JP2015078719A - Device and method for supplying low-temperature liquefied gas - Google Patents

Device and method for supplying low-temperature liquefied gas Download PDF

Info

Publication number
JP2015078719A
JP2015078719A JP2013214741A JP2013214741A JP2015078719A JP 2015078719 A JP2015078719 A JP 2015078719A JP 2013214741 A JP2013214741 A JP 2013214741A JP 2013214741 A JP2013214741 A JP 2013214741A JP 2015078719 A JP2015078719 A JP 2015078719A
Authority
JP
Japan
Prior art keywords
liquefied gas
gas supply
pump
liquefied
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013214741A
Other languages
Japanese (ja)
Other versions
JP5997122B2 (en
JP2015078719A5 (en
Inventor
石川 武史
Takeshi Ishikawa
武史 石川
邦彦 賀陽
Kunihiko Kayo
邦彦 賀陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Iwatani Corp
Original Assignee
Toyota Motor Corp
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Iwatani International Corp filed Critical Toyota Motor Corp
Priority to JP2013214741A priority Critical patent/JP5997122B2/en
Publication of JP2015078719A publication Critical patent/JP2015078719A/en
Publication of JP2015078719A5 publication Critical patent/JP2015078719A5/ja
Application granted granted Critical
Publication of JP5997122B2 publication Critical patent/JP5997122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable prompt precooling of a liquefied gas supply pump for pressure-feeding low-temperature liquefied gas.SOLUTION: A liquefied gas supply device 10 includes a liquefied gas supply pipeline system 30, an atmospheric release pipeline system 40 and a circulation pipeline system 50 as passing pipeline systems of liquefied nitrogen gas. Prior to supply of the liquefied nitrogen gas under operation control of a liquefied gas supply pump 34 included in the liquefied gas supply pipeline system 30, first control and second control are executed in this order. In the first control, after an auxiliary pump 44 included in the atmospheric release pipeline system 40 is stopped, the pipeline system through which the liquefied nitrogen gas passes is switched to the atmospheric release pipeline system 40. In the second control, after the gas pipeline system is switched to the circulation pipeline system 50, the operation of the auxiliary pump 44 is controlled, so as to precool the liquefied gas supply pump 34 by using the liquefied nitrogen gas pressure-fed by the pump.

Description

本発明は、低温液化ガスの供給装置と供給方法に関する。   The present invention relates to a low temperature liquefied gas supply apparatus and method.

ガスを液化した低温液化ガスをその貯槽から、高圧ガスタンク等の液化ガス供給先に供給するに当たり、低温液化ガスを圧送する液化ガス供給ポンプが用いられる。この液化ガス供給ポンプは、貯槽から液化ガス供給先に延びる液化ガス供給管路系に配設され、低温液化ガスの圧送のための起動時において、予冷される。このポンプ予冷は、ポンプでのキャビテーション抑制等の上から重要視され、貯槽の低温液化ガスを、貯槽内の貯留内圧と液化ガス供給ポンプを含む管路系の管路内圧力との差圧にて送り込むことでなされている。そして、ポンプ予冷に伴う種々の提案がなされている(例えば、特許文献1等)。   A liquefied gas supply pump that pumps the low-temperature liquefied gas is used to supply the low-temperature liquefied gas obtained by liquefying the gas from the storage tank to a liquefied gas supply destination such as a high-pressure gas tank. The liquefied gas supply pump is disposed in a liquefied gas supply line system extending from the storage tank to the liquefied gas supply destination, and is pre-cooled at the time of startup for feeding low-temperature liquefied gas. This pump pre-cooling is regarded as important from the viewpoint of suppressing cavitation in the pump, and the low-temperature liquefied gas in the storage tank is converted into a differential pressure between the storage internal pressure in the storage tank and the pressure in the pipe system including the liquefied gas supply pump. It is done by sending it. Various proposals associated with pump pre-cooling have been made (for example, Patent Document 1).

特開2008−75705号公報JP 2008-75705 A 特開2008−196687号公報JP 2008-196687 A

上記の特許文献によれば、ポンプや管路内にポンプ予冷に伴って残存する残留ガスや気化ガスの排出促進や低温液化ガスの蒸発ロス削減を図ることができる。しかしながら、液化ガス供給先へのガス圧送を担う液化ガス供給ポンプ自体の予冷の迅速化を図る上での改善の余地がある。また、液化ガス供給ポンプの予冷がなされている期間において、予冷のために管路に供給された低温液化ガスは、通常、大気放出される。このため、液化ガス供給ポンプの予冷期間が長いと、ガスの大気放出量が増大する。こうしたことから、液化ガス供給ポンプの予冷の迅速化が要請されるに到った。この他、液化ガス供給ポンプの予冷の迅速化を図る上での簡便な機器構成や機器制御、延いては、低コスト化を可能とすることも要請されている。   According to the above-mentioned patent documents, it is possible to promote the discharge of residual gas and vaporized gas remaining in the pump and the pipe line with the precooling of the pump and to reduce the evaporation loss of the low-temperature liquefied gas. However, there is room for improvement in speeding up the precooling of the liquefied gas supply pump itself that is responsible for the gas pressure supply to the liquefied gas supply destination. In addition, during the period when the liquefied gas supply pump is precooled, the low-temperature liquefied gas supplied to the pipeline for precooling is normally released to the atmosphere. For this reason, if the precooling period of the liquefied gas supply pump is long, the amount of gas released into the atmosphere increases. For these reasons, it has been required to speed up the precooling of the liquefied gas supply pump. In addition, there is a demand for a simple device configuration and device control for speeding up the precooling of the liquefied gas supply pump, and further enabling cost reduction.

上記した課題の少なくとも一部を達成するために、本発明は、以下の形態として実施することができる。   In order to achieve at least a part of the problems described above, the present invention can be implemented as the following forms.

(1)本発明の一形態によれば、低温液化ガスの供給装置が提供される。この低温液化ガスの供給装置は、低温液化ガスの貯槽から該低温液化ガスを液化ガス供給先に供給する低温液化ガスの供給装置であって、前記低温液化ガスの圧送が可能な液化ガス供給ポンプを介して、前記低温液化ガスを前記貯槽から前記液化ガス供給先に供給送出する液化ガス供給管路系と、前記低温液化ガスの圧送が可能であって前記液化ガス供給ポンプより熱容量の小さい小熱容量ガスポンプを介して、前記低温液化ガスを前記貯槽から大気放出する大気放出管路系と、前記貯槽から前記小熱容量ガスポンプと前記液化ガス供給ポンプとを経由して前記低温液化ガスが循環する循環管路系と、前記低温液化ガスの供給に際して使用するガス管路系を、前記液化ガス供給管路系と前記大気放出管路系と前記循環管路系のいずれかに切り換える共に、該切り換えた管路系に応じて前記液化ガス供給ポンプと前記小熱容量ガスポンプとを制御する制御部とを備える。そして、この制御部は、前記液化ガス供給ポンプを介した前記液化ガス供給先への前記供給送出に先立って、前記小熱容量ガスポンプを停止制御すると共に前記ガス管路系を前記大気放出管路系に切り換える第1制御と、前記ガス管路系を前記循環管路系に切り換えると共に前記小熱容量ガスポンプを駆動制御する第2制御とをこの順に順次実行する。   (1) According to one aspect of the present invention, a low-temperature liquefied gas supply device is provided. The low-temperature liquefied gas supply device is a low-temperature liquefied gas supply device that supplies the low-temperature liquefied gas from a low-temperature liquefied gas storage tank to a liquefied gas supply destination, and is capable of pumping the low-temperature liquefied gas. The liquefied gas supply line system for supplying and sending the low-temperature liquefied gas from the storage tank to the liquefied gas supply destination, and the low-temperature liquefied gas can be pressure-fed and have a smaller heat capacity than the liquefied gas supply pump. Circulation through which the low-temperature liquefied gas circulates from the storage tank through the small heat capacity gas pump and the liquefied gas supply pump through the heat capacity gas pump through the atmospheric discharge line system for discharging the low-temperature liquefied gas from the storage tank to the atmosphere The pipeline system and the gas pipeline system used for supplying the low-temperature liquefied gas are cut into any one of the liquefied gas supply pipeline system, the atmospheric discharge pipeline system, and the circulation pipeline system. El together and a control unit for controlling said small heat capacity gas pump and the liquefied gas supply pump in response to the switching tube line system. The control unit controls to stop the small heat capacity gas pump prior to the supply and delivery to the liquefied gas supply destination via the liquefied gas supply pump, and the gas line system is connected to the atmospheric discharge line system. And a second control for switching the gas pipeline system to the circulation pipeline system and controlling the driving of the small heat capacity gas pump in this order.

上記の形態の低温液化ガスの供給装置は、第1制御により、貯槽内の貯留内圧と大気放出管路系の管路内圧との差圧にて、低温液化ガスを貯槽から停止状態の小熱容量ガスポンプを経て大気放出管路系を通過させる。よって、大気放出管路系を通過する低温液化ガスにより、小熱容量ガスポンプは停止状態のまま予冷される。小熱容量ガスポンプは液化ガス供給ポンプより熱容量が小さいことから、液化ガス供給ポンプの予冷に比すれば、小熱容量ガスポンプの予冷は迅速に進む。この第1制御の間、低温液化ガスは、大気放出管路系の大気放出端から大気放出されるが、小熱容量ガスポンプの予冷が迅速に進むことから、低温液化ガスの大気放出量は、少量となる。上記の形態の低温液化ガスの供給装置は、第1制御に続く第2制御により、小熱容量ガスポンプを駆動制御して当該ポンプにて循環管路系に低温液化ガスを圧送し、循環管路系を通過する低温液化ガスにより、液化ガス供給ポンプを予冷する。小熱容量ガスポンプによる低温液化ガスの圧送は、貯槽内の貯留内圧と貯槽と繋がった管路系の管路内圧との差圧による低温液化ガスの送り出しに比すれば、大流量での循環管路系における低温液化ガスの送り出しを可能とする。この結果、上記の形態の低温液化ガスの供給装置によれば、液化ガス供給管路系の液化ガス供給ポンプの予冷の迅速化を図ることができる。しかも、第2制御の間において、低温液化ガスは、循環管路系を循環するに過ぎず、大気放出はなされないので、第1制御の間の低温液化ガスの大気放出量は少量であることと相まって、上記の形態の低温液化ガスの供給装置によれば、低温液化ガスの大気放出を低減できる。そして、上記の形態の低温液化ガスの供給装置によれば、迅速に予冷済みの液化ガス供給ポンプを駆動制御して、貯槽から低温液化ガスを液化ガス供給管路系にて液化ガス供給先に供給でき、供給についても速やかに実行できる。   The low-temperature liquefied gas supply device having the above-described form is a small heat capacity in which the low-temperature liquefied gas is stopped from the storage tank by the first control by the differential pressure between the storage internal pressure in the storage tank and the internal pressure of the atmospheric discharge pipe system. Pass through the atmospheric discharge line system through a gas pump. Therefore, the small heat capacity gas pump is precooled in a stopped state by the low-temperature liquefied gas passing through the atmospheric discharge pipeline system. Since the heat capacity of the small heat capacity gas pump is smaller than that of the liquefied gas supply pump, the precooling of the small heat capacity gas pump proceeds more quickly than the precooling of the liquefied gas supply pump. During this first control, the low-temperature liquefied gas is released into the atmosphere from the atmospheric discharge end of the atmospheric discharge pipe system, but since the pre-cooling of the small heat capacity gas pump proceeds rapidly, the amount of low-temperature liquefied gas released into the atmosphere is small. It becomes. The low-temperature liquefied gas supply device having the above-described form is configured to drive and control the small heat capacity gas pump by the second control following the first control, and to pump the low-temperature liquefied gas to the circulation line system by the pump. The liquefied gas supply pump is pre-cooled by the low-temperature liquefied gas passing through. The low-temperature liquefied gas pumping with a small heat capacity gas pump is a circulation pipe with a large flow rate compared to the delivery of low-temperature liquefied gas due to the differential pressure between the storage internal pressure in the storage tank and the pipe internal pressure connected to the storage tank. Enables low temperature liquefied gas delivery in the system. As a result, according to the low temperature liquefied gas supply device of the above-described form, it is possible to speed up the precooling of the liquefied gas supply pump of the liquefied gas supply pipeline system. Moreover, during the second control, the low-temperature liquefied gas only circulates in the circulation line system and is not released into the atmosphere, so the amount of low-temperature liquefied gas released into the atmosphere during the first control is small. In combination with the above, according to the low-temperature liquefied gas supply device of the above-described form, the release of the low-temperature liquefied gas into the atmosphere can be reduced. And according to the low temperature liquefied gas supply device of the above-mentioned form, the precooled liquefied gas supply pump is driven and controlled quickly, and the low temperature liquefied gas is supplied from the storage tank to the liquefied gas supply destination in the liquefied gas supply pipeline system. Supply can be performed quickly.

