JP2015070028A - Dust core, method of producing green compact for core, press die and mold apparatus for manufacturing dust core, and lubricating liquid of press die for manufacturing dust core - Google Patents

Dust core, method of producing green compact for core, press die and mold apparatus for manufacturing dust core, and lubricating liquid of press die for manufacturing dust core Download PDF

Info

Publication number
JP2015070028A
JP2015070028A JP2013201336A JP2013201336A JP2015070028A JP 2015070028 A JP2015070028 A JP 2015070028A JP 2013201336 A JP2013201336 A JP 2013201336A JP 2013201336 A JP2013201336 A JP 2013201336A JP 2015070028 A JP2015070028 A JP 2015070028A
Authority
JP
Japan
Prior art keywords
green compact
ceramic particles
soft magnetic
insulating ceramic
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013201336A
Other languages
Japanese (ja)
Other versions
JP6322938B2 (en
Inventor
稲垣 孝
Takashi Inagaki
孝 稲垣
石原 千生
Chio Ishihara
千生 石原
紀行 中山
Noriyuki Nakayama
紀行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013201336A priority Critical patent/JP6322938B2/en
Publication of JP2015070028A publication Critical patent/JP2015070028A/en
Application granted granted Critical
Publication of JP6322938B2 publication Critical patent/JP6322938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dust core suitable for high frequency applications, in which insulation of soft magnetic powder particles in the surface layer is not destroyed when being extruded from a mold cavity.SOLUTION: The mold cavity of a mold is filled with soft magnetic powder, which is then compressed so that the density ratio of the soft magnetic powder becomes 91% or more thus molding a green compact, which is then extruded from the mold cavity. In such a method of manufacturing a dust core, a lubricant film containing a mold lubricant and insulating ceramics particles is formed on the inner surface, which slides on the green compact in the mold cavity before being filled with the soft magnetic powder. The extrusion sliding surface of the green compact has a surface layer of such a structure that the insulating ceramics particles are interposed between the particles of soft magnetic powder, and this green compact is used for composing the dust core.

Description

本発明は、軟質磁気部品に用いられる圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑液に関し、特に、高周波領域での使用に適した圧粉磁心、磁心用圧粉体の製造方法、圧粉磁心製造用押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑液に関する。   The present invention relates to a powder magnetic core used for soft magnetic parts, a method for producing a powder compact for a magnetic core, a mold and mold apparatus for producing a powder magnetic core, and a lubricating liquid for a mold for producing a powder magnetic core, and in particular, high frequency. The present invention relates to a dust core suitable for use in a region, a method for manufacturing a powder for a magnetic core, a pressing core and a mold apparatus for manufacturing a dust core, and a lubricating liquid for a pressing core for manufacturing a dust core.

軟質磁性粉末を樹脂等のバインダで結着した圧粉磁心は、珪素鋼板等を用いて作製される積層磁心に比べて、作製時の材料歩留まりが良く、材料コストを低減することができるという利点を有している。また、形状自由度が高く、磁心形状の最適設計を行うことによって磁気特性を向上することが可能であるという利点も有している。このような圧粉磁心においては、有機バインダや無機粉末などの絶縁性物質と軟磁性粉末を混合したり、軟磁性粉末の表面に電気絶縁被膜を被覆したりして金属粉末間の電気絶縁性を向上させることにより、磁心の渦電流損を大幅に低減することができる。   Compared to laminated magnetic cores made from silicon steel plates, etc., the powder magnetic core made of soft magnetic powder bound with a binder such as resin has the advantage of better material yield and reduced material costs. have. In addition, there is an advantage that the degree of freedom in shape is high, and the magnetic characteristics can be improved by optimal design of the magnetic core shape. In such a powder magnetic core, an insulating material such as an organic binder or an inorganic powder and a soft magnetic powder are mixed, or an electric insulating film is coated on the surface of the soft magnetic powder to electrically insulate the metal powder. By improving the eddy current loss of the magnetic core can be greatly reduced.

このような利点から、圧粉磁心は、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等に使用され、また、一般家電のモータ用鉄心や産業機器用モータのロータやヨーク、更には、ディーゼルエンジン及びガソリンエンジンの電子制御式燃料噴射装置に組み込まれる電磁弁用ソレノイドコア(固定鉄心)等にも使用され、各種軟質磁気部品への適用が進んでいる。   Because of these advantages, dust cores are used in transformers, reactors, thyristor valves, noise filters, choke coils, etc., and are also used in general consumer electronics motor cores, industrial equipment motor rotors and yokes, It is also used in solenoid cores (fixed iron cores) for solenoid valves incorporated in electronically controlled fuel injection devices for diesel engines and gasoline engines, and is being applied to various soft magnetic parts.

圧粉磁心の成形方法は、製品形状を規定する金型内に軟磁性粉末を可塑性の原料とともに射出して成形する射出成形法(特許文献1等)と、金型のキャビティに軟磁性粉末及びバインダを含む原料粉末を充填して、上下パンチで圧縮成形する圧縮成形法(特許文献2、3等)に大別される。圧粉磁心の製品形状は成形工程において付与され、製品の用途に応じて採用する成形方法は使い分けられる。   The molding method of the powder magnetic core includes an injection molding method (such as Patent Document 1) in which a soft magnetic powder is injected together with a plastic raw material into a mold that defines a product shape, and a soft magnetic powder and a mold cavity. It is roughly classified into compression molding methods (Patent Documents 2, 3, etc.) in which raw material powder containing a binder is filled and compression molding is performed with upper and lower punches. The product shape of the powder magnetic core is imparted in the molding process, and the molding method employed depending on the application of the product is properly used.

上述の家庭用及び産業用の各種機器に対する近年の小型化・軽量化の要求の下、圧粉磁心については、磁束密度等の磁気特性向上の要求が大きくなってきている。圧粉磁心は、軟磁性粉末の占積率が磁束密度に比例するため、高い磁束密度の圧粉磁心を得るためには密度を高める必要がある。このため、多量のバインダを必要とする射出成形法に比べて、バインダ量を低減して軟磁性粉末の量を増加でき、高密度に成形できる圧縮成形法が、広く用いられている。   Under the recent demands for reducing the size and weight of various household and industrial devices, demands for improving magnetic properties such as magnetic flux density have been increasing. In the dust core, since the space factor of the soft magnetic powder is proportional to the magnetic flux density, it is necessary to increase the density in order to obtain a dust core having a high magnetic flux density. For this reason, a compression molding method that can reduce the amount of binder and increase the amount of soft magnetic powder and can be molded at a high density is widely used compared to an injection molding method that requires a large amount of binder.

圧縮成形法による圧粉磁心の製造では、バインダ樹脂及び軟磁性粉末を含有する原料粉末あるいは表面に絶縁性被膜を有する軟磁性粉末からなる原料粉末を金型装置の押型の型孔に充填し、上下パンチにより圧縮する。このような圧縮成形法によって円柱状の磁心用圧粉体を成形するプロセスの具体例を図1に示す。図1に示す金型装置は、圧粉体の外周側面を内径面で規定する型孔1aを有する押型1と、圧粉体の下面を規定する下パンチ2と、圧粉体の上面を規定する上パンチ3とを備えている。このような金型装置を用い、図1(a)に示すように、押型1の型孔1aと下パンチ2とでキャビティを形成し、フィーダ4等の粉末供給手段を用いて原料粉末Mをキャビティに充填する。次いで、図1(b)に示すように、上パンチ3を降下させると共に、下パンチ2を押型1に対して相対的に上昇(本図の場合、押型1を降下)させて、キャビティ内に充填された原料粉末Mを上パンチ3と下パンチ2とで圧縮成形して圧粉体Cとする。この後、図1(c)に示すように、上パンチ3を上方に移動させて待機位置まで復帰させるとともに、下パンチ2を押型1に対して相対的に上昇(本図の場合、押型1をさらに降下)させて、圧粉体Cを押型1の型孔1aから抜き出す。   In the production of a powder magnetic core by the compression molding method, a raw material powder containing a binder resin and a soft magnetic powder or a raw material powder made of a soft magnetic powder having an insulating film on the surface is filled in a die hole of a mold device, Compress with upper and lower punches. A specific example of a process for forming a cylindrical magnetic core green compact by such a compression molding method is shown in FIG. The mold apparatus shown in FIG. 1 defines a pressing die 1 having a mold hole 1a that defines an outer peripheral side surface of a green compact with an inner diameter surface, a lower punch 2 that defines a lower surface of the green compact, and an upper surface of the green compact. The upper punch 3 is provided. Using such a mold apparatus, as shown in FIG. 1 (a), a cavity is formed by the mold hole 1a of the stamp 1 and the lower punch 2, and the raw material powder M is prepared by using a powder supply means such as a feeder 4. Fill the cavity. Next, as shown in FIG. 1B, the upper punch 3 is lowered and the lower punch 2 is raised relative to the pressing die 1 (in this case, the pressing die 1 is lowered) to enter the cavity. The filled raw material powder M is compression molded by the upper punch 3 and the lower punch 2 to obtain a green compact C. Thereafter, as shown in FIG. 1 (c), the upper punch 3 is moved upward to return to the standby position, and the lower punch 2 is raised relative to the pressing die 1 (in this case, the pressing die 1). Is further lowered), and the green compact C is extracted from the mold hole 1a of the pressing mold 1.

特開2003−209010号公報JP 2003-209010 A 特開2004−342937号公報JP 2004-342937 A 特開平05−217777号公報JP 05-217777 A

圧粉磁心の鉄損Wは、渦電流損Wとヒステリシス損Wの和であり、渦電流損W及びヒステリシス損Wは、各々、下記数1及び下記数2の式で示されるから、鉄損Wは、下記数3の式のように示される。尚、式中、fは周波数、Bは励磁磁束密度、ρは固有抵抗値、tは材料の厚み、k,kは係数である。 Iron loss W of the dust core is the sum of eddy current loss W e and hysteresis loss W h, eddy current loss W e and hysteresis loss W h are each represented by the following equation number 1 and the following Expression 2 From the above, the iron loss W is expressed by the following equation (3). In the equation, f is a frequency, B m is an exciting magnetic flux density, ρ is a specific resistance value, t is a material thickness, and k 1 and k 2 are coefficients.

(数1)
=(k /ρ)f
(Equation 1)
W e = (k 1 B m 2 t 2 / ρ) f 2

(数2)
=k 1.6
(Equation 2)
W h = k 2 B m 1.6 f

(数3)
W=W+W=(k /ρ)f+k 1.6
(Equation 3)
W = W e + W h = (k 1 B m 2 t 2 / ρ) f 2 + k 2 B m 1.6 f

数1〜3の式から明らかなように、渦電流損Wは、周波数fの二乗に比例して大きくなることから、高周波領域において使用されるリアクトル等に圧粉磁心を適用するには、渦電流損Wの抑制が不可欠である。渦電流損Wを抑制するためには、渦電流を小領域に閉じこめる必要がある。このため、圧粉磁心においては、個々の軟磁性粉末粒子が絶縁されるように構成することで、渦電流損Wの抑制を図る。従って、軟磁性粉末の粒子同士が連通すると、連通した箇所を通して大きな渦電流が発生するので、個々の軟磁性粉末粒子の絶縁の確保が重要となる。 As is clear from the number 1 to 3 of formula, the eddy current loss W e, since it increases in proportion to the square of the frequency f, to apply the powder core in the reactor or the like used in a high frequency region, suppression of eddy current loss W e is essential. To suppress the eddy current loss W e, it is necessary to confine the eddy currents to the small area. Therefore, in the dust core, by individual soft magnetic powder particles is configured to be insulated, achieving suppression of eddy current loss W e. Accordingly, when the soft magnetic powder particles communicate with each other, a large eddy current is generated through the communicating portion, so it is important to ensure insulation of the individual soft magnetic powder particles.

近年、磁気特性のさらなる向上が求められており、磁束密度を向上させるために、より高圧力で圧粉体の圧縮成形を行って軟磁性粉末の占積率を高めることが行われている。しかし、高圧力で原料粉末を圧縮成形すると、図2(a)に示すように、圧粉体が側方に向けて膨張する圧力(スプリングバック)も大きくなり、点線で示すような形状に膨張しようとする。このようにスプリングバックが作用する圧粉体を型孔から抜き出すと、圧粉体が型孔を摺動する際に圧粉体の側面が強く型孔の内面に押圧される。このため、型孔から抜き出した後の圧粉体の側面は、図2(b)に示すように、表層部で塑性流動が生じて、軟磁性粉末粒子の表面に形成した絶縁被膜が破壊され、又、軟磁性粉末粒子同士が導通した状態となり、渦電流が大きくなる。   In recent years, further improvement in magnetic properties has been demanded, and in order to improve the magnetic flux density, compression molding of the green compact is performed at a higher pressure to increase the space factor of the soft magnetic powder. However, when the raw material powder is compression-molded at a high pressure, as shown in FIG. 2A, the pressure (spring back) at which the green compact expands to the side also increases and expands to the shape shown by the dotted line. try to. When the green compact acting by the spring back is extracted from the mold hole in this way, the side surface of the green compact is strongly pressed against the inner surface of the mold hole when the green compact slides through the mold hole. For this reason, as shown in FIG. 2 (b), the side surface of the green compact that has been extracted from the mold cavity is subjected to plastic flow in the surface layer portion, and the insulating coating formed on the surface of the soft magnetic powder particles is destroyed. In addition, the soft magnetic powder particles become conductive, and the eddy current increases.

又、圧粉磁心に生じる誘導電流は、周波数が高くなるほど、表面に集中して流れる。このため、上記のような表層部に塑性流動が生じて軟磁性粉末粒子の絶縁被膜が破壊された圧粉磁心をリアクトル等の高周波用途に用いると、絶縁被膜が破壊されて軟磁性粉末粒子どうしが導通した表層部に集中して誘導電流が流れ、渦電流損Wがいよいよ大きくなって鉄損Wが増大する。 Further, the induced current generated in the dust core flows more concentrated on the surface as the frequency becomes higher. For this reason, if a powder magnetic core in which the plastic flow is generated in the surface layer as described above and the insulating coating of the soft magnetic powder particles is broken is used for high frequency applications such as a reactor, the insulating coating is broken and the soft magnetic powder particles are There induced current flows concentrated in the surface layer portion which conducts and iron loss W are increased eddy current loss W e becomes increasingly larger.

