JP2015075211A - Flow passage selector valve and refrigerant circuit - Google Patents

Flow passage selector valve and refrigerant circuit Download PDF

Info

Publication number
JP2015075211A
JP2015075211A JP2013213550A JP2013213550A JP2015075211A JP 2015075211 A JP2015075211 A JP 2015075211A JP 2013213550 A JP2013213550 A JP 2013213550A JP 2013213550 A JP2013213550 A JP 2013213550A JP 2015075211 A JP2015075211 A JP 2015075211A
Authority
JP
Japan
Prior art keywords
pressure
low
flow path
way switching
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013213550A
Other languages
Japanese (ja)
Inventor
知厚 南田
Tomoatsu Minamida
知厚 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013213550A priority Critical patent/JP2015075211A/en
Publication of JP2015075211A publication Critical patent/JP2015075211A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flow passage selector valve and a refrigerant circuit which can reduce heat loss with a simple construction.SOLUTION: A flow passage selector valve includes a low pressure three-way selection part which switches a flow passage of low pressure refrigerant by a low pressure valve body 21 and a low pressure valve seat 22, and a high pressure three-way selection part which switches a flow passage of high pressure refrigerant by a high pressure valve body 11 and a high pressure valve seat 12. The low pressure three-way selection part and the high pressure three-way selection part are located away from each other in a single cylinder 1.

Description

この発明は、流路切換弁および冷媒回路に関し、詳しくは、高圧冷媒の流路と低圧冷媒の流路をそれぞれ切り換える流路切換弁およびその流路切換弁を用いた冷媒回路に関する。   The present invention relates to a flow path switching valve and a refrigerant circuit, and more particularly to a flow path switching valve that switches a flow path of a high-pressure refrigerant and a flow path of a low-pressure refrigerant, and a refrigerant circuit that uses the flow path switching valve.

従来の流路切換弁としては、合成樹脂製の弁体を用いることにより高圧冷媒側と低圧冷媒側との間の断熱性を高めることにより熱損失を少なくした四路切換弁がある(例えば、特開平7−151251号公報(特許文献1)参照)。   As a conventional flow path switching valve, there is a four-way switching valve that reduces heat loss by increasing the heat insulation between the high-pressure refrigerant side and the low-pressure refrigerant side by using a synthetic resin valve body (for example, JP-A-7-151251 (Patent Document 1)).

しかしながら、上記四路切換弁では、寸法の制約から合成樹脂製の弁体を厚くすることができず、断熱効果が低いという問題がある。   However, the four-way switching valve has a problem that the synthetic resin valve element cannot be thickened due to dimensional restrictions, and the heat insulation effect is low.

そこで、従来の第2の流路切換弁として、2つの三方弁を用いて高圧冷媒側と低圧冷媒側を分離し、高圧冷媒側から低圧冷媒側への熱伝導を低減する四路切換弁が考えられている(例えば、特開2012−202588号公報(特許文献1)参照)。   Therefore, as a conventional second flow path switching valve, there is a four-way switching valve that separates the high-pressure refrigerant side and the low-pressure refrigerant side using two three-way valves and reduces heat conduction from the high-pressure refrigerant side to the low-pressure refrigerant side. (For example, refer to JP2012-202588A (Patent Document 1)).

特開平7−151251号公報Japanese Patent Laid-Open No. 7-151251 特開2012−202588号公報JP 2012-202588 A

しかしながら、上記2つの三方弁を用いた四路切換弁は、構造が複雑でサイズが大きくなると共に、コストが高くなるという問題がある。また、このような構成の四路切換弁を1つのパイロット用電磁弁で駆動したとしても、2つの三方弁の切換動作にずれが生じる。   However, the four-way switching valve using the two three-way valves has a problem that the structure is complicated and the size is increased, and the cost is increased. Further, even if the four-way switching valve having such a configuration is driven by one pilot solenoid valve, a deviation occurs in the switching operation of the two three-way valves.

そこで、この発明の課題は、簡単な構成で熱損失を低減できる流路切換弁および冷媒回路を提供することにある。   An object of the present invention is to provide a flow path switching valve and a refrigerant circuit that can reduce heat loss with a simple configuration.

上記課題を解決するため、この発明の流路切換弁は、
低圧用弁体と低圧用弁座とで低圧冷媒の流路を切り換える低圧用三方切換部と、
高圧用弁体と高圧用弁座とで高圧冷媒の流路を切り換える高圧用三方切換部と
を備え、
上記低圧用三方切換部と上記高圧用三方切換部が同一本体内に離間して配置されていることを特徴とする。
In order to solve the above problems, the flow path switching valve of the present invention is:
A low-pressure three-way switching unit that switches a flow path of the low-pressure refrigerant between the low-pressure valve body and the low-pressure valve seat;
A high-pressure three-way switching unit that switches the flow path of the high-pressure refrigerant between the high-pressure valve body and the high-pressure valve seat,
The low-pressure three-way switching part and the high-pressure three-way switching part are arranged in the same main body so as to be separated from each other.

上記構成によれば、低圧用弁体と低圧用弁座とで低圧冷媒の流路を切り換える低圧用三方切換部と、高圧用弁体と高圧用弁座とで高圧冷媒の流路を切り換える高圧用三方切換部とを同一本体内に離間して配置することによって、本体内おける低圧冷媒の流れと高圧冷媒の流れが離間されるので、簡単な構成で高圧冷媒側から低圧冷媒側への熱伝導を抑制でき、熱損失を低減できる。   According to the above configuration, the low pressure three-way switching unit that switches the flow path of the low pressure refrigerant between the low pressure valve body and the low pressure valve seat, and the high pressure that switches the flow path of the high pressure refrigerant between the high pressure valve body and the high pressure valve seat. By disposing the three-way switching unit in the same main body apart from each other, the flow of the low-pressure refrigerant and the high-pressure refrigerant in the main body are separated from each other, so that heat from the high-pressure refrigerant side to the low-pressure refrigerant side can be obtained with a simple configuration. Conduction can be suppressed and heat loss can be reduced.

また、一実施形態の流路切換弁では、
上記低圧用三方切換部の低圧用弁体と高圧用三方切換部の高圧用弁体とを連動可能に連結する連結部を備えた。
Moreover, in the flow path switching valve of one embodiment,
There is provided a connecting portion for connecting the low pressure valve body of the low pressure three-way switching portion and the high pressure valve body of the high pressure three-way switching portion so as to be interlocked with each other.

上記実施形態によれば、低圧用三方切換部の低圧用弁体と高圧用三方切換部の高圧用弁体とを連動可能に連結部により連結することによって、低圧用三方切換部と高圧用三方切換部の切換動作にずれが生じない。   According to the above embodiment, the low pressure three-way switching portion and the high pressure three-way switching portion are connected to the high pressure valve body of the high pressure three-way switching portion by the connecting portion so as to be interlocked with each other. There is no deviation in the switching operation of the switching unit.

また、一実施形態の流路切換弁では、
上記低圧用三方切換部の低圧用弁座と上記高圧用三方切換部の高圧用弁座は別体である。
Moreover, in the flow path switching valve of one embodiment,
The low-pressure valve seat of the low-pressure three-way switching unit and the high-pressure valve seat of the high-pressure three-way switching unit are separate.

上記実施形態によれば、低圧用三方切換部の低圧用弁座と高圧用三方切換部の高圧用弁座とを別体にすることによって、低圧用弁座と高圧用弁座との間の熱伝導を低減でき、熱損失をさらに低減できる。   According to the above embodiment, by separating the low pressure valve seat of the low pressure three-way switching portion and the high pressure valve seat of the high pressure three-way switching portion, between the low pressure valve seat and the high pressure valve seat. Heat conduction can be reduced, and heat loss can be further reduced.

また、一実施形態の流路切換弁では、
上記高圧用三方切換部は、上記高圧冷媒を案内する案内流路が形成されている。
Moreover, in the flow path switching valve of one embodiment,
The high-pressure three-way switching unit is formed with a guide channel for guiding the high-pressure refrigerant.

上記実施形態によれば、高圧冷媒を案内する案内流路を高圧用三方切換部に形成することによって、本体内の低圧用三方切換部側に高圧冷媒が流れる経路が形成されないようにでき、本体内おける低圧冷媒の流れと高圧冷媒の流れを確実に隔離することが可能になるので、高圧冷媒側から低圧冷媒側への熱伝導を抑制でき、熱損失をさらに低減できる。   According to the above embodiment, by forming the guide flow path for guiding the high-pressure refrigerant in the high-pressure three-way switching unit, a path through which the high-pressure refrigerant flows can be prevented from being formed on the low-pressure three-way switching unit side in the main body. Since the flow of the low-pressure refrigerant and the flow of the high-pressure refrigerant can be reliably separated from each other, heat conduction from the high-pressure refrigerant side to the low-pressure refrigerant side can be suppressed, and heat loss can be further reduced.

また、一実施形態の流路切換弁では、
上記本体内かつ上記低圧用三方切換部と上記高圧用三方切換部との間に設けられた仕切部を備えた。
Moreover, in the flow path switching valve of one embodiment,
A partition portion provided in the main body and between the low-pressure three-way switching portion and the high-pressure three-way switching portion is provided.