(2)上記形態の低温液化ガスの供給装置において、前記循環管路系と前記液化ガス供給管路系の両管路系は、前記貯槽から前記小熱容量ガスポンプの下流までの前記大気放出管路系の管路と、該管路から前記小熱容量ガスポンプの下流で分岐して前記液化ガス供給ポンプに到る管路とを含むようにしてもよい。こうすれば、管路経路の一部共通化により、管路構成の簡略化を図ることができる。   (2) In the low-temperature liquefied gas supply device according to the above aspect, both the circulation line system and the liquefied gas supply line system are the atmospheric discharge line from the storage tank to the downstream of the small heat capacity gas pump. You may make it contain the pipe line of a system | strain, and the pipe line branched downstream from the said small heat capacity gas pump to the said liquefied gas supply pump. In this way, the pipe line configuration can be simplified by partially sharing the pipe line path.

(3)本発明の他の形態によれば、低温液化ガスの供給方法が提供される。この低温液化ガスの供給方法は、低温液化ガスの圧送が可能な液化ガス供給ポンプを介して、前記低温液化ガスの前記貯槽から前記低温液化ガスを前記液化ガス供給先に供給送出する液化ガス供給管路系と、前記低温液化ガスの圧送が可能であって前記液化ガス供給ポンプより熱容量の小さい小熱容量ガスポンプを介して、前記低温液化ガスを前記貯槽から大気放出する大気放出管路系と、前記貯槽から前記小熱容量ガスポンプと前記液化ガス供給ポンプとを経由して前記低温液化ガスが循環する循環管路系とを用いて、前記低温液化ガスを前記貯槽から前記液化ガス供給先に供給する低温液化ガスの供給方法であって、前記小熱容量ガスポンプを停止制御すると共に、前記低温液化ガスの供給に際して使用するガス管路系を前記大気放出管路系に切り換える第1工程と、前記ガス管路系を前記循環管路系に切り換えると共に、前記小熱容量ガスポンプを駆動制御する第2工程と、前記ガス管路系を前記液化ガス供給管路系に切り換えると共に、前記液化ガス供給ポンプを駆動制御する第3工程とを備える。   (3) According to another aspect of the present invention, a method for supplying a low-temperature liquefied gas is provided. This low-temperature liquefied gas supply method is a liquefied gas supply that supplies the low-temperature liquefied gas from the storage tank of the low-temperature liquefied gas to the liquefied gas supply destination via a liquefied gas supply pump capable of pumping the low-temperature liquefied gas. An atmospheric discharge line system for releasing the low-temperature liquefied gas from the storage tank through a small heat capacity gas pump capable of pumping the low-temperature liquefied gas and having a smaller heat capacity than the liquefied gas supply pump; The low-temperature liquefied gas is supplied from the storage tank to the liquefied gas supply destination by using a circulation line system in which the low-temperature liquefied gas circulates from the storage tank via the small heat capacity gas pump and the liquefied gas supply pump. A method of supplying a low-temperature liquefied gas, wherein the small heat capacity gas pump is stopped and controlled, and a gas line system used for supplying the low-temperature liquefied gas is used as the atmospheric discharge pipe. A first step of switching to a system; a second step of switching the gas pipeline system to the circulation pipeline system; and driving and controlling the small heat capacity gas pump; and the gas pipeline system to the liquefied gas supply pipeline system And a third step of driving and controlling the liquefied gas supply pump.

上記の形態の低温液化ガスの供給方法によっても、第1工程での小熱容量ガスポンプの予冷の迅速化、および、第2工程での、小熱容量ガスポンプによる大流量での低温液化ガスの圧送による液化ガス供給ポンプの予冷の迅速化を図ることができる。そして、上記の形態の低温液化ガスの供給方法によれば、第3工程にて、ガス管路系を液化ガス供給管路系に切り換えた上で液化ガス供給ポンプを駆動制御して、貯槽から低温液化ガスを液化ガス供給管路系にて液化ガス供給先に供給する。また、第2工程では低温液化ガスを大気放出しないので、第1工程での低温液化ガスの大気放出量は少量であることと相まって、上記の形態の低温液化ガスの供給方法によっても、低温液化ガスの大気放出を低減できる。   Also by the low temperature liquefied gas supply method of the above form, the liquefaction by the rapid cooling of the small heat capacity gas pump in the first step and the low temperature liquefied gas pumping at a large flow rate by the small heat capacity gas pump in the second step. It is possible to speed up the pre-cooling of the gas supply pump. According to the low-temperature liquefied gas supply method of the above aspect, in the third step, the gas line system is switched to the liquefied gas supply line system, and then the liquefied gas supply pump is driven and controlled. The low-temperature liquefied gas is supplied to the liquefied gas supply destination through the liquefied gas supply pipeline system. Further, since the low temperature liquefied gas is not released into the atmosphere in the second step, the amount of the low temperature liquefied gas released into the atmosphere in the first step is small and coupled with the low temperature liquefied gas supply method of the above form. Gas emission to the atmosphere can be reduced.

なお、本発明は、種々の形態で実現することが可能であり、例えば、高圧ガスタンクと燃料電池等のガス消費機器およびこれらを繋ぐガス流路を搭載した車両へのガス供給ステーションや、工場や店舗或いは住居等に設置した燃料電池に付属の高圧ガスタンクにガス供給を図るガス供給車両といった形態とすることもできる。   The present invention can be realized in various forms, for example, a gas supply station to a vehicle equipped with a gas consuming device such as a high-pressure gas tank and a fuel cell, and a gas flow path connecting them, a factory, A gas supply vehicle that supplies gas to a high-pressure gas tank attached to a fuel cell installed in a store or a residence can also be used.

本発明の実施形態としての液化ガス供給装置10の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the liquefied gas supply apparatus 10 as embodiment of this invention. バルブ制御とポンプ制御を介して実行される予冷・ガス供給制御の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the precooling and gas supply control performed via valve | bulb control and pump control. バルブ制御とポンプ制御を介して実行される他の実施形態の予冷・ガス供給制御の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the precooling and gas supply control of other embodiment performed via valve | bulb control and pump control.

以下、本発明の実施の形態について、図面に基づき説明する。図1は本発明の実施形態としての液化ガス供給装置10の概略構成を示す説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of a liquefied gas supply apparatus 10 as an embodiment of the present invention.

図示するように、液化ガス供給装置10は、貯槽20と、液化ガス供給管路系30と、大気放出管路系40と、循環管路系50と、制御装置100とを備える。貯槽20は、コールドエバポレーター(CE)とも称され、高圧環境下で液化済みの窒素ガス(以下、液化窒素ガスと称する)を貯留し、補充充填バルブ21から到る補充管路22と、圧力センサー23とを備える。補充充填バルブ21は、流量調整機能を有するバルブ構成とされ、後述の制御装置100の制御下において、液化窒素ガスを図示しない供給ラインから補充管路22を経て貯槽20に導く。圧力センサー23は、貯槽20における液化窒素ガスの圧力を検出し、その検出結果を制御装置100に送信する。液化窒素ガスは、その液化の際に既に低温となっており、低温のまま貯槽20に貯留される。後述の制御装置100は、圧力センサー23の検出圧力に基づいて補充充填バルブ21を駆動制御し、随時、貯槽20に液化窒素ガスを補充する。なお、貯槽20に貯留する他の液化ガス種として、液化水素、液化酸素等を採用してもよい。   As illustrated, the liquefied gas supply device 10 includes a storage tank 20, a liquefied gas supply pipeline system 30, an atmospheric discharge pipeline system 40, a circulation pipeline system 50, and a control device 100. The storage tank 20 is also called a cold evaporator (CE), stores nitrogen gas that has been liquefied in a high-pressure environment (hereinafter referred to as liquefied nitrogen gas), a replenishment conduit 22 that reaches from a replenishment filling valve 21, and a pressure sensor. 23. The replenishment filling valve 21 is configured to have a flow rate adjusting function, and guides liquefied nitrogen gas from a supply line (not shown) to the storage tank 20 through a replenishment line 22 under the control of the control device 100 described later. The pressure sensor 23 detects the pressure of the liquefied nitrogen gas in the storage tank 20 and transmits the detection result to the control device 100. The liquefied nitrogen gas is already at a low temperature during the liquefaction and is stored in the storage tank 20 at a low temperature. The control device 100 described later drives and controls the refill valve 21 based on the pressure detected by the pressure sensor 23, and replenishes the storage tank 20 with liquefied nitrogen gas as needed. Note that liquefied hydrogen, liquefied oxygen, or the like may be employed as another liquefied gas species stored in the storage tank 20.

大気放出管路系40は、貯槽20の下端から延びる上流管路40uと、この上流管路40uに繋がる中間域管路40mと、この中間域管路40mに繋がる大気放出管路40dとを備える。この他、大気放出管路系40は、中間域管路40mから分岐して貯槽20に到る第1管路41と第2管路42とを備え、この両管路と大気放出管路40dに、開閉バルブV3〜V5を備える。また、大気放出管路系40は、上流管路40uに開閉バルブV1を備える。これら開閉バルブV1および開閉バルブV3〜V5は、制御装置100の制御を受けて、管路を開閉する。なお、開閉バルブV4は、流量調整機能を有するバルブ構成とされている。   The atmospheric discharge pipe system 40 includes an upstream pipe 40u extending from the lower end of the storage tank 20, an intermediate area pipe 40m connected to the upstream pipe 40u, and an atmospheric discharge pipe 40d connected to the intermediate pipe 40m. . In addition, the atmospheric discharge pipeline system 40 includes a first pipeline 41 and a second pipeline 42 branched from the intermediate zone pipeline 40m to the storage tank 20, and both the pipelines and the atmospheric pipeline 40d. Are provided with on-off valves V3 to V5. Further, the atmospheric discharge pipe system 40 includes an opening / closing valve V1 in the upstream pipe line 40u. These on-off valves V1 and on-off valves V3 to V5 open and close the pipelines under the control of the control device 100. The on-off valve V4 has a valve configuration having a flow rate adjusting function.

第1管路41は、貯槽20の天井壁近傍まで延び、開閉バルブV3が開弁された際に、大気放出管路系40の管路内或いは補助ポンプ44の液化窒素ガスや気化ガスを、貯槽20に貯留済みの液化窒素ガスの液面より上方側から、導く。第2管路42は、後述の予冷・ガス供給制御の際の管路内或いはポンプ内の残留液化窒素ガスを、開閉バルブV4による流量調整を経て、貯槽20にその底部から導く。また、大気放出管路系40は、上流管路40uと中間域管路40mの繋ぎ箇所に補助ポンプ44を備える他、中間域管路40mに温度センサー45と圧力センサー46とを備える。   The first pipeline 41 extends to the vicinity of the ceiling wall of the storage tank 20, and when the on-off valve V3 is opened, the liquefied nitrogen gas or vaporized gas in the pipeline of the atmospheric discharge pipeline system 40 or the auxiliary pump 44 is The liquefied nitrogen gas stored in the storage tank 20 is guided from above the liquid level. The second pipe 42 guides the residual liquefied nitrogen gas in the pipe line or the pump during pre-cooling and gas supply control, which will be described later, to the storage tank 20 from the bottom through the flow rate adjustment by the opening / closing valve V4. In addition, the atmospheric discharge pipe system 40 includes an auxiliary pump 44 at a connection portion between the upstream pipe 40u and the intermediate area pipe 40m, and includes a temperature sensor 45 and a pressure sensor 46 in the intermediate area pipe 40m.