このような絶縁被膜が破壊されて軟磁性粉末粒子同士が導通した表層部を有する圧粉磁心においては、特許文献3のように圧粉体の表面部分を除去することによって、金属磁性粉末粒子どうしが直接接触する部分がなくなり、圧粉磁心の表層部は、軟磁性粉末粒子が絶縁被膜で被覆された健全な状態となる。しかし、このような表面の除去処理は、通常の切削加工とは異なる特殊な技術が必要となり、製造コストの増加につながる。このため、圧縮成形して型孔から抜き出した磁心用圧粉体の表層部において軟磁性粉末の塑性流動が抑制され、絶縁被膜が破壊されない健全な状態で圧粉体を得ることを可能にする技術が求められている。   In such a dust core having a surface layer portion in which the insulating coating is broken and the soft magnetic powder particles are electrically connected to each other, by removing the surface portion of the green compact as in Patent Document 3, the metal magnetic powder particles are separated from each other. The surface portion of the powder magnetic core is in a healthy state in which the soft magnetic powder particles are covered with the insulating coating. However, such surface removal treatment requires a special technique different from normal cutting, leading to an increase in manufacturing cost. For this reason, it is possible to obtain a green compact in a healthy state in which the soft magnetic powder is prevented from plastic flow in the surface layer portion of the magnetic core green compact that has been compression molded and extracted from the mold cavity. Technology is required.

本発明は、上述の問題を解消し、表層部における軟磁性粉末粒子表面の絶縁被膜が破壊されず、健全な絶縁状態を示し、高周波用途に用いた場合にも渦電流損W及び鉄損Wの増加が抑制される圧粉磁心を提供することを課題とする。 The present invention is to solve the above problems, an insulating film of soft magnetic powder particle surfaces without breaking in the surface layer, showed a healthy insulated state, an eddy current loss W e and iron loss even when used in high frequency applications An object is to provide a dust core in which an increase in W is suppressed.

また、高圧力を用いて高密度に圧縮成形しても、型孔から押し出した磁心用圧粉体の表層部において塑性流動による導通形成が抑制される磁心用圧粉体の製造方法を提供することを課題とする。   Also provided is a method for producing a magnetic core compact in which the formation of conduction due to plastic flow is suppressed in the surface layer portion of the core compact extruded from the mold hole even if compression molding is performed at high density using high pressure. This is the issue.

更に、磁心用圧粉体の製造において型孔から圧粉体を押し出す際に、圧粉体の表層部における塑性流動による導通形成を抑制可能な圧粉磁心製造用押型及び金型装置、並びに、圧粉磁心製造用押型の潤滑液を提供することを課題とする。   Furthermore, when extruding the green compact from the mold hole in the production of the green compact for the magnetic core, the die and die apparatus for producing the dust core capable of suppressing conduction formation due to plastic flow in the surface layer portion of the green compact, and It is an object of the present invention to provide a lubricating liquid for a pressing mold for producing a dust core.

上記課題を解決するために、本発明の一態様によれば、圧粉磁心は、軟磁性粉末が密度比91%以上に圧縮成形された圧粉体によって構成され、前記圧粉体の押し出し摺接面は、前記軟磁性粉末の粒子間に絶縁性セラミックス粒子が介在する構造の表層部を有することを要旨とする。   In order to solve the above-described problem, according to one aspect of the present invention, the dust core is formed of a green compact in which a soft magnetic powder is compression-molded to a density ratio of 91% or more. The gist of the contact surface is that it has a surface layer portion in which insulating ceramic particles are interposed between the particles of the soft magnetic powder.

上記圧粉磁心において、絶縁性セラミックス粒子は、軟磁性粉末の粒子間に介在することで、軟磁性粉末粒子を支持して変形及び塑性流動を抑制し、軟磁性粉末粒子表面の絶縁破壊を防止する。また、絶縁性セラミックス粒子自体の絶縁性によって、圧粉体側面の表層部の比抵抗が増加する。このため、圧粉磁心の表面に誘導電流が集中して流れる高周波用の圧粉磁心として使用した場合に、渦電流損Wの低減において優れたものとなる。 In the above powder magnetic core, the insulating ceramic particles are interposed between the soft magnetic powder particles, thereby supporting the soft magnetic powder particles to suppress deformation and plastic flow and prevent dielectric breakdown on the surface of the soft magnetic powder particles. To do. Moreover, the specific resistance of the surface layer portion on the side surface of the green compact increases due to the insulating properties of the insulating ceramic particles themselves. Therefore, when the induced on the surface of the powder magnetic core current is used as a dust core for high frequency flowing concentrated, and is excellent in reducing the eddy current loss W e.

上記圧粉磁心の側面は、表面状態を観察したとき、隣接する軟磁性粉末粒子同士が、前記絶縁性セラミックス粒子の介在によって不連続の状態であると好ましい。また、側面の表面観察において、絶縁性セラミックス粒子の面積率が30%以上であると好ましい。絶縁性セラミックス粒子の粒径が50〜1000nmであると好適であり、絶縁性セラミックス粒子の表面にSi及び/又はAl含有化合物の有機性被膜が形成されていると更に好ましい。   When the surface state of the side surface of the powder magnetic core is observed, adjacent soft magnetic powder particles are preferably in a discontinuous state due to the interposition of the insulating ceramic particles. Moreover, in the surface observation of the side surface, the area ratio of the insulating ceramic particles is preferably 30% or more. The particle size of the insulating ceramic particles is preferably 50 to 1000 nm, and more preferably, an organic coating of Si and / or Al-containing compound is formed on the surface of the insulating ceramic particles.

又、本発明の一態様によれば、磁心用圧粉体の製造方法は、圧粉体成形用金型の型孔に軟磁性粉末を充填して、前記軟磁性粉末の密度比が91%以上になるように前記軟磁性粉末を圧縮して圧粉体を成形し、前記圧粉体を前記型孔から押し出す磁心用圧粉体の製造方法であって、前記軟磁性粉末を充填する前に、押し出し時の圧粉体と摺接する前記型孔の内面に、押型潤滑剤と絶縁性セラミックス粒子とを含有する潤滑被膜を形成することを要旨とする。   According to another aspect of the present invention, there is provided a method for producing a green compact for a magnetic core, wherein a soft magnetic powder is filled in a mold hole of a green mold, and the density ratio of the soft magnetic powder is 91%. A method for producing a green compact for compacting a green compact by compressing the soft magnetic powder as described above, and extruding the green compact from the mold cavity, before filling the soft magnetic powder Further, the gist of the invention is to form a lubricating coating containing a pressing lubricant and insulating ceramic particles on the inner surface of the mold hole that is in sliding contact with the green compact during extrusion.

上記製造方法においては、絶縁性セラミックス粒子を分散させた押型潤滑剤の溶液を型孔内面に塗布し、乾燥して潤滑被膜を設け、この型孔に軟磁性粉末を含有する原料粉末を充填する。これにより、原料粉末が押型潤滑剤及び絶縁性セラミックス粒子を介して型孔表面と接触する状態となる。このような状態で圧縮成形を行うと、型孔内面に押しつけられる軟磁性粉末粒子間に絶縁性セラミックス粒子が入り込んだ状態で圧縮が進行し、成形完了後の圧粉体が型孔と接触する接触面、つまり、圧粉体の側面の表層部では軟磁性粉末の粒子間に絶縁性セラミックス粒子が介在し、軟磁性粉末に絶縁性セラミックス粒子が分散した表面状態となる。この状態で押し出しを行うと、適度な硬さで塑性変形し難い絶縁性セラミックス粒子が、軟磁性粉末の塑性流動を抑制し、絶縁破壊されない健全な側面を有する圧粉体を得ることができる。   In the above manufacturing method, a solution of a pressing lubricant in which insulating ceramic particles are dispersed is applied to the inner surface of the mold hole, dried to provide a lubricating film, and the mold powder is filled with a raw material powder containing soft magnetic powder. . As a result, the raw material powder comes into contact with the surface of the mold cavity via the pressing lubricant and the insulating ceramic particles. When compression molding is performed in such a state, the compression proceeds with the insulating ceramic particles entering between the soft magnetic powder particles pressed against the inner surface of the mold cavity, and the compact after completion of molding contacts the mold cavity. At the contact surface, that is, the surface layer portion on the side surface of the green compact, insulating ceramic particles are interposed between the soft magnetic powder particles, and the insulating ceramic particles are dispersed in the soft magnetic powder. When extrusion is performed in this state, the insulating ceramic particles that are hard to be plastically deformed with an appropriate hardness suppress the plastic flow of the soft magnetic powder, and a green compact having a healthy side surface that is not dielectrically broken can be obtained.

本発明の磁心用圧粉体の製造方法においては、型孔内面に形成する潤滑滑被膜の厚さが0.1〜20μmであると好ましい。また、前記絶縁性セラミックス粒子の粒径が50〜1000nmであるとより好ましく、前記絶縁性セラミックス粒子は、酸化チタン粒子の表面にSi含有化合物及び/又はAl含有化合物の有機性被膜が形成された粉末であると、さらに好ましい。   In the method for producing a magnetic core green compact of the present invention, it is preferable that the thickness of the lubricant film formed on the inner surface of the mold cavity is 0.1 to 20 μm. More preferably, the insulating ceramic particles have a particle size of 50 to 1000 nm, and the insulating ceramic particles have an organic coating of a Si-containing compound and / or an Al-containing compound formed on the surface of the titanium oxide particles. More preferably, it is a powder.

更に、本発明の一態様によれば、圧粉磁心製造用押型は、原料粉末を圧縮して圧粉体を成形するための型孔と、成形される圧粉体の押し出し時に圧粉体と摺接する前記型孔の内面に設けられる、押型潤滑剤と絶縁性セラミックス粒子とを含有する潤滑被膜とを有することを要旨とする。   Furthermore, according to one aspect of the present invention, a pressing core for manufacturing a powder magnetic core includes a mold hole for compressing a raw material powder to form a green compact, and a green compact during extrusion of the green compact to be formed. The gist of the invention is to have a lubricating coating containing a pressing lubricant and insulating ceramic particles provided on the inner surface of the mold hole in sliding contact.

又、本発明の一態様によれば、圧粉磁心製造用金型装置は、上記の圧粉磁心製造用押型と、前記型孔内で原料粉末を圧縮するための上下パンチとを有することを要旨とする。
更に、本発明の一態様によれば、圧粉磁心製造用押型の潤滑液は、押型潤滑剤と、絶縁性セラミックス粒子と、揮発性溶媒とを含有することを要旨とする。
According to another aspect of the present invention, a mold apparatus for producing a dust core includes the above-described mold for producing a dust core and an upper and lower punch for compressing the raw material powder in the mold hole. The gist.
Furthermore, according to one aspect of the present invention, the lubricating liquid of the pressing mold for producing a dust core includes a pressing lubricant, insulating ceramic particles, and a volatile solvent.

本発明によれば、圧粉磁心は、金型の型孔内面によって形成される圧粉磁心の側面において、圧縮成形後の抜き出しに伴う軟磁性粉末の塑性流動が抑制され、軟磁性粉末粒子表面の絶縁被膜が破壊されるのを防止できるので、渦電流損Wが低レベルに抑制された圧粉磁心が製造可能であり、高周波用途においても優れた製品が提供される。また、圧粉磁心の側面の表層部において軟磁性粉末粒子間に絶縁性セラミックス粒子が分散し、絶縁性セラミックス粒子自体の絶縁性によって、圧粉磁心の側面の表層部の比抵抗が増加するので、高周波用の圧粉磁心として使用した際に圧粉磁心の表面に誘導電流が集中して流れても、渦電流損Wの増加を抑制可能であり、高周波用途においても優れた性能を発揮する圧粉磁心の提供が可能である。 According to the present invention, in the dust core, the plastic flow of the soft magnetic powder accompanying the extraction after compression molding is suppressed on the side surface of the dust core formed by the inner surface of the mold hole of the mold, and the surface of the soft magnetic powder particles because of the insulating coating are broken can be prevented, the eddy current loss W e is a dust core which is suppressed to a low level may be manufactured, good product even in high frequency applications is provided. In addition, the insulating ceramic particles are dispersed between the soft magnetic powder particles in the surface layer portion on the side surface of the dust core, and the specific resistance of the surface layer portion on the side surface of the dust core increases due to the insulating property of the insulating ceramic particles themselves. , even induced current on the surface of the dust core flow concentrates when used as dust core for high frequency, it is possible to suppress an increase in eddy current loss W e, exhibits excellent performance in high frequency applications It is possible to provide a powder magnetic core.

また、本発明によれば、絶縁性セラミックス粒子を含有する潤滑被膜を型孔内面に形成することによって、型孔から抜き出す圧粉体の側面における塑性流動を効果的に抑制することができ、表層部における軟磁性粉末粒子表面の絶縁被膜が破壊されずに良好に絶縁性を保持した圧粉体が得られるので、簡便な手法によって高品質な圧粉体が得られる経済性に優れた磁心用圧粉体の製造方法が提供される。又、本発明の製造方法によって得られる磁心用圧粉体は、軟磁性粉末粒子間に絶縁性セラミックス粒子が分散した表面構造を有し、絶縁性が向上した表層部を側面に有するので、高周波用途においても優れた特性を発揮する磁心用圧粉体が得られ、適用性の高い磁心用圧粉体の製造方法が提供される。   In addition, according to the present invention, by forming a lubricating coating containing insulating ceramic particles on the inner surface of the mold hole, plastic flow on the side surface of the green compact extracted from the mold hole can be effectively suppressed, and the surface layer Because it is possible to obtain a green compact that maintains good insulation without destroying the insulating coating on the surface of the soft magnetic powder particles, it is possible to obtain a high-quality green compact by a simple method. A method for producing a green compact is provided. In addition, the green compact for a magnetic core obtained by the production method of the present invention has a surface structure in which insulating ceramic particles are dispersed between soft magnetic powder particles, and has a surface layer portion with improved insulation on the side surface. A compact for a magnetic core that exhibits excellent characteristics in use can be obtained, and a method for producing a compact for a magnetic core with high applicability is provided.

圧縮成形法による成形プロセスを説明する模式図である。It is a schematic diagram explaining the shaping | molding process by a compression molding method. 軟磁性粉末を含有する原料粉末を高圧力で圧縮成形した場合の磁心用圧粉体の状態を説明する模式図である。It is a schematic diagram explaining the state of the green compact for magnetic cores when the raw material powder containing soft magnetic powder is compression molded at high pressure. 実施例で作成した試料番号1の圧粉体の側面をEPMA装置により観察した際のSEM像(左上)及び成分マップである。It is a SEM image (upper left) and component map at the time of observing the side of the green compact of the sample number 1 created in the Example with an EPMA apparatus. 実施例で作成した試料番号9の圧粉体の側面をEPMA装置により観察した際のSEM像(左上)及び成分マップである。It is a SEM image (upper left) and component map at the time of observing the side surface of the compact of the sample number 9 created in the Example with an EPMA apparatus.

