plate forming region 6.
  • the cut line 9 is formed using a pair of upper and lower tools W and a tool T that presses a part of the steel plate 5 in the thickness direction.
  • the tool T is movable relative to the tool W in the thickness direction of the steel plate 5.
  • At least a portion of the cut line 9 in the thickness direction is left uncut. That is, the tool T does not completely cut off the boundary portion 71 in the steel plate 5.
  • At least a portion of the cut line 9 is continuous in the circumferential direction. Therefore, when the stator core 31 in which the stator core plates 4 are laminated is divided, the end surfaces 46 and 47 of the boundary portion 71 of the divided core pieces 41 have a shear surface Sp and a fracture surface Fp in the thickness direction. .
  • the divided core piece forming area 7 included in the stator core plate forming area 6 includes a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9, and a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9. and a convex shape forming region R1 located on the other side of the direction.
  • the convex shape forming region R1 and the concave shape forming region R2 are regions pushed out in the thickness direction for forming the cut line 9 in the split core piece forming region 7.
  • FIG. 17 is a diagram showing an example of forming the convex cut line 9a.
  • a tool T (not shown) pushes out the convex shape forming region R1 in the thickness direction of the steel plate 5, thereby forming a convex cut line 9a. It has a protruding part.
  • the moving distance of the tool T in the thickness direction is such a distance that the boundary portion 71 is not completely separated.
  • FIG. 18 is a diagram showing an example of forming the concave cut line 9b.
  • a tool T (not shown) pushes out the concave shape forming region R2 in the thickness direction of the steel plate 5, thereby forming a concave cut line 9b.
  • the concave cut line 9b has a concave portion in one direction in the circumferential direction. Also in the concave shape forming region R2, the moving distance of the tool T in the thickness direction is such a distance that the boundary portion 71 is not completely separated.
  • stator core plate outer shape forming process in step S16 between the first embodiment and the second embodiment which is based on the formation of the distortion prevention holes, will be explained.
  • the stator core plate forming region 6 is punched out from the steel plate 5 at a position overlapping a part of the first distortion prevention hole 81 when looking at the steel plate 5 in the thickness direction.
  • the steel plate 5 is punched to have the outer shape of the stator core 31 when viewed in the axial direction.
  • annular stator core plate 4 in which the split core pieces 41 are connected in the circumferential direction is formed.
  • a punch punches the steel plate 5 into a circular shape, for example.
  • the first distortion prevention holes 81 are adjacent to all the boundary portions 71.
  • the punch punches the steel plate 5 at a position overlapping with a portion of all the first distortion prevention holes 81 adjacent to the stator core plate forming region 6.
  • the manufacturing method of the second embodiment differs from the manufacturing method of the first embodiment.
  • stator core 3 of the second embodiment it is possible to punch out the outer shape of the stator core plate 4 from the steel plate 5 using the first distortion prevention hole 81.
  • a recess 83 that is recessed radially inward is formed on the stator core plate 4 on the radially outer side with respect to the boundary portion 71 between the circumferentially adjacent split core pieces 41. Ru.
  • the stator core 31 has a recess 34 that is recessed radially inward on the outer peripheral side of the stator core 31 and at a boundary 71 between circumferentially adjacent split cores 32.
  • a first strain prevention material is provided on the steel plate 5 at a position radially outward of and connected to the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7.
  • the method further includes a distortion prevention hole forming step S12 in which the hole 81 is formed and a second distortion prevention hole 82 is formed at a position radially inward of the boundary portion 71 and connected to the boundary portion 71.
  • a cut line 9 connecting the first distortion prevention hole 81 and the second distortion prevention hole 82 is formed in the boundary portion 71.
  • the first strain prevention hole 81 and the second strain prevention hole 82 formed in the steel plate 5 are used to prevent the boundary portion 71 from forming the cut line 9 at the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7. It is possible to suppress distortion from occurring in the vicinity. Furthermore, it is possible to suppress the force applied to the steel plate 5 from remaining in the vicinity of the boundary portion 71. Moreover, since the cut line 9 connecting the two distortion prevention holes 81 and 82 is formed while suppressing the length of the cut line 9, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be further suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator core plates 4 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy.
  • a second distortion prevention hole 82 having a larger opening area than the first distortion prevention hole 81 is formed.
  • the second distortion prevention hole 82 located radially inward of the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7 is larger than the first strain prevention hole 81 located radially outward of the boundary portion 71. big. Therefore, in the radially inner portion of the cut line 9 formed in the boundary portion 71, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be efficiently suppressed.
  • the cut lines 9 are formed in all of the circumferential boundary portions 71 of the plurality of divided core piece forming regions 7 in the stator core plate forming region 6.
  • the cut line may be formed only in a part of the circumferential boundary portion of the plurality of divided core piece forming regions.
  • the stator core plate may have a boundary portion in which no cut line is formed.
  • the slot hole 31c is formed after the cut line 9 is formed.
  • the slotted holes may be formed prior to forming the score lines.
  • the slot hole may be used as the second strain prevention hole.
  • the split core piece 41 has a convex portion 43 at one end 42 in the circumferential direction, and a recess 45 at the other end 44 in the circumferential direction.
  • the split core piece may have a concave portion at one end in the circumferential direction and a convex portion at the other end in the circumferential direction.
  • the split core piece may not have a convex portion at one end in the circumferential direction, and may not have a concave portion at the other end in the circumferential direction.
  • the end portions of the divided core pieces may have a straight shape, a curved shape, or a combination of a straight line and a curved shape when the divided core piece is viewed in the thickness direction.
  • the convex cut line 9a is formed in the steel plate 5 by extruding the convex shape forming region R1
  • the concave cut line 9b is formed by pushing out the concave shape forming region R2.
  • only convex cut lines may be formed in the steel plate.
  • only the concave cut line may be formed on the steel plate.
  • the first strain prevention hole 81 is formed in the steel plate 5 at a position radially outward of the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7 and connected to the boundary portion 71.
  • Ru is formed at a position radially inward of the boundary portion 71 and connected to the boundary portion 71 .
  • at least one of the first distortion prevention hole and the second distortion prevention hole may be formed at a position that is not connected to the boundary portion.
  • the stator core plate forming region 6 where the stator core plate 4 is formed is formed from the steel plate 5 at a position overlapping a part of the first distortion prevention hole 81.
  • the outer shape of the stator core plate 4 is formed.
  • the outer shape of the stator core plate is formed by punching the steel plate at a position that does not overlap with the first strain prevention hole or a position where a recess that is concave inward in the radial direction is not formed at the boundary part. It's okay.
  • the second distortion prevention hole 82 has a larger opening area than the first distortion prevention hole 81.
  • the second distortion prevention hole may have a smaller opening area than the first distortion prevention hole.
  • the opening area of the second distortion prevention hole and the opening area of the first distortion prevention hole may be equal.
  • the stator core 31 when the stator core 31 is viewed in the axial direction, the stator core 31 is arranged radially outwardly with respect to the boundary portion 71 between the circumferentially adjacent split cores 32 in the stator core 31. It has a recess 34 that is recessed inward. However, the stator core does not need to have a concave portion that is concave radially inward on the radially outer side with respect to the boundary portion between circumferentially adjacent split cores.
  • This invention can be utilized for the manufacturing method of a stator core, and a stator core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This stator core manufacturing method includes: a cut line forming step for pressing circumferential end parts of a plurality of divided core piece forming regions, at which divided core pieces are to be formed in a stator core plate forming region of a steel plate and which are arranged circumferentially, in the thickness direction of the steel plate, and thereby forming cut lines in only circumferential boundary portions of the plurality of divided core piece forming regions in the stator core plate forming region; and a push-back step for returning, to original positions of the steel plate, portions of the divided core piece forming regions pressed in the thickness direction in the cut line forming step.