上記実施形態によれば、本体内かつ低圧用三方切換部と高圧用三方切換部との間に仕切部を設けることによって、本体内おける低圧冷媒の流れと高圧冷媒の流れを仕切部により確実に隔離できるので、高圧冷媒側から低圧冷媒側への熱伝導を効果的に抑制でき、熱損失をさらに低減できる。   According to the above embodiment, by providing the partition portion in the main body and between the low pressure three-way switching portion and the high pressure three-way switching portion, the flow of the low-pressure refrigerant and the flow of the high-pressure refrigerant in the main body is ensured by the partition portion. Since they can be isolated, heat conduction from the high-pressure refrigerant side to the low-pressure refrigerant side can be effectively suppressed, and heat loss can be further reduced.

なお、上記仕切部は、低圧用三方切換部と高圧用三方切換部との間を完全に仕切るものではなく、高圧冷媒の主たる流れが低圧用三方切換部側に形成されない程度に隙間があってもよい。   Note that the partition is not a complete partition between the low-pressure three-way switching unit and the high-pressure three-way switching unit, and there is a gap to the extent that the main flow of high-pressure refrigerant is not formed on the low-pressure three-way switching unit side. Also good.

また、この発明の冷媒回路は、
上記のいずれか1つの流路切換弁を備え、
少なくとも、圧縮機と、上記流路切換弁の高圧用三方切換部と、凝縮器と、減圧機構と、蒸発器と、上記流路切換弁の低圧用三方切換部が環状に接続されていることを特徴とする。
The refrigerant circuit of the present invention is
Including any one of the flow path switching valves described above,
At least the compressor, the high-pressure three-way switching portion of the flow path switching valve, the condenser, the pressure reducing mechanism, the evaporator, and the low-pressure three-way switching portion of the flow path switching valve are connected in an annular shape. It is characterized by.

上記構成によれば、少なくとも、圧縮機と、流路切換弁の高圧用三方切換部と、凝縮器と、減圧機構と、蒸発器と、流路切換弁の低圧用三方切換部が環状に接続された構成によって、流路切換弁における熱損失を低減して、冷凍サイクルの効率を向上できる。   According to the above configuration, at least the compressor, the high-pressure three-way switching portion of the flow path switching valve, the condenser, the pressure reducing mechanism, the evaporator, and the low-pressure three-way switching portion of the flow path switching valve are connected in an annular shape. With the configuration, heat loss in the flow path switching valve can be reduced, and the efficiency of the refrigeration cycle can be improved.

また、一実施形態の冷媒回路では、
上記高圧用三方切換部は、上記圧縮機の吐出側が接続された高圧用入口ポートと、上記高圧用弁座に設けられた第1高圧用出口ポートおよび第2高圧用出口ポートを有すると共に、
上記高圧用弁体は、上記第1,第2高圧用出口ポートのうちの一方を上記高圧用入口ポートに連通させ、上記第1,第2高圧用出口ポートのうちの他方を閉鎖する。
In the refrigerant circuit of one embodiment,
The high-pressure three-way switching unit has a high-pressure inlet port to which the discharge side of the compressor is connected, a first high-pressure outlet port and a second high-pressure outlet port provided in the high-pressure valve seat,
The high pressure valve element connects one of the first and second high pressure outlet ports to the high pressure inlet port and closes the other of the first and second high pressure outlet ports.

上記実施形態によれば、高圧用弁座に設けられた第1,第2高圧用出口ポートのうちの一方を圧縮機の吐出側が接続された高圧用入口ポートに連通させ、第1,第2高圧用出口ポートのうちの他方を閉鎖するので、第1,第2高圧用出口ポートのうちの一方を高圧側の凝縮器に接続し、他方を低圧側の蒸発器に接続することで、冷凍サイクルの切り換えが可能になる。この場合、第1,第2高圧用出口ポートのうちの他方を低圧側の蒸発器に接続しても閉鎖しているので、高圧用三方切換部には低圧冷媒の流れが形成されず、熱損失を低減できる。   According to the above embodiment, one of the first and second high-pressure outlet ports provided in the high-pressure valve seat is communicated with the high-pressure inlet port to which the discharge side of the compressor is connected. Since the other of the high-pressure outlet ports is closed, one of the first and second high-pressure outlet ports is connected to the high-pressure side condenser, and the other is connected to the low-pressure side evaporator. Cycle switching is possible. In this case, since the other of the first and second high-pressure outlet ports is connected to the low-pressure side evaporator, the low-pressure refrigerant flow is not formed in the high-pressure three-way switching portion. Loss can be reduced.

また、一実施形態の冷媒回路では、
上記低圧用三方切換部は、上記圧縮機の吸入側が接続された低圧用出口ポートと、上記低圧用弁座に設けられた第1低圧用入口ポートおよび第2低圧用入口ポートを有すると共に、
上記低圧用弁体は、上記第1,第2低圧用入口ポートのうちの一方を上記低圧用出口ポートに連通させ、上記第1,第2低圧用入口ポートのうちの他方を閉鎖する。
In the refrigerant circuit of one embodiment,
The low-pressure three-way switching unit has a low-pressure outlet port connected to the suction side of the compressor, a first low-pressure inlet port and a second low-pressure inlet port provided in the low-pressure valve seat,
The low pressure valve element allows one of the first and second low pressure inlet ports to communicate with the low pressure outlet port and closes the other of the first and second low pressure inlet ports.

上記実施形態によれば、低圧用弁座に設けられた第1,第2低圧用入口ポートのうちの一方を圧縮機の吸入側が接続された低圧用出口ポートに連通させ、第1,第2低圧用入口ポートのうちの他方を閉鎖するので、第1,第2低圧用入口ポートのうちの一方を低圧側の蒸発器に接続し、他方を高圧側の凝縮器に接続することで、冷凍サイクルの切り換えが可能になる。この場合、第1,第2低圧用入口ポートのうちの他方を高圧側の凝縮器に接続しても閉鎖しているので、低圧用三方切換部には高圧冷媒の流れが形成されず、熱損失を低減できる。   According to the above embodiment, one of the first and second low pressure inlet ports provided in the low pressure valve seat is communicated with the low pressure outlet port to which the suction side of the compressor is connected. Since the other of the low-pressure inlet ports is closed, one of the first and second low-pressure inlet ports is connected to the low-pressure side evaporator, and the other is connected to the high-pressure side condenser. Cycle switching is possible. In this case, since the other of the first and second low-pressure inlet ports is connected to the high-pressure side condenser, the high-pressure refrigerant flow is not formed in the low-pressure three-way switching portion. Loss can be reduced.

以上より明らかなように、この発明によれば、簡単な構成で熱損失を低減できる流路切換弁およびその流路切換弁を用いた冷媒回路を実現することができる。   As apparent from the above, according to the present invention, it is possible to realize a flow path switching valve that can reduce heat loss with a simple configuration and a refrigerant circuit that uses the flow path switching valve.

図1はこの発明の第1実施形態のパイロット式の流路切換弁を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図である。FIG. 1 is a circuit diagram at the time of cooling operation of an air conditioner provided with a refrigerant circuit using a pilot-type flow path switching valve according to a first embodiment of the present invention. 図2は上記空気調和機の暖房運転時の回路図である。FIG. 2 is a circuit diagram of the air conditioner during heating operation. 図3はこの発明の第2実施形態の流路切換弁を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図である。FIG. 3 is a circuit diagram at the time of cooling operation of an air conditioner provided with a refrigerant circuit using the flow path switching valve of the second embodiment of the present invention. 図4は上記流路切換弁の断面図である。FIG. 4 is a sectional view of the flow path switching valve. 図5はこの発明の第3実施形態の流路切換弁を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図である。FIG. 5 is a circuit diagram at the time of cooling operation of an air conditioner provided with a refrigerant circuit using the flow path switching valve of the third embodiment of the present invention. 図6はこの発明の第4実施形態の流路切換弁を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図である。FIG. 6 is a circuit diagram at the time of cooling operation of an air conditioner provided with a refrigerant circuit using the flow path switching valve of the fourth embodiment of the present invention.

以下、この発明の流路切換弁を図示の実施の形態により詳細に説明する。   Hereinafter, the flow path switching valve of the present invention will be described in detail with reference to the illustrated embodiments.

〔第1実施形態〕
図1はこの発明の第1実施形態のパイロット式の流路切換弁110を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図を示している。図1において、流路切換弁110は断面を示している。
[First Embodiment]
FIG. 1 shows a circuit diagram at the time of cooling operation of an air conditioner provided with a refrigerant circuit using a pilot-type flow path switching valve 110 according to the first embodiment of the present invention. In FIG. 1, the flow path switching valve 110 shows a cross section.

この流路切換弁110は、図1に示すように、本体の一例としての円筒形状のシリンダ1内に、金属製の高圧用弁座12と金属製の低圧用弁座22をシリンダ1の軸方向に間隔をあけて配置している。また、シリンダ1内に高圧用弁体11と低圧用弁体21とをシリンダ1の軸方向にスライド自在の配置している。この高圧用弁体11と低圧用弁体21は、合成樹脂からなり、金属製の板状の連結部6により連結されている。   As shown in FIG. 1, the flow path switching valve 110 includes a metal high-pressure valve seat 12 and a metal low-pressure valve seat 22 in a cylinder 1 as an example of a main body. Arranged at intervals in the direction. A high pressure valve element 11 and a low pressure valve element 21 are slidably disposed in the cylinder 1 in the axial direction of the cylinder 1. The high-pressure valve body 11 and the low-pressure valve body 21 are made of synthetic resin and are connected by a metal plate-like connecting portion 6.