図1及び図2に示すように、圧縮成形法による圧粉体の成形では、型孔の内面によって形成される圧粉体の側面は、型孔から圧粉体を押し出す際に型孔の内面と摺接する押し出し摺接面となる。圧粉体を高密度に成形するほど、型孔の内面に圧粉体を押しつけるスプリングバックが大きくなるので、圧粉体を型孔から押し出す際に型孔の内面と圧粉体の側面との間に作用する摩擦抵抗が大きくなり、圧粉体側面の表層部において塑性流動が起こる。これは、一般的な用途においては、圧粉体の側面を平滑化して外観を美化する好ましい現象として認識されるが、圧粉磁心としては、表層部の絶縁破壊及び鉄損増加を招く現象であるので、摩擦抵抗による塑性流動を防止する必要がある。摺接面の摩擦抵抗を低減するには、通常、押型潤滑剤が用いられるが、高密度圧粉体の成形においては摩擦抵抗が非常に大きくなるため、一般的な押型潤滑剤を使用しても、表層部における塑性流動を抑制することは難しい。   As shown in FIG. 1 and FIG. 2, in the green compact molding by the compression molding method, the side surface of the green compact formed by the inner surface of the mold hole is the inner surface of the mold hole when the green compact is extruded from the mold hole. It becomes an extruded sliding contact surface that makes sliding contact with. The higher the density of the green compact, the greater the springback that presses the green compact against the inner surface of the mold cavity, so when pressing the green compact out of the mold cavity, The frictional resistance acting between them increases, and plastic flow occurs in the surface layer portion on the side surface of the green compact. This is recognized as a preferable phenomenon that smoothes the side of the green compact and beautifies the appearance in general applications, but as a dust core, it is a phenomenon that causes dielectric breakdown of the surface layer and an increase in iron loss. Therefore, it is necessary to prevent plastic flow due to frictional resistance. In order to reduce the frictional resistance of the sliding contact surface, usually a push-type lubricant is used. However, in forming a high-density green compact, the frictional resistance becomes very large. However, it is difficult to suppress plastic flow in the surface layer portion.

本発明においては、型孔の内面に、押型潤滑剤と絶縁性セラミックス粒子とを含有する潤滑被膜を形成し、この潤滑被膜を有する型孔を用いて軟磁性粉末の圧縮成形を行う。このような型孔中で高密度に圧縮成形される圧粉体は、型孔から押し出す際に型孔の内面と圧粉体の側面とが摺接するにも拘わらず、圧粉体側面における軟磁性粉末粒子の塑性流動が抑制される。この理由は、以下のように考えることができる。潤滑被膜に含まれるセラミックス粒子は、軟磁性粉末が圧縮成形される際に、型孔内面に押しつけられる軟磁性粉末粒子間に押し込まれ、形成される圧粉体表面の軟磁性粉末粒子間に挟まれる。このため、型孔内に成形される圧粉体の側面は、軟磁性粉末粒子間にセラミックス粒子が介在する構造の表層部を有する。このような圧粉体を型孔から押し出すと、潤滑被膜に含まれる押型潤滑剤が、静止摩擦力及び動摩擦力をある程度低減して押し出し易くすると共に、軟磁性粉末粒子間に介在するセラミックス粒子が、軟磁性粉末粒子を支持して、その変形及び塑性流動を抑制する。その間に、摩擦抵抗によって軟磁性粉末粒子に加わる応力が一定レベルを超えると、セラミックス粒子自らが破断されて、軟磁性粉末粒子に加わる応力が軽減される。押し出しの間の摩擦抵抗に応じてセラミックス粒子は徐々に破断されるが、破断したセラミックス粒子が軟磁性粉末粒子間に介在するので、軟磁性粉末粒子が変形しても粒子同士の密着や結合は防止される。つまり、第1には、セラミックス粒子が適度な硬さを有することが、圧粉体側面の表層部において軟磁性粉末粒子間に入り込んで軟磁性粉末粒子を支持するのに有効であって、これにより、摩擦抵抗に抗して軟磁性粉末粒子の塑性流動が抑制され、軟磁性粉末粒子同士の接触及び結合が防止される。第2には、セラミックス粒子が適度な脆性又は劈開性を示すことが、押し出し時の摩擦抵抗による応力を緩和するのに有効であって、これにより、軟磁性粉末粒子の変形及び塑性流動が抑制される。更に、第3には、セラミックス粒子が絶縁性であることが、圧粉体側面の表層部における軟磁性粉末粒子間の絶縁性を確保し、むしろ強化するのに有効である。   In the present invention, a lubricating coating containing a pressing lubricant and insulating ceramic particles is formed on the inner surface of the mold cavity, and compression molding of soft magnetic powder is performed using the mold cavity having this lubricating coating. Such a green compact that is compactly molded in the mold cavity is soft on the side of the green compact, even though the inner surface of the mold cavity and the side of the green compact are in sliding contact with each other when extruded from the mold cavity. The plastic flow of the magnetic powder particles is suppressed. The reason for this can be considered as follows. When the soft magnetic powder is compression-molded, the ceramic particles contained in the lubricating coating are pressed between the soft magnetic powder particles that are pressed against the inner surface of the mold cavity and sandwiched between the soft magnetic powder particles on the surface of the green compact that is formed. It is. For this reason, the side surface of the green compact molded in the mold cavity has a surface layer portion having a structure in which ceramic particles are interposed between soft magnetic powder particles. When such a green compact is extruded from the mold cavity, the extrusion lubricant contained in the lubricating coating reduces the static frictional force and dynamic frictional force to some extent to facilitate extrusion, and ceramic particles interposed between the soft magnetic powder particles The soft magnetic powder particles are supported to suppress deformation and plastic flow. In the meantime, if the stress applied to the soft magnetic powder particles by the frictional resistance exceeds a certain level, the ceramic particles themselves are broken and the stress applied to the soft magnetic powder particles is reduced. The ceramic particles are gradually broken according to the frictional resistance during extrusion, but the broken ceramic particles are interposed between the soft magnetic powder particles. Is prevented. That is, first, it is effective that the ceramic particles have an appropriate hardness to support the soft magnetic powder particles by entering between the soft magnetic powder particles in the surface layer portion on the side of the green compact. Thus, the plastic flow of the soft magnetic powder particles is suppressed against the frictional resistance, and the contact and bonding between the soft magnetic powder particles are prevented. Secondly, the ceramic particles exhibiting moderate brittleness or cleavage are effective in relieving stress due to frictional resistance during extrusion, thereby suppressing deformation and plastic flow of the soft magnetic powder particles. Is done. Thirdly, it is effective for the ceramic particles to be insulative to ensure the insulation between the soft magnetic powder particles in the surface layer portion on the side of the green compact, rather to strengthen it.

上述のような潤滑被膜を形成した型孔を用いて圧縮成形した圧粉体は、側面(つまり、押し出し摺接面)の表層部において軟磁性粉末粒子間に絶縁性セラミックス粒子が挟まれて介在する構造を有する。従って、このような圧粉体の側面について、例えば、電子プローブ微小分析(EPMA)等による表面観察を行うと、SEM像や成分マップにおいて、軟磁性粉末粒子間の隙間に絶縁性セラミックス粒子が分散する状態を確認することができる。粒子表面に絶縁被膜を形成した軟磁性粉末を原料粉末として用いて圧縮成形した場合には、軟磁性粉末表面の絶縁被膜の破壊が抑制され、軟磁性粉末が絶縁被膜に良好に被覆された健全な状態の圧粉体が形成される。軟磁性粉末と樹脂バインダーとの混合物を圧縮成形する場合にも、通常の押型潤滑剤を用いると、押し出し時の摩擦抵抗による軟磁性粉末粒子の塑性流動は抑制困難であるが、本発明に従って絶縁性セラミックス粒子を含有する潤滑被膜を形成した型孔を用いることによって、成形される圧粉体の側面において軟磁性粉末粒子間に絶縁性セラミックス粒子が同様に押し込まれ、軟磁性粉末粒子間の隙間に絶縁性セラミックス粒子が分散する表層部が形成される。このような健全な表面を有する圧粉磁心を高周波の下で使用すると、上記のように圧粉磁心表面の絶縁性が確保されているので、誘導電流が圧粉磁心の表面に集中して流れても、渦電流損Wを効果的に抑制できる。 In the green compact that is compression-molded using the mold hole with the lubricating coating as described above, the insulating ceramic particles are interposed between the soft magnetic powder particles in the surface layer portion of the side surface (that is, the extruded sliding contact surface). It has the structure to do. Therefore, when the surface of such a green compact is observed by, for example, electron probe microanalysis (EPMA), the insulating ceramic particles are dispersed in the gaps between the soft magnetic powder particles in the SEM image or component map. You can check the status. When soft magnetic powder with an insulating coating formed on the particle surface is used as a raw material powder, the insulation coating on the surface of the soft magnetic powder is prevented from being destroyed, and the soft magnetic powder is well coated on the insulating coating. A green compact is formed. Even when a mixture of soft magnetic powder and resin binder is compression-molded, it is difficult to suppress the plastic flow of soft magnetic powder particles due to frictional resistance during extrusion when using a normal pressing lubricant. Insulating ceramic particles are similarly pushed between the soft magnetic powder particles on the side of the green compact to be molded by using a mold hole in which a lubricating coating containing conductive ceramic particles is formed. A surface layer portion in which the insulating ceramic particles are dispersed is formed. When a dust core having such a healthy surface is used under a high frequency, the insulation of the dust core surface is secured as described above, so that the induced current flows concentrated on the surface of the dust core. It is, can be effectively suppressed eddy current loss W e.

型孔の内面に形成される潤滑被膜に含有される絶縁性セラミックス粒子の量が多くなると、形成される圧粉体側面の軟磁性粉末粒子間に押し込みきれない余剰の絶縁性セラミックス粒子は圧粉体側面に位置し、圧粉体の表層部を被覆する絶縁性セラミックス粒子の薄層が形成される。本発明は、このように圧粉体の側面全体が薄層状の絶縁性セラミックス粒子で被覆されていてもよく、圧粉体側面を被覆する余剰の絶縁性セラミックス粒子が圧粉磁心としての使用において障害になることはない。潤滑被膜における絶縁性セラミックス粒子と押型潤滑剤との配合バランス及び被膜の厚さが良好である限り、軟磁性粉末粒子間にセラミックス粒子が好適に入り込んで塑性流動を抑制するので、圧粉体の寸法精度に悪影響を与えない限り、余剰の絶縁性セラミックス粒子は許容される。   When the amount of the insulating ceramic particles contained in the lubricating coating formed on the inner surface of the mold hole increases, the excess insulating ceramic particles that cannot be pushed in between the soft magnetic powder particles on the side of the formed green compact will be compressed. A thin layer of insulating ceramic particles located on the side surface of the body and covering the surface layer portion of the green compact is formed. In the present invention, the entire side surface of the green compact may be coated with the thin-layered insulating ceramic particles as described above, and the surplus insulating ceramic particles covering the side of the green compact may be used as a dust core. There is no obstacle. As long as the blending balance between the insulating ceramic particles and the pressing lubricant in the lubricating coating and the thickness of the coating are good, the ceramic particles suitably enter between the soft magnetic powder particles to suppress plastic flow. As long as the dimensional accuracy is not adversely affected, excess insulating ceramic particles are allowed.

また、軟磁性粉末粒子間の隙間に分散する絶縁性セラミックス粒子の存在は、軟磁性粉末粒子間の絶縁性を向上させ、潤滑被膜から導入される絶縁性セラミックス粒子は、圧粉体の内部までは至らないので、圧粉磁心の側面は、表層部の比抵抗値が内部よりも高くなる。この表層部の比抵抗の高さは、高周波環境下で誘導電流が圧粉磁心の表面に集中して流れる状態において、特に効果的に渦電流損Wを抑制する。 In addition, the presence of insulating ceramic particles dispersed in the gaps between the soft magnetic powder particles improves the insulation between the soft magnetic powder particles, and the insulating ceramic particles introduced from the lubricating coating can reach the inside of the green compact. Therefore, the specific resistance value of the surface layer portion of the side surface of the dust core is higher than that of the inside. The height of the specific resistance of the surface layer portion, an induced current under a high frequency environment in a state that flows to concentrate on the surface of the powder magnetic core, particularly effectively suppressing the eddy current loss W e.

従来製法においては、型孔からの押し出し時の摩擦抵抗による軟磁性粉末粒子の塑性流動は、圧粉体側面の最表面において最も強く起こり、摩擦抵抗の影響は、概して、最表面からの深さが20μm程度迄の領域に及ぶ。しかし、本発明に従って絶縁性セラミックス粒子を含有する潤滑被膜を内面に形成した型孔を用いると、圧粉体側面の表面において絶縁性セラミックス粒子が軟磁性粉末粒子を支持することによって、表面における塑性流動が抑制され、これに伴って、摩擦抵抗の影響が内部へ及ぶことも抑制される。従って、圧粉磁心の側面において絶縁性セラミックス粒子が分散する表層部の深さは、表面から1〜100μm程度であれば、軟磁性粉末粒子の塑性流動を抑制する効果は良好であり、最大でも1mm程度迄の深さがあれば十分である。又、上述のような潤滑被膜を内面に形成した型孔を用いて圧縮成形すれば、このような絶縁性セラミックス粒子が分散する表層部が圧粉体側面に形成される。又、高周波環境下での圧粉磁心において誘導電流が集中する表面領域の深さは周波数に依存するが、少なくとも1kHz〜50kHz程度の周波数においては、上述のような表層部の深さにおいて絶縁性セラミックス粒子によって比抵抗値が高まることで、十分対応可能である。   In the conventional manufacturing method, the plastic flow of soft magnetic powder particles due to the frictional resistance during extrusion from the mold cavity occurs most strongly on the outermost surface of the green compact side, and the influence of the frictional resistance is generally the depth from the outermost surface. Covers an area up to about 20 μm. However, when a mold cavity having a lubricating coating containing insulating ceramic particles formed on the inner surface according to the present invention is used, the insulating ceramic particles support the soft magnetic powder particles on the surface of the green compact side surface. The flow is suppressed, and accordingly, the influence of the frictional resistance is also suppressed to the inside. Therefore, if the depth of the surface layer portion where the insulating ceramic particles are dispersed on the side surface of the dust core is about 1 to 100 μm from the surface, the effect of suppressing the plastic flow of the soft magnetic powder particles is good, and at most A depth of up to about 1 mm is sufficient. Further, if compression molding is performed using a mold hole in which the above-described lubricating coating is formed on the inner surface, a surface layer portion in which such insulating ceramic particles are dispersed is formed on the side surface of the green compact. In addition, the depth of the surface region where the induced current is concentrated in the dust core in a high frequency environment depends on the frequency, but at least at a frequency of about 1 kHz to 50 kHz, the insulating layer is insulated at the depth of the surface layer as described above. The specific resistance value is increased by the ceramic particles, which can be sufficiently handled.