Description

固定子コアの製造方法、固定子コア、及び、モータStator core manufacturing method, stator core, and motor
本発明は、固定子コアの製造方法、固定子コア、及び、モータに関する。 The present invention relates to a method for manufacturing a stator core, a stator core, and a motor.
中心軸を中心に分割コアが周方向に並ぶ固定子コアの製造方法が知られている。例えば、特許文献1には、周方向に並ぶ複数のパーツからなる加工体を積み重ねた分割型積層鉄心の製造方法が開示されている。特許文献1の分割型積層鉄心の製造方法では、前記加工体を得る工程において、前記加工体の環状部となる領域を横切るスリットラインと折り曲げラインとを形成する切曲げ加工が行われる。また、スリットラインから折り曲げラインまでの部分である曲げ加工部にカシメが形成される。 A method of manufacturing a stator core in which split cores are arranged circumferentially around a central axis is known. For example, Patent Document 1 discloses a method for manufacturing a split laminated core in which processed bodies made up of a plurality of parts lined up in the circumferential direction are stacked. In the method for manufacturing a split laminated core disclosed in Patent Document 1, in the step of obtaining the workpiece, a cutting process is performed to form a slit line and a bending line that cross a region of the workpiece that will become the annular portion. Furthermore, a caulking is formed in the bending portion, which is the portion from the slit line to the bending line.
特許第6495092号公報Patent No. 6495092
前記特許文献1に開示されるように、鋼板から切り出した固定子コア板を積層することにより固定子コアが製造される。前記固定子コア板を鋼板から切り出す過程においては、前記鋼板に対して、様々な加工が行われる。例えば、前記鋼板の一部を厚み方向に押し出して切り込みラインを形成した後、前記鋼板の一部を元の位置に戻すプッシュバック加工が行われる場合がある。しかし、前記鋼板において前記切り込みラインが形成された部分では、加工時のストレスによって、前記鋼板が歪む可能性がある。また、前記切り込みラインが形成された前記鋼板から固定子コア板を切り出す際に、前記切り込みライン部分での残留応力の開放によって、前記鋼板の形状が歪む可能性がある。  As disclosed in Patent Document 1, a stator core is manufactured by laminating stator core plates cut out from steel plates. In the process of cutting out the stator core plate from a steel plate, various processes are performed on the steel plate. For example, after a part of the steel plate is pushed out in the thickness direction to form a cut line, pushback processing may be performed to return the part of the steel plate to its original position. However, in the portion of the steel plate where the cut line is formed, the steel plate may be distorted due to stress during processing. Further, when cutting out a stator core plate from the steel plate on which the cut line is formed, the shape of the steel plate may be distorted due to release of residual stress at the cut line portion. 
前記鋼板における前記切り込みラインの形成及び前記残留応力の開放に起因する前記鋼板の歪みが大きくなると、前記鋼板から切り出された前記固定子コア板の寸法精度が低下する可能性がある。このように前記固定子コア板の寸法精度が低下すると、前記固定子コア板を用いて製造される固定子コアの寸法精度も低下する。  When the distortion of the steel plate due to the formation of the cut line in the steel plate and the release of the residual stress increases, the dimensional accuracy of the stator core plate cut out from the steel plate may decrease. When the dimensional accuracy of the stator core plate decreases in this way, the dimensional accuracy of the stator core manufactured using the stator core plate also decreases. 
よって、高い寸法精度を有する前記固定子コアを製造するために、前記切り込みラインに起因する前記鋼板の歪みを抑制して、高い寸法精度での前記固定子コア板の切り出しを実現可能な方法が求められている。  Therefore, in order to manufacture the stator core with high dimensional accuracy, there is a method that can suppress the distortion of the steel plate caused by the cutting line and cut out the stator core plate with high dimensional accuracy. It has been demanded. 
本発明の目的は、切り込みラインに起因する鋼板の歪みを抑制することにより、高い寸法精度で固定子コア板を切り出して、高い寸法精度を有する固定子コアを製造可能な固定子コアの製造方法を実現することである。 An object of the present invention is to cut out a stator core plate with high dimensional accuracy by suppressing distortion of the steel plate caused by the cutting line, and to manufacture a stator core with high dimensional accuracy. The goal is to realize the following.
本発明の例示的な一実施形態に係る固定子コアの製造方法は、鋼板から打ち抜かれた複数の環状の固定子コア板が厚み方向に積層された積層体を周方向に複数に分割することにより、板状の分割コア片が厚み方向に複数枚積層された分割コアを形成する固定子コアの製造方法である。前記固定子コアの製造方法は、前記鋼板のうちの前記固定子コア板が形成される固定子コア板形成領域内において、前記分割コア片が形成されるとともに周方向に並ぶ複数の分割コア片形成領域の周方向端部を前記鋼板の厚み方向に押し出すことにより、前記固定子コア板形成領域において前記複数の分割コア片形成領域の周方向の境界部分のみに、切り込みラインを形成する切り込みライン形成工程と、前記分割コア片形成領域のうち、前記切り込みライン形成工程において前記厚み方向に押し出された部分を前記鋼板の元の位置に戻すプッシュバック工程と、を有する。  A method for manufacturing a stator core according to an exemplary embodiment of the present invention includes dividing a laminate in which a plurality of annular stator core plates punched from a steel plate are laminated in the thickness direction into a plurality of pieces in the circumferential direction. This is a stator core manufacturing method in which a split core is formed by stacking a plurality of plate-shaped split core pieces in the thickness direction. The stator core manufacturing method includes forming the split core pieces in a stator core plate forming region of the steel plate where the stator core plate is formed, and forming a plurality of split core pieces arranged in a circumferential direction. A cut line is formed in the stator core plate forming region only at a circumferential boundary portion of the plurality of divided core piece forming regions by pushing out a circumferential end of the forming region in the thickness direction of the steel plate. and a push-back step of returning a portion of the split core piece forming region that was pushed out in the thickness direction in the cut line forming step to its original position on the steel plate. 
また、本発明の例示的な一実施形態に係る固定子コアは、板状の分割コア片が厚み方向に複数枚積層された複数の分割コアが中心軸を中心に周方向に並んだ固定子コアである。前記分割コア片は、前記固定子コアにおいて他の分割コアの分割コア片と前記周方向に隣り合う端面が、厚み方向に並ぶせん断面及び破断面によって構成される。前記分割コア片は、前記固定子コアの外周の一部を構成する端面がせん断面によって構成されている、 Further, a stator core according to an exemplary embodiment of the present invention is a stator in which a plurality of split cores each having a plurality of plate-shaped split core pieces laminated in the thickness direction are arranged circumferentially around a central axis. It is the core. In the stator core, end surfaces of the divided core pieces adjacent to the divided core pieces of other divided cores in the circumferential direction are constituted by sheared surfaces and fractured surfaces that are aligned in the thickness direction. The split core piece has an end face that forms a part of the outer periphery of the stator core and is formed by a sheared surface.
本発明の例示的な一実施形態に係る固定子コアの製造方法によれば、切り込みラインに起因する鋼板の歪みを抑制することにより、高い寸法精度で固定子コア板を切り出して、高い寸法精度を有する固定子コアを製造可能である。 According to the method for manufacturing a stator core according to an exemplary embodiment of the present invention, the stator core plate can be cut out with high dimensional accuracy by suppressing the distortion of the steel plate caused by the cutting line, and the stator core plate can be cut out with high dimensional accuracy. It is possible to manufacture a stator core having:
図1は、モータの一例を示す図である。FIG. 1 is a diagram showing an example of a motor. 図2は、固定子コアの一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a stator core. 図3は、固定子コア板の一例を示す図である。FIG. 3 is a diagram showing an example of a stator core plate. 図4は、分割コア片の周方向の一方の端部の端面の一例を示す図である。FIG. 4 is a diagram showing an example of an end surface of one circumferential end of a split core piece. 図5は、分割コア片の周方向の他方の端部の端面の一例を示す図である。FIG. 5 is a diagram showing an example of the end surface of the other circumferential end of the split core piece. 図6は、分割コア片のうち、固定子コアの外周の一部を構成する端面の一例を示す図である。FIG. 6 is a diagram illustrating an example of an end surface of a divided core piece that constitutes a part of the outer periphery of the stator core. 図7は、実施形態1に係る固定子コアの製造方法の一例を示す図である。FIG. 7 is a diagram illustrating an example of a method for manufacturing the stator core according to the first embodiment. 図8は、加工前の鋼板の一例を示す図である。FIG. 8 is a diagram showing an example of a steel plate before processing. 図9は、中央孔が形成された鋼板の一例を示す図である。FIG. 9 is a diagram showing an example of a steel plate in which a central hole is formed. 図10は、切り込みラインが形成された鋼板の一例を示す図である。FIG. 10 is a diagram showing an example of a steel plate on which cut lines are formed. 図11は、切り込みライン形成工程の説明図である。FIG. 11 is an explanatory diagram of the incision line forming process. 図12は、プッシュバック工程の説明図である。FIG. 12 is an explanatory diagram of the pushback process. 図13は、固定子コア板外形形成工程の説明図である。FIG. 13 is an explanatory diagram of the stator core plate outer shape forming process. 図14は、実施形態2に係る固定子コアの製造方法の一例を示す図である。FIG. 14 is a diagram illustrating an example of a method for manufacturing a stator core according to the second embodiment. 図15は、第1歪み防止孔及び第2歪み防止孔が形成された鋼板の一例を示す図である。FIG. 15 is a diagram showing an example of a steel plate in which a first strain prevention hole and a second strain prevention hole are formed. 図16は、切り込みラインが形成された鋼板の一例を示す図である。FIG. 16 is a diagram showing an example of a steel plate on which cut lines are formed. 図17は、凸型切り込みラインの形成の一例を示す図である。FIG. 17 is a diagram showing an example of forming a convex cut line. 図18は、凹型切り込みラインの形成の一例を示す図である。FIG. 18 is a diagram showing an example of forming a concave cut line. 図19は、固定子コア板外形形成工程の説明図である。FIG. 19 is an explanatory diagram of the stator core plate outer shape forming process. 図20は、切断加工後の固定子コアの一例を示す斜視図である。FIG. 20 is a perspective view showing an example of the stator core after cutting.
以下、図面を参照し、本発明の例示的な実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表しているわけではない。  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the figures are given the same reference numerals, and the description thereof will not be repeated. Further, the dimensions of the constituent members in each figure do not faithfully represent the actual dimensions of the constituent members or the dimensional ratios of each constituent member. 
なお、以下の説明では、固定子3の中心軸Pと平行な方向を「軸方向」、中心軸Pに直交する方向を「径方向」、中心軸Pを中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、周方向のうち、構成部材を所定の方向から見て反時計回りの方向を「周方向一方」、時計周りの方向を「周方向他方」と称する。ただし、この方向の定義により、本発明に係るモータ1の使用時の向きを限定する意図はない。  In the following description, the direction parallel to the central axis P of the stator 3 will be referred to as the "axial direction," the direction orthogonal to the central axis P will be referred to as the "radial direction," and the direction along the arc centered on the central axis P will be referred to as the "axial direction." "circumferential direction". Furthermore, among the circumferential directions, when the component is viewed from a predetermined direction, the counterclockwise direction is referred to as "one circumferential direction" and the clockwise direction is referred to as "the other circumferential direction." However, this definition of direction is not intended to limit the direction in which the motor 1 according to the present invention is used. 