補助ポンプ44は、遠心タイプのポンプ構成とされ、液化窒素ガスを昇圧して下流に圧送する。この場合、補助ポンプ44は、後述の液化ガス供給ポンプ34に比して小型かつ小容量の圧送能力とされているので、その熱容量は、液化ガス供給ポンプ34より小さく、液化ガス供給ポンプ34の熱容量のほぼ1/10〜1/5である。また、この補助ポンプ44は、その吐出圧力が定常運転で0.8MPaと低圧であるものの、比較的、大流量での吐出が可能な機能を有する。温度センサー45は、大気放出管路系40、詳しくは補助ポンプ44の下流側(アウト側:2次側)にて中間域管路40mの管路内の液化窒素ガスの温度を検出し、その検出結果を制御装置100に送信する。圧力センサー46は、大気放出管路系40、詳しくは補助ポンプ44の下流側(アウト側:2次側)にて中間域管路40mの管路内の液化窒素ガスの圧力を検出し、その検出結果を制御装置100に送信する。大気放出管路系40は、こうした管路構成を有することから、液化窒素ガスの圧送が可能であって液化ガス供給ポンプ34より小熱容量の補助ポンプ44を介して、貯槽20から液化窒素ガスを大気放出する。   The auxiliary pump 44 has a centrifugal pump configuration, and pressurizes the liquefied nitrogen gas and pumps it downstream. In this case, the auxiliary pump 44 is smaller and has a smaller capacity than the liquefied gas supply pump 34 described later, so that its heat capacity is smaller than that of the liquefied gas supply pump 34 and the liquefied gas supply pump 34 It is approximately 1/10 to 1/5 of the heat capacity. Further, the auxiliary pump 44 has a function capable of discharging at a relatively large flow rate although its discharge pressure is a low pressure of 0.8 MPa in a steady operation. The temperature sensor 45 detects the temperature of the liquefied nitrogen gas in the pipeline of the intermediate zone pipeline 40m on the downstream side (outside: secondary side) of the auxiliary pump 44, more specifically, the temperature of the liquefied nitrogen gas, The detection result is transmitted to the control device 100. The pressure sensor 46 detects the pressure of the liquefied nitrogen gas in the pipeline of the intermediate zone pipeline 40m on the downstream side (outside: secondary side) of the auxiliary pump 44, more specifically in the pipeline of the intermediate zone pipeline 40m, The detection result is transmitted to the control device 100. Since the atmospheric discharge pipe system 40 has such a pipe structure, the liquefied nitrogen gas can be pumped and the liquefied nitrogen gas is supplied from the storage tank 20 via the auxiliary pump 44 having a smaller heat capacity than the liquefied gas supply pump 34. Release into the atmosphere.

液化ガス供給管路系30は、上記した大気放出管路系40の一部管路、詳しくは、大気放出管路系40の上流管路40uと補助ポンプ44の下流の中間域管路40mと、当該管路から分岐して液化ガス供給ポンプ34の1次側ポート(イン側)に到る分岐管路30vと、液化ガス供給ポンプ34の下流側(アウト側:2次側)の下流供給管路30dとを備える。この下流供給管路30dは、その末端において、液化ガス供給先である高圧ガスタンクTが装着され、管路に開閉バルブ36を備える。開閉バルブ36は、制御装置100の制御を受けて管路を開閉する。   The liquefied gas supply pipeline system 30 includes a partial pipeline of the above-described atmospheric discharge pipeline system 40, specifically, an upstream pipeline 40u of the atmospheric discharge pipeline system 40 and an intermediate zone pipeline 40m downstream of the auxiliary pump 44. The branch pipe 30v that branches from the pipe and reaches the primary port (in side) of the liquefied gas supply pump 34, and the downstream supply (out side: secondary side) downstream of the liquefied gas supply pump 34 A pipe line 30d. The downstream supply line 30d is fitted with a high-pressure gas tank T as a liquefied gas supply destination at the end thereof, and is provided with an opening / closing valve 36 in the pipe line. The open / close valve 36 opens and closes the pipeline under the control of the control device 100.

液化ガス供給ポンプ34は、プランジャー駆動機構のポンプ構成とされ、1次側から供給を受けた液化窒素ガスを、高圧ガスタンクTに適合した充填圧力、例えば70MPaまで昇圧して、2次側の下流供給管路30dに圧送する。液化ガス供給管路系30は、こうした管路構成を有することから、液化窒素ガスを圧送する液化ガス供給ポンプ34を介して、貯槽20から液化ガス供給先である高圧ガスタンクTに液化窒素ガスを供給送出する。   The liquefied gas supply pump 34 has a plunger drive mechanism pump configuration, and the liquefied nitrogen gas supplied from the primary side is boosted to a filling pressure suitable for the high-pressure gas tank T, for example, 70 MPa, and is supplied to the secondary side. Pump to the downstream supply line 30d. Since the liquefied gas supply pipeline system 30 has such a pipeline configuration, the liquefied nitrogen gas is supplied from the storage tank 20 to the high-pressure gas tank T that is the liquefied gas supply destination via the liquefied gas supply pump 34 that pumps the liquefied nitrogen gas. Supply and send out.

循環管路系50は、上記した大気放出管路系40の一部管路、詳しくは、大気放出管路系40の上流管路40uと補助ポンプ44の下流の中間域管路40mと、当該管路から分岐して液化ガス供給管路系30の一部管路をなす分岐管路30vと、液化ガス供給ポンプ34の筐体において1次側の分岐管路30vと繋がる中間域循環管路50mと、この中間域循環管路50mに繋がる下流循環管路50dとを備える。循環管路系50は、こうした管路構成を有することから、貯槽20から補助ポンプ44と液化ガス供給ポンプ34とをこの順で経由して液化窒素ガスを循環環流させる。この他、循環管路系50は、中間域循環管路50mから分岐して貯槽20に到る貯槽内管路51と大気放出管路52とを備え、この両管路と下流循環管路50dに、開閉バルブV6〜V8を備え、中間域循環管路50mに開閉バルブV2と温度センサー55とを備える。これら開閉バルブV2および開閉バルブV6〜V8は、制御装置100の制御を受けて、管路を開閉する。温度センサー55は、循環管路系50、詳しくは液化ガス供給ポンプ34を通過した液化窒素ガスが入り込む中間域循環管路50mの管路内の液化窒素ガスの温度を検出し、その検出結果を制御装置100に送信する。   The circulation pipeline 50 includes a partial pipeline of the atmospheric discharge pipeline 40 described above, specifically, an upstream pipeline 40u of the atmospheric discharge pipeline 40 and an intermediate zone pipeline 40m downstream of the auxiliary pump 44, A branch line 30v that branches off from the pipe and forms a part of the liquefied gas supply line system 30 and an intermediate-circulation circulation line that is connected to the branch line 30v on the primary side in the housing of the liquefied gas supply pump 34 50 m and a downstream circulation line 50 d connected to the intermediate region circulation line 50 m. Since the circulation pipeline system 50 has such a pipeline configuration, the liquefied nitrogen gas is circulated and circulated from the storage tank 20 through the auxiliary pump 44 and the liquefied gas supply pump 34 in this order. In addition, the circulation line system 50 includes a storage tank internal pipe 51 and an atmospheric discharge pipe 52 branched from the intermediate zone circulation pipe 50m to the storage tank 20, and both the pipes and the downstream circulation pipe 50d. In addition, open / close valves V6 to V8 are provided, and an open / close valve V2 and a temperature sensor 55 are provided in the intermediate region circulation pipe 50m. These on-off valves V2 and on-off valves V6 to V8 open and close the pipelines under the control of the control device 100. The temperature sensor 55 detects the temperature of the liquefied nitrogen gas in the circulation line system 50, specifically the liquefied nitrogen gas that has passed through the liquefied gas supply pump 34, and enters the intermediate circulation line 50m. It transmits to the control apparatus 100.

貯槽内管路51は、貯槽20の天井壁近傍まで延び、貯槽20に貯留済みの液化窒素ガスの液面より上方側から、後述の予冷・ガス供給制御の際の管路内或いはポンプ内の液化窒素ガスや気化ガスを貯槽20に環流させる。貯槽内管路51からの液化窒素ガスや気化ガスの環流は、開閉バルブV6が開弁された際になされる。大気放出管路52は、緊急時等に開弁制御される開閉バルブV8の開弁時に、循環管路系50の管路内の液化窒素ガスや気化ガスを大気放出するが、通常時には、開閉バルブV8により閉鎖されている。   The storage tank pipe 51 extends to the vicinity of the ceiling wall of the storage tank 20, and from above the liquid level of the liquefied nitrogen gas stored in the storage tank 20, in the pipe or pump in the precooling / gas supply control described later. Liquefied nitrogen gas or vaporized gas is circulated to the storage tank 20. Circulation of liquefied nitrogen gas or vaporized gas from the storage tank internal pipe 51 is performed when the on-off valve V6 is opened. The atmospheric discharge pipe 52 releases liquefied nitrogen gas or vaporized gas in the pipe of the circulation pipe system 50 to the atmosphere when the opening / closing valve V8 that is controlled to open in an emergency or the like is opened. It is closed by a valve V8.

制御装置100は、論理演算を実行するCPUや、ROM、RAMを有するコンピューターとして構成され、既述した温度センサー45等の各種センサーの入力を受けつつ、既述した開閉バルブV1〜V8の開閉を制御する。こうしたバルブ制御により、制御装置100は、液化窒素ガスが通過するガス管路系を、液化ガス供給管路系30と大気放出管路系40と循環管路系50のいずれかに切り換える。また、制御装置100は、管路系の切り換えに伴って、補助ポンプ44および液化ガス供給ポンプ34を駆動制御する。   The control device 100 is configured as a computer having a CPU that performs logical operations, a ROM, and a RAM, and opens and closes the open / close valves V1 to V8 described above while receiving inputs from various sensors such as the temperature sensor 45 described above. Control. By such valve control, the control device 100 switches the gas pipeline system through which the liquefied nitrogen gas passes to any one of the liquefied gas supply pipeline system 30, the atmospheric discharge pipeline system 40, and the circulation pipeline system 50. Further, the control device 100 drives and controls the auxiliary pump 44 and the liquefied gas supply pump 34 in accordance with the switching of the pipeline system.

次に、制御装置100にて実行される液化ガス供給ポンプ34の予冷・ガス供給制御について説明する。表1に、予冷・ガス供給制御において制御装置100が実行する処理状況に対するバルブ制御とポンプ制御の様子を示す。図2はバルブ制御とポンプ制御を介して実行される予冷・ガス供給制御の処理内容を示すフローチャートである。   Next, the precooling / gas supply control of the liquefied gas supply pump 34 executed by the control device 100 will be described. Table 1 shows the state of valve control and pump control with respect to the processing status executed by the control device 100 in the precooling / gas supply control. FIG. 2 is a flowchart showing processing contents of pre-cooling / gas supply control executed through valve control and pump control.

Figure 2015078719
Figure 2015078719

図2に示す予冷・ガス供給制御は、図示しない供給開始スイッチの操作を経て実行されることから、この供給開始スイッチの操作前の状況、例えば、夜間、休日等の制御装置100の定期的な停止期間では、バルブ・ポンプは表1の初期状態にある。この初期状態では、表に示すように、開閉バルブV5と開閉バルブV8を除く他の開閉バルブと表にない開閉バルブ36(図1参照)は、いずれも管路閉鎖状態であり、表1に表した補助ポンプ44と表にない液化ガス供給ポンプ34(図1参照)は、共に停止状態(停止制御)されている。今、供給開始スイッチが操作されると、制御装置100は、表1の補助ポンプ44の先行冷却を図るべく、貯槽20(CE)からの供給弁たる大気放出管路系40の開閉バルブV1の開弁制御(ステップS100)と、循環管路系50の開閉バルブV2の閉弁制御と大気放出管路系40の開閉バルブV5の開弁制御(ステップS110)とを実行する。こうしたバルブ制御は、補助ポンプ44の停止制御下で行われ、このバルブ制御により、貯槽20から液化窒素ガスが通過する管路系は、上流管路40uと中間域管路40mと大気放出管路40dの大気放出管路系40に切り換わる。このため、液化窒素ガスは、貯槽20の貯留内圧と大気放出管路系40の管路内圧との差圧にて、貯槽20から停止状態の補助ポンプ44を経て大気放出管路系40を通過する。なお、開閉バルブV2は、初期状態において既に管路閉鎖状態であることから、当該バルブに対して閉鎖信号を出力しなくてもよい。   Since the pre-cooling / gas supply control shown in FIG. 2 is executed through the operation of a supply start switch (not shown), the situation before the operation of the supply start switch, for example, the periodical operation of the control device 100 at night, holidays, etc. In the stop period, the valve pump is in the initial state of Table 1. In this initial state, as shown in the table, the other open / close valves other than the open / close valve V5 and the open / close valve V8 and the open / close valve 36 not shown in the table (see FIG. 1) are in the pipeline closed state. The auxiliary pump 44 shown and the liquefied gas supply pump 34 (see FIG. 1) not shown are both stopped (stop control). Now, when the supply start switch is operated, the control device 100 sets the open / close valve V1 of the atmospheric discharge pipe line system 40 as a supply valve from the storage tank 20 (CE) in order to pre-cool the auxiliary pump 44 of Table 1. The valve opening control (step S100), the valve closing control of the opening / closing valve V2 of the circulation pipeline 50, and the valve opening control of the opening / closing valve V5 of the atmospheric discharge pipeline 40 (step S110) are executed. Such valve control is performed under the stop control of the auxiliary pump 44. By this valve control, the pipeline system through which the liquefied nitrogen gas passes from the storage tank 20 is divided into an upstream pipeline 40u, an intermediate zone pipeline 40m, and an atmospheric discharge pipeline. Switch to 40d atmospheric discharge line system 40. For this reason, the liquefied nitrogen gas passes through the atmospheric discharge pipe system 40 from the storage tank 20 through the auxiliary pump 44 in a stopped state due to the differential pressure between the storage internal pressure of the storage tank 20 and the internal pipe pressure of the atmospheric discharge pipe system 40. To do. In addition, since the opening / closing valve V2 is already in the pipeline closed state in the initial state, the closing signal may not be output to the valve.