上記連結部6は、高圧用弁体11,低圧用弁体21のスライド方向両側に延び、連結部6の一端にピストン4を固定する一方、連結部6の他端にピストン5を固定している。そして、シリンダ1の両端をキャップ2,3で閉じている。   The connecting portion 6 extends on both sides of the high pressure valve body 11 and the low pressure valve body 21 in the sliding direction, and fixes the piston 4 to one end of the connecting portion 6 while fixing the piston 5 to the other end of the connecting portion 6. Yes. Both ends of the cylinder 1 are closed with caps 2 and 3.

上記シリンダ1の高圧用弁座12に対向する側には、高圧用入口ポートP11を設けると共に、高圧用弁座12を貫通する第1高圧用出口ポートP12および第2高圧用出口ポートP13を設けている。   On the side of the cylinder 1 facing the high-pressure valve seat 12, a high-pressure inlet port P11 is provided, and a first high-pressure outlet port P12 and a second high-pressure outlet port P13 penetrating the high-pressure valve seat 12 are provided. ing.

また、上記シリンダ1の低圧用弁座22側には、低圧用弁座22を貫通する低圧用出口ポートP21と第1低圧用入口ポートP22および第2低圧用入口ポートP23を設けている。   Further, on the low pressure valve seat 22 side of the cylinder 1, a low pressure outlet port P21, a first low pressure inlet port P22 and a second low pressure inlet port P23 penetrating the low pressure valve seat 22 are provided.

上記高圧用弁体11と高圧用弁座12と高圧用入口ポートP11と第1高圧用出口ポートP12および第2高圧用出口ポートP13で高圧用三方切換部を構成している。また、低圧用弁体21と低圧用弁座22と低圧用出口ポートP21と第1低圧用入口ポートP22および第2低圧用入口ポートP23で低圧用三方切換部を構成している。   The high pressure valve body 11, the high pressure valve seat 12, the high pressure inlet port P11, the first high pressure outlet port P12, and the second high pressure outlet port P13 constitute a high pressure three-way switching portion. The low-pressure valve body 21, the low-pressure valve seat 22, the low-pressure outlet port P21, the first low-pressure inlet port P22, and the second low-pressure inlet port P23 constitute a low-pressure three-way switching unit.

上記高圧用入口ポートP11に接続された配管に連通するポートP31と低圧用出口ポートP21に接続された配管に連通するポートP32をパイロット電磁弁7に夫々接続すると共に、シリンダ1の両端に設けられたポートP41,42をパイロット電磁弁7に夫々接続している。   A port P31 communicating with the piping connected to the high pressure inlet port P11 and a port P32 communicating with the piping connected to the low pressure outlet port P21 are respectively connected to the pilot solenoid valve 7 and provided at both ends of the cylinder 1. The ports P41 and P42 are connected to the pilot solenoid valve 7, respectively.

また、この実施形態の空気調和機の冷媒回路は、圧縮機101の吐出側を流路切換弁110の高圧用入口ポートP11に接続し、流路切換弁110の第1高圧用出口ポートP12,第2低圧用入口ポートP23を室外熱交換器103の一端に接続している。そして、室外熱交換器103の他端を膨脹機構の一例としての電動膨張弁104の一端に接続し、電動膨張弁104の他端を室内熱交換器105の一端に接続している。さらに、室内熱交換器105の他端を流路切換弁110の第2高圧用出口ポートP13,第1低圧用入口ポートP22に接続し、流路切換弁110の低圧用出口ポートP21を圧縮機101の吸入側に接続している。   In the refrigerant circuit of the air conditioner of this embodiment, the discharge side of the compressor 101 is connected to the high pressure inlet port P11 of the flow path switching valve 110, and the first high pressure outlet port P12 of the flow path switching valve 110, The second low-pressure inlet port P23 is connected to one end of the outdoor heat exchanger 103. The other end of the outdoor heat exchanger 103 is connected to one end of an electric expansion valve 104 as an example of an expansion mechanism, and the other end of the electric expansion valve 104 is connected to one end of the indoor heat exchanger 105. Further, the other end of the indoor heat exchanger 105 is connected to the second high pressure outlet port P13 and the first low pressure inlet port P22 of the flow path switching valve 110, and the low pressure outlet port P21 of the flow path switching valve 110 is connected to the compressor. 101 is connected to the suction side.

図1はパイロット電磁弁7のコイルが非励磁の状態を示しており、高圧用入口ポートP11に連通するポートP31とシリンダ1に設けられたポートP41が連通し、低圧用出口ポートP21に連通するポートP32とシリンダ1のポートP42が連通して、キャップ3とピストン5との間の空間(P41側)の圧力がキャップ2とピストン4との間の空間(P42側)の圧力よりも高くなる。この圧力差により、ピストン4,5が取り付けられた連結部6は、高圧用弁体11,低圧用弁体21と共に図中左方向に移動するので、高圧用弁体11は、第1高圧用出口ポートP12を高圧用入口ポートP11に連通させる一方、第2高圧用出口ポートP13を閉鎖する。これと同時に、低圧用弁体21は、低圧用出口ポートP21と第1低圧用入口ポートP22を連通させ、第2低圧用入口ポートP23を閉鎖する。   FIG. 1 shows a state in which the coil of the pilot solenoid valve 7 is not excited. A port P31 communicating with the high pressure inlet port P11 and a port P41 provided in the cylinder 1 communicate with each other and communicate with a low pressure outlet port P21. The port P32 and the port P42 of the cylinder 1 communicate with each other, and the pressure in the space (P41 side) between the cap 3 and the piston 5 becomes higher than the pressure in the space (P42 side) between the cap 2 and the piston 4. . Due to this pressure difference, the connecting portion 6 to which the pistons 4 and 5 are attached moves to the left in the figure together with the high pressure valve body 11 and the low pressure valve body 21, so that the high pressure valve body 11 is the first high pressure valve body. The outlet port P12 is communicated with the high pressure inlet port P11, while the second high pressure outlet port P13 is closed. At the same time, the low pressure valve element 21 connects the low pressure outlet port P21 and the first low pressure inlet port P22, and closes the second low pressure inlet port P23.

また、上記パイロット電磁弁7のコイルを励磁すると、高圧用入口ポートP11に連通するポートP31とシリンダ1に設けられたポートP42が連通し、低圧用出口ポートP21に連通するポートP32とシリンダ1のポートP41が連通して、キャップ2とピストン4との間の空間(P42側)の圧力がキャップ3とピストン5との間(P41側)の空間の圧力よりも高くなる。この圧力差により、ピストン4,5が取り付けられた連結部6は、図2に示すように、高圧用弁体11,低圧用弁体21と共に図中右方向に移動するので、高圧用弁体11は、高圧用入口ポートP11を第2高圧用出口ポートP13に連通させる一方、第1高圧用出口ポートP12を閉鎖する。これと同時に、低圧用弁体21は、低圧用出口ポートP21と第2低圧用入口ポートP23を連通させ、第1低圧用入口ポートP22を閉鎖する。   Further, when the coil of the pilot solenoid valve 7 is excited, the port P31 communicating with the high pressure inlet port P11 and the port P42 provided in the cylinder 1 communicate with each other, and the port P32 communicating with the low pressure outlet port P21 and the cylinder 1 are communicated. The port P41 communicates, and the pressure in the space between the cap 2 and the piston 4 (P42 side) becomes higher than the pressure in the space between the cap 3 and the piston 5 (P41 side). Due to this pressure difference, the connecting portion 6 to which the pistons 4 and 5 are attached moves to the right in the drawing together with the high pressure valve body 11 and the low pressure valve body 21, as shown in FIG. 11 connects the high-pressure inlet port P11 to the second high-pressure outlet port P13, while closing the first high-pressure outlet port P12. At the same time, the low pressure valve element 21 connects the low pressure outlet port P21 and the second low pressure inlet port P23, and closes the first low pressure inlet port P22.

上記構成の冷媒回路を備えた空気調和機において、流路切換弁110が図1の状態で圧縮機101から吐出された高温高圧冷媒は、流路切換弁110の高圧用入口ポートP11からシリンダ1内に流入し、第1高圧用出口ポートP12を介して室外熱交換器103に流れる。そして、凝縮器としての室外熱交換器103で高温高圧冷媒が凝縮された後、電動膨張弁104で減圧された低圧冷媒が蒸発器としての室内熱交換器105で蒸発する。室内熱交換器105で蒸発した低圧冷媒は、流路切換弁110の第1低圧用入口ポートP22からシリンダ1内のお椀状の低圧用弁体21に案内されて低圧用出口ポートP21を介して圧縮機101の吸入側に戻る。これにより、室内熱交換器105での熱交換により室内空気が冷やされて冷房運転が行われる。   In the air conditioner including the refrigerant circuit having the above-described configuration, the high-temperature and high-pressure refrigerant discharged from the compressor 101 with the flow path switching valve 110 in the state shown in FIG. Flows into the outdoor heat exchanger 103 via the first high-pressure outlet port P12. Then, after the high-temperature and high-pressure refrigerant is condensed in the outdoor heat exchanger 103 as a condenser, the low-pressure refrigerant decompressed by the electric expansion valve 104 is evaporated in the indoor heat exchanger 105 as an evaporator. The low-pressure refrigerant evaporated in the indoor heat exchanger 105 is guided from the first low-pressure inlet port P22 of the flow path switching valve 110 to the bowl-shaped low-pressure valve body 21 in the cylinder 1 through the low-pressure outlet port P21. Return to the suction side of the compressor 101. Thereby, the indoor air is cooled by heat exchange in the indoor heat exchanger 105, and the cooling operation is performed.

