JP2005223259A - Dust core and its manufacturing method - Google Patents
Dust core and its manufacturing method Download PDFInfo
- Publication number
- JP2005223259A JP2005223259A JP2004032042A JP2004032042A JP2005223259A JP 2005223259 A JP2005223259 A JP 2005223259A JP 2004032042 A JP2004032042 A JP 2004032042A JP 2004032042 A JP2004032042 A JP 2004032042A JP 2005223259 A JP2005223259 A JP 2005223259A
- Authority
- JP
- Japan
- Prior art keywords
- iron powder
- phosphate
- powder particles
- dust core
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等の高周波用として好適な、鉄損が低く軟磁気特性に優れるとともに、機械的強度の高い圧粉磁心およびその製造方法に関する。 The present invention relates to a dust core suitable for high frequency applications such as a transformer, a reactor, a thyristor valve, a noise filter, and a choke coil, having low iron loss and excellent soft magnetic properties and high mechanical strength, and a method for manufacturing the same.
近年の電気、電子機器の小型化や高密度化に伴い、これらに使用される磁心材料に対しても小型で高い磁束密度と透磁率および低鉄損を具備する高周波鉄心の要求が高まっている。これらの要件のうち、鉄損は、磁心の固有抵抗と関係の大きい渦電流損と、鉄粉の製造の過程およびその後のプロセス履歴から生じる鉄粉内の歪みに影響を受けるヒステリシス損との和で表され、特に渦電流損は周波数の二乗に比例して増大するため、高周波数領域での鉄損を低減するためには、固有抵抗を高めて渦電流損を低減させることが必要となる。 With recent miniaturization and higher density of electrical and electronic equipment, there is an increasing demand for high-frequency cores that are small in size and have high magnetic flux density, magnetic permeability, and low iron loss for the magnetic core materials used in them. . Of these requirements, iron loss is the sum of eddy current loss, which has a large relationship with the core resistivity, and hysteresis loss, which is affected by the iron powder manufacturing process and subsequent distortions in the iron powder. In particular, since the eddy current loss increases in proportion to the square of the frequency, in order to reduce the iron loss in the high frequency region, it is necessary to increase the specific resistance to reduce the eddy current loss. .
このような見地より、従来から、見掛けの固有抵抗が大きいため高周波領域においても渦電流損失が小さいフェライトコアや、センダスト・パーマロイ等の合金粉末をフェノール樹脂やエポキシ樹脂等の絶縁性バインダで結合させた圧粉磁心などが使用されてきた。しかし、これらの材料はいずれも磁束密度および透磁率が低く、圧粉磁心の小型化は難しい。 From this point of view, conventionally, ferrite cores that have low apparent eddy current loss even in the high frequency range due to their large apparent resistivity, and alloy powders such as Sendust / Permalloy are bonded with an insulating binder such as phenol resin or epoxy resin. A dust core has been used. However, all of these materials have low magnetic flux density and magnetic permeability, and it is difficult to reduce the size of the dust core.
一方、磁性粒子として、高磁束密度を有するとともに圧縮成形性にも優れ、コストパフォーマンスが高い素材である鉄粉末を用いた圧粉磁心は、高周波領域においても、前述のフェライトコアなどと比較して高い磁束密度を有しており、また、価格的にも安価であるという利点を有している。しかし、固有抵抗の小さい鉄粉を使用した圧粉磁心では、交流磁場において鉄粉間の渦電流発生による損失が大きくなるために、鉄粉表面を電気的に絶縁する被膜および絶縁性樹脂バインダで被覆する必要がある。 On the other hand, as a magnetic particle, a powder magnetic core using iron powder, which has a high magnetic flux density and is excellent in compression moldability and has a high cost performance, is also compared with the above-mentioned ferrite core in the high frequency region. It has a high magnetic flux density and has an advantage that it is inexpensive in price. However, in powder magnetic cores using iron powder with low specific resistance, loss due to eddy current generation between iron powders in an AC magnetic field increases, so a coating and insulating resin binder that electrically insulates the iron powder surface. It is necessary to coat.
このような状況の下、特許文献1は、微粒化鉄粉末または海綿鉄粉末の粒子を、リン酸で、絶縁性のリンを含有する層で被覆した粉末を用い、所望により熱硬化性樹脂と混合し、圧縮成形した後、350〜550℃で加熱した圧粉磁心が提案されている。このリン含有量は、微粒化鉄粉末に対しては0.005〜0.03重量%、海綿鉄粉末に対しては0.02〜0.06重量%であることが記載されている。この特許文献1は、鉄粒子表面に非常に薄いリン酸塩絶縁層を形成し、P含有量が非常に低いことを特徴として記載している。
Under such circumstances,
また、特許文献2は、燐酸塩化成処理液により表面に膜厚が10〜100nmの絶縁被膜を形成した金属磁性粉末を容積比で84%以上とし、1重量%以上の熱硬化性樹脂粉末とを用いた固有抵抗が2Ωcm以上の圧粉磁心が開示されている。 Patent Document 2 discloses that a metal magnetic powder having an insulating film having a film thickness of 10 to 100 nm formed on the surface by a phosphate chemical conversion treatment solution is 84% or more by volume ratio and 1% by weight or more of thermosetting resin powder. A dust core having a specific resistance of 2 Ωcm or more is disclosed.