大気放出管路系40を通過する液化窒素ガスは、管路通過過程および補助ポンプ44の通過過程において、管路と停止状態の補助ポンプ44を冷却し、その冷却の程度に応じて気化する。よって、大気放出管路系40を通過する液化窒素ガスは、補助ポンプ44の予冷当初においては、気液混合流体の状態で、大気放出管路40dの大気放出端から大気放出される。この場合、大気放出管路系40における上記した液化窒素ガスの通過が進んで冷却が進むほど、液化窒素ガスの気化は起きないので、液化窒素ガスは、液相が増えた状態で大気放出される。気液混合流体の状態の液化窒素ガスは、中間域循環管路50mにおける開閉バルブV2と中間域管路40mにおける開閉バルブV3および開閉バルブV4の閉弁により、補助ポンプ44の予冷の間において貯槽20に戻ることはない。また、補助ポンプ44の予冷の間においては、分岐管路30vの管路と液化ガス供給ポンプ34および当該ポンプから開閉バルブV2に到るまでの中間域循環管路50mの管路に、気相の液化窒素ガスが残ることになる。   The liquefied nitrogen gas passing through the atmospheric discharge pipeline system 40 cools the pipeline and the stopped auxiliary pump 44 in the pipeline passage process and the passage process of the auxiliary pump 44, and is vaporized according to the degree of cooling. Therefore, the liquefied nitrogen gas passing through the atmospheric discharge pipe system 40 is released into the atmosphere from the atmospheric discharge end of the atmospheric discharge pipe 40d in the state of the gas-liquid mixed fluid at the beginning of the pre-cooling of the auxiliary pump 44. In this case, since the liquefied nitrogen gas does not vaporize as the passage of the liquefied nitrogen gas in the atmospheric discharge pipe system 40 progresses and the cooling proceeds, the liquefied nitrogen gas is released into the atmosphere with the liquid phase increased. The The liquefied nitrogen gas in the state of the gas-liquid mixed fluid is stored during the pre-cooling of the auxiliary pump 44 by closing the open / close valve V2 and the open / close valve V4 in the intermediate zone conduit 40m and the open / close valve V3 and the open / close valve V4 in the intermediate zone conduit 40m. There is no return to 20. Further, during the pre-cooling of the auxiliary pump 44, a gas phase is connected to the pipe of the branch pipe 30v, the liquefied gas supply pump 34, and the pipe of the intermediate region circulation pipe 50m from the pump to the opening / closing valve V2. Of liquefied nitrogen gas remains.

制御装置100は、ステップS110に続き、表1の補助ポンプ44の先行冷却の完了を確定すべく、補助ポンプ44の下流の温度センサー45の検出温度T1を読み込み、この検出温度T1が、予め定めた対比温度(−155℃)より低温である状態が所定時間、例えば20秒に亘って継続されたことを確認する(ステップS120)。ここで、検出温度T1が対比温度以上であったり、対比温度より低い検出温度T1の継続時間が所定時間に足りなければ、ステップS100〜S110の処理を、検出温度T1が対比温度を所定時間に亘って継続して低下するまで繰り返す。なお、対比温度(−155℃)は、補助ポンプ44の体格やポンプ構成および熱容量を考慮して、当該ポンプの予冷が完了する温度として予め規定されており、制御装置100の所定の記憶領域に記憶されている。   Following step S110, the control device 100 reads the detected temperature T1 of the temperature sensor 45 downstream of the auxiliary pump 44 in order to determine the completion of the preliminary cooling of the auxiliary pump 44 in Table 1, and this detected temperature T1 is predetermined. It is confirmed that the temperature lower than the contrast temperature (−155 ° C.) has continued for a predetermined time, for example, 20 seconds (step S120). Here, if the detected temperature T1 is equal to or higher than the contrast temperature or the duration of the detected temperature T1 lower than the contrast temperature is not enough for the predetermined time, the processing of steps S100 to S110 is performed, and the detected temperature T1 sets the contrast temperature to the predetermined time. Repeat until it continues to drop. The contrast temperature (−155 ° C.) is defined in advance as a temperature at which the pre-cooling of the pump is completed in consideration of the size of the auxiliary pump 44, the pump configuration, and the heat capacity, and is stored in a predetermined storage area of the control device 100. It is remembered.

制御装置100は、ステップS120に続き、表1の補助ポンプ44の起動とその駆動安定化を図るべく、循環管路系50の開閉バルブV2と開閉バルブV6の開弁制御と、大気放出管路系40の開閉バルブV3の開弁制御と、大気放出管路系40の開閉バルブV5の閉弁制御、並びに、補助ポンプ44の駆動制御とを実行する(S1:ステップS130)。こうしたバルブ・ポンプ駆動により、大気放出管路40dを経た液化窒素ガスの大気放出はなされなくなると共に、液化窒素ガスが通過する管路系は、大気放出管路系40から循環管路系50に切り換わる。このステップS130での開閉バルブV3と開閉バルブV6の開弁制御は、ステップS120にて検出温度T1が対比温度(−155℃)より低温である状態が所定時間(20秒)に亘って継続された時点で、同時に実行される。   Following step S120, the control device 100 controls the opening and closing of the on-off valve V2 and the on-off valve V6 of the circulation line system 50 and the atmospheric discharge pipe in order to start the auxiliary pump 44 in Table 1 and stabilize its driving. The valve opening control of the opening / closing valve V3 of the system 40, the valve closing control of the opening / closing valve V5 of the atmospheric discharge pipe system 40, and the drive control of the auxiliary pump 44 are executed (S1: Step S130). By driving the valve / pump, the liquefied nitrogen gas is not released into the atmosphere through the atmospheric discharge line 40d, and the line system through which the liquefied nitrogen gas passes is switched from the atmospheric discharge line system 40 to the circulation line system 50. Change. In the opening control of the opening / closing valve V3 and the opening / closing valve V6 in step S130, the state where the detected temperature T1 is lower than the contrast temperature (−155 ° C.) in step S120 is continued for a predetermined time (20 seconds). At the same time.

ステップS130にて駆動制御を受けた補助ポンプ44は、液化窒素ガスを、循環管路系50とこれに含まれる液化ガス供給ポンプ34を経由するよう圧送し、貯槽内管路51を経て貯槽20にその液面上部から循環させる。こうして循環管路系50を循環する液化窒素ガスは、新たに通過するようになった分岐管路30vや循環管路系50の各管路の通過過程および液化ガス供給ポンプ34の通過過程において、管路並びに液化ガス供給ポンプ34を冷却し、その冷却の程度に応じて気化する。よって、循環管路系50を通過する液化窒素ガスは、液化ガス供給ポンプ34の予冷当初においては、気液混合流体の状態で、貯槽内管路51を経て貯槽20にその液面上部から環流される。この場合、液化ガス供給ポンプ34の予冷開始前においては、既述したように、分岐管路30vの管路と液化ガス供給ポンプ34および当該ポンプから開閉バルブV2に到るまでの中間域循環管路50mの管路に、気相の液化窒素ガスが残存している。よって、この残存液化窒素ガスは、補助ポンプ44により圧送された気液混合流体の状態の液化窒素ガスと共に、貯槽内管路51を経て貯槽20にその液面上部から環流される。そして、循環管路系50における上記した液化窒素ガスの循環が進んで冷却が進むほど、液化窒素ガスの気化は起きないので、液化窒素ガスは液相が増えた状態となって、下流循環管路50dを経て貯槽20にその底部から環流される。なお、大気放出管路系40の開閉バルブV3の開弁により、液化窒素ガスは、第1管路41を経て貯槽20にその上部から環流される。   The auxiliary pump 44 that has received the drive control in step S130 pumps the liquefied nitrogen gas through the circulation line system 50 and the liquefied gas supply pump 34 included therein, and passes through the storage tank inner line 51 to store the storage tank 20. Circulate from the top of the liquid surface. In this way, the liquefied nitrogen gas circulating through the circulation pipeline 50 is newly passed through the branch pipeline 30v and the passage of each pipeline of the circulation pipeline 50 and the passage of the liquefied gas supply pump 34. The pipeline and the liquefied gas supply pump 34 are cooled and vaporized according to the degree of cooling. Therefore, the liquefied nitrogen gas that passes through the circulation line system 50 is circulated from the upper part of the liquid level to the storage tank 20 through the internal pipe 51 in the state of gas-liquid mixed fluid at the beginning of the precooling of the liquefied gas supply pump 34. Is done. In this case, before the start of precooling of the liquefied gas supply pump 34, as described above, the branch line 30v, the liquefied gas supply pump 34, and the intermediate region circulation pipe from the pump to the open / close valve V2 are provided. The gas phase liquefied nitrogen gas remains in the pipe line of the path 50 m. Therefore, the residual liquefied nitrogen gas is circulated from the upper part of the liquid level to the storage tank 20 via the storage tank inner conduit 51 together with the liquefied nitrogen gas in the state of the gas-liquid mixed fluid fed by the auxiliary pump 44. As the above-described circulation of the liquefied nitrogen gas in the circulation line system 50 progresses and the cooling progresses, the liquefied nitrogen gas does not evaporate. It circulates from the bottom to the storage tank 20 via the path 50d. The liquefied nitrogen gas is circulated from the upper part to the storage tank 20 through the first pipe 41 by opening the opening / closing valve V3 of the atmospheric discharge pipe system 40.

制御装置100は、ステップS130に続き、起動済みの補助ポンプ44の吐出圧の上昇を確認すべく、補助ポンプ44の2次側の圧力センサー46の検出圧力P2と貯槽20の圧力センサー23の検出圧力P1との差圧が予め定めた対比差圧(0.13MPa)を超えている状態が所定時間、例えば60秒に亘って継続されたこと、或いは、補助ポンプ44の2次側の圧力センサー46の検出圧力P2が予め定めた規定圧力(0.59MPa)を超えている状態が所定時間(60秒)に亘って継続されたことを確認する(S2:ステップS140)。ここで、検出圧力P2と検出圧力P1との差圧が対比差圧以下であったり、対比差圧を超える差圧の継続時間が所定時間に足りなければ、或いは、検出圧力P2が規定圧力であったり、規定圧力を超える検出圧力P2の継続時間が所定時間に足りなければ、補助ポンプ44の駆動を継続する。対比差圧(0.13MPa)や規定圧力(0.59MPa)は、液化ガス供給ポンプ34の体格やポンプ構成および熱容量を考慮して、当該ポンプの予冷を図る上で補助ポンプ44に必要な吐出圧が得られるよう予め規定されており、制御装置100の所定の記憶領域に記憶されている。   Following step S130, the control device 100 detects the detected pressure P2 of the pressure sensor 46 on the secondary side of the auxiliary pump 44 and the detection of the pressure sensor 23 of the storage tank 20 in order to confirm an increase in the discharge pressure of the activated auxiliary pump 44. The state in which the differential pressure with respect to the pressure P1 exceeds a predetermined contrast differential pressure (0.13 MPa) has continued for a predetermined time, for example, 60 seconds, or the pressure sensor on the secondary side of the auxiliary pump 44 It is confirmed that the state where the detected pressure P2 of 46 exceeds a predetermined specified pressure (0.59 MPa) is continued for a predetermined time (60 seconds) (S2: step S140). Here, if the differential pressure between the detected pressure P2 and the detected pressure P1 is equal to or lower than the relative differential pressure, or the duration of the differential pressure exceeding the relative differential pressure is not sufficient for a predetermined time, or the detected pressure P2 is the specified pressure. If the duration of the detected pressure P2 exceeding the specified pressure is not enough for a predetermined time, the driving of the auxiliary pump 44 is continued. The differential pressure difference (0.13 MPa) and the specified pressure (0.59 MPa) are discharges necessary for the auxiliary pump 44 in order to precool the pump in consideration of the physique of the liquefied gas supply pump 34, the pump configuration and the heat capacity. The pressure is defined in advance so as to be obtained, and is stored in a predetermined storage area of the control device 100.