一方、暖房運転時は、流路切換弁110が図2の状態で圧縮機101を起動すると、圧縮機101から吐出された高温高圧冷媒は、流路切換弁110の高圧用入口ポートP11からシリンダ1内に流入し、第2高圧用出口ポートP13を介して室内熱交換器105に流れる。ここで、連結部6は、高圧冷媒の流れを妨げないように図示しない穴を設けている。そして、凝縮器としての室内熱交換器105で高温高圧冷媒が凝縮された後、電動膨張弁104で減圧された低圧冷媒が蒸発器としての室外熱交換器103で蒸発する。室外熱交換器103で蒸発した低圧冷媒は、流路切換弁110の第2低圧用入口ポートP23からシリンダ1内のお椀状の低圧用弁体21に案内されて低圧用出口ポートP21を介して圧縮機101の吸入側に戻る。これにより、室内熱交換器105での熱交換により室内空気が暖められて暖房運転が行われる。   On the other hand, during heating operation, when the flow path switching valve 110 starts the compressor 101 with the state shown in FIG. 2, the high-temperature and high-pressure refrigerant discharged from the compressor 101 is transferred from the high-pressure inlet port P11 of the flow path switching valve 110 to the cylinder. 1 flows into the indoor heat exchanger 105 through the second high-pressure outlet port P13. Here, the connection part 6 is provided with a hole (not shown) so as not to disturb the flow of the high-pressure refrigerant. Then, after the high-temperature and high-pressure refrigerant is condensed in the indoor heat exchanger 105 as a condenser, the low-pressure refrigerant decompressed by the electric expansion valve 104 evaporates in the outdoor heat exchanger 103 as an evaporator. The low-pressure refrigerant evaporated in the outdoor heat exchanger 103 is guided from the second low-pressure inlet port P23 of the flow path switching valve 110 to the bowl-shaped low-pressure valve body 21 in the cylinder 1 through the low-pressure outlet port P21. Return to the suction side of the compressor 101. Thereby, indoor air is warmed by the heat exchange in the indoor heat exchanger 105, and heating operation is performed.

上記流路切換弁110では、シリンダ1内の高圧用入口ポートP11から第1高圧用出口ポートP12(または第2高圧用出口ポートP13)の高圧冷媒の主たる流れの経路は、シリンダ1内の第1低圧用入口ポートP22(第2低圧用入口ポートP23)から低圧用出口ポートP21への低圧冷媒の主たる流れの経路から隔離されている。また、高圧用入口ポートP11からシリンダ1内に流入した高圧冷媒は、シリンダ301内のピストン4,5間の空間に満たされ、この空間と低圧用弁体21に案内される低圧冷媒との差圧により、低圧用弁体21が低圧用弁座22側に付勢されて、低圧用弁体21と低圧用弁座22との間のシール性を向上する。   In the flow path switching valve 110, the main flow path of the high-pressure refrigerant from the high-pressure inlet port P11 to the first high-pressure outlet port P12 (or the second high-pressure outlet port P13) in the cylinder 1 is 1 is isolated from the main flow path of the low-pressure refrigerant from the low-pressure inlet port P22 (second low-pressure inlet port P23) to the low-pressure outlet port P21. The high-pressure refrigerant flowing into the cylinder 1 from the high-pressure inlet port P11 is filled in the space between the pistons 4 and 5 in the cylinder 301, and the difference between this space and the low-pressure refrigerant guided by the low-pressure valve body 21. Due to the pressure, the low pressure valve body 21 is biased toward the low pressure valve seat 22 side, and the sealing performance between the low pressure valve body 21 and the low pressure valve seat 22 is improved.

上記構成の流路切換弁110によれば、低圧用弁体21と低圧用弁座22とで低圧冷媒の流路を切り換える低圧用三方切換部と、高圧用弁体11と高圧用弁座12とで高圧冷媒の流路を切り換える高圧用三方切換部とを同一シリンダ1内に離間して配置することによって、シリンダ1内おける低圧冷媒の流れと高圧冷媒の流れが離間されるので、簡単な構成で高圧冷媒側から低圧冷媒側への熱伝導を抑制でき、熱損失を低減できる。   According to the flow path switching valve 110 configured as described above, the low pressure three-way switching portion that switches the flow path of the low pressure refrigerant between the low pressure valve body 21 and the low pressure valve seat 22, the high pressure valve body 11, and the high pressure valve seat 12. By arranging the high-pressure three-way switching portion for switching the flow path of the high-pressure refrigerant apart from each other in the same cylinder 1, the flow of the low-pressure refrigerant and the flow of the high-pressure refrigerant in the cylinder 1 are separated. With the configuration, heat conduction from the high-pressure refrigerant side to the low-pressure refrigerant side can be suppressed, and heat loss can be reduced.

また、上記低圧用三方切換部の低圧用弁体21と高圧用三方切換部の高圧用弁体11とを連結部6により連動可能に連結することによって、低圧用三方切換部と高圧用三方切換部の切換動作にずれが生じない。   Further, the low pressure valve body 21 of the low pressure three-way switching section and the high pressure valve body 11 of the high pressure three-way switching section are connected to each other by the connecting section 6 so that the low pressure three-way switching section and the high pressure three-way switching section are connected. There is no deviation in the switching operation of the parts.

また、上記低圧用三方切換部の低圧用弁座22と高圧用三方切換部の高圧用弁座12とを別体にすることによって、低圧用弁座22と高圧用弁座12との間の熱伝導を低減でき、熱損失をさらに低減できる。   Further, by separating the low-pressure valve seat 22 of the low-pressure three-way switching unit and the high-pressure valve seat 12 of the high-pressure three-way switching unit, the low-pressure valve seat 22 and the high-pressure valve seat 12 are separated from each other. Heat conduction can be reduced, and heat loss can be further reduced.

また、上記構成の冷媒回路によれば、圧縮機101と、流路切換弁110の高圧用三方切換部と、蒸発器と、減圧機構と、蒸発器と、流路切換弁110の低圧用三方切換部が環状に接続された構成によって、流路切換弁110における熱損失を低減して、冷凍サイクルの効率を向上できる。   Further, according to the refrigerant circuit having the above-described configuration, the compressor 101, the high-pressure three-way switching portion of the flow path switching valve 110, the evaporator, the pressure reducing mechanism, the evaporator, and the low-pressure three-way of the flow path switching valve 110 With the configuration in which the switching unit is connected in a ring shape, heat loss in the flow path switching valve 110 can be reduced, and the efficiency of the refrigeration cycle can be improved.

また、上記高圧用弁座12に設けられた第1,第2高圧用出口ポートP12,P13のうちの一方を圧縮機101の吐出側が接続された高圧用入口ポートP11に連通させ、第1,第2高圧用出口ポートP12,P13のうちの他方を閉鎖するので、第1,第2高圧用出口ポートP12,P13のうちの一方を高圧側の凝縮器に接続し、他方を低圧側の蒸発器に接続することで、冷凍サイクルの切り換えが可能になる。この場合、第1,第2高圧用出口ポートP12,P13のうちの他方を低圧側の蒸発器に接続しても閉鎖しているので、高圧用三方切換部には低圧冷媒の流れが形成されず、熱損失を低減できる。   One of the first and second high-pressure outlet ports P12 and P13 provided in the high-pressure valve seat 12 is communicated with a high-pressure inlet port P11 to which the discharge side of the compressor 101 is connected. Since the other of the second high-pressure outlet ports P12 and P13 is closed, one of the first and second high-pressure outlet ports P12 and P13 is connected to the high-pressure side condenser and the other is connected to the low-pressure side evaporation. The refrigeration cycle can be switched by connecting to the vessel. In this case, since the other of the first and second high-pressure outlet ports P12 and P13 is connected to the low-pressure side evaporator, it is closed, so that a low-pressure refrigerant flow is formed in the high-pressure three-way switching portion. Therefore, heat loss can be reduced.

また、上記低圧用弁座22に設けられた第1,第2低圧用入口ポートP22,P23のうちの一方を圧縮機101の吸入側が接続された低圧用出口ポートP21に連通させ、第1,第2低圧用入口ポートP22,P23のうちの他方を閉鎖するので、第1,第2低圧用入口ポートP22,P23のうちの一方を低圧側の蒸発器に接続し、他方を高圧側の凝縮器に接続することで、冷凍サイクルの切り換えが可能になる。この場合、第1,第2低圧用入口ポートP22,P23のうちの他方を高圧側の凝縮器に接続しても閉鎖しているので、低圧用三方切換部には高圧冷媒の流れが形成されず、熱損失を低減できる。   One of the first and second low-pressure inlet ports P22 and P23 provided in the low-pressure valve seat 22 is communicated with a low-pressure outlet port P21 to which the suction side of the compressor 101 is connected. Since the other of the second low-pressure inlet ports P22 and P23 is closed, one of the first and second low-pressure inlet ports P22 and P23 is connected to the low-pressure side evaporator and the other is connected to the high-pressure side condensation. The refrigeration cycle can be switched by connecting to the vessel. In this case, since the other of the first and second low pressure inlet ports P22 and P23 is connected to the high pressure side condenser, it is closed, so that a flow of high pressure refrigerant is formed in the low pressure three-way switching portion. Therefore, heat loss can be reduced.