また、以下の説明では、電磁鋼板の「径方向」及び「周方向」は、電磁鋼板に打ち抜かれた中央孔5aの中心点を中心とした径方向及び周方向を意味する。なお、以下では、電磁鋼板を単に鋼板5と称する。  Furthermore, in the following description, the "radial direction" and "circumferential direction" of the electromagnetic steel sheet mean the radial direction and circumferential direction centered on the center point of the central hole 5a punched in the electromagnetic steel sheet. In addition, below, an electromagnetic steel plate is only called the steel plate 5. 
また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。  In addition, in the following explanation, expressions such as "fixing", "connecting", and "attaching" (hereinafter referred to as "fixing, etc.") are used not only when members are directly fixed to each other, but also when they are connected through other members. Including cases where it is fixed. That is, in the following description, expressions such as fixation include direct and indirect fixation of members. 
(モータの構成) 図1は、実施形態1に係るモータ1の一例を示す図である。図1に示すように、モータ1は、ハウジング1a、回転子2及び固定子3を備える。回転子2は、固定子3に対して、中心軸Pを中心として回転する。モータ1は、筒状の固定子3内に、回転子2が中心軸Pを中心として回転可能に配置された、いわゆるインナーロータ型のモータ1である。  (Motor Configuration) FIG. 1 is a diagram showing an example of a motor 1 according to the first embodiment. As shown in FIG. 1, the motor 1 includes a housing 1a, a rotor 2, and a stator 3. The rotor 2 rotates about a central axis P with respect to the stator 3. The motor 1 is a so-called inner rotor type motor 1 in which a rotor 2 is rotatably disposed within a cylindrical stator 3 about a central axis P. 
回転子2は、シャフト20と、回転子コア21及びマグネット22を備える。回転子2は、固定子3の径方向内方に位置し、固定子3に対して回転可能である。  The rotor 2 includes a shaft 20, a rotor core 21, and a magnet 22. The rotor 2 is located radially inward of the stator 3 and is rotatable with respect to the stator 3. 
回転子コア21は、円筒状であり、中心軸Pに沿って延びている。回転子コア21は、所定の形状に形成された鋼板5を、厚み方向に複数枚、積層することによって構成される。中心軸Pに沿って延びるシャフト20は、回転子コア21を軸方向に貫通した状態で回転子コア21に固定される。これにより、回転子コア21は、シャフト20とともに回転する。また、回転子コア21の外周面上には、複数のマグネット22が周方向に所定の間隔で位置する。なお、マグネット22は、周方向に繋がったリングマグネットであっても良い。  The rotor core 21 has a cylindrical shape and extends along the central axis P. The rotor core 21 is constructed by laminating a plurality of steel plates 5 formed in a predetermined shape in the thickness direction. The shaft 20 extending along the central axis P is fixed to the rotor core 21 while passing through the rotor core 21 in the axial direction. Thereby, the rotor core 21 rotates together with the shaft 20. Further, on the outer peripheral surface of the rotor core 21, a plurality of magnets 22 are positioned at predetermined intervals in the circumferential direction. Note that the magnet 22 may be a ring magnet connected in the circumferential direction. 
固定子3は、ハウジング1a内に収容されている。固定子3は、筒状であり、回転子2の径方向外方に位置する。固定子3は、固定子コア31、固定子コイル36及びブラケット37を備える。固定子コア31は、円筒状であり、軸方向に延びている。固定子コア31は、所定の形状に形成され且つ厚み方向に積層された複数枚の固定子コア板4によって構成される。  Stator 3 is housed within housing 1a. The stator 3 has a cylindrical shape and is located radially outward of the rotor 2. The stator 3 includes a stator core 31, a stator coil 36, and a bracket 37. Stator core 31 has a cylindrical shape and extends in the axial direction. The stator core 31 is composed of a plurality of stator core plates 4 formed in a predetermined shape and laminated in the thickness direction. 
(固定子コア) 図2~図6を用いて、実施形態1に係る固定子コア31の一例を説明する。  (Stator Core) An example of the stator core 31 according to the first embodiment will be explained using FIGS. 2 to 6. 
図2は、固定子コア31の一例を示す斜視図である。図2に示すように、固定子コア31は、筒状のヨーク31aから径方向内方に延びる複数のティース31bを有する。固定子コア31は、複数のティース31bのうち隣り合うティース31bの間に固定子コイル36の一部が収容されるスロット孔31cを有する。  FIG. 2 is a perspective view showing an example of the stator core 31. As shown in FIG. 2, the stator core 31 has a plurality of teeth 31b extending radially inward from a cylindrical yoke 31a. The stator core 31 has a slot hole 31c in which a part of the stator coil 36 is accommodated between adjacent teeth 31b among the plurality of teeth 31b. 
図2では図示を省略するが、ブラケット37が、固定子コア31のティース31bに装着されている。ブラケット37は、絶縁材料によって構成されている。ブラケット37は、例えば樹脂材料によって構成されているが、樹脂材料以外の材料によって構成されていてもよい。固定子コイル36は、ブラケット37上に巻かれている。  Although not shown in FIG. 2, a bracket 37 is attached to the teeth 31b of the stator core 31. The bracket 37 is made of an insulating material. The bracket 37 is made of, for example, a resin material, but may be made of a material other than the resin material. Stator coil 36 is wound on bracket 37. 
固定子コア31は、中心軸Pを中心に環状に位置する複数の分割コア32を有する。複数の分割コア32は、鋼板5から打ち抜かれた環状の固定子コア板4が厚み方向に積層された積層体を周方向に分割することにより、形成される。  The stator core 31 has a plurality of split cores 32 arranged annularly around the central axis P. The plurality of split cores 32 are formed by dividing in the circumferential direction a laminate in which annular stator core plates 4 punched from steel plates 5 are stacked in the thickness direction. 
各分割コア32は、筒状のヨーク31aの一部を構成する分割ヨーク部32aと、一つのティース31bとを有する。複数の分割コア32における分割ヨーク部32aによって、固定子コア31の円環状のヨーク31aが構成される。以下では、分割コア32における分割ヨーク32aの周方向の端部を、分割コア32の周方向の端部と称する。分割コア32の周方向の端部と、該分割コア32と周方向に隣り合う分割コア32の周方向の端部とは、接触している。  Each split core 32 has a split yoke portion 32a that constitutes a part of a cylindrical yoke 31a, and one tooth 31b. The divided yoke portions 32 a of the plurality of divided cores 32 constitute an annular yoke 31 a of the stator core 31 . Hereinafter, the circumferential end of the split yoke 32a in the split core 32 will be referred to as the circumferential end of the split core 32. The circumferential ends of the split cores 32 and the circumferential ends of the split cores 32 circumferentially adjacent to the split cores 32 are in contact with each other. 
図3は、固定子コア板4の一例を示す図である。固定子コア板4は、周方向に並ぶ分割コア片41を有する。図3に示す例では、複数の分割コア片41は、厚み方向に見て同じ形状を有する。分割コア片41は、分割ヨーク部32aの一部を構成する分割ヨーク片41aと、ティース31bの一部を構成するティース片41bとを有する。  FIG. 3 is a diagram showing an example of the stator core plate 4. As shown in FIG. The stator core plate 4 has split core pieces 41 arranged in the circumferential direction. In the example shown in FIG. 3, the plurality of split core pieces 41 have the same shape when viewed in the thickness direction. The divided core piece 41 includes a divided yoke piece 41a that constitutes a part of the divided yoke portion 32a, and a tooth piece 41b that constitutes a part of the teeth 31b. 
分割コア32は、厚み方向に複数枚積層された板状の分割コア片41によって構成されている。複数の分割コア片41は、厚み方向に積層された状態で、分割ヨーク片41a及びティース片41bにそれぞれ設けられたかしめ部33cによって、互いに連結されている。  The split core 32 is composed of a plurality of plate-shaped split core pieces 41 laminated in the thickness direction. The plurality of split core pieces 41 are stacked in the thickness direction and are connected to each other by caulking portions 33c provided on the split yoke pieces 41a and the teeth pieces 41b, respectively. 
以下では、分割コア片41における分割ヨーク片41aの周方向の端部を、分割コア片41の周方向の端部と称する。分割コア32を構成する分割コア片41の端部は、該分割コア32と周方向に隣り合う分割コア32を構成する分割コア片41の端部と接触している。  Hereinafter, the circumferential end of the split yoke piece 41a in the split core piece 41 will be referred to as the circumferential end of the split core piece 41. An end of a split core piece 41 constituting the split core 32 is in contact with an end of a split core piece 41 forming the split core 32 adjacent to the split core 32 in the circumferential direction. 
各分割コア片41は、周方向一方の端部42に周方向に突出する凸部43を有する。凸部43は、分割ヨーク片41aの径方向中央に位置する。各分割コア片41は、周方向他方の端部44に周方向一方に凹む凹部45を有する。凹部45は、分割ヨーク片41aの径方向中央に位置する。  Each split core piece 41 has a convex portion 43 projecting in the circumferential direction at one end 42 in the circumferential direction. The convex portion 43 is located at the radial center of the split yoke piece 41a. Each split core piece 41 has a recess 45 recessed in one direction in the circumferential direction at the other end 44 in the circumferential direction. The recess 45 is located at the radial center of the split yoke piece 41a. 
各分割コア片41は、周方向一方の端部42に端面46を有し、周方向他方の端部44に端面47を有する。図4は、分割コア片41の周方向一方の端部42の端面46の一例を示す図である。図5は
、分割コア片41の周方向他方の端部44の端面47の一例を示す図である。図4、図5に示すように、分割コア片41は、固定子コア31において他の分割コア32の分割コア片41と周方向に隣り合う端面46、47が、厚み方向に並ぶせん断面Sp及び破断面Fpによって構成されている。 
Each split core piece 41 has an end face 46 at one end 42 in the circumferential direction, and an end face 47 at the other end 44 in the circumferential direction. FIG. 4 is a diagram showing an example of an end surface 46 of one end 42 in the circumferential direction of the split core piece 41. FIG. 5 is a diagram showing an example of an end surface 47 of the other end 44 in the circumferential direction of the split core piece 41. As shown in FIGS. 4 and 5, in the stator core 31, the split core pieces 41 have end surfaces 46 and 47 adjacent to the split core pieces 41 of other split cores 32 in the circumferential direction at sheared surfaces Sp aligned in the thickness direction. and a fracture surface Fp.
また、各分割コア片41において、分割コア片41の周方向の端部42、44以外の端部の端面の形状は、分割コア片41の周方向の端部42、44の端面46、47の形状と異なり、せん断面Spのみによって構成されている。例えば、図6は、固定子コア31の外周の一部を構成する端面48の一例を示す図である。図6に示すように、分割コア片41のうち、固定子コア31の外周の一部を構成する端面48は、せん断面Spのみによって構成されている。  In addition, in each split core piece 41, the shapes of the end faces of the ends other than the circumferential ends 42 and 44 of the split core piece 41 are the end faces 46 and 47 of the circumferential ends 42 and 44 of the split core piece 41 Unlike the shape of , it is composed of only the sheared surface Sp. For example, FIG. 6 is a diagram showing an example of an end surface 48 that constitutes a part of the outer periphery of the stator core 31. As shown in FIG. As shown in FIG. 6, the end face 48 of the divided core piece 41, which constitutes a part of the outer periphery of the stator core 31, is constituted only by the sheared surface Sp. 
(固定子コアの製造方法) 次に、実施形態1に係る固定子コア31の製造方法を、図7から図14を用いて詳細に説明する。  (Method for Manufacturing Stator Core) Next, a method for manufacturing the stator core 31 according to the first embodiment will be described in detail with reference to FIGS. 7 to 14. 
図7に示すステップS1~S8のうち、ステップS1~S5は、鋼板5から固定子コア板4を形成するための工程である。図示しない鋼板加工装置は、図示しない鋼板供給装置から供給された鋼板5に対して、打ち抜き、切り込みライン形成、及び、プッシュバックの加工を行う。その結果、鋼板5から固定子コア板4が形成される。  Among steps S1 to S8 shown in FIG. 7, steps S1 to S5 are steps for forming the stator core plate 4 from the steel plate 5. A steel plate processing device (not shown) performs punching, cutting line formation, and pushback processing on the steel plate 5 supplied from a steel plate supply device (not shown). As a result, the stator core plate 4 is formed from the steel plate 5. 