制御装置100は、ステップS140に続き、安定した補助ポンプ44の吐出圧での液化ガス供給ポンプ34の冷却を開始すべく、中間域管路40mの開閉バルブV3と循環管路系50の開閉バルブV6の閉弁制御と、中間域管路40mの開閉バルブV4と下流循環管路50dのV7の開弁制御とを実行する(ステップS150)。この際、表1にあるように、制御装置100は、開閉バルブV7の開度が開閉バルブV4の開度の10倍程度となるよう、この両バルブを開度制御するので、開閉バルブV7を経て循環管路系50を循環する液化窒素ガスの循環流量は、開閉バルブV4を経て大気放出管路系40から貯槽20に環流する流量より多くなる。この他、開閉バルブV4の開弁により、中間域管路40mの下流まで流れ込んだ液化窒素ガスは、その流量が調整されて貯槽20に底部から回収される。こうしたバルブ制御により、補助ポンプ44の吐出する液化窒素ガスの内で、循環管路系50とこれに含まれる分岐管路30vを通過するガス流量は増大する。これにより、液化ガス供給ポンプ34および循環管路系50の管路の冷却が進むと共に、循環管路系50およびこれに含まれる分岐管路30vを循環する液化窒素ガスの液相化も進む。   Following step S140, the control device 100 starts the cooling of the liquefied gas supply pump 34 at a stable discharge pressure of the auxiliary pump 44, and the opening / closing valve V3 of the intermediate line 40m and the opening / closing valve of the circulation line 50. The valve closing control of V6 and the valve opening control of the opening / closing valve V4 of the intermediate zone conduit 40m and V7 of the downstream circulation conduit 50d are executed (step S150). At this time, as shown in Table 1, the control device 100 controls the opening degree of both the valves so that the opening degree of the opening / closing valve V7 is about 10 times the opening degree of the opening / closing valve V4. The circulation flow rate of the liquefied nitrogen gas that circulates through the circulation line system 50 is greater than the flow rate that circulates from the atmospheric discharge line system 40 to the storage tank 20 via the open / close valve V4. In addition, the flow rate of the liquefied nitrogen gas that has flowed to the downstream of the intermediate pipe 40m is adjusted by the opening of the on-off valve V4, and collected in the storage tank 20 from the bottom. By such valve control, the gas flow rate passing through the circulation line system 50 and the branch line 30v included in the liquefied nitrogen gas discharged from the auxiliary pump 44 increases. As a result, cooling of the liquefied gas supply pump 34 and the conduits of the circulation conduit system 50 proceeds, and liquid phase conversion of the liquefied nitrogen gas that circulates through the circulation conduit system 50 and the branch conduit 30v included therein also proceeds.

制御装置100は、ステップS150に続き、表1の液化ガス供給ポンプ34の冷却の完了を確認すべく、液化ガス供給ポンプ34の下流の温度センサー55の検出温度T2を読み込み、この検出温度T2が、予め定めた対比温度(−168℃)より低温である状態が所定時間、例えば30秒に亘って継続されたことを確認する(ステップS160)。ここで、検出温度T2が対比温度以上であったり、対比温度より低い検出温度T2の継続時間が所定時間に足りなければ、ステップS130での補助ポンプ44の圧送液化窒素ガスによる液化ガス供給ポンプ34の冷却を、検出温度T2が対比温度を所定時間に亘って継続して低下するまで繰り返す。対比温度(−168℃)は、液化ガス供給ポンプ34の体格やポンプ構成および熱容量を考慮して、当該ポンプの予冷が完了する温度として予め規定されており、制御装置100の所定の記憶領域に記憶されている。   Following step S150, the control device 100 reads the detected temperature T2 of the temperature sensor 55 downstream of the liquefied gas supply pump 34 in order to confirm the completion of cooling of the liquefied gas supply pump 34 in Table 1, and the detected temperature T2 is Then, it is confirmed that the state where the temperature is lower than the predetermined contrast temperature (−168 ° C.) is continued for a predetermined time, for example, 30 seconds (step S160). Here, if the detected temperature T2 is equal to or higher than the contrast temperature or the duration of the detected temperature T2 lower than the contrast temperature is not enough for a predetermined time, the liquefied gas supply pump 34 using the pressure-feed liquefied nitrogen gas of the auxiliary pump 44 in step S130. This cooling is repeated until the detected temperature T2 continues to decrease the contrast temperature over a predetermined time. The contrast temperature (−168 ° C.) is defined in advance as a temperature at which precooling of the pump is completed in consideration of the physique of the liquefied gas supply pump 34, the pump configuration, and the heat capacity, and is stored in a predetermined storage area of the control device 100. It is remembered.

制御装置100は、ステップS160での予冷完了に続き、表1の液化ガス供給ポンプ34による液化窒素ガスの高圧ガスタンクTへの供給を開始すべく、大気放出管路系40の開閉バルブV4および循環管路系50の開閉バルブV2と開閉バルブV7の閉弁制御と、液化ガス供給管路系30の開閉バルブ36(図1参照)の開弁制御と、液化ガス供給ポンプ34の駆動制御とを実行する(ステップS170)。こうしたバルブ制御により、貯槽20から液化窒素ガスが通過する管路系は、補助ポンプ44と大気放出管路系40の既述した管路を含む液化ガス供給管路系30に切り換わり、液化ガス供給ポンプ34の圧送能力(70MPa)の圧力で、高圧ガスタンクTへの液化窒素ガス充填が開始される。このステップS180のガス供給は、充填が求められる本数の高圧ガスタンクTへの充填が完了するまで継続される。高圧ガスタンクTへのガス供給が完了すると、制御装置100は、図2に示す予冷・ガス供給制御を終了し、表1の初期状態に戻る。なお、開閉バルブV2と開閉バルブV7は、バルブ間の管路の液封を回避すべく、その閉弁タイミングが調整される。   Following the completion of the pre-cooling in step S160, the control device 100 starts the supply of the liquefied nitrogen gas to the high-pressure gas tank T by the liquefied gas supply pump 34 in Table 1 and the open / close valve V4 and the circulation of the atmospheric discharge pipe system 40. The valve closing control of the opening / closing valve V2 and the opening / closing valve V7 of the pipe line system 50, the valve opening control of the opening / closing valve 36 (see FIG. 1) of the liquefied gas supply pipe line system 30, and the drive control of the liquefied gas supply pump 34 are performed. Execute (Step S170). By such valve control, the pipeline system through which the liquefied nitrogen gas passes from the storage tank 20 is switched to the liquefied gas supply pipeline system 30 including the aforementioned pipelines of the auxiliary pump 44 and the atmospheric discharge pipeline system 40. Filling the high-pressure gas tank T with liquefied nitrogen gas is started at a pressure of the pumping capacity (70 MPa) of the supply pump 34. The gas supply in step S180 is continued until the filling of the number of high-pressure gas tanks T required to be filled is completed. When the gas supply to the high-pressure gas tank T is completed, the control device 100 ends the precooling / gas supply control shown in FIG. 2 and returns to the initial state shown in Table 1. Note that the opening / closing valve V2 and the opening / closing valve V7 have their valve closing timings adjusted to avoid liquid sealing of the pipe line between the valves.

図2に示す予冷・ガス供給制御を終了した後の初期状態では、各管路系の配管と各ポンプには液化窒素ガスが残存するので、液化ガス供給ポンプ34および補助ポンプ44は、残存液化窒素ガスにより、冷却されていると想定される。よって、制御装置100は、ステップS170のガス供給の完了後に、ステップS120、ステップS140およびステップS160と同様の温度・圧力監視を、図2の予冷・ガス供給制御とは別に実行し、その監視結果に応じて、次回の供給開始スイッチの操作時の制御を定める。例えば、次回の供給開始スイッチの操作時において、上記した温度・圧力の監視結果が液化ガス供給ポンプ34と補助ポンプ44とは依然として冷却状況下にあるというものであれば、制御装置100は、ステップS170に相当する処理、即ち、液化窒素ガスの通過管路系を液化ガス供給管路系30に切り換えるためのバルブ制御と、補助ポンプ44の駆動制御、並びに液化ガス供給ポンプ34の駆動制御を実行する。こうすることで、速やかにガス供給を開始できる。その一方、次回の供給開始スイッチの操作時において、上記した温度・圧力の監視結果が液化ガス供給ポンプ34と補助ポンプ44とは冷却状況下にないというものであれば、制御装置100は、図2の予冷・ガス供給制御を実行して、ガス供給を行う。   In the initial state after the pre-cooling / gas supply control shown in FIG. 2 is finished, liquefied nitrogen gas remains in the pipes and pumps of each pipeline system, so that the liquefied gas supply pump 34 and the auxiliary pump 44 have the remaining liquefaction. It is assumed that it is cooled by nitrogen gas. Therefore, after the completion of the gas supply in step S170, the control device 100 executes temperature / pressure monitoring similar to that in steps S120, S140, and S160 separately from the precooling / gas supply control in FIG. Accordingly, the control at the time of the next operation of the supply start switch is determined. For example, when the temperature / pressure monitoring result described above indicates that the liquefied gas supply pump 34 and the auxiliary pump 44 are still in the cooling state at the next operation of the supply start switch, the control device 100 performs the step Processing corresponding to S170, that is, valve control for switching the liquefied nitrogen gas passage line system to the liquefied gas supply line system 30, drive control of the auxiliary pump 44, and drive control of the liquefied gas supply pump 34 are executed. To do. By doing so, gas supply can be started promptly. On the other hand, if the above-described temperature / pressure monitoring result indicates that the liquefied gas supply pump 34 and the auxiliary pump 44 are not in a cooling state at the next operation of the supply start switch, the control device 100 The pre-cooling / gas supply control 2 is executed to supply the gas.

以上説明した構成を備える本実施形態の液化ガス供給装置10は、貯槽20の貯留した液化窒素ガスを高圧ガスタンクTに供給するに当たり、まず、補助ポンプ44の停止制御下において、図1に示す各管路の開閉バルブV1〜V8の内の関連する開閉バルブを開閉制御して、貯槽20の液化窒素ガスが通過する管路系を、大気放出管路系40に切り換える(ステップS100〜S110)。こうした管路系切り換えにより、貯槽20の液化窒素ガスは、貯槽20の貯留内圧と大気放出管路系40との差圧にて、貯槽20から停止状態の補助ポンプ44を経て大気放出管路系40を通過し、大気放出される。これにより、補助ポンプ44は、大気放出管路系40を通過する液化窒素ガスにより、停止状態のまま予冷される。補助ポンプ44の熱容量は、そのポンプ構造やサイズから、ガス高圧充填用の液化ガス供給ポンプ34より小さく、液化ガス供給ポンプ34の熱容量の1/10〜1/5に過ぎない。よって、液化窒素ガスによる液化ガス供給ポンプ34の予冷に比すれば、補助ポンプ44の予冷は迅速に進む。このようにして補助ポンプ44を予冷している間、液化窒素ガスは、大気放出管路系40における大気放出管路40dの大気放出端から大気放出される。ところが、液化窒素ガスによる補助ポンプ44の予冷は、既述したように小熱容量である故に、迅速に進むことから、液化窒素ガスの大気放出量は、少量となる。   When the liquefied gas supply device 10 of the present embodiment having the above-described configuration supplies the liquefied nitrogen gas stored in the storage tank 20 to the high-pressure gas tank T, first, each control shown in FIG. The associated open / close valves among the open / close valves V1 to V8 of the pipeline are controlled to open and close, and the pipeline system through which the liquefied nitrogen gas passes through the storage tank 20 is switched to the atmospheric discharge pipeline system 40 (steps S100 to S110). By such switching of the pipeline system, the liquefied nitrogen gas in the storage tank 20 is discharged from the storage tank 20 via the auxiliary pump 44 in a stopped state due to the differential pressure between the storage internal pressure of the storage tank 20 and the atmospheric discharge pipeline system 40. Pass through 40 and release into the atmosphere. Thereby, the auxiliary pump 44 is pre-cooled while being stopped by the liquefied nitrogen gas passing through the atmospheric discharge pipe system 40. The heat capacity of the auxiliary pump 44 is smaller than the liquefied gas supply pump 34 for high-pressure gas filling due to its pump structure and size, and is only 1/10 to 1/5 of the heat capacity of the liquefied gas supply pump 34. Therefore, if compared with the precooling of the liquefied gas supply pump 34 by liquefied nitrogen gas, the precooling of the auxiliary pump 44 proceeds rapidly. While the auxiliary pump 44 is pre-cooled in this way, the liquefied nitrogen gas is released into the atmosphere from the atmospheric discharge end of the atmospheric discharge line 40d in the atmospheric discharge line system 40. However, since the pre-cooling of the auxiliary pump 44 by liquefied nitrogen gas has a small heat capacity as described above, it proceeds quickly, so the amount of liquefied nitrogen gas released to the atmosphere is small.