〔第2実施形態〕
図3はこの発明の第2実施形態の流路切換弁210を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図を示している。図3において、流路切換弁210は断面を示している。なお、この第2実施形態の流路切換弁210を用いた冷媒回路は、シリンダ201,高圧用弁体211および弁座212を除いて第1実施形態の流路切換弁110を用いた冷媒回路と同一の構成をしており、同一構成部には同一参照番号を付して説明を省略する。
[Second Embodiment]
FIG. 3 shows a circuit diagram of the air conditioner provided with the refrigerant circuit using the flow path switching valve 210 according to the second embodiment of the present invention during the cooling operation. In FIG. 3, the flow path switching valve 210 shows a cross section. The refrigerant circuit using the flow path switching valve 210 of the second embodiment is a refrigerant circuit using the flow path switching valve 110 of the first embodiment except for the cylinder 201, the high pressure valve body 211, and the valve seat 212. The same components are denoted by the same reference numerals, and the description thereof is omitted.

この流路切換弁210は、図3に示すように、本体の一例としての円筒形状のシリンダ201内に、高圧用弁座と低圧用弁座の機能を兼ねる金属製の弁座212を配置している。また、シリンダ201内に高圧用弁体211と低圧用弁体21とをシリンダ201の軸方向にスライド自在の配置している。この高圧用弁体211と低圧用弁体21は、合成樹脂からなり、金属製の板状の連結部206により連結されている。なお、弁座212は、高圧用弁座部212aと低圧用弁座部212bとの間に、高圧用弁体211および低圧用弁体21が共用する摺動面を有する中間部212cを設けている。   As shown in FIG. 3, the flow path switching valve 210 includes a metal valve seat 212 that functions as a high-pressure valve seat and a low-pressure valve seat in a cylindrical cylinder 201 as an example of a main body. ing. Further, a high pressure valve body 211 and a low pressure valve body 21 are slidably disposed in the cylinder 201 in the axial direction of the cylinder 201. The high-pressure valve body 211 and the low-pressure valve body 21 are made of synthetic resin and are connected by a metal plate-like connecting portion 206. The valve seat 212 is provided with an intermediate portion 212c having a sliding surface shared by the high pressure valve body 211 and the low pressure valve body 21 between the high pressure valve seat portion 212a and the low pressure valve seat portion 212b. Yes.

上記連結部206は、高圧用弁体211,低圧用弁体21のスライド方向両側に延び、連結部206の一端にピストン4を固定する一方、連結部206の他端にピストン5を固定している。そして、シリンダ201の両端をキャップ2,3で閉じている。   The connecting portion 206 extends to both sides of the high pressure valve body 211 and the low pressure valve body 21 in the sliding direction, and fixes the piston 4 to one end of the connecting portion 206 while fixing the piston 5 to the other end of the connecting portion 206. Yes. Both ends of the cylinder 201 are closed with caps 2 and 3.

上記シリンダ201には、弁座212を貫通する第1高圧用出口ポートP12と第2高圧用出口ポートP13と低圧用出口ポートP21と第1低圧用入口ポートP22および第2低圧用入口ポートP23を設けている。   The cylinder 201 has a first high pressure outlet port P12, a second high pressure outlet port P13, a low pressure outlet port P21, a first low pressure inlet port P22, and a second low pressure inlet port P23 that pass through the valve seat 212. Provided.

上記高圧用弁体211と弁座212の高圧用弁座部212aと高圧用入口ポートP11と第1高圧用出口ポートP12および第2高圧用出口ポートP13で高圧用三方切換部を構成している。また、低圧用弁体21と弁座212の低圧用弁座部212bと低圧用出口ポートP21と第1低圧用入口ポートP22および第2低圧用入口ポートP23で低圧用三方切換部を構成している。   The high pressure valve body 211, the high pressure valve seat 212a of the valve seat 212, the high pressure inlet port P11, the first high pressure outlet port P12, and the second high pressure outlet port P13 constitute a high pressure three-way switching portion. . The low pressure valve body 21, the low pressure valve seat 212b of the valve seat 212, the low pressure outlet port P21, the first low pressure inlet port P22 and the second low pressure inlet port P23 constitute a low pressure three-way switching portion. Yes.

上記高圧用弁体211には、高圧用入口ポートP11から流入する高圧冷媒を第1高圧用出口ポートP12に案内する案内流路P1と、高圧用入口ポートP11から流入する高圧冷媒を第2高圧用出口ポートP13に案内する案内流路P2が形成されている。   The high-pressure valve body 211 has a guide passage P1 for guiding the high-pressure refrigerant flowing from the high-pressure inlet port P11 to the first high-pressure outlet port P12, and the high-pressure refrigerant flowing from the high-pressure inlet port P11 is the second high-pressure refrigerant. A guide channel P2 for guiding to the outlet port P13 is formed.

上記第2実施形態の流路切換弁210およびその流路切換弁210を用いた冷媒回路は、第1実施形態の流路切換弁110およびその流路切換弁110を用いた冷媒回路と同様の効果を有する。   The flow path switching valve 210 of the second embodiment and the refrigerant circuit using the flow path switching valve 210 are the same as the flow path switching valve 110 of the first embodiment and the refrigerant circuit using the flow path switching valve 110. Has an effect.

また、上記高圧冷媒を案内する案内流路P1,P2を高圧用三方切換部に形成することによって、シリンダ201内の低圧用三方切換部側に高圧冷媒が流れる経路が形成されないようにでき、シリンダ201内おける低圧冷媒の流れと高圧冷媒の流れを確実に隔離することが可能になるので、高圧冷媒側から低圧冷媒側への熱伝導を抑制でき、熱損失をさらに低減できる。   Further, by forming the guide flow paths P1 and P2 for guiding the high-pressure refrigerant in the high-pressure three-way switching portion, a path through which the high-pressure refrigerant flows in the low-pressure three-way switching portion in the cylinder 201 can be prevented. Since the flow of the low-pressure refrigerant and the flow of the high-pressure refrigerant in 201 can be reliably separated, heat conduction from the high-pressure refrigerant side to the low-pressure refrigerant side can be suppressed, and heat loss can be further reduced.

上記流路切換弁210は、図4に示すように、第2高圧用出口ポートP13と第2低圧用入口ポートP23との間の距離をx、第1,第2高圧用出口ポートP12,P13との間の距離をa、低圧用出口ポートP21と第2低圧用入口ポートP23との間の距離をb、低圧用出口ポートP21と第1低圧用入口ポートP22との間の距離をcとすると、
x >a かつ x > b かつ x > c
の条件を満たす。これにより、同一シリンダ1内において、低圧用三方切換部と高圧用三方切換部とを確実に離間させた状態で、流路切換弁210の長手方向の寸法をコンパクト化できる。上記条件は、第1実施形態の流路切換弁110においても同様である。
As shown in FIG. 4, the flow path switching valve 210 has a distance x between the second high pressure outlet port P13 and the second low pressure inlet port P23, and the first and second high pressure outlet ports P12, P13. , A distance between the low pressure outlet port P21 and the second low pressure inlet port P23, b, and a distance between the low pressure outlet port P21 and the first low pressure inlet port P22 as c. Then
x> a and x> b and x> c
Satisfy the condition of Thereby, in the same cylinder 1, the dimension in the longitudinal direction of the flow path switching valve 210 can be made compact while the low pressure three-way switching portion and the high pressure three-way switching portion are reliably separated. The above conditions are the same for the flow path switching valve 110 of the first embodiment.

ここで、第2高圧用出口ポートP13と第2低圧用入口ポートP23との間の距離xは、低圧用三方切換部における低圧冷媒流の経路と高圧用三方切換部における高圧冷媒流の経路との最短距離である。   Here, the distance x between the second high-pressure outlet port P13 and the second low-pressure inlet port P23 is such that the low-pressure refrigerant flow path in the low-pressure three-way switching section and the high-pressure refrigerant flow path in the high-pressure three-way switching section are Is the shortest distance.

上記第2実施形態の流路切換弁210では、高圧用弁体211に案内流路P1,P2を形成したが、シリンダに固定された案内流路を設けてもよい。   In the flow path switching valve 210 of the second embodiment, the guide flow paths P1 and P2 are formed in the high pressure valve body 211, but a guide flow path fixed to a cylinder may be provided.

〔第3実施形態〕
図5はこの発明の第3実施形態の流路切換弁310を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図を示している。図5において、流路切換弁310は断面を示している。なお、この第3実施形態の流路切換弁310を用いた冷媒回路は、シリンダ301,連結部306,仕切部307を除いて第1実施形態の流路切換弁110を用いた冷媒回路と同一の構成をしており、同一構成部には同一参照番号を付している。
[Third Embodiment]
FIG. 5 shows a circuit diagram at the time of cooling operation of an air conditioner provided with a refrigerant circuit using the flow path switching valve 310 of the third embodiment of the present invention. In FIG. 5, the flow path switching valve 310 shows a cross section. The refrigerant circuit using the flow path switching valve 310 of the third embodiment is the same as the refrigerant circuit using the flow path switching valve 110 of the first embodiment, except for the cylinder 301, the connecting portion 306, and the partition portion 307. The same reference numerals are assigned to the same components.