上記したような薄いリン酸塩絶縁層は、鉄粉粒子の表面上にアンカー効果、或いはファンデンワールス力などの結合力で付着しているため、バインダ用樹脂との混合工程において、あるいは圧縮成形工程における鉄粉末粒子どうしや、鉄粉末粒子と金型との摺動によりリン酸塩層の剥離、脱落が生じ易い。ところで、これまでの我々の実験によれば、鉄粉粒子上のリン酸塩層の厚さが薄いほど、その剥離、脱落が著しい傾向が見られ、個々の鉄粉末粒子の電気的絶縁が破壊されて、交流磁場における鉄粉粒子間の渦電流発生が著しくなる結果、交流特性が低下する現象が見られる。そのためリン酸塩により絶縁した従来の圧粉磁心においては、樹脂の添加が必須となっている。特許文献2は1重量%以上の樹脂の添加を必須とし、特許文献1においても、実施例においては全て絶縁性を有する樹脂を添加しており、これにより絶縁性を補っていると考えられる。
The thin phosphate insulating layer as described above is attached to the surface of the iron powder particles by an anchoring effect or a binding force such as van der Waals force, so in the mixing process with the binder resin or compression molding Peeling and dropping off of the phosphate layer is likely to occur due to the sliding between the iron powder particles and the iron powder particles and the mold in the process. By the way, according to our experiments so far, the thinner the phosphate layer on the iron powder particles, the more the tendency of the separation and dropping is observed, and the electrical insulation of the individual iron powder particles is broken. As a result, eddy current generation between the iron powder particles in the AC magnetic field becomes significant, and as a result, a phenomenon in which the AC characteristics are deteriorated is observed. Therefore, in a conventional dust core insulated with phosphate, addition of a resin is essential. In Patent Document 2, it is essential to add 1% by weight or more of resin, and in
本発明者らが検討したところ、樹脂の添加は絶縁性を高めるが、材料の強度には寄与せず、むしろ強度の低下要因となることを知見した。このため特許文献1および2において、鉄損は低減されているが、樹脂添加により密度の低下およびそれに伴う磁束密度の低下、さらには機械的強さの低下が発生していることを見出した。
As a result of studies by the present inventors, it has been found that the addition of a resin increases the insulation, but does not contribute to the strength of the material, but rather causes a decrease in strength. For this reason, in
本発明は、絶縁性を良好にして固有抵抗を高めて渦電流損を低減し、かつ、磁束密度を高めるとともに、強度の高い圧粉磁心およびそれを製造する方法を提供することにある。この課題に対し、市場の要求特性を考慮して、目標値を固有抵抗(ρ)を100μΩm以上、印加磁場10,000A/mにおける磁束密度(B10k)を1.6T以上、および機械的強さの指針として圧環強さを150MPa以上とする。 An object of the present invention is to provide a dust core having high insulation strength and high specific resistance to reduce eddy current loss and high magnetic flux density, and a method for manufacturing the same. For this issue, considering the required characteristics of the market, the target value is a specific resistance (ρ) of 100 μΩm or more, the magnetic flux density (B10k) at an applied magnetic field of 10,000 A / m is 1.6 T or more, and the mechanical strength. As a guideline, the crushing strength is 150 MPa or more.
上記課題を解決し、目標値を達成するため、本発明の圧粉磁心は、鉄粉末粒子およびリン酸塩だけで構成されるとともに、前記鉄粉末粒子どうしが、リンを0.048〜0.12質量%含むリン酸塩相を介して200〜600nmの距離を置いて隔てられていることを特徴とする。 In order to solve the above-described problems and achieve the target value, the dust core of the present invention is composed of only iron powder particles and phosphate, and the iron powder particles contain phosphorus in a range of 0.048 to 0.00. It is characterized by being separated by a distance of 200 to 600 nm through a phosphate phase containing 12% by mass.
また、本発明の圧粉磁心の製造方法は、リンを0.048〜0.12質量%含有するとともに、厚さが160〜400nmであるリン酸塩層で表面が被覆された鉄粉末粒子を原料粉末として用い、所望の形状に800〜1500MPaの成形圧力で圧縮成形するとともに、所望により得られた成形体を、300〜500℃の温度で加熱したことを特徴とする。 Moreover, the manufacturing method of the powder magnetic core of the present invention comprises iron powder particles containing 0.048 to 0.12% by mass of phosphorus and having a surface coated with a phosphate layer having a thickness of 160 to 400 nm. It is used as a raw material powder and is compression-molded into a desired shape at a molding pressure of 800 to 1500 MPa, and a molded body obtained as desired is heated at a temperature of 300 to 500 ° C.