本実施形態の液化ガス供給装置10は、補助ポンプ44の予冷完了後、液化窒素ガスが通過する管路系を、図1に示す各管路の開閉バルブV1〜V8の内の関連する開閉バルブを開閉制御して循環管路系50に切り換えると共に、予冷済みの補助ポンプ44を駆動制御する(ステップS130)。補助ポンプ44が圧送する液化窒素ガスは、上記の管路系切り換えにより、循環管路系50に含まれる液化ガス供給ポンプ34を通過して、貯槽20に環流する。これにより、液化ガス供給ポンプ34は、循環管路系50を循環環流する液化窒素ガスにより、停止状態のまま予冷される。補助ポンプ44による液化窒素ガスの圧送は、貯槽20の貯留内圧と貯槽20に繋がった管路系との差圧による液化窒素ガスの送り出しに比べると、循環管路系50への大流量での液化窒素ガスの送り出しを可能とする。この結果、本実施形態の液化ガス供給装置10によれば、液化ガス供給管路系30にも含まれる液化ガス供給ポンプ34を迅速、且つ、確実に予冷できる。しかも、本実施形態の液化ガス供給装置10は、液化ガス供給ポンプ34の予冷の間において、液化窒素ガスを循環管路系50により貯槽20に循環環流させるので、液化窒素ガスの大気放出を起こさない。よって、本実施形態の液化ガス供給装置10によれば、補助ポンプ44の予冷の間の液化窒素ガスの大気放出量が少量であることと相まって、液化窒素ガスの大気放出を低減できる。   The liquefied gas supply apparatus 10 of the present embodiment is configured so that the liquefied nitrogen gas passes through the pipe system through which the liquefied nitrogen gas passes after the auxiliary pump 44 is precooled, and the related open / close valves in the open / close valves V1 to V8 of the pipes shown in FIG. Is switched to the circulation line system 50, and the precooled auxiliary pump 44 is driven and controlled (step S130). The liquefied nitrogen gas pumped by the auxiliary pump 44 passes through the liquefied gas supply pump 34 included in the circulation line system 50 and circulates to the storage tank 20 by the above-described line system switching. As a result, the liquefied gas supply pump 34 is pre-cooled while being stopped by the liquefied nitrogen gas circulating in the circulation line system 50. The pumping of the liquefied nitrogen gas by the auxiliary pump 44 is performed at a larger flow rate to the circulation line system 50 than the sending of the liquefied nitrogen gas by the differential pressure between the storage internal pressure of the storage tank 20 and the pipe line system connected to the storage tank 20. Enables delivery of liquefied nitrogen gas. As a result, according to the liquefied gas supply apparatus 10 of the present embodiment, the liquefied gas supply pump 34 included in the liquefied gas supply pipeline system 30 can be pre-cooled quickly and reliably. In addition, the liquefied gas supply apparatus 10 of the present embodiment causes the liquefied nitrogen gas to circulate and circulate in the storage tank 20 through the circulation line system 50 during the precooling of the liquefied gas supply pump 34, thereby causing the liquefied nitrogen gas to be released into the atmosphere. Absent. Therefore, according to the liquefied gas supply apparatus 10 of this embodiment, coupled with the small amount of liquefied nitrogen gas released during the pre-cooling of the auxiliary pump 44, the liquefied nitrogen gas released into the atmosphere can be reduced.

本実施形態の液化ガス供給装置10は、循環管路系50に液化窒素ガスを循環させて液化ガス供給ポンプ34を予冷した後、液化窒素ガスが通過する管路系を、図1に示す各管路の開閉バルブV1〜V8の内の関連する開閉バルブを開閉制御して液化ガス供給管路系30に切り換えると共に、予冷済みの液化ガス供給ポンプ34を駆動制御する(ステップS170)。液化ガス供給ポンプ34の予冷は、補助ポンプ44が大流量で圧送する液化窒素ガスにより迅速に行われるので、本実施形態の液化ガス供給装置10によれば、貯槽20から液化窒素ガスを高圧ガスタンクTに速やかに供給できる。   The liquefied gas supply apparatus 10 of the present embodiment circulates liquefied nitrogen gas through the circulation pipe system 50 and precools the liquefied gas supply pump 34, and then the pipe systems through which the liquefied nitrogen gas passes are shown in FIG. The associated open / close valves V1 to V8 are controlled to be switched to the liquefied gas supply line system 30, and the precooled liquefied gas supply pump 34 is driven and controlled (step S170). Since the liquefied gas supply pump 34 is precooled quickly by the liquefied nitrogen gas pumped by the auxiliary pump 44 at a large flow rate, according to the liquefied gas supply device 10 of the present embodiment, the liquefied nitrogen gas is supplied from the storage tank 20 to the high-pressure gas tank. T can be supplied promptly.

本実施形態の液化ガス供給装置10は、液化ガス供給管路系30の管路経路と循環管路系50の管路経路とを、この両管路系が含む液化ガス供給ポンプ34まで同一経路とした。よって、本実施形態の液化ガス供給装置10によれば、管路経路の一部共通化により、管路構成を簡略化できる。   The liquefied gas supply apparatus 10 of the present embodiment is configured such that the liquefied gas supply pipe system 30 and the circulatory pipe system 50 are connected to the liquefied gas supply pump 34 included in both the pipe systems. It was. Therefore, according to the liquefied gas supply device 10 of the present embodiment, the pipeline configuration can be simplified by partially sharing the pipeline route.

本実施形態の液化ガス供給装置10は、補助ポンプ44を予冷するに当たり、補助ポンプ44の下流の温度センサー45の検出温度T1が対比温度(−155℃)を下回るまで大気放出管路系40における液化窒素ガスによる冷却を継続する(ステップS120)。よって、本実施形態の液化ガス供給装置10によれば、確実に補助ポンプ44を予冷してから、この補助ポンプ44を液化ガス供給ポンプ34の予冷のために駆動できる。   In preliminarily cooling the auxiliary pump 44, the liquefied gas supply device 10 of the present embodiment is provided in the atmospheric discharge pipe system 40 until the detection temperature T1 of the temperature sensor 45 downstream of the auxiliary pump 44 falls below the contrast temperature (−155 ° C.). Cooling with liquefied nitrogen gas is continued (step S120). Therefore, according to the liquefied gas supply apparatus 10 of the present embodiment, the auxiliary pump 44 can be driven for precooling the liquefied gas supply pump 34 after the auxiliary pump 44 is reliably precooled.

本実施形態の液化ガス供給装置10は、液化ガス供給ポンプ34を予冷するに当たり、液化ガス供給ポンプ34の下流の温度センサー55の検出温度T2が、温度センサー45の検出温度T1についての対比温度(−155℃)より低い対比温度(−168℃)を下回るまで循環管路系50における液化窒素ガスによる冷却を継続する(ステップS160)。その上で、本実施形態の液化ガス供給装置10は、循環管路系50の開閉バルブV7を開閉バルブV4より大きな開度で開度制御して(ステップS150)、循環管路系50の中間域循環管路50mを流れる液化窒素ガスの流量を増やし、液化ガス供給ポンプ34を循環する液化窒素ガスの循環量を増大させる。これに加え、本実施形態の液化ガス供給装置10は、補助ポンプ44の2次側の圧力センサー46の検出圧力P2と貯槽20の圧力センサー23の検出圧力P1との差圧が対比差圧(0.13MPa)を超えた状態が所定時間継続するまで、開閉バルブV6の開弁制御と開閉バルブV5の閉弁制御とを通した液化窒素ガスの循環量増大を継続する。よって、本実施形態の液化ガス供給装置10によれば、確実に液化ガス供給ポンプ34を予冷してから、この液化ガス供給ポンプ34を高圧ガスタンクTへのガス供給のために駆動できる。また、開閉バルブV6の開弁制御の継続に基づいた貯槽内管路51を経た液化窒素ガスの環流により、循環管路系50を循環している液化窒素ガスの気相は減り、液相の割合が増え、液化ガス供給ポンプ34の予冷促進上で好ましい。   When the liquefied gas supply device 10 of this embodiment precools the liquefied gas supply pump 34, the detected temperature T2 of the temperature sensor 55 downstream of the liquefied gas supply pump 34 is compared with the detected temperature T1 of the temperature sensor 45 as a contrast temperature ( The cooling with the liquefied nitrogen gas in the circulation pipeline 50 is continued until the temperature falls below the contrast temperature (-168 ° C.) lower than −155 ° C. (step S160). In addition, the liquefied gas supply apparatus 10 of the present embodiment controls the opening / closing valve V7 of the circulation line system 50 with an opening larger than the opening / closing valve V4 (step S150), The flow rate of the liquefied nitrogen gas flowing through the area circulation pipe 50m is increased, and the amount of liquefied nitrogen gas circulating through the liquefied gas supply pump 34 is increased. In addition to this, the liquefied gas supply apparatus 10 of the present embodiment is configured such that the differential pressure between the detected pressure P2 of the pressure sensor 46 on the secondary side of the auxiliary pump 44 and the detected pressure P1 of the pressure sensor 23 of the storage tank 20 is a contrast differential pressure ( Until the state exceeding 0.13 MPa) continues for a predetermined time, the circulation amount of liquefied nitrogen gas through the opening control of the opening / closing valve V6 and the closing control of the opening / closing valve V5 is continued. Therefore, according to the liquefied gas supply apparatus 10 of the present embodiment, the liquefied gas supply pump 34 can be driven for gas supply to the high-pressure gas tank T after the liquefied gas supply pump 34 is reliably precooled. In addition, due to the circulatory flow of the liquefied nitrogen gas that has passed through the storage tank pipe line 51 based on the continuation of the valve opening control of the on-off valve V6, the gas phase of the liquefied nitrogen gas circulating in the circulation pipe system 50 is reduced, The ratio increases, which is preferable for promoting the precooling of the liquefied gas supply pump 34.

本実施形態の液化ガス供給装置10は、液化ガス供給ポンプ34の予冷の際の液化窒素ガスの循環量増大を図るに当たり、開閉バルブV6を開弁して、循環管路系50における液化窒素ガスを、貯槽20にその液面より上から環流させる。このように環流する液化窒素ガスは、貯槽20における液化窒素ガスの液面より上の気相ガス域に接触するので、本実施形態の液化ガス供給装置10によれば、貯槽20における気相ガス域のガスを冷却できる。   The liquefied gas supply apparatus 10 of the present embodiment opens the on-off valve V6 to increase the circulation amount of the liquefied nitrogen gas when the liquefied gas supply pump 34 is precooled, and the liquefied nitrogen gas in the circulation line system 50 is opened. Is recirculated to the storage tank 20 from above the liquid level. Since the liquefied nitrogen gas circulating in this way comes into contact with the gas phase gas region above the liquid level of the liquefied nitrogen gas in the storage tank 20, according to the liquefied gas supply device 10 of the present embodiment, the gas phase gas in the storage tank 20. The gas in the area can be cooled.

次に、他の実施形での液化ガス供給ポンプ34の予冷・ガス供給制御について説明する。表2に、予冷・ガス供給制御において制御装置100が実行する処理状況に対する他の実施形態でのバルブ制御とポンプ制御の様子を示す。図3はバルブ制御とポンプ制御を介して実行される他の実施形態の予冷・ガス供給制御の処理内容を示すフローチャートである。なお、以下の説明に当たっては、既述した実施形態と相違する点について説明することとする。   Next, the precooling / gas supply control of the liquefied gas supply pump 34 in another embodiment will be described. Table 2 shows the state of valve control and pump control in another embodiment with respect to the processing status executed by the control device 100 in the precooling / gas supply control. FIG. 3 is a flowchart showing the processing contents of precooling / gas supply control of another embodiment executed through valve control and pump control. In the following description, differences from the above-described embodiment will be described.

Figure 2015078719
Figure 2015078719

この実施形態の予冷・ガス供給制御にあっても、既述したように図示しない供給開始スイッチの操作を経て実行され、表2の初期状態から、既述したステップS100〜120により、停止制御下での補助ポンプ44の予冷の先行実施と、補助ポンプ44の予冷確認がなされる。ステップS120に続くステップS130では、既述したバルブ制御と補助ポンプ44の駆動制御とが実行され、液化窒素ガスの大気放出の停止と液化窒素ガスの管路系の切り換え、並びに、補助ポンプ44からの液化窒素ガスの吐出と、これによる液化ガス供給ポンプ34の予冷がなされる。   Even in the pre-cooling / gas supply control of this embodiment, as described above, the control is executed through the operation of a supply start switch (not shown), and from the initial state of Table 2, the stop control is performed according to steps S100 to S120 described above. The preliminary implementation of the pre-cooling of the auxiliary pump 44 and the pre-cooling confirmation of the auxiliary pump 44 are performed. In step S130 following step S120, the above-described valve control and drive control of the auxiliary pump 44 are executed, the stop of the liquefied nitrogen gas release to the atmosphere, the switching of the liquefied nitrogen gas pipeline system, and the auxiliary pump 44 The liquefied nitrogen gas is discharged and the liquefied gas supply pump 34 is precooled.