この流路切換弁310は、図5に示すように、本体の一例としての円筒形状のシリンダ301内に、高圧用弁座12と低圧用弁座22をシリンダ301の軸方向に所定の間隔をあけて配置している。また、シリンダ301内に高圧用弁体11と低圧用弁体21とをシリンダ301の軸方向にスライド自在の配置している。この高圧用弁体11と低圧用弁体21は、金属製の板状の連結部306により連結されている。   As shown in FIG. 5, the flow path switching valve 310 is configured such that a high pressure valve seat 12 and a low pressure valve seat 22 are arranged at a predetermined interval in the axial direction of the cylinder 301 in a cylindrical cylinder 301 as an example of a main body. Open and arranged. Further, the high pressure valve element 11 and the low pressure valve element 21 are slidably disposed in the cylinder 301 in the axial direction of the cylinder 301. The high-pressure valve body 11 and the low-pressure valve body 21 are connected by a metal plate-like connecting portion 306.

上記連結部306は、高圧用弁体11,低圧用弁体21のスライド方向両側に延び、連結部306の一端にピストン4を固定する一方、連結部306の他端にピストン5を固定している。そして、シリンダ301の両端をキャップ2,3で閉じている。   The connecting portion 306 extends to both sides of the high pressure valve body 11 and the low pressure valve body 21 in the sliding direction, and fixes the piston 4 to one end of the connecting portion 306, and fixes the piston 5 to the other end of the connecting portion 306. Yes. Both ends of the cylinder 301 are closed with caps 2 and 3.

上記高圧用弁体11と高圧用弁座12と高圧用入口ポートP11と第1高圧用出口ポートP12および第2高圧用出口ポートP13で高圧用三方切換部を構成している。また、低圧用弁体21と低圧用弁座22と低圧用出口ポートP21と第1低圧用入口ポートP22および第2低圧用入口ポートP23で低圧用三方切換部を構成している。   The high pressure valve body 11, the high pressure valve seat 12, the high pressure inlet port P11, the first high pressure outlet port P12, and the second high pressure outlet port P13 constitute a high pressure three-way switching portion. The low-pressure valve body 21, the low-pressure valve seat 22, the low-pressure outlet port P21, the first low-pressure inlet port P22, and the second low-pressure inlet port P23 constitute a low-pressure three-way switching unit.

上記シリンダ301内の高圧用弁体11と低圧用弁体21との間に、ピストン4と類似形状の仕切部307を連結部306に固定している。なお、この仕切部307は、外周にシリンダ301の内周面との間をシールするシール面を有しているが、高圧用三方切換部側と低圧用三方切換部側とを完全にシールするものではなく、高圧用三方切換部側から高圧冷媒が低圧用三方切換部側に流入してシリンダ301の低圧用三方切換部側の空間を満たし、この空間の高圧冷媒と低圧用弁体21に案内される低圧冷媒との差圧により、低圧用弁体21が低圧用弁座22側に付勢され、低圧用弁体21と低圧用弁座22との間のシール性を向上する。また、仕切部307にシリンダ301内の高圧用三方切換部側と低圧用三方切換部側を連通し、かつ、シリンダ301内の低圧用三方切換部側に高圧冷媒が流れる経路が形成されない程度の大きさの貫通穴を設けてもよい。   A partition portion 307 having a shape similar to that of the piston 4 is fixed to the connecting portion 306 between the high pressure valve body 11 and the low pressure valve body 21 in the cylinder 301. The partition portion 307 has a seal surface that seals between the inner peripheral surface of the cylinder 301 on the outer periphery, but completely seals the high-pressure three-way switching portion side and the low-pressure three-way switching portion side. Instead, the high-pressure refrigerant flows from the high-pressure three-way switching unit side into the low-pressure three-way switching unit side to fill the space on the low-pressure three-way switching unit side of the cylinder 301, and the high-pressure refrigerant and the low-pressure valve body 21 in this space The low pressure valve body 21 is biased toward the low pressure valve seat 22 by the differential pressure with the low pressure refrigerant to be guided, and the sealing performance between the low pressure valve body 21 and the low pressure valve seat 22 is improved. Further, the partition 307 communicates the high pressure three-way switching portion side and the low pressure three-way switching portion side in the cylinder 301, and a path through which high-pressure refrigerant flows is not formed on the low pressure three-way switching portion side in the cylinder 301. A through hole having a size may be provided.

上記第3実施形態の流路切換弁310およびその流路切換弁310を用いた冷媒回路は、第1実施形態の流路切換弁110およびその流路切換弁110を用いた冷媒回路と同様の効果を有する。   The flow path switching valve 310 of the third embodiment and the refrigerant circuit using the flow path switching valve 310 are the same as the flow path switching valve 110 of the first embodiment and the refrigerant circuit using the flow path switching valve 110. Has an effect.

また、上記シリンダ1内かつ低圧用三方切換部と高圧用三方切換部との間に仕切部307を設けることによって、シリンダ301内おける低圧冷媒の流れと高圧冷媒の流れを仕切部307により確実に隔離できるので、高圧冷媒側から低圧冷媒側への熱伝導を効果的に抑制でき、熱損失をさらに低減できる。   Further, by providing a partition 307 in the cylinder 1 and between the low pressure three-way switching unit and the high pressure three-way switching unit, the flow of the low-pressure refrigerant and the flow of high-pressure refrigerant in the cylinder 301 can be ensured by the partition unit 307. Since they can be isolated, heat conduction from the high-pressure refrigerant side to the low-pressure refrigerant side can be effectively suppressed, and heat loss can be further reduced.

〔第4実施形態〕
図6はこの発明の第4実施形態の流路切換弁410を用いた冷媒回路を備えた空気調和機の冷房運転時の回路図を示している。図6において、流路切換弁410は断面を示している。なお、この第4実施形態の流路切換弁410を用いた冷媒回路は、仕切部407を除いて第3実施形態の流路切換弁310を用いた冷媒回路と同一の構成をしており、同一構成部には同一参照番号を付している。
[Fourth Embodiment]
FIG. 6: has shown the circuit diagram at the time of the cooling operation of the air conditioner provided with the refrigerant circuit using the flow-path switching valve 410 of 4th Embodiment of this invention. In FIG. 6, the flow path switching valve 410 shows a cross section. The refrigerant circuit using the flow path switching valve 410 according to the fourth embodiment has the same configuration as the refrigerant circuit using the flow path switching valve 310 according to the third embodiment, except for the partition 407. The same reference numerals are assigned to the same components.

この流路切換弁410は、図6に示すように、本体の一例としての円筒形状のシリンダ301内に、高圧用弁座12と低圧用弁座22を所定の間隔をあけて配置している。また、シリンダ301内に高圧用弁体11と低圧用弁体21とをシリンダ201の軸方向にスライド自在の配置している。この高圧用弁体11と低圧用弁体21は、板状の連結部306により連結されている。   As shown in FIG. 6, in the flow path switching valve 410, a high pressure valve seat 12 and a low pressure valve seat 22 are arranged at a predetermined interval in a cylindrical cylinder 301 as an example of a main body. . Further, the high pressure valve body 11 and the low pressure valve body 21 are slidably disposed in the cylinder 301 in the axial direction of the cylinder 201. The high-pressure valve body 11 and the low-pressure valve body 21 are connected by a plate-like connecting portion 306.

上記連結部306は、高圧用弁体11,低圧用弁体21のスライド方向両側に延び、連結部306の一端にピストン4を固定する一方、連結部306の他端にピストン5を固定している。そして、シリンダ301の両端をキャップ2,3で閉じている。   The connecting portion 306 extends to both sides of the high pressure valve body 11 and the low pressure valve body 21 in the sliding direction, and fixes the piston 4 to one end of the connecting portion 306, and fixes the piston 5 to the other end of the connecting portion 306. Yes. Both ends of the cylinder 301 are closed with caps 2 and 3.

上記高圧用弁体11と高圧用弁座12と高圧用入口ポートP11と第1高圧用出口ポートP12および第2高圧用出口ポートP13で高圧用三方切換部を構成している。また、低圧用弁体21と低圧用弁座22と低圧用出口ポートP21と第1低圧用入口ポートP22および第2低圧用入口ポートP23で低圧用三方切換部を構成している。   The high pressure valve body 11, the high pressure valve seat 12, the high pressure inlet port P11, the first high pressure outlet port P12, and the second high pressure outlet port P13 constitute a high pressure three-way switching portion. The low-pressure valve body 21, the low-pressure valve seat 22, the low-pressure outlet port P21, the first low-pressure inlet port P22, and the second low-pressure inlet port P23 constitute a low-pressure three-way switching unit.