図8は、加工前の鋼板5の一例を示す図である。図8に示すように、鋼板5から複数枚の固定子コア板4を切り出すことが可能である。図8に示すように、鋼板5は、固定子コア板4が形成される領域である固定子コア板形成領域6を含む。また、固定子コア板形成領域6は、周方向に並ぶ複数の分割コア片形成領域7を含む。分割コア片形成領域7は、分割コア片41が形成される領域である。図8において、固定子コア板形成領域6、及び、分割コア片形成領域7は、破線で図示されている。固定子コア板形成領域6の外周に沿って鋼板5を打ち抜くことにより、固定子コア板4が形成される。  FIG. 8 is a diagram showing an example of the steel plate 5 before processing. As shown in FIG. 8, it is possible to cut out a plurality of stator core plates 4 from a steel plate 5. As shown in FIG. 8, the steel plate 5 includes a stator core plate forming region 6 where the stator core plate 4 is formed. Further, the stator core plate forming region 6 includes a plurality of divided core piece forming regions 7 arranged in the circumferential direction. The split core piece forming region 7 is an area where the split core pieces 41 are formed. In FIG. 8, the stator core plate forming area 6 and the split core piece forming area 7 are illustrated by broken lines. The stator core plate 4 is formed by punching the steel plate 5 along the outer periphery of the stator core plate forming region 6. 
固定子コア板4を形成する際に、まず、鋼板5を打ち抜くことにより、固定子コア板形成領域6内に、円形の中央孔5aが形成される。このように鋼板5に中央孔5aを形成する工程が、図9に示すステップS1の中央孔打ち抜き工程である。中央孔5aの中心は、モータ1の中心軸Pと一致する。図9は、中央孔5aが形成された鋼板5の一例を示す図である。  When forming the stator core plate 4, first, by punching out the steel plate 5, a circular central hole 5a is formed in the stator core plate forming region 6. The process of forming the center hole 5a in the steel plate 5 in this manner is the center hole punching process of step S1 shown in FIG. The center of the central hole 5a coincides with the central axis P of the motor 1. FIG. 9 is a diagram showing an example of a steel plate 5 in which a central hole 5a is formed. 
上述の中央孔打ち抜き工程は、プレス加工によって行われる。中央孔打ち抜き工程は、従来の固定子コア31の製造方法と同様であるため、詳しい説明を省略する。  The above-mentioned center hole punching process is performed by press working. The center hole punching process is the same as the conventional manufacturing method of the stator core 31, so a detailed explanation will be omitted. 
次に、鋼板5に切り込みを入れることにより、切り込みライン9が形成される。このように鋼板5に切り込みライン9を形成する工程が図7に示すステップS2の切り込みライン形成工程である。  Next, a cut line 9 is formed by making a cut in the steel plate 5. The step of forming the cut line 9 on the steel plate 5 in this manner is the cut line forming step of step S2 shown in FIG. 
切り込みライン9は、分割コア片形成領域7の外周の一部を構成する。切り込みライン形成工程では、鋼板5のうちの固定子コア板形成領域6内において、周方向に並ぶ複数の分割コア片形成領域7の周方向端部を鋼板5の厚み方向に押し出すことにより、切り込みライン9が形成される。固定子コア板形成領域6において複数の分割コア片形成領域7の周方向の境界部分71のみに、切り込みライン9が形成される。また、本実施形態では、固定子コア板形成領域6内の全ての境界部分71に対して、切り込みライン9が形成される。  The cut line 9 constitutes a part of the outer periphery of the divided core piece forming region 7. In the cut line forming step, in the stator core plate forming region 6 of the steel plate 5, the circumferential ends of the plurality of split core piece forming regions 7 lined up in the circumferential direction are pushed out in the thickness direction of the steel plate 5, thereby forming the cuts. A line 9 is formed. In the stator core plate forming region 6, the cut line 9 is formed only at the circumferential boundary portion 71 of the plurality of divided core piece forming regions 7. Furthermore, in this embodiment, the cut lines 9 are formed in all the boundary portions 71 within the stator core plate forming region 6. 
切り込みライン9が形成される部分が、分割コア片形成領域7の境界部分71のみに限られるので、境界部分以外の部分にも切り込みライン9を形成する場合に比べて、切り込みライン9の長さが抑制される。よって、切り込みライン9を形成する際に生じる鋼板5の歪み及び鋼板5に残る残留応力が抑制される。従って、高い寸法精度で鋼板5から固定子コア板4を切り出すことが可能である。よって、高い寸法精度で切り出された固定子コア31を積層することにより、高い寸法精度を有する固定子コア31を製造することができる。  Since the part where the cut line 9 is formed is limited to the boundary part 71 of the divided core piece forming region 7, the length of the cut line 9 is shorter than when the cut line 9 is formed in parts other than the boundary part. is suppressed. Therefore, the distortion of the steel plate 5 that occurs when forming the cut line 9 and the residual stress that remains in the steel plate 5 are suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator cores 31 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy. 
図10は、切り込みライン9が形成された鋼板5の一例を示す。切り込みライン形成工程によって、固定子コア板形成領域6内において、径方向に延びるとともに周方向に並ぶ複数の切り込みライン9が形成される。  FIG. 10 shows an example of a steel plate 5 on which a cut line 9 is formed. By the cut line forming step, a plurality of cut lines 9 are formed in the stator core plate forming region 6, extending in the radial direction and aligned in the circumferential direction. 
図11に示すように、複数の切り込みライン9は、鋼板5の一部を厚み方向に挟み込む上下一対の工具Wと、鋼板5の一部を厚み方向に押す工具Tとを用いて形成される。工具Tは、工具Wに対して、鋼板5の厚み方向に移動可能である。  As shown in FIG. 11, the plurality of cut lines 9 are formed using a pair of upper and lower tools W that sandwich a part of the steel plate 5 in the thickness direction, and a tool T that pushes a part of the steel plate 5 in the thickness direction. . The tool T is movable relative to the tool W in the thickness direction of the steel plate 5. 
図11の白抜矢印に示すように、工具Tが工具Wに対して鋼板5の厚み方向の一方に移動することにより、工具Tによって鋼板5の一部の領域が厚み方向に押し出される。一方で、図11に示すように、切り込みライン9において、少なくとも厚み方向の一部は、切り残される。つまり、工具Tは、鋼板5において境界部分71を完全には切り離さない。切り込みライン9の少なくとも一部は、繋がっている。  As shown by the white arrow in FIG. 11, when the tool T moves in one direction in the thickness direction of the steel plate 5 with respect to the tool W, a part of the area of the steel plate 5 is pushed out in the thickness direction by the tool T. On the other hand, as shown in FIG. 11, at least a portion of the cut line 9 in the thickness direction is left uncut. That is, the tool T does not completely cut off the boundary portion 71 in the steel plate 5. At least some of the cut lines 9 are connected. 
工具Tによる鋼板5の一部の領域の厚み方向への押し出しによって、境界部分71において、厚み方向の一部は、せん断される。せん断された部分には、せん断面Spが形成される。一方で、境界部分71において、切り離されていない部分には、後述する分割工程によって固定子コア板4の積層体が複数の分割コア32に分割された際に、破断面Fpが形成される。  By extruding a part of the steel plate 5 in the thickness direction using the tool T, a part of the steel plate 5 in the thickness direction is sheared at the boundary portion 71 . A sheared surface Sp is formed in the sheared portion. On the other hand, in the portion of the boundary portion 71 that is not separated, a fracture surface Fp is formed when the stack of stator core plates 4 is divided into a plurality of split cores 32 in a dividing step to be described later. 
そのため、分割コア片41の周方向の端部の端面46、47は、厚み方向に、せん断面Spと破断面Fpを有する。  Therefore, the end surfaces 46 and 47 of the circumferential ends of the split core piece 41 have a sheared surface Sp and a fractured surface Fp in the thickness direction. 
図10に示すように、固定子コア板形成領域6が含む分割コア片形成領域7は、切り込みライン9に対して周方向一方に位置する凹形状形成領域R2と、切り込みライン9に対して周方向他方に位置する凸形状形成領域R1とを含む。また、図10に示すように、固定子コア板形成領域6において、凹形状形成領域R2及び凸形状形成領域R1を含む分割コア片形成領域7と、凹形状形成領域R2及び凸形状形成領域R1を含まない分割コア片形成領域7とが、周方向に交互に位置する。  As shown in FIG. 10, the divided core piece forming area 7 included in the stator core plate forming area 6 includes a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9, and a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9. and a convex shape forming region R1 located on the other side of the direction. Further, as shown in FIG. 10, in the stator core plate forming area 6, there are divided core piece forming areas 7 including a concave forming area R2 and a convex forming area R1, and a concave forming area R2 and a convex forming area R1. The split core piece forming regions 7 not including the split core pieces are alternately located in the circumferential direction. 
工具Tが凸形状形成領域R1を鋼板5の厚み方向に押し出すことにより、凸型切り込みライン9aが形成される。工具Tが凹形状形成領域R2を鋼板5の厚み方向に押し出すことにより、凹型切り込みライン9bが形成される。  When the tool T pushes out the convex shape forming region R1 in the thickness direction of the steel plate 5, a convex cut line 9a is formed. When the tool T pushes out the concave shape forming region R2 in the thickness direction of the steel plate 5, the concave cut line 9b is formed. 
分割コア片形成領域7のうち、切り込みライン形成工程において厚み方向に押し出された部分が、鋼板5の元の位置に戻される。このように、鋼板5の厚み方向に押し出された部分を鋼板5の元の位置に戻す工程が、図7に示すステップS3のプッシュバック工程である。  The portion of the split core piece forming region 7 that was pushed out in the thickness direction in the cut line forming step is returned to the original position of the steel plate 5. The process of returning the portion pushed out in the thickness direction of the steel plate 5 to its original position on the steel plate 5 in this way is the pushback process of step S3 shown in FIG. 
図12に示すように、工具Sは、工具Tによって厚み方向の一方に押し出された部分を、押し出し方向と逆方向に押す。これにより、図12に示すように、厚み方向に押し出された部分が鋼板5の元の位置に戻される。  As shown in FIG. 12, the tool S pushes the portion extruded by the tool T in one direction in the thickness direction in a direction opposite to the extrusion direction. Thereby, as shown in FIG. 12, the portion pushed out in the thickness direction is returned to its original position on the steel plate 5. 
複数の切り込みライン9は、分割コア片形成領域7の境界部分71に形成される。つまり、固定子コア板形成領域6は、周方向に並ぶ複数の切り込みライン9を含む。それぞれの境界部分71に対して、プッシュバック工程が行われる。その結果、全ての切り込みライン9は、プッシュバック工程によって形成される。  The plurality of cut lines 9 are formed at the boundary portion 71 of the divided core piece forming region 7 . That is, the stator core plate forming region 6 includes a plurality of cut lines 9 arranged in the circumferential direction. A pushback process is performed for each boundary portion 71. As a result, all the cut lines 9 are formed by the pushback process. 
次に、鋼板5のうち、固定子コア31におけるスロット孔31cを形成する領域が、スロット孔31cの形状で打ち抜かれる。このように鋼板5に対してスロット孔31cを打ち抜く工程が、図7に示すステップS4のスロット打ち抜き工程である。スロット打ち抜き工程は、プレス加工によって行われる。  Next, a region of the steel plate 5 where the slot hole 31c in the stator core 31 will be formed is punched out in the shape of the slot hole 31c. The step of punching out the slot holes 31c in the steel plate 5 in this manner is the slot punching step of step S4 shown in FIG. The slot punching process is performed by press working. 
図13に示すように、固定子コア板4が形成される固定子コア板形成領域6が鋼板5から打ち抜かれる。言い換えると、鋼板5が、固定子コア31を軸方向に見た外形形状で打ち抜かれる。これにより、分割コア32となる分割コア片41が、周方向に連結された環状の固定子コア板4が形成される。歪みの少ない鋼板5から、形状の歪みの少ない固定子コア板4を切り出すことが可能である。このように固定子コア板4の外形を形成する工程が、図7に示すステップS5の固定子コア板外形形成工程である。  As shown in FIG. 13, a stator core plate forming region 6 in which the stator core plate 4 will be formed is punched out of the steel plate 5. In other words, the steel plate 5 is punched to have the outer shape of the stator core 31 when viewed in the axial direction. Thereby, an annular stator core plate 4 is formed in which the split core pieces 41 that become the split cores 32 are connected in the circumferential direction. It is possible to cut out the stator core plate 4 with less distortion in shape from the steel plate 5 with less distortion. The step of forming the outer shape of the stator core plate 4 in this manner is the stator core plate outer shape forming step of step S5 shown in FIG. 