圧粉体において軟磁性粉末粒子の塑性流動が起こるのは圧粉体の側面であるので、上述の潤滑被膜は、少なくとも型孔の内面に形成すればよく、圧粉体の少なくとも側面において、軟磁性粉末粒子間に絶縁性セラミックス粒子が分散する表層部が形成されればよい。従って、圧粉体の上面及び下面を形成する上下パンチに上述の組成の潤滑被膜を形成する必要はない。しかし、上下パンチに絶縁性セラミックス粒子を含有する潤滑被膜を形成して圧粉体を圧縮成形してもよく、この場合、圧粉体の上下面にも絶縁性セラミックス粒子が分散した表層部が形成され、上下面の最表面において軟磁性粉末粒子が潰されて互いに接することが防止される。   Since the plastic flow of the soft magnetic powder particles in the green compact occurs on the side surface of the green compact, the above-mentioned lubricating coating may be formed at least on the inner surface of the mold cavity. A surface layer portion in which the insulating ceramic particles are dispersed may be formed between the magnetic powder particles. Therefore, it is not necessary to form a lubricating film having the above composition on the upper and lower punches that form the upper and lower surfaces of the green compact. However, the green compact may be compression-molded by forming a lubricating coating containing insulating ceramic particles on the upper and lower punches. In this case, the surface layer portion where the insulating ceramic particles are dispersed is also formed on the upper and lower surfaces of the green compact. Thus, the soft magnetic powder particles are prevented from being crushed and contacting each other on the uppermost and lowermost surfaces.

このような圧粉体の側面の表層部において、絶縁性セラミックス粒子は、軟磁性粉末粒子の周囲を取り囲んで拘束し、隣接する軟磁性粉末粒子同士が不連続の状態になると、隣接する軟磁性粉末粒子同士の導通が完全に防止される。つまり、この不連続性が高いほど、この領域の比抵抗が向上し、圧粉磁心として好ましい。   In the surface layer part of the side surface of the green compact, the insulating ceramic particles surround and restrain the periphery of the soft magnetic powder particles, and when adjacent soft magnetic powder particles become discontinuous, adjacent soft magnetic powder particles Conduction between the powder particles is completely prevented. That is, the higher the discontinuity, the more the specific resistance in this region is improved, which is preferable as a dust core.

圧粉磁心として好ましい圧粉体は、EPMAによる成分マップに基づく側面の表面観察において、絶縁性セラミックス粒子の面積率が8%程度以上、好ましくは20%以上、より好ましくは30%以上であると良い。側面の表面観察における絶縁性セラミックス粒子の面積率が8%を下回ると、絶縁性セラミックス粒子による軟磁性粉末粒子の塑性変形防止の効果が不十分となり、軟磁性粉末の塑性流動が生じて、隣接する軟磁性粉末の導通が発生する虞がある。尚、圧粉体側面の表面における絶縁性セラミックス粒子の面積率が大きくなるに従って、表面における軟磁性粉末の占積率が低下するが、これはあくまで圧粉体表面の状態であり、表層部より深い圧粉体内部においては、圧縮度に応じて軟磁性粉末の占積率を所望の占積率まで高められる。従って、圧粉体側面の最表面における絶縁性セラミックス粒子の面積率に関して、特に上限はなく、前述したように、圧粉体側面が完全に絶縁性セラミックス粒子で覆われていてもよい。圧粉体側面が絶縁性セラミックス粒子の薄層で被覆されている場合、この薄層を除去して表層部の表面観察を行うと、軟磁性粉末粒子間に介在する絶縁性セラミックス粒子の面積率は、概して65%程度以下の範囲となる。   The powder compact preferable as the powder magnetic core has an area ratio of the insulating ceramic particles of about 8% or more, preferably 20% or more, more preferably 30% or more in the surface observation of the side surface based on the component map by EPMA. good. When the area ratio of the insulating ceramic particles in the side surface observation is less than 8%, the effect of preventing the plastic deformation of the soft magnetic powder particles by the insulating ceramic particles becomes insufficient, and the plastic flow of the soft magnetic powder occurs, and the adjacent ceramic particles are adjacent to each other. There is a risk of conduction of the soft magnetic powder. In addition, as the area ratio of the insulating ceramic particles on the surface of the green compact increases, the space factor of the soft magnetic powder on the surface decreases. Inside the deep green compact, the space factor of the soft magnetic powder can be increased to a desired space factor according to the degree of compression. Accordingly, there is no particular upper limit on the area ratio of the insulating ceramic particles on the outermost surface of the green compact side surface, and as described above, the green compact side surface may be completely covered with the insulating ceramic particles. When the side of the green compact is covered with a thin layer of insulating ceramic particles, the surface ratio of the insulating ceramic particles interposed between the soft magnetic powder particles can be determined by removing the thin layer and observing the surface of the surface layer portion. Is generally in the range of about 65% or less.

上記のように、絶縁性セラミックス粒子は、型孔の内面に形成される潤滑被膜から導入されるので、型孔の内面によって形成される圧粉体側面の表層部(つまり、表面及び表面近傍)のみに存在する。このような構造は、軟磁性粉末に絶縁性セラミックス粒子を配合した原料粉末の圧縮成形によっては得られない。軟磁性粉末に絶縁性セラミックス粒子を添加して圧縮成形すると、原料粉末の流動性が低下して金型装置のキャビティへの原料粉末の充填性が低下し、また、原料粉末自体の圧縮性が低下することとなり、圧粉磁心を高い密度に成形することが難しくなる。強制的に高密度に成形したとしても、圧粉体全体に分散する絶縁性セラミックス粒子の存在によって圧粉磁心中の軟磁性粉末の占積率が低下して磁束密度が低下する。従って、型孔の内面に潤滑被膜を形成することによって圧粉体側面の表層部のみに絶縁性セラミックス粒子を分散させる本発明の構成は、圧粉体内部には絶縁性セラミックス粒子を分散させないように構成できるので、高密度圧縮成形において非常に有利である。   As described above, since the insulating ceramic particles are introduced from the lubricating coating formed on the inner surface of the mold cavity, the surface layer portion on the side of the green compact formed by the inner surface of the mold cavity (that is, the surface and the vicinity of the surface) Only exists. Such a structure cannot be obtained by compression molding of raw material powder in which insulating ceramic particles are blended with soft magnetic powder. When the insulating ceramic particles are added to the soft magnetic powder and compression molded, the flowability of the raw material powder is reduced, the filling property of the raw material powder into the cavity of the mold apparatus is lowered, and the compressibility of the raw material powder itself is reduced. It will become low and it will become difficult to shape | mold a powder magnetic core in high density. Even if it is forcibly molded to a high density, the space factor of the soft magnetic powder in the powder magnetic core decreases due to the presence of the insulating ceramic particles dispersed throughout the powder compact, and the magnetic flux density decreases. Therefore, the structure of the present invention in which the insulating ceramic particles are dispersed only in the surface layer portion on the side surface of the green compact by forming a lubricating film on the inner surface of the mold cavity does not disperse the insulating ceramic particles in the green compact. Therefore, it is very advantageous in high-density compression molding.

本発明に係る磁心用圧粉体の原料について説明する。尚、以下の記載において、粉末の粒径は、μm単位の粉末についてはレーザー回折法による平均粒径、nm単位の粉末についてはTEM観察による平均粒径を意味するものとする。
軟磁性粉末としては、軟質な粉末及び硬質な粉末の何れを用いても良く、純鉄、Fe−Si合金、Fe−Al合金、パーマロイ、センダスト、パーメンジュール、ソフトフェライト、アモルファス磁性合金、ナノクリスタル磁性合金等の鉄合金を含む鉄系金属の粉末が使用でき、磁束密度の高さや成形性等の点では純鉄粉が優れている。高周波用に適した高密度圧粉磁心を得る上で、粒径が1〜300μm程度の軟磁性粉末が好ましい。本発明は、圧縮成形に際して塑性変形し易い軟質な軟磁性粉末の使用において特に有効であり、鉄粉末、及び、Si、Al等の合金元素の添加量が3%以下の鉄系低合金粉末に対して最も効果がある。しかし、成形後の押し出しにおいてほとんど塑性変形しない硬質な軟磁性粉末を用いる場合にも有効であり、圧縮成形において軟磁性粉末粒子が破砕した時に、軟磁性粉末粒子の破砕片間に絶縁性セラミックス粒子が浸入して破砕片間に絶縁形成する効果がある。又、塑性変形し難いが破砕するほど硬くもない軟磁性粉末の場合でも、圧粉体側面の軟磁性粉末粒子間に絶縁性セラミックス粒子が分散することで、圧粉体側面の比抵抗が向上する効果を得ることができる。
The raw material of the green compact for a magnetic core according to the present invention will be described. In the following description, the particle diameter of the powder means the average particle diameter by laser diffraction method for the powder in μm unit, and the average particle diameter by TEM observation for the powder in nm unit.
As the soft magnetic powder, any of soft powder and hard powder may be used. Pure iron, Fe-Si alloy, Fe-Al alloy, permalloy, sendust, permendur, soft ferrite, amorphous magnetic alloy, nano An iron-based metal powder containing an iron alloy such as a crystal magnetic alloy can be used, and pure iron powder is superior in terms of high magnetic flux density and formability. In order to obtain a high-density powder magnetic core suitable for high frequency use, a soft magnetic powder having a particle size of about 1 to 300 μm is preferable. The present invention is particularly effective in the use of a soft soft magnetic powder that is easily plastically deformed during compression molding. Iron powder and an iron-based low alloy powder in which the amount of addition of alloy elements such as Si and Al is 3% or less. It is most effective against this. However, it is also effective when using hard soft magnetic powder that hardly undergoes plastic deformation in extrusion after molding, and when the soft magnetic powder particles are crushed in compression molding, insulating ceramic particles between the crushed pieces of soft magnetic powder particles. Has the effect of forming an insulation between the crushed pieces. In addition, even in the case of soft magnetic powder that is difficult to plastically deform but is not hard enough to be crushed, the insulating ceramic particles are dispersed between the soft magnetic powder particles on the side of the green compact, thereby improving the specific resistance on the side of the green compact. Effect can be obtained.

また、個々の軟磁性粉末粒子の絶縁を確保するためには、軟磁性粉末粒子の表面を絶縁性の被膜を被覆することが好ましい。この場合、リン酸系化成被膜等の無機絶縁被膜や、シリコーン樹脂被膜等が好ましい。このような粒子表面の絶縁被膜は、従来法に従って化成処理や接触被覆によって形成すれば良く、例えば、特許4044591号公報や特許4927983号公報等の記載を参照することができる。又、市販の粉末製品から適宜選択して使用しても良く、例えば、ヘガネスAB社製のSomaloy110i(5P)や神戸製鋼所製MH20D等が挙げられる。   In order to ensure insulation of the individual soft magnetic powder particles, the surface of the soft magnetic powder particles is preferably covered with an insulating film. In this case, an inorganic insulating film such as a phosphoric acid-based chemical film, a silicone resin film, and the like are preferable. Such an insulating coating on the particle surface may be formed by chemical conversion treatment or contact coating according to a conventional method. For example, the descriptions in Japanese Patent Nos. 4044591 and 49279983 can be referred to. Moreover, you may use it, selecting suitably from commercially available powder products, for example, Somaloy110i (5P) by Höganäs AB company, MH20D by Kobe Steel, etc. are mentioned.

なお、樹脂等のバインダを軟磁性粉末に配合することよって個々の軟磁性粉末粒子の絶縁が確保される場合、軟磁性粉末の粒子表面に絶縁被膜を形成しなくてもよい。この場合、磁心用圧粉体として、樹脂等のバインダによって個々の軟磁性粉末粒子を結着した圧粉体が得られるが、バインダ量が増加すると、その分、軟磁性粉末の割合が低下し、圧粉体中の軟磁性粉末の占積率が低下して、圧粉磁心の磁束密度が低下することとなる。このためバインダ量は、圧粉体の2質量%以下に調整すべきである。   In addition, when insulation of each soft magnetic powder particle is ensured by blending a binder such as a resin into the soft magnetic powder, an insulating coating may not be formed on the particle surface of the soft magnetic powder. In this case, as the green compact for the magnetic core, a green compact in which individual soft magnetic powder particles are bound by a binder such as a resin is obtained. However, as the amount of the binder increases, the proportion of the soft magnetic powder decreases accordingly. As a result, the space factor of the soft magnetic powder in the powder compact decreases, and the magnetic flux density of the powder magnetic core decreases. For this reason, the amount of the binder should be adjusted to 2% by mass or less of the green compact.

次に、本発明に従って型孔内面に形成される潤滑被膜の原料について説明する。
潤滑被膜に導入される粒子は、軟磁性粉末粒子間に分散して軟磁性粉末の塑性流動を防止するとともに、軟磁性粉末の電気的絶縁を行うものであるので、適度な硬さを有する粒子であること、及び、導電性を示さないもの(絶縁性)であること、が必要である。このため、絶縁性セラミックス粒子が好適である。絶縁性セラミックス粒子としては、酸化物系、窒化物系、炭化物系等のセラミックス粒子を用いることができ、酸化物系セラミックス粒子としては、酸化アルミニウム(Al)、二酸化チタン(TiO)、二酸化珪素(SiO)、酸化マグネシウム(MgO)、二酸化ジルコニウム(ZrO)、ステアタイト(MgO・SiO)、ジルコン(ZrSiO)、フェライト(M2+O・Fe)、ムライト(3Al・2SiO)、フォルステライト(2MgO・SiO)、イットリア(Y)等が挙げられる。窒化物系セラミックス粒子としては、窒化アルミニウム(AlN)、窒化チタン(TiN)、窒化珪素(Si)等の粉末が挙げられる。炭化物系セラミックス粒子としては、炭化チタン(TiC)、炭化タングステン(WC)等の粉末が挙げられる。その他に、サイアロン(Si−Al−O−N系化合物)等の酸窒化物セラミックス粒子、炭窒化チタン(TiCN)等の炭窒化物セラミックス粒子、コーディエライト粒子、マシナブルセラミックス(SiO・Al、AlN・BN)粒子なども用いることができる。このようなセラミックスは、降伏応力が2000〜10000MPa程度の値を示し、200〜2000MPa程度の低合金鋼等より大きいので、摩擦抵抗による応力に抗して軟磁性粉末粒子を支持し、塑性流動を抑制することができる。更に、200〜1800程度の適度な硬さ(ビッカース硬度)を有し、破断歪みがゼロであるので、過大な応力に対しては、脆性破壊により自ら破断して軟磁性粉末粒子への応力を緩和する。なお、絶縁性セラミックス粒子は、後述するように微細なものが適しているが、微細な粉末は、粉塵爆発の虞が大きくなるため、この点に関しては、十分に酸化された状態であって粉塵爆発の虞が小さい酸化物系の絶縁性セラミックスを用いることが好ましい。又、上述のようなセラミック粒子から異なる種類を複数選択して混合し、絶縁性セラミックス粒子として用いても良い。
Next, the raw material for the lubricating coating formed on the inner surface of the mold cavity according to the present invention will be described.
The particles introduced into the lubricating coating are dispersed between the soft magnetic powder particles to prevent plastic flow of the soft magnetic powder and to electrically insulate the soft magnetic powder. And that it does not show conductivity (insulation). For this reason, insulating ceramic particles are suitable. As the insulating ceramic particles, oxide-based, nitride-based, carbide-based ceramic particles can be used. As the oxide-based ceramic particles, aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ). , Silicon dioxide (SiO 2 ), magnesium oxide (MgO), zirconium dioxide (ZrO 2 ), steatite (MgO · SiO 2 ), zircon (ZrSiO 4 ), ferrite (M 2+ O · Fe 2 O 3 ), mullite ( 3Al 2 O 3 .2SiO 2 ), forsterite (2MgO.SiO 2 ), yttria (Y 2 O 3 ) and the like. Examples of the nitride ceramic particles include powders of aluminum nitride (AlN), titanium nitride (TiN), silicon nitride (Si 3 N 4 ), and the like. Examples of the carbide-based ceramic particles include powders such as titanium carbide (TiC) and tungsten carbide (WC). In addition, oxynitride ceramic particles such as sialon (Si-Al-ON-based compounds), carbonitride ceramic particles such as titanium carbonitride (TiCN), cordierite particles, machinable ceramics (SiO 2 · Al 2 O 3 , AlN · BN) particles and the like can also be used. Such ceramics have a yield stress value of about 2000 to 10000 MPa, and are larger than low alloy steels of about 200 to 2000 MPa, so that the soft magnetic powder particles are supported against the stress due to frictional resistance, and the plastic flow is reduced. Can be suppressed. Furthermore, it has an appropriate hardness (Vickers hardness) of about 200 to 1800, and the fracture strain is zero. Therefore, for excessive stress, it breaks itself by brittle fracture and causes stress on the soft magnetic powder particles. ease. As will be described later, fine particles are suitable for the insulating ceramic particles. However, since fine powder increases the risk of dust explosion, in this regard, it is in a sufficiently oxidized state and dust. It is preferable to use an oxide-based insulating ceramic that is less likely to explode. Alternatively, a plurality of different types of ceramic particles as described above may be selected and mixed to be used as insulating ceramic particles.