本発明の圧粉磁心は、鉄粉末粒子およびリン酸塩だけで構成されるとともに、前記鉄粉末粒子どうしが、リンを0.048〜0.12質量%含むリン酸塩相を介して200〜600nmの距離を置いて隔てられており、リン酸塩相が強固な化学結合を有するため、従来の圧粉磁心に比較して、鉄損が低く、磁束密度が高い圧粉磁心が得られ、各種磁心用軟磁性材料の高性能化に寄与できるとともに、特に強度の向上により従来の圧粉磁心の適用範囲を大きく拡大することができる。 The dust core of the present invention is composed only of iron powder particles and phosphate, and the iron powder particles are 200 to 200 through a phosphate phase containing 0.048 to 0.12% by mass of phosphorus. Because the phosphate phase is separated by a distance of 600 nm and the phosphate phase has a strong chemical bond, a powder magnetic core with low iron loss and high magnetic flux density is obtained compared to a conventional powder magnetic core, In addition to contributing to higher performance of soft magnetic materials for various magnetic cores, the range of application of conventional dust cores can be greatly expanded by improving the strength.
本発明の圧粉磁心は、個々の鉄粉末粒子は200〜600nmの距離を置いてリン酸塩相を介して隔てられ、電気的絶縁を確保して交流磁場における鉄粉粒子間に発生する渦電流発生を抑制したものである。また、機械的強さを低下させる原因となる樹脂の添加を廃止し、上記リン酸塩相の化学的結合力により材料の機械的強さを高めたものである。さらに、樹脂添加の廃止により、鉄粉末粒子の密度が向上される結果、磁束密度も向上している。 In the dust core of the present invention, individual iron powder particles are separated by a phosphate phase at a distance of 200 to 600 nm, ensuring electrical insulation and generating vortices between iron powder particles in an alternating magnetic field. Current generation is suppressed. Further, the addition of a resin that causes a decrease in mechanical strength is abolished, and the mechanical strength of the material is increased by the chemical bonding force of the phosphate phase. Furthermore, the abolition of the resin increases the density of the iron powder particles, and as a result, the magnetic flux density is also improved.
圧粉磁心においてリン酸塩相により隔てられる鉄粉末粒子間の距離が小さい場合、すなわち、原料となる鉄粉末粒子の表面に被覆されたリン酸塩層の厚さが薄い場合には、鉄粉末どうしの機械的な絡みが支配的である。しかし、原料となる鉄粉末粒子の表面に被覆されたリン酸塩層の厚さを厚くして、圧粉磁心のリン酸塩相により隔てられる鉄粉末粒子間の距離を大きくしていくと、鉄粉末どうしの機械的結合とともに、加熱・焼成によるリン酸塩相間の化学的結合も加わり強度がより向上する。この機械的強さの向上は、鉄粉末粒子表面に厚さが160〜400nmのリン酸塩層を被覆し、鉄粉末粒子どうしが、リン酸塩相を介して200〜600nmの距離を置いて隔てられたときにピークを示す。ただし、圧粉磁心のリン酸塩相により隔てられる鉄粉末粒子間の距離が大きすぎる場合、すなわち、原料となる鉄粉末粒子の表面に被覆されたリン酸塩層の厚さが厚すぎる場合には、鉄粉末どうしの機械的な結合が得られず、リン酸塩相のみの強度となるために、膜厚の増大に伴い強度も著しく低下することとなる。 When the distance between the iron powder particles separated by the phosphate phase in the dust core is small, that is, when the phosphate layer coated on the surface of the raw iron powder particles is thin, the iron powder The mechanical entanglement between the two is dominant. However, by increasing the thickness of the phosphate layer coated on the surface of the iron powder particles as a raw material and increasing the distance between the iron powder particles separated by the phosphate phase of the dust core, In addition to the mechanical bond between the iron powders, the chemical bond between the phosphate phases by heating and firing is also added to further improve the strength. This increase in mechanical strength is achieved by coating the surface of the iron powder particles with a phosphate layer having a thickness of 160 to 400 nm, and the iron powder particles are placed at a distance of 200 to 600 nm via the phosphate phase. Shows a peak when separated. However, when the distance between the iron powder particles separated by the phosphate phase of the powder magnetic core is too large, that is, when the thickness of the phosphate layer coated on the surface of the raw iron powder particles is too thick. Since the mechanical bonding between the iron powders is not obtained and the strength is only the phosphate phase, the strength is remarkably lowered as the film thickness is increased.
また、本発明の圧粉磁心においては、鉄粉末粒子間のリン酸塩相が200〜600nmと厚いことから鉄粉粒子間の電気的絶縁は充分に確保され、固有抵抗が高く、これに伴い鉄損の増加が抑制され交流特性の低下が小さい。さらに、鉄粉末粒子表面に形成するリン酸塩層が160〜400nmと厚いため、圧縮成形時のリン酸塩層の脱落・破壊、さらには、加熱時のリン酸塩相の劣化などによる材料の固有抵抗の低下を生じず圧粉磁心を製造することができる。 In the dust core of the present invention, since the phosphate phase between the iron powder particles is as thick as 200 to 600 nm, electrical insulation between the iron powder particles is sufficiently secured, and the specific resistance is high. The increase in iron loss is suppressed and the decrease in AC characteristics is small. Furthermore, since the phosphate layer formed on the surface of the iron powder particles is as thick as 160 to 400 nm, the phosphate layer is dropped and destroyed during compression molding, and further, the phosphate phase is deteriorated during heating. A powder magnetic core can be manufactured without causing a decrease in specific resistance.