次に、図2に示すかしめ部33cが固定子コア板4に形成される。かしめ部33cは、固定子コア31における分割コア片41となる部分である分割コア片形成領域7に、厚み方向の一方に突出するとともに前記厚み方向他方側の面に凹部を有する凸部を形成することにより、得られる。このようにかしめ部33cを形成する工程が、図7に示すステップS6のかしめ部成形工程である。  Next, a caulked portion 33c shown in FIG. 2 is formed on the stator core plate 4. The caulking portion 33c forms a convex portion in the split core piece forming region 7, which is a portion of the stator core 31 that will become the split core piece 41, protruding in one direction in the thickness direction and having a concave portion on the other side in the thickness direction. It can be obtained by The step of forming the caulked portion 33c in this manner is the caulked portion forming step of step S6 shown in FIG. 
その後、積層方向に隣り合う固定子コア板4のかしめ部33c同士をかしめつつ、複数の固定子コア板4を厚み方向に積層することにより、固定子コア板4の積層体が得られる。このように固定子コア板4を厚み方向に積層する工程が、図7に示すステップS7の固定子コア板積層工程である。  Thereafter, a stacked body of stator core plates 4 is obtained by laminating a plurality of stator core plates 4 in the thickness direction while caulking the caulked portions 33c of adjacent stator core plates 4 in the lamination direction. The process of stacking the stator core plates 4 in the thickness direction in this manner is the stator core plate stacking process of step S7 shown in FIG. 
固定子コア板4の前記積層体の外周側に対し、積層方向に対して直交方向の成分の力を加えることにより、隣り合う分割コア片41の境界部分71が分割される。すなわち、前記積層体は、複数の分割コア32に分割される。このように固定子コア板4の前記積層体を複数の分割コア32に分割する工程が、図7に示すステップS8の分割工程である。  By applying a force in a direction perpendicular to the stacking direction to the outer peripheral side of the stacked body of the stator core plate 4, the boundary portion 71 between the adjacent split core pieces 41 is split. That is, the laminate is divided into a plurality of divided cores 32. The step of dividing the laminated body of the stator core plate 4 into a plurality of split cores 32 in this manner is the dividing step of step S8 shown in FIG. 
このように、分割コア32は、積層された固定子コア板4を、隣り合う分割コア片41の境界部分で分離することによって形成されている。なお、複数の分割コア32に分割可能であれば、前記積層体に加える力の成分は、積層方向に対して直交方向の成分に限られない。  In this way, the split core 32 is formed by separating the stacked stator core plates 4 at the boundary between adjacent split core pieces 41. Note that, as long as it can be divided into a plurality of split cores 32, the component of the force applied to the stacked body is not limited to the component in the direction perpendicular to the stacking direction. 
なお、分割されたそれぞれの分割コア32には、巻線が巻き付けられる。その後、分割コア32同士を分割時と同じ組み合わせで再接合することにより、コイルを有する固定子コア31が得られる。  Note that a winding wire is wound around each of the divided cores 32. Thereafter, the stator core 31 having coils is obtained by rejoining the split cores 32 in the same combination as when they were split. 
上述のように、実施形態1に係る固定子コア31の製造方法は、鋼板5から打ち抜かれた複数の環状の固定子コア板4が厚み方向に積層された積層体を周方向に複数に分割することにより、板状の分割コア片41が厚み方向に複数枚積層された分割コア32を形成する固定子コア31の製造方法である。固定子コア31の製造方法は、鋼板5のうちの固定子コア板4が形成される固定子コア板形成領域6内において、分割コア片41が形成されるとともに周方向に並ぶ複数の分割コア片形成領域7の周方向端部を鋼板5の厚み方向に押し出すことにより、固定子コア板形成領域6において複数の分割コア片形成領域7の周方向の境界部分71のみに、切り込みライン9を形成する切り込みライン形成工程S2と、分割コア片形成領域7のうち、切り込みライン形成工程S2において厚み方向に押し出された部分を鋼板5の元の位置に戻すプッシュバック工程S3と、を有する。  As described above, the method for manufacturing the stator core 31 according to the first embodiment involves dividing a laminate in which a plurality of annular stator core plates 4 punched from a steel plate 5 are laminated in the thickness direction into a plurality of pieces in the circumferential direction. This is a method of manufacturing a stator core 31 in which a split core 32 is formed by stacking a plurality of plate-shaped split core pieces 41 in the thickness direction. The method for manufacturing the stator core 31 is such that split core pieces 41 are formed in a stator core plate forming region 6 in which the stator core plate 4 of the steel plate 5 is formed, and a plurality of split core pieces are arranged in the circumferential direction. By extruding the circumferential end of the piece forming region 7 in the thickness direction of the steel plate 5, a cut line 9 is formed only at the circumferential boundary portion 71 of the plurality of split core piece forming regions 7 in the stator core plate forming region 6. The method includes a cut line forming step S2 to form a cut line, and a push back step S3 to return the portion of the split core piece forming region 7 that was pushed out in the thickness direction in the cut line forming step S2 to its original position on the steel plate 5. 
切り込みライン形成工程S2では、固定子コア板形成領域6内のうち、切り込みライン9が形成される部分が、分割コア片形成領域7の境界部分71のみに限られる。境界部分以外の部分にも切り込みライン9を形成する場合に比べて、切り込みライン9の長さが抑制される。よって、切り込みライン9を形成する際に生じる鋼板5の歪み及び鋼板5に残る残留応力が抑制される。従って、高い寸法精度で鋼板5から固定子コア板4を切り出すことが可能である。よって、高い寸法精度で切り出された固定子コア31を積層することにより、高い寸法精度を有する固定子コア31を製造することができる。  In the cut line forming step S2, the portion of the stator core plate forming region 6 where the cut line 9 is formed is limited to only the boundary portion 71 of the split core piece forming region 7. The length of the cut line 9 is suppressed compared to the case where the cut line 9 is also formed in a portion other than the boundary portion. Therefore, the distortion of the steel plate 5 that occurs when forming the cut line 9 and the residual stress that remains in the steel plate 5 are suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator cores 31 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy. 
また、実施形態に係る固定子コア31の製造方法は、切り込みライン形成工程S2及びプッシュバック工程S3の後に、鋼板5から、固定子コア板4が形成される固定子コア板形成領域6を打ち抜くことにより、固定子コア板4の外形を形成する固定子コア板外形形成工程S5をさらに有する。  Further, in the method for manufacturing the stator core 31 according to the embodiment, after the cut line forming step S2 and the pushback step S3, the stator core plate forming region 6 in which the stator core plate 4 is formed is punched out from the steel plate 5. This further includes a stator core plate outer shape forming step S5 of forming the outer shape of the stator core plate 4. 
これにより、歪みの少ない鋼板5から、形状の歪みの少ない固定子コア板4を切り出すことが可能である。  Thereby, it is possible to cut out the stator core plate 4 with less distortion in shape from the steel plate 5 with less distortion. 
また、実施形態に係る固定子コア31は、板状の分割コア片41が厚み方向に複数枚積層された複数の分割コア32が中心軸を中心に周方向に並んだ固定子コ
ア31である。分割コア片41は、固定子コア31において他の分割コア32の分割コア片41と周方向に隣り合う端面46、47が、厚み方向に並ぶせん断面Sp及び破断面Fpによって構成される。固定子コア31の外周の一部を構成する端面48がせん断面Spによって構成されている。 
Further, the stator core 31 according to the embodiment is a stator core 31 in which a plurality of split cores 32 each having a plurality of plate-shaped split core pieces 41 laminated in the thickness direction are arranged in a circumferential direction around a central axis. . End surfaces 46 and 47 of the split core piece 41 in the stator core 31 that are circumferentially adjacent to the split core pieces 41 of the other split core 32 are constituted by a sheared surface Sp and a fractured surface Fp that are aligned in the thickness direction. An end surface 48 forming a part of the outer periphery of the stator core 31 is formed by a sheared surface Sp.
鋼板5に、周方向に隣り合う分割コア形成領域7の境界部分71にのみ切り込みライン9を形成するので、分割コア片41の周方向に隣り合う分割コア32と接触する端面46、47では、厚み方向にせん断面Sp及び破断面Fpが並ぶ。また、鋼板5から固定子コア板4の外形を打ち抜くことにより、分割コア片41のうち固定子コア31の外周の一部を構成する端面48には、せん断面Spが形成される。よって、これらの端面を有する固定子コア31は、鋼板5の歪み及び残留応力が抑制されて形成された固定子コア板4を用いて形成されている。したがって、上述の構成を有する固定子コア31は、高い寸法精度を有する。  Since the cut line 9 is formed in the steel plate 5 only at the boundary portion 71 of the circumferentially adjacent split core forming regions 7, the end surfaces 46 and 47 of the split core piece 41 that contact the circumferentially adjacent split cores 32, The sheared surface Sp and the fractured surface Fp are arranged in the thickness direction. Further, by punching out the outer shape of the stator core plate 4 from the steel plate 5, a sheared surface Sp is formed on the end face 48 of the split core piece 41, which constitutes a part of the outer periphery of the stator core 31. Therefore, the stator core 31 having these end faces is formed using the stator core plate 4 in which the distortion and residual stress of the steel plate 5 are suppressed. Therefore, the stator core 31 having the above-described configuration has high dimensional accuracy. 
また、実施形態に係るモータ1は、固定子コア31を含む。高い寸法精度を有する固定子コア31を用いて、モータ1を効率よく製造することができる。  Further, the motor 1 according to the embodiment includes a stator core 31. The motor 1 can be efficiently manufactured using the stator core 31 having high dimensional accuracy. 
(実施形態2) 次に、図14~図20を用いて、実施形態2に係る固定子コア31の製造方法を説明する。実施形態2に係る製造方法は、歪み防止孔形成工程を有する点で、実施形態1に係る製造方法と異なる。なお、実施形態2の説明では、実施形態1に係る製造方法と共通する部分については、詳細な説明を省略する。  (Embodiment 2) Next, a method for manufacturing the stator core 31 according to Embodiment 2 will be described using FIGS. 14 to 20. The manufacturing method according to the second embodiment differs from the manufacturing method according to the first embodiment in that it includes a distortion prevention hole forming step. Note that in the description of the second embodiment, detailed descriptions of parts common to the manufacturing method according to the first embodiment will be omitted. 
具体的に、図14に示すステップのうち、ステップS11、S14、S15、及び、ステップS17からS19は、図7のステップS1、S3、S4、及び、ステップS6からS8と同様である。そのため、ステップS11、S14、S15、及び、ステップS17からS19については、詳細な説明を省略する。  Specifically, among the steps shown in FIG. 14, steps S11, S14, S15, and steps S17 to S19 are the same as steps S1, S3, S4, and steps S6 to S8 in FIG. Therefore, detailed description of steps S11, S14, S15, and steps S17 to S19 will be omitted. 
実施形態2に係る固定子コア31の製造方法では、中央孔打ち抜き工程と切り込みライン形成工程との間に、鋼板5に、第1歪み防止孔81及び第2歪み防止孔82が形成される。このように鋼板5に第1歪み防止孔81及び第2歪み防止孔82を形成する工程が、図14に示すステップS12の歪み防止孔形成工程である。図15は、第1歪み防止孔81及び第2歪み防止孔82が形成された鋼板5の一例を示す図である。  In the method for manufacturing the stator core 31 according to the second embodiment, the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed in the steel plate 5 between the center hole punching step and the cut line forming step. The step of forming the first strain prevention hole 81 and the second strain prevention hole 82 in the steel plate 5 in this way is the strain prevention hole forming step of step S12 shown in FIG. FIG. 15 is a diagram showing an example of the steel plate 5 in which the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed. 