絶縁性セラミックス粒子は、粗大であると、軟磁性粉末の絶縁を確保するために必要な絶縁性セラミックス粒子が多量になるとともに、個々の絶縁性セラミックス粒子の質量が増加するため、型孔内面に形成した被膜から脱落し易くなる。また、粗大な絶縁性セラミックス粒子が型孔内面と充填した軟磁性粉末との間に存在する状態で圧縮を完了した圧粉体を型孔から押し出そうとすると、粗大な絶縁性セラミックス粒子が型孔内面を摩滅して摩耗を進行させ、又、自己破断による応力緩和が有効に作用し難いために、軟磁性粉末粒子の変形を十分に抑制できない。また、軟磁性粉末表面に絶縁被膜が被覆されている場合に絶縁被覆の破壊が生じる虞がある。さらに、摩滅により生じた押型及び軟磁性粉末の摩耗粉が圧粉体表面に凝着して、隣接する軟磁性粉末粒子を接合させる事態が生じ、軟磁性粉末粒子間の絶縁破壊を招く虞がある。このため、絶縁性セラミックス粒子の大きさは、最大粒径が1000nm以下のものを用いることが好ましい。その一方で、過度に微細な絶縁性セラミックス粒子は、その製造及び取扱いが難しくなることから、最大粒径が50nm以上である粉末を用いることが好ましい。   If the insulating ceramic particles are coarse, a large amount of insulating ceramic particles are required to ensure insulation of the soft magnetic powder, and the mass of the individual insulating ceramic particles increases. It becomes easy to drop off from the formed film. In addition, when the compacted compact is pushed out from the mold cavity while the coarse insulating ceramic particles are present between the inner surface of the mold hole and the filled soft magnetic powder, the coarse insulating ceramic particles are The inner surface of the mold cavity is worn away to cause wear, and the stress relaxation due to self-breaking is hardly effective, so the deformation of the soft magnetic powder particles cannot be sufficiently suppressed. Further, when the surface of the soft magnetic powder is coated with an insulating coating, there is a possibility that the insulating coating is broken. Furthermore, there is a possibility that the wear powder of the stamping die and soft magnetic powder generated by abrasion adheres to the surface of the green compact and joins adjacent soft magnetic powder particles, which may cause dielectric breakdown between the soft magnetic powder particles. is there. For this reason, it is preferable to use the insulating ceramic particles having a maximum particle size of 1000 nm or less. On the other hand, since the excessively fine insulating ceramic particles are difficult to manufacture and handle, it is preferable to use a powder having a maximum particle size of 50 nm or more.

上述の絶縁性セラミックス粒子が分散する表面層を側面に有する軟磁性粉末の圧粉体は、以下のようにして製造することができる。先ず、本発明の磁心用圧粉体の製造方法においては、金型装置のキャビティを規定する面、特に型孔の内面に、絶縁性セラミックス粒子及び押型潤滑剤を含有する潤滑液を塗布して固体状の潤滑被膜を形成した後、軟磁性粉末を含む原料粉末を金型装置のキャビティに充填する。このとき、キャビティに充填された原料粉末は、絶縁性セラミックス粒子が分散する押型潤滑剤を介して型孔と接触する。   The green compact of the soft magnetic powder having the surface layer on which the insulating ceramic particles are dispersed on the side surface can be manufactured as follows. First, in the method of manufacturing a green compact for a magnetic core according to the present invention, a lubricating liquid containing insulating ceramic particles and a pressing lubricant is applied to a surface that defines a cavity of a mold apparatus, particularly an inner surface of a mold hole. After forming the solid lubricating film, the raw material powder containing the soft magnetic powder is filled into the cavity of the mold apparatus. At this time, the raw material powder filled in the cavity comes into contact with the mold hole through a pressing lubricant in which the insulating ceramic particles are dispersed.

次いで、上パンチを用いて原料粉末を圧縮成形すると、軟磁性粉末の圧縮に伴って押型潤滑剤及び絶縁性セラミックス粒子が軟磁性粉末の粒子間に浸入し、軟磁性粉末粒子間に絶縁性セラミックス粒子が介在する。さらに原料粉末の圧縮が進行すると、軟磁性粉末粒子間の距離が小さくなり、軟磁性粉末粒子間に浸入した押型潤滑剤の殆どが、絶縁性セラミックス粒子の一部と共に押し出されて、圧粉体と型孔内面の隙間に戻るが、残部の絶縁性セラミックス粒子は、微量の押型潤滑剤と共に軟磁性粉末粒子間に残留する。圧縮成形が完了した後の圧粉体の側面、つまり、型孔に接触する圧粉体の表面は、軟磁性粉末の粒子間に絶縁性セラミックス粒子が分散する状態となる。   Next, when the raw material powder is compression-molded using the upper punch, the pressing lubricant and the insulating ceramic particles infiltrate between the soft magnetic powder particles as the soft magnetic powder is compressed, and the insulating ceramics are interposed between the soft magnetic powder particles. Particles intervene. When the compression of the raw material powder further proceeds, the distance between the soft magnetic powder particles decreases, and most of the push lubricant that has entered between the soft magnetic powder particles is extruded together with some of the insulating ceramic particles, and the green compact is compressed. The remaining insulating ceramic particles remain between the soft magnetic powder particles together with a small amount of the pressing lubricant. On the side surface of the green compact after completion of the compression molding, that is, the surface of the green compact in contact with the mold cavity, the insulating ceramic particles are dispersed between the soft magnetic powder particles.

このように型孔内面に接触する圧粉体の側面において軟磁性粉末の粒子間に絶縁性セラミックス粒子が分散する状態で、圧縮が完了した圧粉体を押し出すと、型孔内面と接触する軟磁性粉末が摩擦抵抗によって塑性変形しようとするが、軟磁性粉末の粒子間に介在する絶縁性セラミックス粒子の塑性変形し難い適度な硬さによって、軟磁性粉末の塑性変形が阻止されるので、圧粉体の抜き出しを行う間、型孔内面と接触する軟磁性粉末の塑性流動を防止することができる。   In this way, when the compressed compact is extruded with the insulating ceramic particles dispersed between the soft magnetic powder particles on the side surface of the green compact in contact with the mold cavity inner surface, the soft powder in contact with the mold cavity inner surface is extruded. The magnetic powder tries to plastically deform due to frictional resistance, but the plastic deformation of the soft magnetic powder is prevented by the appropriate hardness of the insulating ceramic particles that are difficult to plastically deform between the soft magnetic powder particles. During the extraction of the powder, it is possible to prevent plastic flow of the soft magnetic powder in contact with the inner surface of the mold cavity.

型孔内面に潤滑被膜を形成する際に用いる潤滑液について説明する。
潤滑液は、揮発性溶媒に絶縁性セラミックス粒子及び押型潤滑剤を配合した液体であり、揮発性溶媒を留去することによって、絶縁性セラミックス粒子及び押型潤滑剤を含有する潤滑被膜を形成することができる。押型潤滑剤は、圧縮を完了した圧粉体の型孔からの押し出しに際し、型孔内面と軟磁性粉末の間の潤滑を付与するために用いられる。
本発明において、潤滑被膜は、いわゆる“押型潤滑法”に従って、型孔の内面に潤滑液を塗布することによって与えられる。押型潤滑剤としては、従来から押型潤滑に用いられているワックス、高級脂肪酸、及び、高級脂肪酸金属塩を用いることができる。つまり、被膜の形成が可能な半固形又は固形の潤滑剤であり、具体的には、ワックスとしては、例えば、エチレンビスステアリン酸アミド等の高級脂肪酸系アミドワックス、エチレンビスステアリン酸アミドに脂肪族カルボン酸モノアミドを添加したもの等を用いることができる。高級脂肪酸としては、例えば、ステアリン酸、12−ヒドロキシステアリン酸、リシノール酸、ベヘン酸、モンタン酸、ラウリン酸、パルミチン酸等の炭素数12〜28程度の飽和又は不飽和脂肪酸類等を用いることができる。高級脂肪酸の金属塩としては、リチウム、マグネシウム、カルシウム、バリウム、亜鉛、アルミニウム、ナトリウム、ストロンチウム等の金属を金属塩とする上記の高級脂肪酸を用いることができる。鉱物油等の液状の潤滑剤は、動摩擦を低減する上で非常に有効な潤滑性を有するが、静止摩擦の低減においては不十分となる傾向があるので、この点においても、粘性が高い半固形又は固形の潤滑剤が有効であり、圧粉体の押し出し時に生じる静止摩擦及び動摩擦の両方について効果的に摩擦を低減する潤滑性を発揮する。
The lubricating liquid used when forming the lubricating coating on the inner surface of the mold cavity will be described.
The lubricating liquid is a liquid in which insulating ceramic particles and a pressing lubricant are mixed in a volatile solvent, and a lubricating film containing insulating ceramic particles and the pressing lubricant is formed by distilling off the volatile solvent. Can do. The pressing lubricant is used to provide lubrication between the inner surface of the mold hole and the soft magnetic powder when the green compact that has been compressed is extruded from the mold hole.
In the present invention, the lubricating coating is provided by applying a lubricating liquid to the inner surface of the mold hole in accordance with the so-called “push-type lubrication method”. As the pressing lubricant, waxes, higher fatty acids, and higher fatty acid metal salts that have been conventionally used for pressing lubrication can be used. That is, it is a semi-solid or solid lubricant capable of forming a film. Specifically, as the wax, for example, higher fatty acid amide wax such as ethylene bis stearamide, ethylene bis stearamide and aliphatic What added carboxylic acid monoamide etc. can be used. Examples of higher fatty acids include saturated or unsaturated fatty acids having about 12 to 28 carbon atoms such as stearic acid, 12-hydroxystearic acid, ricinoleic acid, behenic acid, montanic acid, lauric acid, and palmitic acid. it can. As the higher fatty acid metal salt, the higher fatty acid having a metal salt such as lithium, magnesium, calcium, barium, zinc, aluminum, sodium, strontium, or the like can be used. Liquid lubricants such as mineral oil have very effective lubricity in reducing dynamic friction, but tend to be insufficient in reducing static friction. A solid or solid lubricant is effective, and exhibits lubricity that effectively reduces friction with respect to both static friction and dynamic friction generated when the green compact is extruded.

型孔内面に形成される潤滑被膜は、押型潤滑剤と絶縁性セラミックス粒子との合計量に対して絶縁性セラミックス粒子の割合が1〜70質量%、好ましくは10〜65質量%、より好ましくは40〜60質量%である組成を有することが好ましく、絶縁性セラミックス粒子の割合が1質量%未満であると、絶縁性セラミックス粒子を軟磁性粉末粒子間に効果的に介在させることが難しくなる。一方、絶縁性セラミックス粒子の割合が70質量%を超えると、相対的に押型潤滑剤の量が乏しくなり、型孔内面と軟磁性粉末の間の潤滑が不足して型カジリが生じ易くなり、軟磁性粉末の塑性流動を招く。従って、型孔内面へ潤滑被膜を形成する際に用いる潤滑液は、押型潤滑剤と絶縁性セラミックス粒子との合計量に対して絶縁性セラミックス粒子の割合が1〜70質量%となるように調製する。潤滑液の調製に当たっては、押型潤滑剤を溶剤に溶解して押型潤滑剤溶液を調製し、これに絶縁性セラミックス粒子を添加混合して均一に分散させることにより、良好に調製できる。   In the lubricating coating formed on the inner surface of the mold hole, the ratio of the insulating ceramic particles is 1 to 70% by mass, preferably 10 to 65% by mass, more preferably the total amount of the pressing lubricant and the insulating ceramic particles. It is preferable to have a composition of 40 to 60% by mass. When the ratio of the insulating ceramic particles is less than 1% by mass, it becomes difficult to effectively interpose the insulating ceramic particles between the soft magnetic powder particles. On the other hand, when the ratio of the insulating ceramic particles exceeds 70% by mass, the amount of the pressing lubricant is relatively small, and the lubrication between the inner surface of the mold hole and the soft magnetic powder is insufficient, and mold galling is likely to occur. This causes plastic flow of the soft magnetic powder. Therefore, the lubricating liquid used when forming the lubricating coating on the inner surface of the mold hole is prepared so that the ratio of the insulating ceramic particles is 1 to 70% by mass with respect to the total amount of the pressing lubricant and the insulating ceramic particles. To do. In the preparation of the lubricating liquid, it is possible to prepare it well by dissolving a pressing lubricant in a solvent to prepare a pressing lubricant solution, and adding and mixing insulating ceramic particles thereto and uniformly dispersing it.