上記シリンダ301内の高圧用弁体11と低圧用弁体21との間に合成樹脂製の仕切部407を配置し、その仕切部407を連結部306に固定している。なお、仕切部407は、連結部306に固定せず、シリンダ301に固定してもよく、また、仕切部407は、高圧用三方切換部側と低圧用三方切換部側との間を完全にシールするものではなく、高圧用三方切換部側から高圧冷媒が低圧用三方切換部側に流入してシリンダ301の低圧用三方切換部側の空間を満たし、この空間の高圧冷媒と低圧用弁体21に案内される低圧冷媒との差圧により、低圧用弁体21が低圧用弁座22側に付勢され、低圧用弁体21と低圧用弁座22との間のシール性を向上する。また、シリンダ301内の高圧用三方切換部側と低圧用三方切換部側を連通し、かつ、シリンダ301内の低圧用三方切換部側に高圧冷媒が流れる経路が形成されない程度の大きさの貫通穴を仕切部407に設けてもよい。   A partition portion 407 made of synthetic resin is disposed between the high pressure valve body 11 and the low pressure valve body 21 in the cylinder 301, and the partition portion 407 is fixed to the connecting portion 306. The partition 407 may be fixed to the cylinder 301 without being fixed to the connecting portion 306. The partition 407 is completely connected between the high-pressure three-way switching portion side and the low-pressure three-way switching portion side. The high-pressure refrigerant flows from the high-pressure three-way switching unit side into the low-pressure three-way switching unit side to fill the space on the low-pressure three-way switching unit side of the cylinder 301, and the high-pressure refrigerant and the low-pressure valve body in this space are not sealed. The low-pressure valve body 21 is biased toward the low-pressure valve seat 22 by the differential pressure with the low-pressure refrigerant guided by 21, and the sealing performance between the low-pressure valve body 21 and the low-pressure valve seat 22 is improved. . Also, a through hole having a size that allows communication between the high-pressure three-way switching portion side and the low-pressure three-way switching portion side in the cylinder 301 and does not form a path through which the high-pressure refrigerant flows on the low-pressure three-way switching portion side in the cylinder 301. A hole may be provided in the partition portion 407.

上記第4実施形態の流路切換弁410およびその流路切換弁410を用いた冷媒回路は、第3実施形態の流路切換弁110およびその流路切換弁110を用いた冷媒回路と同様の効果を有する。   The flow path switching valve 410 of the fourth embodiment and the refrigerant circuit using the flow path switching valve 410 are the same as the flow path switching valve 110 of the third embodiment and the refrigerant circuit using the flow path switching valve 110. Has an effect.

上記第1〜第4実施形態では、冷媒回路を備えた空気調和機について説明したが、この発明の冷媒回路を他の構成の装置に適用してもよい。   In the first to fourth embodiments, the air conditioner including the refrigerant circuit has been described. However, the refrigerant circuit of the present invention may be applied to an apparatus having another configuration.

また、上記第1〜第4実施形態では、低圧用弁体21と低圧用弁座22(212b)で構成された低圧用三方切換部および高圧用弁体11(211)と高圧用弁座12(212a)で構成された高圧用三方切換部を備えた流路切換弁110(210,310,410)について説明したが、低圧用三方切換部および高圧用三方切換部の構成はこれに限らない。   Further, in the first to fourth embodiments, the low pressure three-way switching portion including the low pressure valve body 21 and the low pressure valve seat 22 (212b), the high pressure valve body 11 (211), and the high pressure valve seat 12 are provided. Although the flow path switching valve 110 (210, 310, 410) including the high-pressure three-way switching unit configured in (212a) has been described, the configurations of the low-pressure three-way switching unit and the high-pressure three-way switching unit are not limited thereto. .

また、上記第1〜第4実施形態では、低圧用弁体21と高圧用弁体11(211)とを連結部6(206,306)で連結したが、樹脂により一体成形された低圧用弁体と高圧用弁体を、連結部により連結してもよい。   In the first to fourth embodiments, the low pressure valve body 21 and the high pressure valve body 11 (211) are connected by the connecting portion 6 (206, 306). However, the low pressure valve integrally formed of resin is used. The body and the valve body for high pressure may be connected by a connecting portion.

この発明の具体的な実施の形態について説明したが、この発明は上記第1〜第4実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。   Although specific embodiments of the present invention have been described, the present invention is not limited to the first to fourth embodiments, and various modifications can be made within the scope of the present invention.

1…シリンダ
2,3…キャップ
4,5…ピストン
6…連結部
7…パイロット電磁弁
11…高圧用弁体
12…高圧用弁座
21…低圧用弁体
22…低圧用弁座
101…圧縮機
103…室外熱交換器
104…電動膨張弁
105…室内熱交換器
110…流路切換弁
201…シリンダ
206…連結部
210…流路切換弁
211…高圧用弁体
212…弁座
212a…高圧用弁座部
212b…低圧用弁座部
212c…中間部
301…シリンダ
307…仕切部
306…連結部
310…流路切換弁
407…仕切部
410…流路切換弁
P11…高圧用入口ポート
P12…第1高圧用出口ポート
P13…第2高圧用出口ポート
P21…低圧用出口ポート
P22…第1低圧用入口ポート
P23…第2低圧用入口ポート
P31,P32…ポート
P41,P42…ポート
DESCRIPTION OF SYMBOLS 1 ... Cylinder 2, 3 ... Cap 4, 5 ... Piston 6 ... Connection part 7 ... Pilot solenoid valve 11 ... High pressure valve body 12 ... High pressure valve seat 21 ... Low pressure valve body 22 ... Low pressure valve seat 101 ... Compressor DESCRIPTION OF SYMBOLS 103 ... Outdoor heat exchanger 104 ... Electric expansion valve 105 ... Indoor heat exchanger 110 ... Channel switching valve 201 ... Cylinder 206 ... Connection part 210 ... Channel switching valve 211 ... Valve body 212 for high pressure 212 ... Valve seat 212a ... For high pressure Valve seat part 212b ... Low pressure valve seat part 212c ... Intermediate part 301 ... Cylinder 307 ... Partition part 306 ... Connecting part 310 ... Channel switching valve 407 ... Partitioning part 410 ... Channel switching valve P11 ... High pressure inlet port P12 ... No. 1 High-pressure outlet port P13 ... Second high-pressure outlet port P21 ... Low-pressure outlet port P22 ... First low-pressure inlet port P23 ... Second low-pressure inlet port P31, P32 ... Ports P41, P 2 ... port

Claims (8)

低圧用弁体(21)と低圧用弁座(22,212b)とで低圧冷媒の流路を切り換える低圧用三方切換部と、
高圧用弁体(11,211)と高圧用弁座(12,212a)とで高圧冷媒の流路を切り換える高圧用三方切換部と
を備え、
上記低圧用三方切換部と上記高圧用三方切換部が同一本体(1)内に離間して配置されていることを特徴とする流路切換弁。
A low-pressure three-way switching portion that switches the flow path of the low-pressure refrigerant between the low-pressure valve body (21) and the low-pressure valve seat (22, 212b);
A high-pressure three-way switching portion that switches the flow path of the high-pressure refrigerant between the high-pressure valve body (11, 211) and the high-pressure valve seat (12, 212a);
The flow path switching valve, characterized in that the low-pressure three-way switching portion and the high-pressure three-way switching portion are spaced apart from each other in the same main body (1).
請求項1に記載の流路切換弁において、
上記低圧用三方切換部の低圧用弁体(21)と高圧用三方切換部の高圧用弁体(11,211)とを連動可能に連結する連結部(6,306)を備えたことを特徴とする流路切換弁。
In the flow path switching valve according to claim 1,
A connecting portion (6,306) for connecting the low-pressure valve body (21) of the low-pressure three-way switching portion and the high-pressure valve body (11,211) of the high-pressure three-way switching portion is provided. A flow path switching valve.
請求項1または2に記載の流路切換弁において、
上記低圧用三方切換部の低圧用弁座(22)と上記高圧用三方切換部の高圧用弁座(12)は別体であることを特徴とする流路切換弁。
In the flow path switching valve according to claim 1 or 2,
The flow path switching valve, wherein the low pressure valve seat (22) of the low pressure three-way switching section and the high pressure valve seat (12) of the high pressure three-way switching section are separate.
請求項1から3までのいずれか1つに記載の流路切換弁において、
上記高圧用三方切換部は、上記高圧冷媒を案内する案内流路(P1,P2)が形成されていることを特徴とする流路切換弁。
In the flow path switching valve according to any one of claims 1 to 3,
The flow path switching valve, wherein the high pressure three-way switching portion is formed with guide flow paths (P1, P2) for guiding the high pressure refrigerant.
請求項1から4までのいずれか1つに記載の流路切換弁において、
上記本体(1)内かつ上記低圧用三方切換部と上記高圧用三方切換部との間に設けられた仕切部(307,407)を備えたことを特徴とする流路切換弁。
In the flow path switching valve according to any one of claims 1 to 4,
A flow path switching valve comprising partition portions (307, 407) provided in the main body (1) and between the low pressure three-way switching portion and the high pressure three-way switching portion.
請求項1から5までのいずれか1つに記載の流路切換弁を備え、
少なくとも、圧縮機(101)と、上記流路切換弁(110,210,310,410)の高圧用三方切換部と、凝縮器(103)と、減圧機構(104)と、蒸発器(105)と、上記流路切換弁(110,210,310,410)の低圧用三方切換部が環状に接続されていることを特徴とする冷媒回路。
The flow path switching valve according to any one of claims 1 to 5,
At least the compressor (101), the three-way switching unit for high pressure of the flow path switching valve (110, 210, 310, 410), the condenser (103), the pressure reducing mechanism (104), and the evaporator (105) And a low-pressure three-way switching portion of the flow path switching valve (110, 210, 310, 410) is connected in a ring shape.
請求項6に記載の流路切換弁において、
上記高圧用三方切換部は、上記圧縮機(101)の吐出側が接続された高圧用入口ポート(P11)と、上記高圧用弁座(12,212a)に設けられた第1高圧用出口ポート(P12)および第2高圧用出口ポート(P13)を有すると共に、
上記高圧用弁体(11,211)は、上記第1,第2高圧用出口ポート(P12,P13)のうちの一方を上記高圧用入口ポート(P11)に連通させ、上記第1,第2高圧用出口ポート(P12,P13)のうちの他方を閉鎖することを特徴とする冷媒回路。
The flow path switching valve according to claim 6,
The high-pressure three-way switching unit includes a high-pressure inlet port (P11) connected to the discharge side of the compressor (101) and a first high-pressure outlet port (12, 212a) provided on the high-pressure valve seat (12, 212a). P12) and a second high pressure outlet port (P13),
The high-pressure valve body (11, 211) communicates one of the first and second high-pressure outlet ports (P12, P13) to the high-pressure inlet port (P11), and A refrigerant circuit characterized in that the other of the high-pressure outlet ports (P12, P13) is closed.
請求項6または7に記載の流路切換弁において、
上記低圧用三方切換部は、上記圧縮機(101)の吸入側が接続された低圧用出口ポート(P21)と、上記低圧用弁座(22,212b)に設けられた第1低圧用入口ポート(P22)および第2低圧用入口ポート(P23)を有すると共に、
上記低圧用弁体(21)は、上記第1,第2低圧用入口ポート(P22,P23)のうちの一方を上記低圧用出口ポート(P21)に連通させ、上記第1,第2低圧用入口ポート(P22,P23)のうちの他方を閉鎖することを特徴とする冷媒回路。
In the flow path switching valve according to claim 6 or 7,
The low-pressure three-way switching unit includes a low-pressure outlet port (P21) connected to the suction side of the compressor (101) and a first low-pressure inlet port (22, 212b) provided in the low-pressure valve seat (22, 212b). P22) and a second low pressure inlet port (P23),
The low-pressure valve element (21) communicates one of the first and second low-pressure inlet ports (P22, P23) to the low-pressure outlet port (P21), and the first and second low-pressure valve ports (21). A refrigerant circuit characterized in that the other of the inlet ports (P22, P23) is closed.
JP2013213550A 2013-10-11 2013-10-11 Flow passage selector valve and refrigerant circuit Pending JP2015075211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213550A JP2015075211A (en) 2013-10-11 2013-10-11 Flow passage selector valve and refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213550A JP2015075211A (en) 2013-10-11 2013-10-11 Flow passage selector valve and refrigerant circuit