制御装置100は、ステップS130に続き、表2の液化ガス供給ポンプ34の冷却の遂行を確定すべく、液化ガス供給ポンプ34の下流の温度センサー55の検出温度T2を読み込み、この検出温度T2が、既述した対比温度(−168℃)より低温であることを確認する(ステップS210)。ここで、検出温度T2が対比温度以上であれば、ステップS130での補助ポンプ44の圧送液化窒素ガスによる液化ガス供給ポンプ34の冷却を、検出温度T2が対比温度を下回るまで継続する。なお、ステップS210では、検出温度T2が対比温度を下回る状態が所定の時間(例えば5sec)に亘り継続するまで待機するようにしてもよい。   Following step S130, the control device 100 reads the detected temperature T2 of the temperature sensor 55 downstream of the liquefied gas supply pump 34 in order to confirm the cooling of the liquefied gas supply pump 34 in Table 2, and the detected temperature T2 is Then, it is confirmed that the temperature is lower than the above-described contrast temperature (−168 ° C.) (step S210). Here, if the detected temperature T2 is equal to or higher than the contrast temperature, the cooling of the liquefied gas supply pump 34 by the pressure-feed liquefied nitrogen gas of the auxiliary pump 44 in step S130 is continued until the detected temperature T2 falls below the contrast temperature. In step S210, the process may wait until the state where the detected temperature T2 is lower than the contrast temperature continues for a predetermined time (for example, 5 seconds).

制御装置100は、ステップS210に続き、表2の補助ポンプ44の吐出圧の上昇を確保すべく、中間域管路40mの開閉バルブV3と循環管路系50の開閉バルブV6の閉弁制御と、中間域管路40mの開閉バルブV4と下流循環管路50dのV7の開弁制御とを実行する(ステップS220)。この際、表2にあるように、制御装置100は、開閉バルブV7の開度が開閉バルブV4の開度の10倍程度となるよう、この両バルブを開度制御するので、開閉バルブV7を経て循環管路系50を循環する液化窒素ガスの循環流量は、開閉バルブV4を経て大気放出管路系40から貯槽20に環流する流量より多くなる。こうしたバルブ制御により、液化窒素ガスが通過する管路系の切り換えは、循環管路系50に切り換わることと、ほぼ等価となる。この他、開閉バルブV4の開弁により、中間域管路40mの下流まで流れ込んだ液化窒素ガスは、貯槽20に回収される。なお、開閉バルブV4を閉弁して、循環管路系50に切り換えるようにしてもよい。これにより、液化ガス供給ポンプ34および循環管路系50の管路の冷却が進むと共に、循環管路系50およびこれに含まれる分岐管路30vを循環する液化窒素ガスの液相化も進む。循環管路系50を循環する液化窒素ガスの液相化が進まないうちは、補助ポンプ44の吐出圧の上昇は緩慢なため、開閉バルブV7の開度大の開度制御による循環量増大に伴う液化窒素ガスの液相化により、補助ポンプ44の吐出圧の上昇が確保できる。   Following step S210, the control device 100 performs control for closing the open / close valve V3 of the intermediate line 40m and the open / close valve V6 of the circulation line system 50 in order to ensure an increase in the discharge pressure of the auxiliary pump 44 in Table 2. Then, the opening / closing valve V4 of the intermediate zone pipe line 40m and the valve opening control of V7 of the downstream circulation pipe line 50d are executed (step S220). At this time, as shown in Table 2, the control device 100 controls the opening of both the opening and closing valve V7 so that the opening of the opening and closing valve V7 is about 10 times the opening of the opening and closing valve V4. The circulation flow rate of the liquefied nitrogen gas that circulates through the circulation line system 50 is greater than the flow rate that circulates from the atmospheric discharge line system 40 to the storage tank 20 via the open / close valve V4. By such valve control, switching of the pipeline system through which the liquefied nitrogen gas passes is substantially equivalent to switching to the circulation pipeline system 50. In addition, the liquefied nitrogen gas that has flowed to the downstream of the intermediate pipe 40m is recovered in the storage tank 20 by opening the on-off valve V4. The on-off valve V4 may be closed and switched to the circulation line system 50. As a result, cooling of the liquefied gas supply pump 34 and the conduits of the circulation conduit system 50 proceeds, and liquid phase conversion of the liquefied nitrogen gas that circulates through the circulation conduit system 50 and the branch conduit 30v included therein also proceeds. Since the increase in the discharge pressure of the auxiliary pump 44 is slow before the liquid phase of the liquefied nitrogen gas circulating through the circulation line system 50 has progressed, the amount of circulation can be increased by controlling the opening of the opening / closing valve V7. The accompanying increase in the discharge pressure of the auxiliary pump 44 can be ensured by the liquid phase of the liquefied nitrogen gas.

制御装置100は、ステップS220に続き、表2の補助ポンプ44の2次側の液化窒素ガスの液相状態を確保すべく、補助ポンプ44の2次側の圧力センサー46の検出圧力P2と貯槽20の圧力センサー23の検出圧力P1との差圧が予め定めた対比差圧(0.13MPa)を超えていることを確認した上で、開閉バルブV6を閉弁制御する(ステップS230)。ここで、上記の差圧が対比差圧以下であれば、開閉バルブV6の閉弁制御を、上記の差圧が対比差圧を超えるまで待機する。なお、対比差圧(0.13MPa)は、液化ガス供給ポンプ34の圧送能力や貯槽20における貯留内圧を考慮して、補助ポンプ44が圧送する液化窒素ガスがほぼ全て液相状態となることを観点に予め規定されており、制御装置100の所定の記憶領域に記憶されている。この場合、圧力センサー46の検出圧力P2と圧力センサー23の検出圧力P1との差圧が対比差圧(0.13MPa)を超えていれば、補助ポンプ44の圧送する液化窒素ガスは、ステップS230による昇圧確認と相まって、ほぼ液相状態で循環管路系50を循環する。   Following step S220, the control device 100 detects the pressure P2 detected by the pressure sensor 46 on the secondary side of the auxiliary pump 44 and the storage tank so as to ensure the liquid phase state of the liquefied nitrogen gas on the secondary side of the auxiliary pump 44 in Table 2. After confirming that the differential pressure with respect to the detected pressure P1 of the 20 pressure sensors 23 exceeds a predetermined differential pressure (0.13 MPa), the on-off valve V6 is controlled to close (step S230). Here, if the differential pressure is equal to or lower than the contrast differential pressure, the control for closing the on-off valve V6 is waited until the differential pressure exceeds the contrast differential pressure. The contrast differential pressure (0.13 MPa) indicates that almost all of the liquefied nitrogen gas pumped by the auxiliary pump 44 is in a liquid phase state in consideration of the pumping capacity of the liquefied gas supply pump 34 and the stored internal pressure in the storage tank 20. It is preliminarily defined in the viewpoint and is stored in a predetermined storage area of the control device 100. In this case, if the differential pressure between the detected pressure P2 of the pressure sensor 46 and the detected pressure P1 of the pressure sensor 23 exceeds the contrast differential pressure (0.13 MPa), the liquefied nitrogen gas fed by the auxiliary pump 44 is used in step S230. In combination with the confirmation of the pressure increase, the circulation line system 50 is circulated in a substantially liquid phase state.

制御装置100は、ステップS230に続き、表2の液化ガス供給ポンプ34の予冷完了を確認すべく、圧力センサー46の検出圧力P2と圧力センサー23の検出圧力P1との差圧が対比差圧(0.13MPa)を超えている状態が所定の時間(例えば10sec)に亘り継続するまで待機する(ステップS240)。ここで、上記の差圧が対比差圧を超える状態が所定時間継続すると、制御装置100は、液化ガス供給ポンプ34の予冷が完了したとする。   Following step S230, the control device 100 determines that the differential pressure between the detected pressure P2 of the pressure sensor 46 and the detected pressure P1 of the pressure sensor 23 is a contrast differential pressure ( It waits until the state exceeding 0.13 MPa continues for a predetermined time (for example, 10 sec) (step S240). Here, when the state where the differential pressure exceeds the contrast differential pressure continues for a predetermined time, the control device 100 assumes that the precooling of the liquefied gas supply pump 34 is completed.

制御装置100は、ステップS240での予冷完了に続き、表2の液化ガス供給ポンプ34による液化窒素ガスの高圧ガスタンクTへの供給を開始すべく、既述したステップS170と同様に、各種の開閉バルブの制御と液化ガス供給ポンプ34の駆動制御とを実行する(ステップS250)。こうしたバルブ制御により、貯槽20から液化窒素ガスが通過する管路系は、補助ポンプ44と大気放出管路系40の既述した管路を含む液化ガス供給管路系30に切り換わり、液化ガス供給ポンプ34の圧送能力(70MPa)の圧力で、高圧ガスタンクTへの液化窒素ガス充填が開始される。このステップS180のガス供給は、充填が求められる本数の高圧ガスタンクTへの充填が完了するまで継続される。高圧ガスタンクTへのガス供給が完了すると、制御装置100は、図2に示す予冷・ガス供給制御を終了し、表1の初期状態に戻る。   Following the completion of pre-cooling in step S240, the control device 100 performs various opening / closing operations in the same manner as in step S170 described above in order to start supply of liquefied nitrogen gas to the high-pressure gas tank T by the liquefied gas supply pump 34 in Table 2. Valve control and drive control of the liquefied gas supply pump 34 are executed (step S250). By such valve control, the pipeline system through which the liquefied nitrogen gas passes from the storage tank 20 is switched to the liquefied gas supply pipeline system 30 including the aforementioned pipelines of the auxiliary pump 44 and the atmospheric discharge pipeline system 40. Filling the high-pressure gas tank T with liquefied nitrogen gas is started at a pressure of the pumping capacity (70 MPa) of the supply pump 34. The gas supply in step S180 is continued until the filling of the number of high-pressure gas tanks T required to be filled is completed. When the gas supply to the high-pressure gas tank T is completed, the control device 100 ends the precooling / gas supply control shown in FIG. 2 and returns to the initial state shown in Table 1.

上記した実施形態の予冷・ガス供給制御によっても、既述した効果を奏することができる。   The effects described above can also be achieved by the pre-cooling / gas supply control of the above-described embodiment.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、或いは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features of the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or part of the above-described effects. Or, in order to achieve the whole, it is possible to replace or combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

上記した実施形態では、補助ポンプ44の圧送する液化窒素ガスによる液化ガス供給ポンプ34の予冷が完了すると、大気放出管路系40の第2管路42における開閉バルブV4と、循環管路系50の中間域循環管路50mにおける開閉バルブV2および開閉バルブV7を閉弁制御したが、これに限らない。例えば、液化ガス供給ポンプ34の予冷完了後とそれ以降のガス供給の間において、第2管路42における開閉バルブV4と中間域循環管路50mにおける開閉バルブV7とを、両バルブの開度および開度差を小さくした上で、開弁制御してもよい。こうすれば、仮に液化ガス供給ポンプ34によるガス供給のための圧送に脈動等が起きて液化ガス供給ポンプ34が必要とする液化窒素ガス量が一時的に低減した場合、補助ポンプ44から液化ガス供給ポンプ34に圧送される液化窒素ガスの一部を、第2管路42や下流循環管路50dから貯槽20に環流させることで、液化窒素ガスを液化ガス供給ポンプ34に過大に圧送しないようにできる。よって、液化ガス供給ポンプ34に掛かる負荷を軽減できる。   In the above-described embodiment, when the precooling of the liquefied gas supply pump 34 by the liquefied nitrogen gas pumped by the auxiliary pump 44 is completed, the open / close valve V4 in the second pipeline 42 of the atmospheric discharge pipeline 40 and the circulation pipeline 50 Although the opening / closing valve V2 and the opening / closing valve V7 in the intermediate region circulation pipe 50m are controlled to be closed, the present invention is not limited to this. For example, between the completion of the precooling of the liquefied gas supply pump 34 and the subsequent gas supply, the opening / closing valve V4 in the second pipe 42 and the opening / closing valve V7 in the intermediate-circulation circulation pipe 50m are connected to the opening and opening of both valves. The valve opening control may be performed after reducing the opening degree difference. In this way, if the amount of liquefied nitrogen gas required by the liquefied gas supply pump 34 is temporarily reduced due to pulsation or the like in the pressure supply for gas supply by the liquefied gas supply pump 34, the liquefied gas from the auxiliary pump 44 is temporarily reduced. A part of the liquefied nitrogen gas fed to the supply pump 34 is circulated to the storage tank 20 from the second pipe 42 or the downstream circulation pipe 50d so that the liquefied nitrogen gas is not excessively fed to the liquefied gas supply pump 34. Can be. Therefore, the load applied to the liquefied gas supply pump 34 can be reduced.

上記した実施形態では、貯槽20の貯留した液化窒素ガスを高圧ガスタンクTに充填するようにしたが、液化窒素ガスに代えて液化水素ガスを用いるようにしてもよい。こうすれば、例えば、燃料ガスたる水素ガスと酸化ガスとの供給を受けて発電する燃料電池と水素ガスタンクとを搭載した車両に対して、その搭載した水素ガスタンクへの水素ガス充填に用いることができる。   In the above-described embodiment, the liquefied nitrogen gas stored in the storage tank 20 is filled into the high-pressure gas tank T, but liquefied hydrogen gas may be used instead of the liquefied nitrogen gas. In this way, for example, a vehicle equipped with a fuel cell and a hydrogen gas tank that generate power by receiving supply of hydrogen gas and oxidizing gas as fuel gas can be used for filling hydrogen gas into the mounted hydrogen gas tank. it can.