潤滑液を金型装置に塗布した後に型孔内面に形成される潤滑被膜は、固体状態の被膜、すなわち、乾式被膜として存在することが好ましい。塗布されたままの溶媒を含んだ被膜、すなわち、湿式被膜であると、原料粉末を金型装置のキャビティ内に充填した際に、溶液状態の押型潤滑剤が、充填された原料粉末の隙間に毛細管力によって吸収され、型孔内面と原料粉末との間を潤滑する押型潤滑剤の量が減少する。従って、潤滑液の調製に用いる溶媒は、型孔内面に塗布した後に乾燥が容易なものであることが望ましい。   The lubricating coating formed on the inner surface of the mold cavity after applying the lubricating liquid to the mold apparatus is preferably present as a solid coating, that is, a dry coating. When the coating containing the solvent as it is applied, that is, a wet coating, when the raw material powder is filled into the cavity of the mold apparatus, the mold lubricant in the solution state is placed in the gap between the filled raw material powder. The amount of the pressing lubricant that is absorbed by the capillary force and lubricates between the inner surface of the mold cavity and the raw material powder is reduced. Therefore, it is desirable that the solvent used for the preparation of the lubricating liquid be easy to dry after being applied to the inner surface of the mold cavity.

従って、潤滑液を調製する際の溶媒として、揮発性溶媒を使用する。揮発性溶媒として、例えば、エチルアルコール、メチルアルコール、イソプロピルアルコール等の各種アルコール類、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル等のエーテル類等の有機溶媒を用いることができる。このような揮発性溶媒に、押型潤滑剤を溶解した溶液に絶縁性セラミックス粒子を分散させた潤滑液を、金型装置の型孔内面に塗布して、乾燥により溶媒を留去することによって、押型潤滑剤に絶縁性セラミックス粒子が分散した固体状の潤滑被膜が形成される。   Therefore, a volatile solvent is used as a solvent for preparing the lubricating liquid. Examples of volatile solvents that can be used include organic solvents such as various alcohols such as ethyl alcohol, methyl alcohol, and isopropyl alcohol, and ethers such as dimethyl ether, ethyl methyl ether, and diethyl ether. By applying a lubricating liquid in which insulating ceramic particles are dispersed in a solution in which a pressing lubricant is dissolved in such a volatile solvent, to the inner surface of the mold hole of the mold apparatus, the solvent is distilled off by drying, A solid lubricating film in which insulating ceramic particles are dispersed in the pressing lubricant is formed.

金型装置の型孔内面に形成される潤滑被膜は、厚さが0.1〜20μm程度であることが好ましい。厚さが0.1μmより薄いと、押型潤滑剤の量が不足して、成形された圧粉体と型孔内面との摩擦を充分に低減できなくなり、軟磁性粉末の塑性流動が生じ易くなる。同時に、絶縁性セラミックス粒子の量も不足して、軟磁性粉末の塑性流動が生じ易くなる。一方、固体潤滑剤の被膜の厚さが過大となると、成形される圧粉体の寸法がその分小さくなり、寸法精度が悪化することとなる。また、型孔とパンチとのクリアランスも大きくする必要が生じる。   The lubricating coating formed on the inner surface of the mold hole of the mold apparatus preferably has a thickness of about 0.1 to 20 μm. If the thickness is less than 0.1 μm, the amount of the pressing lubricant is insufficient, and the friction between the formed green compact and the inner surface of the mold hole cannot be sufficiently reduced, and plastic flow of the soft magnetic powder is likely to occur. . At the same time, the amount of insulating ceramic particles is insufficient, and plastic flow of the soft magnetic powder is likely to occur. On the other hand, when the thickness of the coating film of the solid lubricant is excessive, the size of the green compact to be molded is reduced correspondingly, and the dimensional accuracy is deteriorated. In addition, it is necessary to increase the clearance between the mold hole and the punch.

絶縁性セラミックス粒子として、カップリング剤によって表面の改質を行った絶縁性セラミックス粒子を使用すると、表面に有機性(親油性)が付与されるので、潤滑液を調製する際に、絶縁性セラミックス粒子を溶媒中に均一に分散することができ、絶縁性セラミックス粒子が均一に分散する均質な潤滑被膜を型孔内面に形成する上で効果的である。カップリング剤としては、シラン系カップリング剤、アルミネート系カップリング剤、チタネート系カップリング剤等を用いることができ、これらのカップリング剤は、複合して用いてもよい。シラン系カップリング剤を用いた場合は、絶縁性セラミックス粒子の表面にSiを含有する化合物で表面処理層が形成される。アルミネート系カップリング剤を用いた場合は、絶縁性セラミックス粒子の表面にAlを含有する化合物で表面処理層が形成される。また、チタネート系カップリング剤等を用いた場合、絶縁性セラミックス粒子の表面にTiを含有する化合物で表面処理層が形成される。これらの有機性の表面処理層は、絶縁被膜でもある。圧粉原料として用いる軟磁性粉末が、粒子表面にシリコーン樹脂系の絶縁被膜を有する場合、表面をシラン系カップリング剤で改質した絶縁性セラミックス粒子を使用すると、互いの親和性が高いので、圧縮成形時に絶縁性セラミックス粒子が軟磁性粉末粒子間に浸入し易く、又、軟磁性粉末粒子の表面を絶縁性セラミックス粒子が被覆し易くなるので、軟磁性粉末粒子の絶縁性が高まり、又、型孔内面と軟磁性粉末粒子との直接接触も減少する。従って、軟磁性粉末粒子の表面性状に応じて、好適な表面改質を行った絶縁性セラミックス粒子を使用すると、本発明の有効性は格段に高まる。   When insulating ceramic particles whose surface has been modified with a coupling agent are used as insulating ceramic particles, organic (lipophilic) properties are imparted to the surface. The particles can be uniformly dispersed in the solvent, which is effective in forming a uniform lubricating film in which the insulating ceramic particles are uniformly dispersed on the inner surface of the mold cavity. As the coupling agent, a silane coupling agent, an aluminate coupling agent, a titanate coupling agent, or the like can be used, and these coupling agents may be used in combination. When the silane coupling agent is used, the surface treatment layer is formed of a compound containing Si on the surface of the insulating ceramic particles. When an aluminate coupling agent is used, a surface treatment layer is formed of a compound containing Al on the surface of the insulating ceramic particles. Further, when a titanate coupling agent or the like is used, a surface treatment layer is formed of a compound containing Ti on the surface of the insulating ceramic particles. These organic surface treatment layers are also insulating films. When the soft magnetic powder used as the powder compact material has a silicone resin-based insulating coating on the particle surface, the use of insulating ceramic particles whose surface is modified with a silane coupling agent has a high affinity with each other, Insulating ceramic particles can easily enter between soft magnetic powder particles during compression molding, and the surface of soft magnetic powder particles can be easily covered with insulating ceramic particles. Direct contact between the inner surface of the mold cavity and the soft magnetic powder particles is also reduced. Therefore, the effectiveness of the present invention is remarkably enhanced when the insulating ceramic particles subjected to suitable surface modification are used according to the surface properties of the soft magnetic powder particles.

金型装置の型孔に固体状潤滑剤の被膜を形成する一般的な方法としては、上述のような塗布法以外には、いわゆる静電塗布法がある。静電塗布法では、潤滑剤粉末を帯電させて吹き付けて、帯電した潤滑剤の電荷によるクーロン力を利用して、型孔内面に潤滑剤を吸着させる。静電塗布法によって押型潤滑剤及び絶縁性セラミックス粒子を含有する潤滑被膜を形成する場合、押型潤滑剤粉末及び絶縁性セラミックス粒子の混合粉末を静電塗布するが、型孔内面において帯電した潤滑剤が付着した部分は帯電するので、既に吸着した潤滑剤の上に潤滑剤が積層し難く、所望の量の絶縁性セラミックス粒子を付着させることが難しい。また、付着する潤滑剤の層を厚くするために粒子が大きい潤滑剤粉末を用いると、潤滑剤粉末の質量が大きいためみに、クーロン力で吸着し難くなり、脱落し易くなる。さらに、静電塗布法しいは、型孔表面への付着が不均一となり易く、一定の厚さで潤滑被膜を形成することが難しい。   As a general method for forming a coating film of a solid lubricant in a mold hole of a mold apparatus, there is a so-called electrostatic coating method other than the coating method as described above. In the electrostatic coating method, the lubricant powder is charged and sprayed, and the lubricant is adsorbed on the inner surface of the mold cavity by utilizing the Coulomb force generated by the charge of the charged lubricant. When forming a lubricating coating containing a pressing lubricant and insulating ceramic particles by an electrostatic coating method, a mixed powder of the pressing lubricant powder and insulating ceramic particles is electrostatically applied, but the lubricant charged on the inner surface of the mold hole Since the portion to which is attached is charged, it is difficult for the lubricant to be laminated on the already adsorbed lubricant, and it is difficult to attach a desired amount of insulating ceramic particles. Further, when a lubricant powder having a large particle size is used to thicken the adhered lubricant layer, the lubricant powder has a large mass, so that it is difficult to be adsorbed by Coulomb force and easily falls off. Furthermore, in the case of electrostatic coating, adhesion to the mold hole surface is likely to be non-uniform, and it is difficult to form a lubricating coating with a constant thickness.

このようなことから、前述のように潤滑液を調製して塗布及び乾燥によって潤滑被膜を形成する方法は優れており、塗布によって必要量の押型潤滑剤と共に絶縁性セラミックス粒子を供給することができ、乾燥によって容易且つ均一に潤滑被膜を形成することができる。故に、本発明の磁心用圧粉体の成形方法においては、押型潤滑剤を揮発性溶媒に溶解した溶液に絶縁性セラミックス粒子を分散させた潤滑液を用いて、型孔内面に固体状の潤滑被膜を設ける。   For this reason, the method of preparing the lubricating liquid and forming the lubricating film by coating and drying as described above is excellent, and it is possible to supply the insulating ceramic particles together with the required amount of the pressing lubricant by coating. The lubricating film can be easily and uniformly formed by drying. Therefore, in the method for molding a green compact for a magnetic core according to the present invention, a solid lubricant is formed on the inner surface of a mold cavity by using a lubricating liquid in which insulating ceramic particles are dispersed in a solution obtained by dissolving a pressing lubricant in a volatile solvent. A coating is provided.

上記のように、本発明の磁心用圧粉体の製造方法においては、金型装置の型孔内面に形成される潤滑被膜に含まれる押型潤滑剤及び絶縁性セラミックス粒子によって、成形された圧粉体を型孔から押出す際の摩擦抵抗が低減し、軟磁性粉末粒子の変形及び塑性流動が抑制されるので、原料粉末自体に成形潤滑剤を添加する必要はない。この点は、成形後の圧粉体中の軟磁性粉末の占積率を高める上で有利であり、原料粉末に成形潤滑剤を添加することによって生じる原料粉末の流動性の低下や、キャビティへの充填性の低下、成形潤滑剤自体が占める容積による軟磁性粉末の占積率の低下を回避することができる。   As described above, in the method for manufacturing a green compact for a magnetic core according to the present invention, the green compact formed by the pressing lubricant and the insulating ceramic particles contained in the lubricating coating formed on the inner surface of the mold hole of the mold apparatus. Since the frictional resistance when extruding the body from the mold cavity is reduced and deformation and plastic flow of the soft magnetic powder particles are suppressed, it is not necessary to add a molding lubricant to the raw material powder itself. This point is advantageous in increasing the space factor of the soft magnetic powder in the green compact after molding, and lowers the fluidity of the raw material powder caused by adding a molding lubricant to the raw material powder, It is possible to avoid a decrease in the filling factor and a decrease in the space factor of the soft magnetic powder due to the volume occupied by the molding lubricant itself.

なお、上記の絶縁性セラミックス粒子は低透磁率を有するので、本発明においては、原料粉末に絶縁性セラミックス粒子を含有することを排除するものではない。つまり、圧粉体の気孔中に絶縁性セラミックス粒子が分散することで、圧粉磁心として使用した際に、磁気ギャップを分散させて恒透磁率の圧粉磁心となる。但し、この場合、過剰の絶縁性セラミックス粒子によって原料粉末の流動性や成形性を損なって高密度圧縮が困難にならないように、又、圧縮される軟磁性粉末の粒子間に潤滑被膜から絶縁性セラミックス粒子を受け入れる余地を失わないように、原料粉末中に添加する絶縁性セラミックス粒子の量を調節することが望ましい。この点から、原料粉末に絶縁性セラミックス粒子を添加する場合は、絶縁性セラミックス粒子の添加量を、原料粉末に対して1.5体積%以下となるように制限して、成形される軟磁性粉末の粒子間に、充分な量の絶縁性セラミックス粒子が型孔内面の潤滑被膜から入り込む余地が与えられるようにすることが好ましい。   In addition, since said insulating ceramic particle has a low magnetic permeability, it does not exclude that the insulating ceramic particle is contained in the raw material powder in the present invention. In other words, the insulating ceramic particles are dispersed in the pores of the powder compact, so that when used as a powder magnetic core, the magnetic gap is dispersed to form a powder core having a constant permeability. In this case, however, excessive insulating ceramic particles do not impair the fluidity and formability of the raw material powder and make high density compression difficult, and the insulating film is insulated from the compressed soft magnetic powder particles. It is desirable to adjust the amount of insulating ceramic particles added to the raw material powder so as not to lose room for receiving the ceramic particles. From this point, when adding insulating ceramic particles to the raw material powder, the amount of the insulating ceramic particles added is limited to 1.5% by volume or less with respect to the raw material powder, and the soft magnet is formed. It is preferable that a sufficient amount of insulating ceramic particles be allowed to enter from the lubricating coating on the inner surface of the mold cavity between the powder particles.

以上のようにして成形された磁心用圧粉体は、目的に応じて、更に熱処理を行ってもよい。例えば、磁心用圧粉体がバインダとして熱硬化性樹脂を含有する場合に、熱硬化性樹脂の硬化温度まで加熱する熱処理を行うことができる。或いは、磁心用圧粉体がバインダとして熱可塑性樹脂を含有する場合に、熱可塑性樹脂の軟化温度まで加熱する熱処理を行うことができる。また、バインダの有無にかかわらず、圧粉磁心としての使用時のヒステリシス損の向上を図るために、磁心用圧粉体の軟磁性粉末に蓄積された圧縮歪みを開放する焼鈍熱処理を行う場合があるが、このような熱処理を行うことも可能である。このような熱処理は、従来法に準じて行えば良い。上述のような熱処理を行うと、押型潤滑剤は、熱処理の昇温過程で分解し消失する。   The magnetic core green compact formed as described above may be further heat-treated according to the purpose. For example, when the green compact for a magnetic core contains a thermosetting resin as a binder, a heat treatment for heating to the curing temperature of the thermosetting resin can be performed. Alternatively, when the magnetic core green compact contains a thermoplastic resin as a binder, a heat treatment can be performed by heating to the softening temperature of the thermoplastic resin. Regardless of the presence or absence of a binder, in order to improve the hysteresis loss when used as a dust core, annealing heat treatment may be performed to release the compressive strain accumulated in the soft magnetic powder of the core compact. However, it is possible to perform such heat treatment. Such heat treatment may be performed according to a conventional method. When the heat treatment as described above is performed, the mold lubricant is decomposed and disappears in the temperature rising process of the heat treatment.