この鉄粉表面のリン酸塩相の剥離・破壊を抑制する理由についてはまだ充分な解析がなされていないが、リン酸塩被膜特有の斜晶系結晶構造に由来するへき壊性およびそれに伴う滑り性が、被膜が薄い場合には顕著に作用し、本発明による厚いリン酸被膜の場合は、へき開方向が異なる結晶がランダムに複数積層されてへき開および滑りの伝播を抑制することにより剥離・破壊が抑制されるものと考える。この厚いリン酸被膜の厚さとあいまって、リン酸塩相の剥離に伴う鉄粉どうしの接触が防止され、固有抵抗の低下を抑制しているものと推測する。 The reason for suppressing the separation and destruction of the phosphate phase on the iron powder surface has not yet been fully analyzed. In the case of a thick phosphoric acid coating according to the present invention, peeling / breaking occurs by suppressing the propagation of cleavage and slip by randomly laminating multiple crystals with different cleavage directions. Is considered to be suppressed. In combination with the thickness of the thick phosphoric acid coating, it is presumed that the contact between the iron powders accompanying the peeling of the phosphate phase is prevented, and the decrease in the specific resistance is suppressed.
このため、本発明においては、絶縁のための樹脂を添加する必要がなく、機械的強さの低下要因となる樹脂成分を排除することができた。また、樹脂成分を排除した分、磁束密度に寄与する鉄粉末粒子の密度を向上させることができ、磁束密度の向上も果たせる。なお、本発明の圧粉磁心においては、密度比が98%以上であると、磁束密度が高くなり好ましい。 For this reason, in this invention, it was not necessary to add the resin for insulation, and the resin component used as the fall factor of mechanical strength was able to be excluded. Moreover, the density of the iron powder particles contributing to the magnetic flux density can be improved by eliminating the resin component, and the magnetic flux density can be improved. In the dust core of the present invention, it is preferable that the density ratio is 98% or more because the magnetic flux density is increased.
リン酸塩相のリン量の範囲は、固有抵抗と磁束密度の目標値から選定される。リンが0.048質量%未満では圧縮成形後の材料の固有抵抗が100μΩm以下となり、交流磁場における磁性粉末間に発生する渦電流発生が大きくなる。一方、0.12質量%を越えると磁束密度が1.6T未満となり所望の磁気特性が得られない。このことから、リン酸塩のリン量は、鉄粉の重量に対して0.048〜0.12質量%とした。 The range of the phosphorus amount of the phosphate phase is selected from target values of specific resistance and magnetic flux density. When phosphorus is less than 0.048% by mass, the specific resistance of the material after compression molding is 100 μΩm or less, and generation of eddy currents generated between magnetic powders in an alternating magnetic field is increased. On the other hand, if it exceeds 0.12% by mass, the magnetic flux density becomes less than 1.6T, and desired magnetic properties cannot be obtained. From this, the phosphorus amount of the phosphate was set to 0.048 to 0.12% by mass with respect to the weight of the iron powder.
本発明の圧粉磁心は、上述のように、リンを0.048〜0.12質量%含有するとともに、厚さが160〜400nmであるリン酸塩層で表面が被覆された鉄粉末粒子を原料粉末として用いるが、高い磁束密度および機械的強さを得るため、成形圧力は通常の粉末冶金法による機械部品の成形圧力400〜700MPaより高い領域の成形圧力800〜1500MPaとする必要がある。このような成形条件とすることで、本発明のリン酸塩層が厚い鉄粉末粒子を用いても、リン酸塩層が互いに密着して、鉄粉末粒子間の距離が縮まり、高い磁束密度と機械的強さを得ることが可能となる。成形圧力が800MPaに満たないと、リン酸塩層の密着が不十分となり、機械的強さが不十分となるとともに、鉄粉末粒子間の距離が大きくなって、所望の磁束密度が得られない。一方、1500MPaを超えると金型の強度および構造の面から成形が難しくなる。成形圧力の上限は好ましくは1200MPa、より好ましくは1000MPaである。なお、このような高い成形圧力であっても、上述の厚さのリン酸塩層であれば、剥離が生じ難く、ごく一部で剥離が発生したとしても剥離面に上述の厚さのリン酸塩層を有する鉄粉末粒子が対向して密着することとなって、鉄粉どうしの接触が防止され、固有抵抗の低下を抑制する。 As described above, the dust core of the present invention contains iron powder particles containing 0.048 to 0.12% by mass of phosphorus and having a surface coated with a phosphate layer having a thickness of 160 to 400 nm. Although used as a raw material powder, in order to obtain a high magnetic flux density and mechanical strength, the molding pressure needs to be a molding pressure of 800 to 1500 MPa in a region higher than a molding pressure of 400 to 700 MPa for mechanical parts by a normal powder metallurgy method. By using such molding conditions, even if iron powder particles having a thick phosphate layer of the present invention are used, the phosphate layers are closely adhered to each other, the distance between the iron powder particles is reduced, and a high magnetic flux density is obtained. It becomes possible to obtain mechanical strength. If the molding pressure is less than 800 MPa, the adhesion of the phosphate layer becomes insufficient, the mechanical strength becomes insufficient, the distance between the iron powder particles becomes large, and the desired magnetic flux density cannot be obtained. . On the other hand, if it exceeds 1500 MPa, molding becomes difficult from the viewpoint of the strength and structure of the mold. The upper limit of the molding pressure is preferably 1200 MPa, more preferably 1000 MPa. Even with such a high molding pressure, if the phosphate layer has the above-mentioned thickness, peeling does not easily occur. The iron powder particles having the acid salt layer face each other and come into close contact with each other, thereby preventing contact between the iron powders and suppressing a decrease in specific resistance.