10…液化ガス供給装置
20…貯槽
21…補充充填バルブ
22…補充管路
23…圧力センサー
30…液化ガス供給管路系
30d…下流供給管路
30v…分岐管路
34…液化ガス供給ポンプ
36…開閉バルブ
40…大気放出管路系
40d…大気放出管路
40m…中間域管路
40u…上流管路
41…第1管路
42…第2管路
44…補助ポンプ
45…温度センサー
46…圧力センサー
50…循環管路系
50d…下流循環管路
50m…中間域循環管路
51…貯槽内管路
52…大気放出管路
55…温度センサー
100…制御装置
T…高圧ガスタンク
V1〜V8…開閉バルブ
DESCRIPTION OF SYMBOLS 10 ... Liquefied gas supply apparatus 20 ... Storage tank 21 ... Replenishment filling valve 22 ... Replenishment pipeline 23 ... Pressure sensor 30 ... Liquefied gas supply pipeline system 30d ... Downstream supply pipeline 30v ... Branch pipeline 34 ... Liquefied gas supply pump 36 ... Opening / closing valve 40 ... Atmospheric discharge pipeline system 40d ... Atmospheric discharge pipeline 40m ... Intermediate zone pipeline 40u ... Upstream pipeline 41 ... First pipeline 42 ... Second pipeline 44 ... Auxiliary pump 45 ... Temperature sensor 46 ... Pressure sensor DESCRIPTION OF SYMBOLS 50 ... Circulation pipeline system 50d ... Downstream circulation pipeline 50m ... Intermediate area circulation pipeline 51 ... Storage tank pipeline 52 ... Atmospheric discharge pipeline 55 ... Temperature sensor 100 ... Control device T ... High pressure gas tank V1-V8 ... Open / close valve

Claims (3)

低温液化ガスの貯槽から該低温液化ガスを液化ガス供給先に供給する低温液化ガスの供給装置であって、
前記低温液化ガスの圧送が可能な液化ガス供給ポンプを介して、前記低温液化ガスを前記貯槽から前記液化ガス供給先に供給送出する液化ガス供給管路系と、
前記低温液化ガスの圧送が可能であって前記液化ガス供給ポンプより熱容量の小さい小熱容量ガスポンプを介して、前記低温液化ガスを前記貯槽から大気放出する大気放出管路系と、
前記貯槽から前記小熱容量ガスポンプと前記液化ガス供給ポンプとを経由して前記低温液化ガスが循環する循環管路系と、
前記低温液化ガスの供給に際して使用するガス管路系を、前記液化ガス供給管路系と前記大気放出管路系と前記循環管路系のいずれかに切り換える共に、該切り換えた管路系に応じて前記液化ガス供給ポンプと前記小熱容量ガスポンプとを制御する制御部とを備え、
該制御部は、前記液化ガス供給ポンプを介した前記液化ガス供給先への前記供給送出に先立って、前記小熱容量ガスポンプを停止制御すると共に前記ガス管路系を前記大気放出管路系に切り換える第1制御と、前記ガス管路系を前記循環管路系に切り換えると共に前記小熱容量ガスポンプを駆動制御する第2制御とをこの順に順次実行する、
低温液化ガスの供給装置。
A low temperature liquefied gas supply device for supplying the low temperature liquefied gas from a low temperature liquefied gas storage tank to a liquefied gas supply destination,
Via a liquefied gas supply pump capable of pumping the low-temperature liquefied gas, a liquefied gas supply line system for supplying and sending the low-temperature liquefied gas from the storage tank to the liquefied gas supply destination;
An atmospheric discharge line system for releasing the low-temperature liquefied gas from the storage tank through a small heat capacity gas pump capable of pumping the low-temperature liquefied gas and having a smaller heat capacity than the liquefied gas supply pump;
A circulation line system through which the low-temperature liquefied gas circulates from the storage tank via the small heat capacity gas pump and the liquefied gas supply pump;
The gas pipeline system used for supplying the low-temperature liquefied gas is switched to any one of the liquefied gas supply pipeline system, the atmospheric discharge pipeline system, and the circulation pipeline system, and in accordance with the switched pipeline system. A control unit for controlling the liquefied gas supply pump and the small heat capacity gas pump,
The control unit stops and controls the small heat capacity gas pump and switches the gas pipeline system to the atmospheric discharge pipeline system prior to the supply and delivery to the liquefied gas supply destination via the liquefied gas supply pump. The first control and the second control for switching the gas pipeline system to the circulation pipeline system and drivingly controlling the small heat capacity gas pump are sequentially executed in this order.
Low temperature liquefied gas supply device.
前記循環管路系と前記液化ガス供給管路系の両管路系は、前記貯槽から前記小熱容量ガスポンプの下流までの前記大気放出管路系の管路と、該管路から前記小熱容量ガスポンプの下流で分岐して前記液化ガス供給ポンプに到る管路とを含む請求項1に記載の低温液化ガスの供給装置。   Both the circulation pipeline system and the liquefied gas supply pipeline system include a pipeline of the atmospheric discharge pipeline system from the storage tank to the downstream of the small heat capacity gas pump, and the small heat capacity gas pump from the pipeline. The low-temperature liquefied gas supply device according to claim 1, further comprising a pipe branching downstream from the pipe and reaching the liquefied gas supply pump. 低温液化ガスの圧送が可能な液化ガス供給ポンプを介して、前記低温液化ガスの前記貯槽から前記低温液化ガスを前記液化ガス供給先に供給送出する液化ガス供給管路系と、前記低温液化ガスの圧送が可能であって前記液化ガス供給ポンプより熱容量の小さい小熱容量ガスポンプを介して、前記低温液化ガスを前記貯槽から大気放出する大気放出管路系と、前記貯槽から前記小熱容量ガスポンプと前記液化ガス供給ポンプとを経由して前記低温液化ガスが循環する循環管路系とを用いて、前記低温液化ガスを前記貯槽から前記液化ガス供給先に供給する低温液化ガスの供給方法であって、
前記小熱容量ガスポンプを停止制御すると共に、前記低温液化ガスの供給に際して使用するガス管路系を前記大気放出管路系に切り換える第1工程と、
前記ガス管路系を前記循環管路系に切り換えると共に、前記小熱容量ガスポンプを駆動制御する第2工程と、
前記ガス管路系を前記液化ガス供給管路系に切り換えると共に、前記液化ガス供給ポンプを駆動制御する第3工程とを備える、
低温液化ガスの供給方法。
A liquefied gas supply line system for supplying the low temperature liquefied gas from the storage tank of the low temperature liquefied gas to the liquefied gas supply destination via a liquefied gas supply pump capable of pumping the low temperature liquefied gas, and the low temperature liquefied gas Through the small heat capacity gas pump having a smaller heat capacity than the liquefied gas supply pump, the atmospheric discharge pipe system for discharging the low-temperature liquefied gas from the storage tank to the atmosphere, the small heat capacity gas pump from the storage tank, and the A low-temperature liquefied gas supply method for supplying the low-temperature liquefied gas from the storage tank to the liquefied gas supply destination using a circulation line system in which the low-temperature liquefied gas circulates via a liquefied gas supply pump. ,
A first step of controlling the stop of the small heat capacity gas pump and switching a gas pipe line system used for supplying the low-temperature liquefied gas to the atmospheric discharge pipe line;
A second step of switching the gas pipeline system to the circulation pipeline system and drivingly controlling the small heat capacity gas pump;
Switching the gas line system to the liquefied gas supply line system, and a third step of driving and controlling the liquefied gas supply pump,
Low temperature liquefied gas supply method.
JP2013214741A 2013-10-15 2013-10-15 Low temperature liquefied gas supply device and method Active JP5997122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214741A JP5997122B2 (en) 2013-10-15 2013-10-15 Low temperature liquefied gas supply device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013214741A JP5997122B2 (en) 2013-10-15 2013-10-15 Low temperature liquefied gas supply device and method

Publications (3)

Publication Number Publication Date
JP2015078719A true JP2015078719A (en) 2015-04-23
JP2015078719A5 JP2015078719A5 (en) 2016-07-28
JP5997122B2 JP5997122B2 (en) 2016-09-28

Family

ID=53010286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214741A Active JP5997122B2 (en) 2013-10-15 2013-10-15 Low temperature liquefied gas supply device and method

Country Status (1)

Country Link
JP (1) JP5997122B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193370A (en) * 2016-04-22 2017-10-26 東京瓦斯株式会社 Lng transfer monitoring system
JP2019065975A (en) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 Supply device of liquefied gas
CN116293422A (en) * 2023-03-03 2023-06-23 查特深冷工程系统(常州)有限公司 Cryogenic liquid high-pressure gasification system with instant start function and control method
JP7399251B2 (en) 2018-12-28 2023-12-15 大阪瓦斯株式会社 Liquefied cryogenic fluid cargo handling equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246098A (en) * 1985-08-23 1987-02-27 Nippon Sanso Kk Supplying method for ultra low temperature liquefied gas
JP2007024166A (en) * 2005-07-15 2007-02-01 Taiyo Nippon Sanso Corp Low-temperature liquefied gas supply device
JP2008075705A (en) * 2006-09-20 2008-04-03 Taiyo Nippon Sanso Corp Method of starting low temperature liquefied gas pump
JP2008196687A (en) * 2007-01-15 2008-08-28 Taiyo Nippon Sanso Corp Low-temperature liquefied gas supply method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246098A (en) * 1985-08-23 1987-02-27 Nippon Sanso Kk Supplying method for ultra low temperature liquefied gas
JP2007024166A (en) * 2005-07-15 2007-02-01 Taiyo Nippon Sanso Corp Low-temperature liquefied gas supply device
JP2008075705A (en) * 2006-09-20 2008-04-03 Taiyo Nippon Sanso Corp Method of starting low temperature liquefied gas pump
JP2008196687A (en) * 2007-01-15 2008-08-28 Taiyo Nippon Sanso Corp Low-temperature liquefied gas supply method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193370A (en) * 2016-04-22 2017-10-26 東京瓦斯株式会社 Lng transfer monitoring system
JP2019065975A (en) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 Supply device of liquefied gas
JP7020848B2 (en) 2017-10-02 2022-02-16 トヨタ自動車株式会社 Liquefied gas supply device
JP7399251B2 (en) 2018-12-28 2023-12-15 大阪瓦斯株式会社 Liquefied cryogenic fluid cargo handling equipment
CN116293422A (en) * 2023-03-03 2023-06-23 查特深冷工程系统(常州)有限公司 Cryogenic liquid high-pressure gasification system with instant start function and control method

Also Published As

Publication number Publication date
JP5997122B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5997122B2 (en) Low temperature liquefied gas supply device and method
EP3784952B1 (en) Cryogenic fluid dispensing system having a chilling reservoir
KR101168299B1 (en) Fuel gas supplying apparatus
JP2017067274A (en) Gas supply device and gas supply method
JP2010266068A (en) Ship
CN105318195A (en) Liquefied natural gas delivery system with saturated fuel reserve
JP2006349084A (en) Evaporative gas supply system of liquefied natural gas carrier
EP3619418B1 (en) A liquefied gas fuel feeding system and a marine vessel
US20190041003A1 (en) Gas supply device and method for stopping operation of gas supply device
EP1959217A2 (en) Apparatus and method for reliquefying boil-off gas capable of operating with variable refrigeration load
US9746132B2 (en) Self-saturating liquefied natural gas delivery system utilizing hydraulic pressure
US20160363384A1 (en) Molten-salt-heated indirect screw-type thermal processor
CN108778921A (en) Method for running liquid gas storage tank and the liquid gas storage tank for accommodating LNG and boil-off gas
NO335213B1 (en) System and method for increasing the pressure in boiling gas in an LNG fuel system
KR100936394B1 (en) Lng circulation system and method of lng carrier
KR20200033851A (en) Methods for transporting cryogenic fluids and transport systems for implementing such methods
JP7020848B2 (en) Liquefied gas supply device
US20070175903A1 (en) Liquid hydrogen storage tank with reduced tanking losses
JP2007009981A (en) Liquefied gas feeding apparatus and liquefied gas feeding method
JP6457760B2 (en) Ship
JPH11505007A (en) High pressure gas supply method
JP2007292182A (en) Cold insulation circulation method of liquefied gas facility
US11193719B2 (en) Molten-salt-heated indirect screw-type thermal processor
KR102096694B1 (en) Treatment system of liquefied natural gas and driving method the same
JP2008051287A (en) Cold reserving system of liquefied natural gas facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R151 Written notification of patent or utility model registration

Ref document number: 5997122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250