また、圧縮成形した磁心用圧粉体を熱処理せず、そのまま圧粉磁心として用いることも可能である。この場合、成形潤滑剤は消失しないので、圧粉磁心の側面の表面に付着したまま残留する。   It is also possible to directly use the compressed powder for magnetic core as a dust core without heat treatment. In this case, since the molding lubricant does not disappear, it remains attached to the side surface of the dust core.

上記のように製造することによって、成形された磁心用圧粉体は、軟磁性粉末の粒子間に押し込まれて表面に絶縁性セラミックス粒子が分散するので、型孔から圧粉体を押し出す際の摩擦抵抗による軟磁性粉末の塑性流動が抑制されて、軟磁性粉末粒子同士の導通が防止できる。従って、従来製法によって得られる圧粉体において軟磁性粉末粒子が塑性流動して導通した表層部を除去するために行われる酸洗、切削加工等の工程は、本発明においては不要である。また、製造された磁心用圧粉体の側面において、表層部の軟磁性粉末の粒子間には絶縁性セラミックス粒子が充填されるので、圧粉磁心として使用する際に、側面の表面における比抵抗が高い圧粉磁心となり、表面に誘導電流が集中して流れる高周波領域での使用において、鉄損の増加を抑制するために特に好適である。   By manufacturing the green compact for the magnetic core as described above, the insulating ceramic particles are dispersed on the surface by being pushed between the soft magnetic powder particles. Plastic flow of the soft magnetic powder due to frictional resistance is suppressed, and conduction between the soft magnetic powder particles can be prevented. Accordingly, steps such as pickling and cutting performed to remove the surface layer portion in which the soft magnetic powder particles are plastically flowed and conducted in the green compact obtained by the conventional manufacturing method are unnecessary in the present invention. In addition, since the insulating ceramic particles are filled between the soft magnetic powder particles in the surface layer portion on the side surface of the manufactured magnetic core green compact, the specific resistance on the side surface when used as a dust core. Is particularly suitable for suppressing an increase in iron loss when used in a high-frequency region in which an induced current is concentrated on the surface.

(潤滑液の調製)
絶縁性セラミックス粒子として、酸化チタン粉末(粒径:100nm)、アルミナ粉末(粒径:200nm)、シリカ粉末(粒径:100nm)、窒化アルミニウム粉末(粒径:100nm)、窒化チタン粉末(粒径:800nm)及び炭化チタン粉末(粒径:1000nm)を用意した。又、押型潤滑剤として、エチレンビスステアリン酸アミド、ステアリン酸、ステアリン酸亜鉛及びステアリン酸リチウムを用意した。
押型潤滑剤及び絶縁性セラミックス粒子の合計量に対する絶縁性セラミックス粒子の割合が表1に記載される割合になるように、エチルアルコールに配合して、試料番号1〜20の潤滑液を調製した。この時、押型潤滑剤と絶縁性セラミックス粒子との合計量がエチルアルコールに対して10質量%となるように、使用するエチルアルコールの量を調整した。
(Preparation of lubricating liquid)
As insulating ceramic particles, titanium oxide powder (particle size: 100 nm), alumina powder (particle size: 200 nm), silica powder (particle size: 100 nm), aluminum nitride powder (particle size: 100 nm), titanium nitride powder (particle size) : 800 nm) and titanium carbide powder (particle size: 1000 nm). Further, ethylene bis stearamide, stearic acid, zinc stearate, and lithium stearate were prepared as the press lubricant.
Lubricating liquids of sample numbers 1 to 20 were prepared by blending with ethyl alcohol so that the ratio of the insulating ceramic particles to the total amount of the pressing lubricant and the insulating ceramic particles was the ratio described in Table 1. At this time, the amount of ethyl alcohol to be used was adjusted so that the total amount of the pressing lubricant and the insulating ceramic particles was 10% by mass with respect to ethyl alcohol.

(圧粉体の成形)
内径が20mmの円筒形型孔を有する押型に下パンチを嵌合して成形用キャビティを構成し、型孔の内径面に、上述で調製した試料番号1〜20の潤滑液の1つを塗布して(塗布量:0.1cc)乾燥することによって、型孔の内径面に、厚さが20μm程度の潤滑被膜を形成した。
原料粉末として、表面を絶縁被覆された鉄基軟磁性粉末(ヘガネスAB社製Somaloy110i(5P))、粒度分布における主たる粒分:45〜75μm)を用意し、上述で潤滑被膜を形成した型孔に60gを投入して、上パンチを用いて1200MPaの成形圧で原料粉末を圧縮成形し、押し出すことによって、円柱状の圧粉体を得た。圧粉体の長さを測定して、圧粉体の密度比を計算した。結果を表1に示す。
(Green compact molding)
A lower punch is fitted to a pressing mold having a cylindrical mold hole with an inner diameter of 20 mm to form a molding cavity, and one of the lubricating liquids of sample numbers 1 to 20 prepared above is applied to the inner diameter surface of the mold hole. Then (coating amount: 0.1 cc) was dried to form a lubricating film having a thickness of about 20 μm on the inner surface of the mold cavity.
As a raw material powder, an iron-based soft magnetic powder (Somaloy 110i (5P) manufactured by Höganäs AB) whose surface is insulated and coated, a main particle fraction in the particle size distribution: 45 to 75 μm), and a mold hole in which a lubricating film is formed as described above 60 g was added to the raw material, and the raw material powder was compression-molded with a molding pressure of 1200 MPa using an upper punch and extruded to obtain a cylindrical compact. The length of the green compact was measured and the density ratio of the green compact was calculated. The results are shown in Table 1.

(圧粉体側面の表面観察)
得られた圧粉体の側面をEPMA装置を用いて観察し、側面の成分マップにおける絶縁性セラミックス粒子の面積率(%)を調べた。面積率は、倍率が100倍の撮影画像を画像解析ソフト(Quick grain standard)を用いて解析(閾値:RGB:160)することによって測定した。更に、圧粉体側面における軟磁性粉末粒子の状態を評価するために、側面のSEM像において軟磁性粉末粒子の接合の有無を調べた。接合の有無は、SEM像における摺動痕の有無により判定するとともに、EPMAによる成分マップにおいて、Fe元素の流動の有無、つまり、軟磁性粉末の粒子間にFe元素が検出されるか否かにより判定した。すなわち、摺動痕が確認される場合、明らかな軟磁性粉末の接合が生じる。また、明確な摺動痕が確認されない場合であっても、軟磁性粉末の粒子間においてFe元素が検出される場合は、軟磁性粉末の塑性流動しているので接合が生じるものと考えられる。このようして調べた軟磁性粉末の接合の有無の判断結果を表1に示す。
又、試料番号1の圧粉体の側面のSEM像及び成分マップを図3に、試料番号9の圧粉体のSEM像及び成分マップを図4に示す。
(Surface observation of green compact side)
The side surface of the obtained green compact was observed using an EPMA apparatus, and the area ratio (%) of the insulating ceramic particles in the component map on the side surface was examined. The area ratio was measured by analyzing a photographed image with a magnification of 100 times using an image analysis software (Quick grain standard) (threshold: RGB: 160). Furthermore, in order to evaluate the state of the soft magnetic powder particles on the side surface of the green compact, the presence or absence of bonding of the soft magnetic powder particles was examined in the SEM image of the side surface. The presence or absence of bonding is determined by the presence or absence of sliding traces in the SEM image, and in the component map by EPMA, the presence or absence of Fe element flow, that is, whether or not Fe element is detected between soft magnetic powder particles. Judged. That is, when a sliding mark is confirmed, a clear soft magnetic powder joining occurs. Even if no clear sliding trace is confirmed, if Fe element is detected between the particles of the soft magnetic powder, the soft magnetic powder is considered to be joined due to plastic flow. Table 1 shows the results of the determination on whether or not the soft magnetic powder was joined.
FIG. 3 shows an SEM image and component map of the side surface of the green compact of sample number 1, and FIG. 4 shows an SEM image and component map of the green compact of sample number 9.

表1の試料番号2〜12の結果によれば、型孔内面に酸化チタン粒子と押し型潤滑剤とによる潤滑被膜を形成することによって、軟磁性粉末粒子間に酸化チタンが介在して、圧粉体の押し出し時に軟磁性粉末の塑性流動が抑制できることがわかる。又、試料番号13〜17の結果から、アルミナ粉末、シリカ粉末、窒化アルミニウム粉末、窒化チタン粉末及び炭化チタン粉末も絶縁性セラミックス粒子として同様に使用でき、軟磁性粉末粒子間に介在して塑性流動を抑制できることがわかる。   According to the results of sample numbers 2 to 12 in Table 1, by forming a lubricating film with titanium oxide particles and a push-type lubricant on the inner surface of the mold cavity, titanium oxide is interposed between the soft magnetic powder particles, It can be seen that the plastic flow of the soft magnetic powder can be suppressed when the powder is extruded. Also, from the results of sample numbers 13 to 17, alumina powder, silica powder, aluminum nitride powder, titanium nitride powder and titanium carbide powder can be used as insulating ceramic particles in the same manner, and plastic flow is interposed between soft magnetic powder particles. It can be seen that this can be suppressed.

図3によれば、絶縁性セラミックス粒子を使用していない試料1の圧粉体側面には、軸方向に沿ったスジがSEM像に現れており、型孔内面とのカジリが生じていることが判る。又、成分マップにおいて、Feがマップ全面にわたって検出されることから、軟磁性粉末粒子間の空隙が埋められていることが判る。つまり、圧粉体側面の軟磁性粉末粒子が潰れて塑性流動が明らかに生じている。これに対し、図4によれば、絶縁性セラミックス粒子を使用した試料9の圧粉体側面には、スジがSEM像に現れず、型孔内面とのカジリは生じず、良好な潤滑が得られている。又、成分マップにおいて、軟磁性粉末由来のFeが粒子形状に検出され、絶縁性セラミックス粒子由来のTiについては、Feの検出されない部分において検出されている。つまり、軟磁性粉末粒子間の空隙に絶縁性セラミックス粒子が充填されて軟磁性粉末粒子の塑性流動が抑制され、粒子間の絶縁が保持されている。   According to FIG. 3, on the side of the green compact of the sample 1 that does not use the insulating ceramic particles, streaks along the axial direction appear in the SEM image, and galling occurs with the inner surface of the mold cavity. I understand. Further, since Fe is detected over the entire surface of the component map, it can be seen that the gaps between the soft magnetic powder particles are filled. That is, the soft magnetic powder particles on the side of the green compact are crushed, and plastic flow is clearly generated. On the other hand, according to FIG. 4, streaks do not appear in the SEM image on the side of the green compact of the sample 9 using the insulating ceramic particles, and no galling with the inner surface of the mold hole occurs, and good lubrication is obtained. It has been. In the component map, Fe derived from the soft magnetic powder is detected in the particle shape, and Ti derived from the insulating ceramic particles is detected in a portion where Fe is not detected. That is, the insulating ceramic particles are filled in the gaps between the soft magnetic powder particles, the plastic flow of the soft magnetic powder particles is suppressed, and the insulation between the particles is maintained.

尚、確認のために、試料番号1,2及び12の圧粉体の各々をコアとして、同一の巻数でコイルを巻回して、周波数:50kHz、磁束密度:0.1Tの同一条件下での渦電流損を測定して比較したところ、試料番号1の圧粉体に比べて、試料番号2及び12の圧粉体における渦電流損は明らかに少なかった。   For confirmation, each of the green compacts of sample numbers 1, 2 and 12 was used as a core, and the coil was wound with the same number of turns, under the same conditions of frequency: 50 kHz and magnetic flux density: 0.1 T. When the eddy current loss was measured and compared, the eddy current loss in the green compacts of sample numbers 2 and 12 was clearly smaller than that of the green compact of sample number 1.

本発明の圧粉磁心は、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等に適用することができ、また、モーター用鉄心、一般家電及び産業機器用のモーターのロータやヨーク、ディーゼルエンジン及びガソリンエンジンの電子制御式燃料噴射装置に組み込まれる電磁弁用のソレノイドコア(固定鉄心)等にも適用することができる。特に、高周波領域で使用されるリアクトル等への適用において有効性が高い。   The dust core of the present invention can be applied to a transformer, a reactor, a thyristor valve, a noise filter, a choke coil, and the like. Also, a motor iron core, a motor rotor and yoke for general household appliances and industrial equipment, and a diesel engine It can also be applied to a solenoid core (fixed iron core) for a solenoid valve incorporated in an electronically controlled fuel injection device of a gasoline engine. In particular, it is highly effective in application to a reactor or the like used in a high frequency region.