歪み防止孔形成工程では、第1歪み防止孔81は、鋼板5において、周方向に隣り合う分割コア片形成領域7の境界部分71の径方向外方で且つ境界部分71と繋がる位置に形成される。また、第2歪み防止孔82は、鋼板5において、境界部分71の径方向内方で且つ境界部分71と繋がる位置に形成される。第2歪み防止孔82は、固定子コア板形成領域6内に位置する。第1歪み防止孔81及び第2歪み防止孔82は、例えばプレス加工によって形成される。  In the strain prevention hole forming step, the first strain prevention hole 81 is formed in the steel plate 5 at a position radially outward of the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7 and connected to the boundary portion 71. Ru. Further, the second strain prevention hole 82 is formed in the steel plate 5 at a position that is radially inward of the boundary portion 71 and connected to the boundary portion 71 . The second distortion prevention hole 82 is located within the stator core plate forming region 6. The first distortion prevention hole 81 and the second distortion prevention hole 82 are formed, for example, by press working. 
固定子コア板形成領域6は、周方向に並ぶ複数の分割コア片形成領域7を含む。そのため、固定子コア板形成領域6は、周方向に隣り合う分割コア片形成領域7の境界部分71を複数含む。本実施形態では、第1歪み防止孔81及び第2歪み防止孔82は、全ての境界部分71に対して形成される。  The stator core plate forming area 6 includes a plurality of split core piece forming areas 7 arranged in the circumferential direction. Therefore, the stator core plate forming region 6 includes a plurality of boundary portions 71 between circumferentially adjacent split core piece forming regions 7. In this embodiment, the first distortion prevention hole 81 and the second distortion prevention hole 82 are formed in all the boundary portions 71. 
第2歪み防止孔82は、第1歪み防止孔81よりも開口面積が大きい。よって、境界部分71に形成される切り込みライン9の径方向の内側部分において、鋼板5の歪み及び鋼板5に残る残留応力を効率よく抑制可能である。  The second distortion prevention hole 82 has a larger opening area than the first distortion prevention hole 81. Therefore, in the radially inner portion of the cut line 9 formed in the boundary portion 71, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be efficiently suppressed. 
図15に示すように、第1歪み防止孔81は、周方向に長い楕円形状である。第2歪み防止孔82は、円形状である。しかし、第1歪み防止孔81は、例えば円形状や矩形状などのように楕円形状以外の形状であってもよい。また、第2歪み防止孔82は、例えば矩形状などのように円形状以外の形状でもよい。  As shown in FIG. 15, the first distortion prevention hole 81 has an elliptical shape that is elongated in the circumferential direction. The second distortion prevention hole 82 has a circular shape. However, the first distortion prevention hole 81 may have a shape other than an ellipse, such as a circular shape or a rectangular shape. Further, the second distortion prevention hole 82 may have a shape other than a circular shape, such as a rectangular shape, for example. 
次に、第1歪み防止孔81及び第2歪み防止孔82が形成された鋼板5において、図16に示すように、第2歪み防止孔82の外周側に、径方向に延びるとともに周方向に並ぶ複数の切り込みライン9が形成される。このように鋼板5に切り込みライン9を形成する工程が、図14に示すステップS13の切り込みライン形成工程である。  Next, in the steel plate 5 in which the first strain prevention hole 81 and the second strain prevention hole 82 are formed, as shown in FIG. A plurality of lined cut lines 9 are formed. The step of forming the cut line 9 on the steel plate 5 in this way is the cut line forming step of step S13 shown in FIG. 14. 
切り込みライン9は、分割コア片形成領域7の外周の一部を構成する。しかも、切り込みライン9は、鋼板5において第1歪み防止孔81と第2歪み防止孔82とを繋ぐ位置に形成される。具体的に、複数の切り込みライン9は、分割コア片形成領域7の境界部分71に形成される。  The cut line 9 constitutes a part of the outer periphery of the divided core piece forming region 7. Moreover, the cut line 9 is formed in the steel plate 5 at a position connecting the first distortion prevention hole 81 and the second distortion prevention hole 82. Specifically, the plurality of cut lines 9 are formed at the boundary portion 71 of the divided core piece forming region 7 . 
鋼板5に形成された第1歪み防止孔81及び第2歪み防止孔82により、周方向に隣り合う分割コア片形成領域7の境界部分71に切り込みライン9を形成する際に、境界部分71の近傍で歪みが生じることを抑制できる。さらに、鋼板5に加わる力が境界部分71の近傍に残留することを抑制できる。しかも、切り込みライン9の長さを抑制しつつ、2つの歪み防止孔81、82を繋ぐ切り込みライン9が形成されるので、鋼板5の歪み及び鋼板5に残る残留応力の抑制が可能である。従って、高い寸法精度で鋼板5から固定子コア板4を切り出すことが可能である。よって、高い寸法精度で切り出された固定子コア板4を積層することにより、高い寸法精度を有する固定子コア31を製造することができる。  The first strain prevention hole 81 and the second strain prevention hole 82 formed in the steel plate 5 are used to prevent the boundary portion 71 from forming the cut line 9 at the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7. It is possible to suppress distortion from occurring in the vicinity. Furthermore, it is possible to suppress the force applied to the steel plate 5 from remaining in the vicinity of the boundary portion 71. Moreover, since the cut line 9 connecting the two distortion prevention holes 81 and 82 is formed while suppressing the length of the cut line 9, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator core plates 4 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy. 
実施形態2でも、鋼板5のうちの固定子コア板4が形成される固定子コア板形成領域6内において、周方向に並ぶ複数の分割コア片形成領域7の周方向端部が、鋼板5の厚み方向に押し出される。これにより、固定子コア板形成領域6において複数の分割コア片形成領域7の周方向の境界部分71のみに、切り込みライン9が形成される。また、本実施形態では、固定子コア板形成領域6内の全ての境界部分71に、切り込みライン9が形成される。  In the second embodiment as well, in the stator core plate forming region 6 in which the stator core plate 4 of the steel plate 5 is formed, the circumferential end portions of the plurality of split core piece forming regions 7 arranged in the circumferential direction are is extruded in the thickness direction. As a result, the cut line 9 is formed only in the circumferential boundary portion 71 of the plurality of divided core piece forming regions 7 in the stator core plate forming region 6. Furthermore, in this embodiment, the cut lines 9 are formed in all the boundary parts 71 within the stator core plate forming region 6. 
実施形態1と同様に、切り込みライン9は、上下一対の工具Wと、鋼板5の一部を厚み方向に押す工具Tとを用いて形成される。工具Tは、工具Wに対して、鋼板5の厚み方向に移動可能である。切り込みライン9のうち、少なくとも厚み方向の一部は、切り残される。つまり、工具Tは、鋼板5において境界部分71を完全には切り離さない。切り込みライン9の少なくとも一部は、周方向に繋がっている。そのため、固定子コア板4を積層した固定子コア31を分割した際に、分割コア片41のうちの境界部分71の端面46、47は、厚み方向に、せん断面Spと破断面Fpを有する。  Similar to Embodiment 1, the cut line 9 is formed using a pair of upper and lower tools W and a tool T that presses a part of the steel plate 5 in the thickness direction. The tool T is movable relative to the tool W in the thickness direction of the steel plate 5. At least a portion of the cut line 9 in the thickness direction is left uncut. That is, the tool T does not completely cut off the boundary portion 71 in the steel plate 5. At least a portion of the cut line 9 is continuous in the circumferential direction. Therefore, when the stator core 31 in which the stator core plates 4 are laminated is divided, the end surfaces 46 and 47 of the boundary portion 71 of the divided core pieces 41 have a shear surface Sp and a fracture surface Fp in the thickness direction. . 
図16に示すように、固定子コア板形成領域6が含む分割コア片形成領域7は、切り込みライン9に対して周方向一方に位置する凹形状形成領域R2と、切り込みライン9に対して周方向他方に位置する凸形状形成領域R1とを含む。凸形状形成領域R1及び凹形状形成領域R2は、分割コア片形成領域7において、切り込みライン9の形成のために厚み方向に押し出される領域である。  As shown in FIG. 16, the divided core piece forming area 7 included in the stator core plate forming area 6 includes a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9, and a concave forming area R2 located on one side in the circumferential direction with respect to the cutting line 9. and a convex shape forming region R1 located on the other side of the direction. The convex shape forming region R1 and the concave shape forming region R2 are regions pushed out in the thickness direction for forming the cut line 9 in the split core piece forming region 7. 
図17は、凸型切り込みライン9aの形成の一例を示す図である。図17に示すように、図示省略する工具Tが凸形状形成領域R1を鋼板5の厚み方向に押し出すことにより、凸型切り込みライン9aが形成される、凸型切り込みライン9aは、前記周方向一方に突出する部分を有する。凸形状形成領域R1において、工具Tの厚み方向の移動距離は、境界部分71を完全に切り離さない距離である。  FIG. 17 is a diagram showing an example of forming the convex cut line 9a. As shown in FIG. 17, a tool T (not shown) pushes out the convex shape forming region R1 in the thickness direction of the steel plate 5, thereby forming a convex cut line 9a. It has a protruding part. In the convex shape forming region R1, the moving distance of the tool T in the thickness direction is such a distance that the boundary portion 71 is not completely separated. 
図18は、凹型切り込みライン9bの形成の一例を示す図である。図18に示すように、図示省略する工具Tが凹形状形成領域R2を鋼板5の厚み方向に押し出すことにより、凹型切り込みライン9bが形成される。凹型切り込みライン9bは、前記周方向一方に凹む部分を有する。凹形状形成領域R2においても、工具Tの厚み方向の移動距離は、境界部分71を完全に切り離さない距離である。  FIG. 18 is a diagram showing an example of forming the concave cut line 9b. As shown in FIG. 18, a tool T (not shown) pushes out the concave shape forming region R2 in the thickness direction of the steel plate 5, thereby forming a concave cut line 9b. The concave cut line 9b has a concave portion in one direction in the circumferential direction. Also in the concave shape forming region R2, the moving distance of the tool T in the thickness direction is such a distance that the boundary portion 71 is not completely separated. 
次に、歪み防止孔が形成されたことに基づく、実施形態1と実施形態2のステップS16の固定子コア板外形形成工程の差異を説明する。スロット孔31cの形成後、図19に示すように、鋼板5を厚み方向に見て、第1歪み防止孔81の一部と重なる位置で、固定子コア板形成領域6が鋼板5から打ち抜かれる。言い換えると、鋼板5が、固定子コア31を軸方向に見た外形形状で打ち抜かれる。これにより、分割コア片41が周方向に連結された環状の固定子コア板4が形成される。  Next, a difference between the stator core plate outer shape forming process in step S16 between the first embodiment and the second embodiment, which is based on the formation of the distortion prevention holes, will be explained. After forming the slot holes 31c, as shown in FIG. 19, the stator core plate forming region 6 is punched out from the steel plate 5 at a position overlapping a part of the first distortion prevention hole 81 when looking at the steel plate 5 in the thickness direction. . In other words, the steel plate 5 is punched to have the outer shape of the stator core 31 when viewed in the axial direction. Thereby, an annular stator core plate 4 in which the split core pieces 41 are connected in the circumferential direction is formed. 
固定子コア板外形形成工程では、図示しないパンチが、例えば、鋼板5を円形に打ち抜く。固定子コア板形成領域6において、全ての境界部分71に対して、第1歪み防止孔81が隣接している。鋼板5を厚み方向に見て、前記パンチは、固定子コア板形成領域6に隣接する全ての第1歪み防止孔81の一部と重なる位置で鋼板5を打ち抜く。この点で、実施形態2の製造方法は、実施形態1の製造方法と異なる。  In the stator core plate outer shape forming step, a punch (not shown) punches the steel plate 5 into a circular shape, for example. In the stator core plate forming region 6, the first distortion prevention holes 81 are adjacent to all the boundary portions 71. When looking at the steel plate 5 in the thickness direction, the punch punches the steel plate 5 at a position overlapping with a portion of all the first distortion prevention holes 81 adjacent to the stator core plate forming region 6. In this respect, the manufacturing method of the second embodiment differs from the manufacturing method of the first embodiment. 
実施形態2の固定子コア3の製造方法では、第1歪み防止孔81を利用して、鋼板5から固定子コア板4の外形部分を打ち抜くことが可能である。前記固定子コア板外形形成工程によって、固定子コア板4において、周方向に隣り合う分割コア片41の境界部分71に対して径方向外側には、径方向内方に凹む凹部83が形成される。  In the method for manufacturing the stator core 3 of the second embodiment, it is possible to punch out the outer shape of the stator core plate 4 from the steel plate 5 using the first distortion prevention hole 81. By the stator core plate outer shape forming process, a recess 83 that is recessed radially inward is formed on the stator core plate 4 on the radially outer side with respect to the boundary portion 71 between the circumferentially adjacent split core pieces 41. Ru. 