また、上記の成形においては、圧粉磁心内部に成形潤滑剤が残留すると磁気特性および機械的特性に影響を及ぼすことが考えられるため、原料粉末に成形潤滑剤を添加する内部潤滑法よりも、金型内壁面に成形潤滑剤を塗布する外部潤滑法の方が好ましい。この金型内壁面への成形潤滑剤の塗布は、成形潤滑剤を有機溶媒中に所定量を均一分散させた潤滑剤を金型内壁面に塗布したり、静電噴霧法により帯電させた成形潤滑剤を金型内壁面に噴霧し電荷により吸着させてもよい。 In addition, in the above molding, if the molding lubricant remains inside the powder magnetic core, it is considered to affect the magnetic properties and mechanical properties, so than the internal lubrication method in which the molding lubricant is added to the raw material powder, An external lubrication method in which a molding lubricant is applied to the inner wall surface of the mold is preferable. The molding lubricant is applied to the inner wall surface of the mold by applying a lubricant in which a predetermined amount of the molding lubricant is uniformly dispersed in an organic solvent to the inner wall surface of the mold or charged by electrostatic spraying. The lubricant may be sprayed on the inner wall surface of the mold and adsorbed by electric charges.
上記の圧縮成形により得られた成形体は、リン酸塩層が密着し、ある程度の機械的強さを有するもので、加熱をしない成形体のままでも、従来に比して高磁束密度・高比抵抗の圧粉磁心が得られる。ただし、機械的強さの向上を望む場合には、このリン酸塩相を形成した鉄粉を上述の成形圧力で圧縮成形した後、300〜500℃の温度で加熱することにより、鉄粉末粒子表面に形成したリン酸塩層どうしが化学的に結合したリン酸塩相を形成することができ、機械的強さの高い圧粉磁心が得られる。加熱温度が300℃に満たないとリン酸塩層どうしの化学的な結合が不十分となり、500℃を超えるとリン酸塩相の劣化が生じ、いずれの場合も機械的強さが劣化することとなる。また、加熱工程の炉内雰囲気は、鉄粉表面のリン酸塩被覆が破壊や劣化しない雰囲気で行えばよく、還元性雰囲気以外の不活性ガス中または大気中とする。 The molded body obtained by the above compression molding has a phosphate layer in close contact and has a certain level of mechanical strength. A powder core having a specific resistance is obtained. However, when it is desired to improve the mechanical strength, the iron powder particles in which the phosphate phase is formed are compression molded at the above molding pressure, and then heated at a temperature of 300 to 500 ° C. A phosphate phase in which the phosphate layers formed on the surface are chemically bonded to each other can be formed, and a dust core having high mechanical strength can be obtained. If the heating temperature is less than 300 ° C, the chemical bonding between the phosphate layers will be insufficient, and if it exceeds 500 ° C, the phosphate phase will deteriorate, and in any case the mechanical strength will deteriorate. It becomes. Moreover, the furnace atmosphere of a heating process should just be performed in the atmosphere in which the phosphate coating | cover on the iron powder surface is not destroyed or deteriorated, and shall be in inert gas other than reducing atmosphere, or in air | atmosphere.
なお、本発明で使用する鉄粉末粒子は、使用される周波数領域、磁束密度または用途などにより種々選択することができる。鉄粉末にはアトマイズ法、還元法などの各種製法による種類があるが、純度および圧縮性が優れるアトマイズ鉄粉末が適当である。 The iron powder particles used in the present invention can be variously selected depending on the frequency region used, the magnetic flux density or the application. There are various types of iron powders by various production methods such as an atomization method and a reduction method, but atomized iron powders having excellent purity and compressibility are suitable.