1…押型、1a…型孔、2…下パンチ、3…上パンチ、4…フィーダ、M…原料粉末、C…圧粉体   DESCRIPTION OF SYMBOLS 1 ... Stamping die, 1a ... Mold hole, 2 ... Lower punch, 3 ... Upper punch, 4 ... Feeder, M ... Raw material powder, C ... Green compact

Claims (16)

軟磁性粉末が密度比91%以上に圧縮成形された圧粉体によって構成され、前記圧粉体の押し出し摺接面は、前記軟磁性粉末の粒子間に絶縁性セラミックス粒子が介在する構造の表層部を有する圧粉磁心。   A surface layer having a structure in which soft magnetic powder is formed of a green compact that is compression-molded to a density ratio of 91% or more, and an extruded sliding contact surface of the green compact has insulating ceramic particles interposed between the soft magnetic powder particles. Powder magnetic core having a part. 前記圧粉体は、更に、前記押し出し摺接面を被覆する絶縁性セラミックス粒子を有する請求項1に記載の圧粉磁心。   The powder magnetic core according to claim 1, wherein the powder compact further includes insulating ceramic particles that cover the extruded sliding contact surface. 前記押し出し摺接面の電子プローブ微小分析による成分マップにおいて、前記絶縁性セラミックス粒子の面積率が30%以上である請求項1又は2に記載の圧粉磁心。   3. The dust core according to claim 1, wherein an area ratio of the insulating ceramic particles is 30% or more in a component map obtained by electronic probe microanalysis of the extruded sliding contact surface. 前記絶縁性セラミックス粒子は、粒径が50〜1000nmである請求項1〜3の何れか1項に記載の圧粉磁心。   The dust core according to any one of claims 1 to 3, wherein the insulating ceramic particles have a particle size of 50 to 1000 nm. 前記絶縁性セラミックス粒子は、酸化物セラミックス、窒化物セラミックス、炭化物セラミックス、炭窒化セラミックス及び酸窒化セラミックスからなる群より選択される少なくとも1種のセラミックスによって構成される粒子であり、前記酸化物セラミックスは、酸化アルミニウム、二酸化チタン、二酸化珪素、酸化マグネシウム、二酸化ジルコニウム、ステアタイト、ジルコン、フェライト、ムライト、フォルステライト及びイットリアからなる群より選択され、前記窒化物セラミックスは、窒化アルミニウム、窒化チタン及び窒化珪素からなる群より選択され、前記炭化物セラミックスは、炭化チタン及び炭化タングステンからなる群より選択される請求項1〜4の何れか1項に記載の圧粉磁心。   The insulating ceramic particles are particles composed of at least one ceramic selected from the group consisting of oxide ceramics, nitride ceramics, carbide ceramics, carbonitride ceramics, and oxynitride ceramics. Selected from the group consisting of aluminum oxide, titanium dioxide, silicon dioxide, magnesium oxide, zirconium dioxide, steatite, zircon, ferrite, mullite, forsterite and yttria, and the nitride ceramics are aluminum nitride, titanium nitride and silicon nitride The dust core according to any one of claims 1 to 4, wherein the carbide ceramics is selected from the group consisting of titanium carbide and tungsten carbide. 前記絶縁性セラミックス粒子は、Si、Al及びTiのうちの少なくとも1種の元素を含有する化合物で構成される被膜が表面に形成されている請求項1〜5の何れか1項に記載の圧粉磁心。   The pressure according to any one of claims 1 to 5, wherein the insulating ceramic particles have a coating film formed of a compound containing at least one element selected from Si, Al, and Ti formed on a surface thereof. Powder magnetic core. 圧粉体成形用金型の型孔に軟磁性粉末を充填して、前記軟磁性粉末の密度比が91%以上になるように前記軟磁性粉末を圧縮して圧粉体を成形し、前記圧粉体を前記型孔から押し出す磁心用圧粉体の製造方法であって、
前記軟磁性粉末を充填する前に、押し出し時の圧粉体と摺接する前記型孔の内面に、押型潤滑剤と絶縁性セラミックス粒子とを含有する潤滑被膜を形成する磁心用圧粉体の製造方法。
The mold hole of the green compact mold is filled with soft magnetic powder, the soft magnetic powder is compressed so that the density ratio of the soft magnetic powder is 91% or more, and the green compact is molded, A method for producing a green compact for extruding a green compact from the mold cavity,
Manufacture of a green compact for a magnetic core in which a lubricating coating containing a pressing lubricant and insulating ceramic particles is formed on the inner surface of the mold hole in sliding contact with the green compact during extrusion before filling with the soft magnetic powder. Method.
前記押型潤滑剤は、ワックス、高級脂肪酸及び高級脂肪酸金属塩からなる群より選択される少なくとも一種の半固形又は固形の潤滑剤であり、
前記潤滑被膜は、前記潤滑剤及び前記絶縁性セラミックス粒子を揮発性溶媒に配合した潤滑液を前記型孔の内面に塗布して、揮発性溶媒を除去することによって形成される請求項7に記載の磁心用圧粉体の製造方法。
The impression lubricant is at least one semi-solid or solid lubricant selected from the group consisting of wax, higher fatty acids and higher fatty acid metal salts,
The said lubricating coating is formed by apply | coating the lubricating liquid which mix | blended the said lubricant and the said insulating ceramic particle | grain in the volatile solvent to the inner surface of the said mold hole, and removing a volatile solvent. Of manufacturing green compact for magnetic cores.
前記潤滑被膜は、前記絶縁性セラミックス粒子と前記押型潤滑剤との合計量に対して20〜60質量%の割合で前記絶縁性セラミックス粒子を含有する請求項7又は8に記載の磁心用圧粉体の製造方法。   The magnetic core dust according to claim 7 or 8, wherein the lubricating coating contains the insulating ceramic particles in a ratio of 20 to 60% by mass with respect to a total amount of the insulating ceramic particles and the pressing lubricant. Body manufacturing method. 前記潤滑被膜の厚さは、0.1〜20μmである請求項7〜9の何れか1項に記載の磁心用圧粉体の製造方法。   The method for producing a green compact for a magnetic core according to any one of claims 7 to 9, wherein the thickness of the lubricating coating is 0.1 to 20 µm. 前記絶縁性セラミックス粒子は、粒径が50〜1000nmある請求項7〜10の何れか1項に記載の磁心用圧粉体の製造方法。   The method of manufacturing a green compact for a magnetic core according to any one of claims 7 to 10, wherein the insulating ceramic particles have a particle size of 50 to 1000 nm. 前記絶縁性セラミックス粒子は、酸化物セラミックス、窒化物セラミックス、炭化物セラミックス、炭窒化セラミックス及び酸窒化セラミックスからなる群より選択される少なくとも1種のセラミックスによって構成される粒子である請求項7〜11の何れか1項に記載の磁心用圧粉体の製造方法。   The insulating ceramic particles are particles composed of at least one ceramic selected from the group consisting of oxide ceramics, nitride ceramics, carbide ceramics, carbonitride ceramics, and oxynitride ceramics. The manufacturing method of the compact for magnetic cores of any one of Claims 1. 前記絶縁性セラミックス粒子は、シランカップリング剤、アルミネートカップリング剤及びチタネートカップリング剤からなる群より選択される少なくとも1種のカップリング剤によって表面が改質されている請求項7〜12の何れか1項に記載の磁心用圧粉体の製造方法。   The surface of the insulating ceramic particles is modified by at least one coupling agent selected from the group consisting of a silane coupling agent, an aluminate coupling agent, and a titanate coupling agent. The manufacturing method of the compact for magnetic cores of any one of Claims 1. 原料粉末を圧縮して圧粉体を成形するための型孔と、
成形される圧粉体の押し出し時に圧粉体と摺接する前記型孔の内面に設けられる、押型潤滑剤と絶縁性セラミックス粒子とを含有する潤滑被膜と
を有する圧粉磁心製造用押型。
A mold hole for compressing the raw material powder to form a green compact;
A pressing mold for producing a dust core, comprising: a pressing lubricant and a lubricating coating containing insulating ceramic particles provided on an inner surface of the mold hole that is in sliding contact with the green compact during extrusion of the green compact to be molded.
請求項14に記載の圧粉磁心製造用押型と、前記型孔内で原料粉末を圧縮するための上下パンチとを有する圧粉磁心製造用金型装置。   A mold apparatus for producing a dust core, comprising: the mold for producing a dust core according to claim 14; and an upper and lower punch for compressing the raw material powder in the mold hole. 押型潤滑剤と、絶縁性セラミックス粒子と、揮発性溶媒とを含有する、圧粉磁心製造用押型の潤滑液。   A lubricating liquid for a pressing mold for producing a dust core, which includes a pressing lubricant, insulating ceramic particles, and a volatile solvent.
JP2013201336A 2013-09-27 2013-09-27 Dust core, method for producing powder for core, mold and mold device for producing dust core, and lubricating liquid for mold for producing dust core Active JP6322938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201336A JP6322938B2 (en) 2013-09-27 2013-09-27 Dust core, method for producing powder for core, mold and mold device for producing dust core, and lubricating liquid for mold for producing dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201336A JP6322938B2 (en) 2013-09-27 2013-09-27 Dust core, method for producing powder for core, mold and mold device for producing dust core, and lubricating liquid for mold for producing dust core

Publications (2)

Publication Number Publication Date
JP2015070028A true JP2015070028A (en) 2015-04-13
JP6322938B2 JP6322938B2 (en) 2018-05-16

Family

ID=52836459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201336A Active JP6322938B2 (en) 2013-09-27 2013-09-27 Dust core, method for producing powder for core, mold and mold device for producing dust core, and lubricating liquid for mold for producing dust core

Country Status (1)

Country Link
JP (1) JP6322938B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096747A (en) * 2017-11-24 2019-06-20 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020097759A (en) * 2018-12-17 2020-06-25 株式会社豊田中央研究所 Powder magnetic core
CN113948301A (en) * 2020-07-17 2022-01-18 丰田自动车株式会社 Method for manufacturing powder magnetic core
JP7020602B1 (en) * 2021-01-21 2022-02-16 昭和電工マテリアルズ株式会社 Powder magnetic core compound, molded body, and powder magnetic core
WO2022158003A1 (en) * 2021-01-21 2022-07-28 昭和電工マテリアルズ株式会社 Dust core compound, molded body, and dust core

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847139A (en) * 1981-09-17 1983-03-18 Nippon Piston Ring Co Ltd Wear-resisting member for internal combustion engine
JPH04218604A (en) * 1990-12-18 1992-08-10 Fujitsu Ltd Production of frictional sliding parts
JP2000274451A (en) * 1999-03-24 2000-10-03 Nippon Piston Ring Co Ltd Fe-based sintered alloy synchronizer ring
JP2001223107A (en) * 2000-02-09 2001-08-17 Kobe Steel Ltd Method of compression molding soft magnetic powder
JP2004342937A (en) * 2003-05-16 2004-12-02 Hitachi Powdered Metals Co Ltd Method of forming dust core
JP2007211874A (en) * 2006-02-09 2007-08-23 Nsk Ltd Electric-driven linear actuator
JP2007296551A (en) * 2006-04-28 2007-11-15 Hitachi Powdered Metals Co Ltd Powder molding method
JP2008248253A (en) * 2000-03-28 2008-10-16 Jfe Steel Kk Lubricating agent for lubrication of mold and method for manufacturing high density shaped article of iron-based powder
WO2009034894A1 (en) * 2007-09-11 2009-03-19 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core, process for producing soft magnetic material, and process for producing powder magnetic core
JP2009242700A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Rolling oil for cold rolling, and cold rolling method
JP2011029302A (en) * 2009-07-23 2011-02-10 Hitachi Powdered Metals Co Ltd Dust core, and method for producing the same
JP2013008762A (en) * 2011-06-23 2013-01-10 Panasonic Corp Composite magnetic material
JP2013089688A (en) * 2011-10-14 2013-05-13 Sumitomo Electric Ind Ltd Powder compact shaping method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847139A (en) * 1981-09-17 1983-03-18 Nippon Piston Ring Co Ltd Wear-resisting member for internal combustion engine
JPH04218604A (en) * 1990-12-18 1992-08-10 Fujitsu Ltd Production of frictional sliding parts
JP2000274451A (en) * 1999-03-24 2000-10-03 Nippon Piston Ring Co Ltd Fe-based sintered alloy synchronizer ring
JP2001223107A (en) * 2000-02-09 2001-08-17 Kobe Steel Ltd Method of compression molding soft magnetic powder
JP2008248253A (en) * 2000-03-28 2008-10-16 Jfe Steel Kk Lubricating agent for lubrication of mold and method for manufacturing high density shaped article of iron-based powder
JP2004342937A (en) * 2003-05-16 2004-12-02 Hitachi Powdered Metals Co Ltd Method of forming dust core
JP2007211874A (en) * 2006-02-09 2007-08-23 Nsk Ltd Electric-driven linear actuator
JP2007296551A (en) * 2006-04-28 2007-11-15 Hitachi Powdered Metals Co Ltd Powder molding method
WO2009034894A1 (en) * 2007-09-11 2009-03-19 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core, process for producing soft magnetic material, and process for producing powder magnetic core
JP2009070914A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Soft magnetic material, powder magnetic core, manufacturing method of soft magnetic material, and manufacturing method of powder magnetic core
JP2009242700A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Rolling oil for cold rolling, and cold rolling method
JP2011029302A (en) * 2009-07-23 2011-02-10 Hitachi Powdered Metals Co Ltd Dust core, and method for producing the same
JP2013008762A (en) * 2011-06-23 2013-01-10 Panasonic Corp Composite magnetic material
JP2013089688A (en) * 2011-10-14 2013-05-13 Sumitomo Electric Ind Ltd Powder compact shaping method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096747A (en) * 2017-11-24 2019-06-20 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020097759A (en) * 2018-12-17 2020-06-25 株式会社豊田中央研究所 Powder magnetic core
JP7332283B2 (en) 2018-12-17 2023-08-23 株式会社豊田中央研究所 dust core
CN113948301A (en) * 2020-07-17 2022-01-18 丰田自动车株式会社 Method for manufacturing powder magnetic core
JP2022019112A (en) * 2020-07-17 2022-01-27 トヨタ自動車株式会社 Method for producing dust core
JP7347354B2 (en) 2020-07-17 2023-09-20 トヨタ自動車株式会社 Manufacturing method of powder magnetic core
CN113948301B (en) * 2020-07-17 2023-11-21 丰田自动车株式会社 Method for manufacturing powder magnetic core
US11901117B2 (en) 2020-07-17 2024-02-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing powder magnetic core
JP7020602B1 (en) * 2021-01-21 2022-02-16 昭和電工マテリアルズ株式会社 Powder magnetic core compound, molded body, and powder magnetic core
WO2022158003A1 (en) * 2021-01-21 2022-07-28 昭和電工マテリアルズ株式会社 Dust core compound, molded body, and dust core
US20230191480A1 (en) * 2021-01-21 2023-06-22 Showa Denko Materials Co., Ltd. Dust core compound, molded body, and dust core

Also Published As

Publication number Publication date
JP6322938B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6489181B2 (en) Lubrication composition for dust core and stamping die for producing dust core
JP6322938B2 (en) Dust core, method for producing powder for core, mold and mold device for producing dust core, and lubricating liquid for mold for producing dust core
KR101345671B1 (en) Dust core and method for producing same
KR102016189B1 (en) Molding method for molded powder compact
JP6265210B2 (en) Reactor dust core
JP5363081B2 (en) Metallurgical powder, dust core, metallurgical powder manufacturing method and dust core manufacturing method
JP6042792B2 (en) Soft magnetic powder, core, low-noise reactor, and core manufacturing method
WO2012147462A1 (en) Method for forming pressed powder compact
JP2015124408A (en) Soft magnetic powder
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP5778993B2 (en) Molding method of green compact
WO2012147461A1 (en) Method for forming pressed powder compact
CN107615411B (en) Mixed powder for dust core and dust core
JP2009228108A (en) Powder for metallurgy, and method for manufacturing powder for metallurgy
JP6882375B2 (en) Mixed powder for dust core and powder magnetic core
JP4353512B2 (en) Molding method of powder magnetic core
EP3199264A1 (en) New composition and method
JP5845022B2 (en) Magnetic circuit parts
JP5431490B2 (en) Manufacturing method of dust core
JP2022094461A (en) Powder magnetic core and manufacturing method thereof
JP6174954B2 (en) Method for producing a green compact
JP2005223259A (en) Dust core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R151 Written notification of patent or utility model registration

Ref document number: 6322938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350