そのため、図20に示すように、固定子コア31は、固定子コア31の外周側で且つ周方向に隣り合う分割コア32の境界部分71に、径方向内方に凹む凹部34を有する。  Therefore, as shown in FIG. 20, the stator core 31 has a recess 34 that is recessed radially inward on the outer peripheral side of the stator core 31 and at a boundary 71 between circumferentially adjacent split cores 32. 
実施形態2に係る固定子コアの製造方法は、鋼板5に、周方向に隣り合う分割コア片形成領域7の境界部分71の径方向外方で且つ境界部分71と繋がる位置に第1歪み防止孔81を形成するとともに、境界部分71の径方向内方で且つ境界部分71と繋がる位置に第2歪み防止孔82を形成する歪み防止孔形成工程S12をさらに有する。切り込みライン形成工程S13は、第1歪み防止孔81と第2歪み防止孔82とを繋ぐ切り込みライン9を境界部分71に形成する。  In the stator core manufacturing method according to the second embodiment, a first strain prevention material is provided on the steel plate 5 at a position radially outward of and connected to the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7. The method further includes a distortion prevention hole forming step S12 in which the hole 81 is formed and a second distortion prevention hole 82 is formed at a position radially inward of the boundary portion 71 and connected to the boundary portion 71. In the cut line forming step S13, a cut line 9 connecting the first distortion prevention hole 81 and the second distortion prevention hole 82 is formed in the boundary portion 71. 
鋼板5に形成された第1歪み防止孔81及び第2歪み防止孔82により、周方向に隣り合う分割コア片形成領域7の境界部分71に切り込みライン9を形成する際に、境界部分71の近傍で歪みが生じることを抑制できる。さらに、鋼板5に加わる力が境界部分71の近傍に残留することを抑制できる。しかも、切り込みライン9の長さを抑制しつつ、2つの歪み防止孔81、82を繋ぐ切り込みライン9を形成するため、さらに鋼板5の歪み及び鋼板5に残る残留応力の抑制が可能である。従って、高い寸法精度で鋼板5から固定子コア板4を切り出すことが可能である。よって、高い寸法精度で切り出された固定子コア板4を積層することにより、高い寸法精度を有する固定子コア31を製造することができる。  The first strain prevention hole 81 and the second strain prevention hole 82 formed in the steel plate 5 are used to prevent the boundary portion 71 from forming the cut line 9 at the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7. It is possible to suppress distortion from occurring in the vicinity. Furthermore, it is possible to suppress the force applied to the steel plate 5 from remaining in the vicinity of the boundary portion 71. Moreover, since the cut line 9 connecting the two distortion prevention holes 81 and 82 is formed while suppressing the length of the cut line 9, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be further suppressed. Therefore, it is possible to cut out the stator core plate 4 from the steel plate 5 with high dimensional accuracy. Therefore, by stacking the stator core plates 4 cut out with high dimensional accuracy, it is possible to manufacture the stator core 31 with high dimensional accuracy. 
また、歪み防止孔形成工程S12は、第1歪み防止孔81よりも開口面積が大きい第2歪み防止孔82を形成する。  Further, in the distortion prevention hole forming step S12, a second distortion prevention hole 82 having a larger opening area than the first distortion prevention hole 81 is formed. 
周方向に隣り合う分割コア片形成領域7の境界部分71の径方向内方に位置する第2歪み防止孔82は、境界部分71の径方向外方に位置する第1歪み防止孔81よりも大きい。よって、境界部分71に形成される切り込みライン9の径方向の内側部分において、鋼板5の歪み及び鋼板5に残る残留応力を効率よく抑制可能である。  The second distortion prevention hole 82 located radially inward of the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7 is larger than the first strain prevention hole 81 located radially outward of the boundary portion 71. big. Therefore, in the radially inner portion of the cut line 9 formed in the boundary portion 71, distortion of the steel plate 5 and residual stress remaining in the steel plate 5 can be efficiently suppressed. 
<その他の実施形態> 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。  <Other Embodiments> Although the embodiments of the present invention have been described above, the embodiments described above are merely examples for implementing the present invention. Therefore, without being limited to the embodiments described above, the embodiments described above can be modified and implemented as appropriate without departing from the spirit thereof. 
前記各実施形態では、固定子コア板形成領域6において複数の分割コア片形成領域7の周方向の境界部分71の全てに、切り込みライン9が形成される。しかし、複数の分割コア片形成領域の周方向の境界部分の一部のみに切り込みラインが形成されてもよい。言い換えると、固定子コア板は、切り込みラインが形成されていない境界部分を有してもよい。  In each of the embodiments described above, the cut lines 9 are formed in all of the circumferential boundary portions 71 of the plurality of divided core piece forming regions 7 in the stator core plate forming region 6. However, the cut line may be formed only in a part of the circumferential boundary portion of the plurality of divided core piece forming regions. In other words, the stator core plate may have a boundary portion in which no cut line is formed. 
前記各実施形態では、スロット孔31cは、切り込みライン9を形成した後に形成される。しかしながら、スロット孔は、切り込みラインの形成前に形成されてもよい。この場合、スロット孔が第2歪み防止孔とし
て用いられてもよい。 
In each of the embodiments described above, the slot hole 31c is formed after the cut line 9 is formed. However, the slotted holes may be formed prior to forming the score lines. In this case, the slot hole may be used as the second strain prevention hole.
前記各実施形態では、分割コア片41は、周方向一方の端部42に凸部43を有し、周方向他方の端部44に凹部45を有する。しかし、分割コア片は、周方向一方の端部に凹部を有し、周方向他方の端部に凸部を有してもよい。また、分割コア片は、周方向一方の端部に凸部を有さず、周方向他方の端部に凹部を有さなくてもよい。分割コア片の端部は、前記分割コア片を厚み方向に見て直線状、曲線状、または、直線と曲線とが組み合わされた形状であってもよい。  In each of the embodiments described above, the split core piece 41 has a convex portion 43 at one end 42 in the circumferential direction, and a recess 45 at the other end 44 in the circumferential direction. However, the split core piece may have a concave portion at one end in the circumferential direction and a convex portion at the other end in the circumferential direction. Further, the split core piece may not have a convex portion at one end in the circumferential direction, and may not have a concave portion at the other end in the circumferential direction. The end portions of the divided core pieces may have a straight shape, a curved shape, or a combination of a straight line and a curved shape when the divided core piece is viewed in the thickness direction. 
前記各実施形態では、鋼板5には、凸形状形成領域R1を押し出すことにより凸型切り込みライン9aが形成され、凹形状形成領域R2を押し出すことにより凹型切り込みライン9bが形成される。しかしながら、凸型切り込みラインのみが、鋼板に形成されてもよい。また、凹型切り込みラインのみが、鋼板に形成されてもよい。  In each of the above embodiments, the convex cut line 9a is formed in the steel plate 5 by extruding the convex shape forming region R1, and the concave cut line 9b is formed by pushing out the concave shape forming region R2. However, only convex cut lines may be formed in the steel plate. Alternatively, only the concave cut line may be formed on the steel plate. 
前記実施形態2では、第1歪み防止孔81は、鋼板5のうち、周方向に隣り合う分割コア片形成領域7の境界部分71の径方向外方で且つ境界部分71と繋がる位置に形成される。第2歪み防止孔82は、境界部分71の径方向内方で且つ境界部分71と繋がる位置に形成される。しかし、第1歪み防止孔及び第2歪み防止孔の少なくとも一方が、境界部分と繋がらない位置に形成されてもよい。  In the second embodiment, the first strain prevention hole 81 is formed in the steel plate 5 at a position radially outward of the boundary portion 71 of the circumferentially adjacent split core piece forming regions 7 and connected to the boundary portion 71. Ru. The second distortion prevention hole 82 is formed at a position radially inward of the boundary portion 71 and connected to the boundary portion 71 . However, at least one of the first distortion prevention hole and the second distortion prevention hole may be formed at a position that is not connected to the boundary portion. 
前記実施形態2では、鋼板5を厚み方向に見て、第1歪み防止孔81の一部と重なる位置で、鋼板5から、固定子コア板4が形成される固定子コア板形成領域6を打ち抜くことにより、固定子コア板4の外形が形成される。しかし、鋼板を厚み方向に見て、第1歪み防止孔と重ならない位置、又は、境界部分に径方向内方に凹む凹部が形成されない位置を打ち抜くことにより、固定子コア板の外形が形成されてもよい。  In the second embodiment, when looking at the steel plate 5 in the thickness direction, the stator core plate forming region 6 where the stator core plate 4 is formed is formed from the steel plate 5 at a position overlapping a part of the first distortion prevention hole 81. By punching, the outer shape of the stator core plate 4 is formed. However, when looking at the steel plate in the thickness direction, the outer shape of the stator core plate is formed by punching the steel plate at a position that does not overlap with the first strain prevention hole or a position where a recess that is concave inward in the radial direction is not formed at the boundary part. It's okay. 
前記実施形態2では、第2歪み防止孔82は、第1歪み防止孔81よりも開口面積が大きい。しかし、第2歪み防止孔は、第1歪み防止孔よりも開口面積が小さくてもよい。また、第2歪み防止孔の開口面積と第1歪み防止孔の開口面積とが等しくてもよい。  In the second embodiment, the second distortion prevention hole 82 has a larger opening area than the first distortion prevention hole 81. However, the second distortion prevention hole may have a smaller opening area than the first distortion prevention hole. Further, the opening area of the second distortion prevention hole and the opening area of the first distortion prevention hole may be equal. 
前記実施形態2では、固定子コア31は、固定子コア31を軸方向に見て、固定子コア31において周方向に隣り合う分割コア32の境界部分71に対して径方向外側に、径方向内方に凹む凹部34を有する。しかし、固定子コアは、周方向に隣り合う分割コアの境界部分に対して径方向外側に、径方向内方に凹む凹部を有さなくてもよい。 In the second embodiment, when the stator core 31 is viewed in the axial direction, the stator core 31 is arranged radially outwardly with respect to the boundary portion 71 between the circumferentially adjacent split cores 32 in the stator core 31. It has a recess 34 that is recessed inward. However, the stator core does not need to have a concave portion that is concave radially inward on the radially outer side with respect to the boundary portion between circumferentially adjacent split cores.
本発明は、固定子コアの製造方法、及び、固定子コアに利用可能である。 INDUSTRIAL APPLICATION This invention can be utilized for the manufacturing method of a stator core, and a stator core.
1 モータ1a ハウジング2 回転子20 シャフト21 回転子コア22 マグネット3 固定子31 固定子コア31a ヨーク31b ティース31c スロット孔32 分割コア32a 分割ヨーク部33c かしめ部34 凹部36 固定子コイル37 ブラケット4 固定子コア板41 分割コア片41a 分割ヨーク片41b ティース片42 端部43 凸部44 端部45 凹部46 端面47 端面48 端面5 鋼板5a 中央孔6 固定子コア板形成領域7 分割コア片形成領域71 境界部分81 第1歪み防止孔82 第2歪み防止孔83 凹部9 切り込みライン9a 凸型切り込みライン9b 凹型切り込みラインFp 破断面P 中心軸R1 凸形状形成領域R2 凹形状形成領域Sp せん断面S 工具T 工具W 工具 1 Motor 1a Housing 2 Rotor 20 Shaft 21 Rotor core 22 Magnet 3 Stator 31 Stator core 31a Yoke 31b Teeth 31c Slot hole 32 Split core 32a Split yoke portion 33c Caulking portion 34 Recess 36 Stator coil 37 Bracket 4 Stator Core plate 41 Split core piece 41a Split yoke piece 41b Teeth piece 42 End portion 43 Convex portion 44 End portion 45 Recess 46 End face 47 End face 48 End face 5 Steel plate 5a Center hole 6 Stator core plate forming area 7 Split core piece forming area 71 Boundary Part 81 First distortion prevention hole 82 Second distortion prevention hole 83 Recess 9 Cut line 9a Convex cut line 9b Concave cut line Fp Fracture surface P Central axis R1 Convex shape formation region R2 Concave shape formation region Sp Shear surface S Tool T Tool W Tools