鉄粉末の粒子径は、使用する周波数領域により選定する必要があり、好ましくは150μm以下で、渦電流損失を小さくするならば、100μm以下がより好ましい。また、この粒子径が小さくなるほど渦電流損失は小さくなり交流特性が向上するため、粒子径の下限については特に設定しないが、通常は10μm以上であることが好ましい。粒子径が小さすぎると、金属粉末の圧縮成形性、流動性が悪くなり、高密度の軟磁性材料が得られない。 The particle diameter of the iron powder needs to be selected according to the frequency region to be used, and is preferably 150 μm or less, and more preferably 100 μm or less to reduce eddy current loss. In addition, since the eddy current loss is reduced and the AC characteristics are improved as the particle size is reduced, the lower limit of the particle size is not particularly set, but is usually preferably 10 μm or more. If the particle diameter is too small, the compression molding property and fluidity of the metal powder will deteriorate, and a high-density soft magnetic material cannot be obtained.
以下、本発明を実施例により具体的に説明する。実施例では、鉄粉末として平均粒径が75μmのアトマイズ鉄粉を用いた。このアトマイズ鉄粉を、水1リットルにリン酸20gを溶解したリン酸塩水溶液とともに容器に入れ、定時間混合した後、恒温槽を用いて180℃で60分間乾燥した。リン酸塩層の厚さは、鉄粉末に対するリン酸塩水溶液の添加量を変えることにより調整し、膜厚およびリン含有量が異なる複数のものを用意した。また、比較のため、上記により得られたリン酸塩層の厚さが50nmのリン酸塩層形成鉄粉末にポリアミド樹脂を2質量%添加し混合したものを、従来例として、併せて用意した。 Hereinafter, the present invention will be specifically described by way of examples. In the examples, atomized iron powder having an average particle diameter of 75 μm was used as the iron powder. This atomized iron powder was put in a container together with a phosphate aqueous solution in which 20 g of phosphoric acid was dissolved in 1 liter of water, mixed for a fixed time, and then dried at 180 ° C. for 60 minutes using a thermostatic bath. The thickness of the phosphate layer was adjusted by changing the amount of the phosphate aqueous solution added to the iron powder, and a plurality of layers having different film thicknesses and phosphorus contents were prepared. For comparison, a phosphate layer-forming iron powder having a thickness of 50 nm obtained as described above was mixed with 2% by mass of a polyamide resin and prepared as a conventional example. .
用意したリン酸塩層形成鉄粉末を表1に示す成形圧力でφ23×φ10×5tのリング形状に圧縮成形し、表1に示す加熱条件で加熱してリング試験片を作成した。なお、成形に際しては、金型潤滑剤としてステアリン酸亜鉛を有機溶媒中に所定量を均一分散させたものを金型内壁面に塗布する、金型潤滑法で行った。また、加熱は所定の雰囲気、温度において1時間の加熱保持を行った。 The prepared phosphate layer-forming iron powder was compression-molded into a ring shape of φ23 × φ10 × 5 t at the molding pressure shown in Table 1, and heated under the heating conditions shown in Table 1 to prepare a ring test piece. The molding was performed by a mold lubrication method in which a predetermined amount of zinc stearate as a mold lubricant dispersed uniformly in an organic solvent was applied to the inner wall surface of the mold. In addition, heating was performed for 1 hour in a predetermined atmosphere and temperature.
得られたリング試験片について、密度、固有抵抗、磁束密度および圧環強さの各特性について測定した。リン酸塩層の厚さについては、鉄粉の表面積より計算した理論膜厚値を用いた。密度はアルキメデス法で測定し、理論密度に対する密度比を求めた。鉄粉末粒子間の距離は試料を切断研磨した切断面を電子顕微鏡で観察して求めた。固有抵抗は試験片表面を#800の研磨紙で磨き、研磨面を四端針法により測定した。磁束密度はリング試験片に1次側コイル120回,2次側コイル20回の捲き線を施し、10kA/mの磁界を印加し磁束密度B10kを測定した。圧環強度は別のリング試験片(φ23×φ10×10t)を用いて、クロスヘッドスピード0.5mm/分で圧縮試験し最大破壊荷重から圧環強度を算出した。これらの結果を表2に示す。 About the obtained ring test piece, each characteristic of a density, a specific resistance, a magnetic flux density, and a crushing strength was measured. About the thickness of the phosphate layer, the theoretical film thickness value calculated from the surface area of the iron powder was used. The density was measured by the Archimedes method, and the density ratio with respect to the theoretical density was determined. The distance between the iron powder particles was determined by observing the cut surface of the sample cut and polished with an electron microscope. The specific resistance was measured by polishing the surface of the test piece with # 800 polishing paper and measuring the polished surface by the four-end needle method. The magnetic flux density was measured by measuring the magnetic flux density B10k by applying a winding line of 120 times of the primary side coil and 20 times of the secondary side coil to the ring test piece and applying a magnetic field of 10 kA / m. The crushing strength was calculated from the maximum breaking load by performing a compression test at a crosshead speed of 0.5 mm / min using another ring specimen (φ23 × φ10 × 10 t). These results are shown in Table 2.