Publications (1)

Publication Number Publication Date
JP2015075211A true JP2015075211A (en) 2015-04-20

Family

ID=53000212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213550A Pending JP2015075211A (en) 2013-10-11 2013-10-11 Flow passage selector valve and refrigerant circuit

Country Status (1)

Country Link
JP (1) JP2015075211A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104896612A (en) * 2015-06-01 2015-09-09 广东美的暖通设备有限公司 Air conditioning outdoor unit and air conditioner
CN104896139A (en) * 2015-06-01 2015-09-09 广东美的暖通设备有限公司 Six-way reversing valve
CN105066531A (en) * 2015-08-31 2015-11-18 Tcl空调器(中山)有限公司 Flow path converter, condensation assembly of outdoor unit and air conditioner
CN105840872A (en) * 2016-04-29 2016-08-10 英格索兰(中国)工业设备制造有限公司 Six-way valve for switchover of dual refrigeration systems, and air conditioner
CN106286890A (en) * 2015-05-14 2017-01-04 浙江三花股份有限公司 A kind of reversal valve and use the refrigeration system of this reversal valve
CN106286891A (en) * 2015-05-15 2017-01-04 浙江盾安人工环境股份有限公司 Combined electromagnetic switching valve and air conditioning system thereof
CN106812975A (en) * 2015-11-27 2017-06-09 浙江三花制冷集团有限公司 Reversal valve and the refrigeration system with it
CN107166060A (en) * 2016-03-08 2017-09-15 浙江三花制冷集团有限公司 Reversal valve and the refrigeration system with it
CN107166819A (en) * 2016-03-07 2017-09-15 上海日立电器有限公司 A kind of air-conditioning system
CN107166059A (en) * 2016-03-07 2017-09-15 上海日立电器有限公司 A kind of reversal valve
CN107355563A (en) * 2016-05-09 2017-11-17 浙江三花制冷集团有限公司 Reversal valve and there is its refrigeration system
EP3182021A4 (en) * 2015-06-01 2018-03-21 GD Midea Heating & Ventilating Equipment Co., Ltd. Air-conditioning outdoor unit and air conditioner
EP3517855A4 (en) * 2016-09-23 2019-10-09 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
US10619897B2 (en) 2015-05-14 2020-04-14 Zhejiang Sanhua Climate And Appliance Controls Group., Ltd Reversing valve and cooling system having same
JP2020183775A (en) * 2019-05-07 2020-11-12 株式会社不二工機 Flow path switching valve

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286890A (en) * 2015-05-14 2017-01-04 浙江三花股份有限公司 A kind of reversal valve and use the refrigeration system of this reversal valve
US10619897B2 (en) 2015-05-14 2020-04-14 Zhejiang Sanhua Climate And Appliance Controls Group., Ltd Reversing valve and cooling system having same
CN106286890B (en) * 2015-05-14 2019-08-06 浙江三花制冷集团有限公司 A kind of reversal valve and the refrigeration system using the reversal valve
CN106286891B (en) * 2015-05-15 2019-06-11 浙江盾安人工环境股份有限公司 Combined electromagnetic switching valve and its air-conditioning system
CN106286891A (en) * 2015-05-15 2017-01-04 浙江盾安人工环境股份有限公司 Combined electromagnetic switching valve and air conditioning system thereof
CN104896612A (en) * 2015-06-01 2015-09-09 广东美的暖通设备有限公司 Air conditioning outdoor unit and air conditioner
CN104896139A (en) * 2015-06-01 2015-09-09 广东美的暖通设备有限公司 Six-way reversing valve
EP3182021A4 (en) * 2015-06-01 2018-03-21 GD Midea Heating & Ventilating Equipment Co., Ltd. Air-conditioning outdoor unit and air conditioner
CN105066531A (en) * 2015-08-31 2015-11-18 Tcl空调器(中山)有限公司 Flow path converter, condensation assembly of outdoor unit and air conditioner
CN106812975B (en) * 2015-11-27 2019-07-09 浙江三花制冷集团有限公司 Reversal valve and refrigeration system with it
CN106812975A (en) * 2015-11-27 2017-06-09 浙江三花制冷集团有限公司 Reversal valve and the refrigeration system with it
CN107166059A (en) * 2016-03-07 2017-09-15 上海日立电器有限公司 A kind of reversal valve
CN107166819A (en) * 2016-03-07 2017-09-15 上海日立电器有限公司 A kind of air-conditioning system
CN107166059B (en) * 2016-03-07 2019-10-15 上海海立电器有限公司 A kind of reversal valve
CN107166060B (en) * 2016-03-08 2019-11-12 浙江三花制冷集团有限公司 Reversal valve and refrigeration system with it
CN107166060A (en) * 2016-03-08 2017-09-15 浙江三花制冷集团有限公司 Reversal valve and the refrigeration system with it
CN105840872A (en) * 2016-04-29 2016-08-10 英格索兰(中国)工业设备制造有限公司 Six-way valve for switchover of dual refrigeration systems, and air conditioner
CN107355563A (en) * 2016-05-09 2017-11-17 浙江三花制冷集团有限公司 Reversal valve and there is its refrigeration system
EP3517855A4 (en) * 2016-09-23 2019-10-09 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP2020183775A (en) * 2019-05-07 2020-11-12 株式会社不二工機 Flow path switching valve
JP7023525B2 (en) 2019-05-07 2022-02-22 株式会社不二工機 Flow switching valve

Similar Documents

Publication Publication Date Title
JP2015075211A (en) Flow passage selector valve and refrigerant circuit
JP5870760B2 (en) Four-way valve and heat pump device equipped with it
US10184676B2 (en) Air conditioner having simultaneous heating and cooling
KR102036185B1 (en) Switch valve and cooling system with same
JP2018044666A (en) Hexagonal changeover valve
CN106246956B (en) Slidingtype switching valve and refrigerating circulation system
WO2016155176A1 (en) Plunger-type four way electromagnetic reversing valve
JP5997491B2 (en) Four-way selector valve
JP2016217530A (en) Linear-motion type solenoid valve and five-way change valve with linear-motion type solenoid valve as pilot valve
JP2015108385A (en) Four-way selector valve
JP2010038320A (en) Valve element for four-way switching valve
JP5982871B2 (en) Four-way valve and heat pump device equipped with it
JP5275948B2 (en) Four-way selector valve
JP5663330B2 (en) Four-way selector valve
JP2007078119A (en) Flow path selector valve
JP2016044777A (en) Flow passage selector valve and refrigeration cycle using the same
US10288328B2 (en) Outdoor unit for VRF air conditioning system and VRF air conditioning system having same
EP1336788A1 (en) Four-way switching valve
JP2016056890A (en) Slide valve and refrigeration cycle
JP5754197B2 (en) Four-way valve and heat pump device equipped with it
JP6378114B2 (en) Slide valve and refrigeration cycle
JP6491861B2 (en) Flow path switching valve
US7069949B2 (en) Four-way switching valve
JP2020148254A (en) Flow passage selector valve
JP2020046031A (en) Spool valve