Claims (6)

  1. 鋼板から打ち抜かれた複数の環状の固定子コア板が厚み方向に積層された積層体を周方向に複数に分割することにより、板状の分割コア片が厚み方向に複数枚積層された分割コアを形成する固定子コアの製造方法であって、



     前記鋼板のうちの前記固定子コア板が形成される固定子コア板形成領域内において、前記分割コア片が形成されるとともに周方向に並ぶ複数の分割コア片形成領域の周方向端部を前記鋼板の厚み方向に押し出すことにより、前記固定子コア板形成領域において前記複数の分割コア片形成領域の周方向の境界部分のみに、切り込みラインを形成する切り込みライン形成工程と、



     前記分割コア片形成領域のうち、前記切り込みライン形成工程において前記厚み方向に押し出された部分を前記鋼板の元の位置に戻すプッシュバック工程と、を有する、固定子コアの製造方法。
    By dividing a laminate in which multiple annular stator core plates punched from steel plates are stacked in the thickness direction into multiple pieces in the circumferential direction, a split core is created in which multiple plate-shaped split core pieces are stacked in the thickness direction. A method for manufacturing a stator core forming a stator core comprising:



    Within the stator core plate forming region of the steel plate where the stator core plate is formed, the circumferential ends of the plurality of split core piece forming regions where the split core pieces are formed and arranged in the circumferential direction are A cut line forming step of forming a cut line only in the circumferential boundary portion of the plurality of split core piece forming regions in the stator core plate forming region by extruding the steel plate in the thickness direction;



    A method for manufacturing a stator core, comprising: a push-back step of returning a portion of the split core piece forming region pushed out in the thickness direction in the cut line forming step to its original position on the steel plate.
  2. 請求項1に記載の固定子コアの製造方法において



     前記鋼板に、周方向に隣り合う前記分割コア片形成領域の前記境界部分の径方向外方で且つ前記境界部分と繋がる位置に前記第1歪み防止孔を形成するとともに、前記境界部分の径方向内方で且つ前記境界部分と繋がる位置に前記第2歪み防止孔を形成する歪み防止孔形成工程をさらに有し、



     前記切り込みライン形成工程は、前記第1歪み防止孔と前記第2歪み防止孔とを繋ぐ前記切り込みラインを前記境界部分に形成する、固定子コアの製造方法。
    In the method for manufacturing a stator core according to claim 1,



    The first strain prevention hole is formed in the steel plate at a position radially outward of the boundary portion of the circumferentially adjacent divided core piece forming regions and connected to the boundary portion, and the first strain prevention hole is formed in the radial direction of the boundary portion. further comprising a distortion prevention hole forming step of forming the second distortion prevention hole inward and at a position connected to the boundary portion,



    In the stator core manufacturing method, the cut line forming step includes forming the cut line connecting the first strain prevention hole and the second strain prevention hole in the boundary portion.
  3. 請求項2に記載の固定子コアの製造方法において、



     前記歪み防止孔形成工程は、前記第1歪み防止孔よりも開口面積が大きい前記第2歪み防止孔を形成する、固定子コアの製造方法。
    The method for manufacturing a stator core according to claim 2,



    The method for manufacturing a stator core includes forming the second strain prevention hole having a larger opening area than the first strain prevention hole in the strain prevention hole forming step.
  4. 請求項1から3の何れか1項に記載の固定子コアの製造方法において、



     前記切り込みライン形成工程及び前記プッシュバック工程の後に、前記鋼板から、前記固定子コア板が形成される固定子コア板形成領域を打ち抜くことにより、前記固定子コア板の外形を形成する固定子コア板外形形成工程をさらに有する、固定子コアの製造方法。
    In the method for manufacturing a stator core according to any one of claims 1 to 3,



    After the cut line forming step and the pushback step, a stator core that forms the outer shape of the stator core plate by punching out a stator core plate forming region in which the stator core plate is formed from the steel plate. A method for manufacturing a stator core, further comprising a step of forming a plate outer shape.
  5. 板状の分割コア片が厚み方向に複数枚積層された複数の分割コアが中心軸を中心に周方向に並んだ固定子コアであって、



     前記分割コア片は、



      前記固定子コアにおいて他の分割コアの分割コア片と前記周方向に隣り合う端面が、厚み方向に並ぶせん断面及び破断面によって構成され、



      前記固定子コアの外周の一部を構成する端面がせん断面によって構成されている、固定子コア。
    A stator core in which a plurality of split cores each having a plurality of plate-shaped split core pieces laminated in the thickness direction are arranged in a circumferential direction around a central axis,



    The split core piece is



    In the stator core, an end surface adjacent to a split core piece of another split core in the circumferential direction is constituted by a sheared surface and a fractured surface aligned in the thickness direction,



    A stator core, wherein an end face forming a part of an outer periphery of the stator core is formed by a sheared surface.
  6. 請求項5に記載の固定子コアを含むモータ。 A motor comprising the stator core according to claim 5.
PCT/JP2023/010828 2022-03-24 2023-03-20 Stator core manufacturing method, stator core, and motor WO2023182256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014831.1A CN118339749A (en) 2022-03-24 2023-03-20 Method for manufacturing stator core, and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049000 2022-03-24
JP2022-049000 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182256A1 true WO2023182256A1 (en) 2023-09-28

Family

ID=88100965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010828 WO2023182256A1 (en) 2022-03-24 2023-03-20 Stator core manufacturing method, stator core, and motor

Country Status (2)

Country Link
CN (1) CN118339749A (en)
WO (1) WO2023182256A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005155A (en) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp Method for manufacturing laminated core
JP2015080412A (en) * 2015-01-26 2015-04-23 株式会社三井ハイテック Method for manufacturing laminated iron core
WO2016147214A1 (en) * 2015-03-16 2016-09-22 黒田精工株式会社 Method for manufacturing laminated iron core and device for manufacturing laminated iron core
WO2018062003A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Method for producing laminated core
WO2019049486A1 (en) * 2017-09-07 2019-03-14 日本電産株式会社 Stator core manufacturing method, motor provided with stator core manufactured by stator core manufacturing method, stator core manufacturing device, and method for manufacturing stacked member
JP2021052574A (en) * 2019-09-18 2021-04-01 日本電産株式会社 Stator, motor, and manufacturing method of stator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005155A (en) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp Method for manufacturing laminated core
JP2015080412A (en) * 2015-01-26 2015-04-23 株式会社三井ハイテック Method for manufacturing laminated iron core
WO2016147214A1 (en) * 2015-03-16 2016-09-22 黒田精工株式会社 Method for manufacturing laminated iron core and device for manufacturing laminated iron core
WO2018062003A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Method for producing laminated core
WO2019049486A1 (en) * 2017-09-07 2019-03-14 日本電産株式会社 Stator core manufacturing method, motor provided with stator core manufactured by stator core manufacturing method, stator core manufacturing device, and method for manufacturing stacked member
JP2021052574A (en) * 2019-09-18 2021-04-01 日本電産株式会社 Stator, motor, and manufacturing method of stator

Also Published As

Publication number Publication date
CN118339749A (en) 2024-07-12

Similar Documents

Publication Publication Date Title
JP4886375B2 (en) Laminated core manufacturing method
US10284062B2 (en) Method for manufacturing workpiece and method for manufacturing laminated core
US10587172B2 (en) Manufacturing method for laminated iron core and manufacturing device for laminated iron core
EP3093963A1 (en) Segmented laminated core and method for manufacturing the same
WO2012114577A1 (en) Method of manufacturing stator core, and stator core
EP3474427B1 (en) Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine
JP7047847B2 (en) Stator core manufacturing method, motor with stator core manufacturing method, stator core manufacturing equipment and laminated member manufacturing method
WO2017104403A1 (en) Core sheet, divided laminated core, stator, and method for manufacturing divided laminated core
WO2023182256A1 (en) Stator core manufacturing method, stator core, and motor
JP2007089360A (en) Manufacturing method of laminated iron core
WO2023182257A1 (en) Stator core manufacturing method, stator core, and motor
JP5248972B2 (en) Method for manufacturing laminated iron core and mold apparatus
JP4912088B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
WO2019159847A1 (en) Method for manufacturing core member, and core member
CN111033981B (en) Method for producing steel sheet laminate and molded steel sheet laminate
JP6708360B1 (en) Split core of stator core, stator having the same, method of manufacturing split core of stator core, and manufacturing apparatus
WO2023162996A1 (en) Stator core manufacturing method and stator core
WO2022137621A1 (en) Split core, dynamo-electric machine, method for manufacturing split core, and method for manufacturing dynamo-electric machine
WO2022209252A1 (en) Method for manufacturing rotor for ipm motor and rotor for ipm motor
JP7067564B2 (en) Stator core manufacturing method
US20220166295A1 (en) Stator core plate manufacturing method, stator core plate, stator core, and mold
JP2014192917A (en) Iron core member, method of manufacturing laminated core of dynamo-electric machine, laminated core of dynamo-electric machine, rotor of dynamo-electric machine and dynamo-electric machine
CN118264057A (en) Laminated iron core and method for manufacturing laminated iron core
CN111758208A (en) Rotor core component manufacturing method and rotor core component
JP2013158159A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380014831.1

Country of ref document: CN