以上の実施例からは次のようなことがわかる。
(1)、表1および2の試料番号01〜04、10、16〜19の試料を比較することで、鉄粉末表面に形成したリン酸塩層の厚さの影響を調べることができる。これを試料番号19を除いてグラフ化したものを図1に示す。図1より、リン酸塩層の厚さが大きくなるとともに、密度比および磁束密度は低下する傾向を示すものの、成形圧力が大きいため、高い密度比を示すとともに、400nm以下で目標とする1.6T以上の高い磁束密度を示している。この時の試料の鉄粉末粒子間の距離を電子顕微鏡により観察したところ600nmであった。固有抵抗はリン酸塩層の厚さが大きくなるに従い増加し、厚さが160nm以上で目標とする100μΩm以上の高い固有抵抗を示している。この時の試料の鉄粉末粒子間の距離は同様に200nmであった。圧環強さはリン酸塩層の厚さが大きくなると上昇する傾向を示すが、その上昇の割合はリン酸塩層の厚さが大きくなるに従い減少し300nmをピークとして逆に低下する傾向を示している。また、従来の樹脂添加による試料(試料番号19)は樹脂の絶縁性により固有抵抗は高いものの、樹脂を添加している分だけ磁束密度が低く、さらに機械的強さも低いものであることが確認された。
From the above embodiment, the following can be understood.
(1) By comparing the samples Nos. 01 to 04, 10, and 16 to 19 in Tables 1 and 2, the influence of the thickness of the phosphate layer formed on the surface of the iron powder can be examined. FIG. 1 shows a graph obtained by removing the sample number 19 from the graph. As shown in FIG. 1, the density ratio and magnetic flux density tend to decrease as the thickness of the phosphate layer increases. However, since the molding pressure is large, the density ratio is high, and the target is 400 nm or less. A high magnetic flux density of 6T or more is shown. When the distance between the iron powder particles of the sample at this time was observed with an electron microscope, it was 600 nm. The specific resistance increases as the thickness of the phosphate layer increases, and shows a high specific resistance of 100 μΩm or more, which is a target when the thickness is 160 nm or more. The distance between the iron powder particles of the sample at this time was similarly 200 nm. The crushing strength tends to increase as the thickness of the phosphate layer increases, but the rate of increase decreases as the thickness of the phosphate layer increases and tends to decrease with a peak at 300 nm. ing. In addition, the conventional resin-added sample (Sample No. 19) has a high specific resistance due to the insulating properties of the resin, but it is confirmed that the magnetic flux density is low and the mechanical strength is also low because the resin is added. It was.
以上より、鉄粉末表面に形成するリン酸塩層の厚さを160〜400nmと大きくするとともに樹脂を排除した本発明圧粉磁心は、高い磁気特性と高い機械的強さを有することが確認された。また、この時の圧粉磁心の鉄粉末粒子間の距離は200〜600nmである。 From the above, it was confirmed that the dust core of the present invention in which the thickness of the phosphate layer formed on the surface of the iron powder was increased to 160 to 400 nm and the resin was excluded has high magnetic properties and high mechanical strength. It was. Further, the distance between the iron powder particles of the dust core at this time is 200 to 600 nm.
(2)、表1および2の試料番号05、06、10、14、15の試料を比較することで、成形圧力の影響を調べることができる。これをグラフ化したものを図2に示す。図2より、成形圧力が試料番号05の500MPaでは十分な密度が得られず、磁束密度が目標値である1.6Tを下回っているが、成形圧力が800、1000、1200、1500MPa(試料番号06、10、14、15)と大きくなるにつれて密度比が向上して磁束密度が向上している。目標とする磁束密度1.6T以上を得るためには成形圧力800MPa以上であれば良いことが確認された。ただし、その上昇割合は成形圧力が大きくなるに従い少なくなる傾向がある。固有抵抗は成形圧力が大きくなるに従い減少する傾向を示すものの1500MPaの成形圧力においても目標とする100μΩm以上が得られている。また圧環強さも成形圧力の増加につれて向上する傾向を示すが、同様にその上昇割合は成形圧力が大きくなるに従い少なくなる傾向がある。以上より、成形圧力としては800〜1500MPaの範囲で磁気特性および機械的強さの目標が達成できることがわかった。ただし、高圧側では磁束密度および圧環強さの向上の幅が狭い割に、絶縁被膜の破壊に伴う固有抵抗の減少が生じるため、1200MPa以下の成形圧力にすることが好ましい。 (2) By comparing samples Nos. 05, 06, 10, 14, and 15 in Tables 1 and 2, the influence of the molding pressure can be examined. A graph of this is shown in FIG. From FIG. 2, when the molding pressure is 500 MPa of sample number 05, a sufficient density cannot be obtained and the magnetic flux density is lower than the target value of 1.6 T, but the molding pressure is 800, 1000, 1200, 1500 MPa (sample number). As the density increases to 06, 10, 14, 15), the density ratio is improved and the magnetic flux density is improved. In order to obtain the target magnetic flux density of 1.6 T or more, it was confirmed that the molding pressure should be 800 MPa or more. However, the rate of increase tends to decrease as the molding pressure increases. Although the specific resistance tends to decrease as the molding pressure increases, a target value of 100 μΩm or more is obtained even at a molding pressure of 1500 MPa. Further, the crushing strength tends to improve as the molding pressure increases, but similarly, the rate of increase tends to decrease as the molding pressure increases. From the above, it has been found that the targets of magnetic properties and mechanical strength can be achieved in the range of 800 to 1500 MPa as the molding pressure. However, on the high pressure side, the specific resistance is reduced due to the breakdown of the insulating film although the width of the improvement in the magnetic flux density and the crushing strength is narrow. Therefore, the molding pressure is preferably 1200 MPa or less.
(3)、表1および2の試料番号07〜10、12と13の試料を比較することで、加熱処理の有無および加熱処理を行う際の加熱温度の影響を調べることができる。これをグラフ化したものを図3に示す。図3および表1より、加熱処理を行わない試料番号07の場合、加熱処理を行ったものに比して圧環強さは低いものの、従来の樹脂を用いた圧粉磁心(試料番号19)よりも約2倍程度高い圧環強さを示している。また、固有抵抗は極めて高い値を示すとともに磁束密度も目標とする1.6Tを超えていることから、強度が特に要求されない用途においては十分に実用性のあるものであることがわかる。ただし、機械的強さを求められる用途においては加熱処理が有効で、加熱温度が300〜500℃の範囲で目標とする1500MPa以上を達成している。このことより、加熱処理によりリン酸塩層どうしが化学的に結合してリン酸塩相を形成して機械的強さの向上に寄与していることがわかる。ただし、500℃を超える加熱はリン酸塩相を劣化させ固有抵抗が目標とする100μΩmを下回るようになるため、500℃を上限とすべきである。
(3) By comparing the samples Nos. 07 to 10, 12 and 13 in Tables 1 and 2, the presence or absence of the heat treatment and the influence of the heating temperature when performing the heat treatment can be examined. A graph of this is shown in FIG. According to FIG. 3 and Table 1, in the case of Sample No. 07 where heat treatment is not performed, although the crushing strength is lower than that in the case where heat treatment is performed, from a dust core (Sample No. 19) using a conventional resin The crushing strength is about twice as high. Moreover, since the specific resistance shows a very high value and the magnetic flux density exceeds the target 1.6T, it can be seen that the specific resistance is sufficiently practical in applications where strength is not particularly required. However, in applications where mechanical strength is required, heat treatment is effective, and the target temperature of 1500 MPa or more is achieved in the range of 300 to 500 ° C. From this, it can be seen that the phosphate layers are chemically bonded to each other by heat treatment to form a phosphate phase and contribute to the improvement of mechanical strength. However, heating above 500 ° C. degrades the phosphate phase and the specific resistance falls below the
(4)、表1および2の試料番号10と11の試料を比較することで、加熱処理時の雰囲気の影響を調べることがわかる。すなわち、試料番号10と11の試料を比べると、加熱処理時の雰囲気が大気であっても磁束密度および機械的強さに差は見られず、同等の値である。固有抵抗は、雰囲気が大気の場合に若干向上しているが、これは圧粉磁心の表層部の鉄粉末粒子が酸化されて形成された酸化鉄が絶縁被膜として働いたためである。ただし、窒素雰囲気中で加熱した場合の圧粉磁心が金属光沢を呈するのに対し、大気雰囲気中で加熱した場合の圧粉磁心は煤けた感じとなるため、製品としての美観を重視する際には窒素雰囲気が適している。
(4) By comparing the samples Nos. 10 and 11 in Tables 1 and 2, it can be seen that the influence of the atmosphere during the heat treatment is examined. That is, when the samples of
本発明の圧粉磁心の活用例としては、固有抵抗が大くして高周波側での鉄損の抑制するとともに、磁束密度を高めて磁気特性を改善し、さらに機械的強さも向上させたことにより、圧粉磁心の適用を広げ、高性能な変圧器、リアクトル、サイリスタバルブ、ノイズフィルタ、チョークコイル等に適用することができる。 As an example of utilizing the powder magnetic core of the present invention, the specific resistance is increased to suppress the iron loss on the high frequency side, the magnetic flux density is increased to improve the magnetic characteristics, and the mechanical strength is also improved. It can be applied to high-performance transformers, reactors, thyristor valves, noise filters, choke coils, etc.
Claims (3)
The method for producing a powder magnetic core according to claim 2, wherein the compact obtained by the compression molding is heated at a temperature of 300 to 500 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004032042A JP2005223259A (en) | 2004-02-09 | 2004-02-09 | Dust core and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004032042A JP2005223259A (en) | 2004-02-09 | 2004-02-09 | Dust core and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005223259A true JP2005223259A (en) | 2005-08-18 |
Family
ID=34998629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004032042A Pending JP2005223259A (en) | 2004-02-09 | 2004-02-09 | Dust core and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005223259A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8758906B2 (en) * | 2004-02-26 | 2014-06-24 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, powder magnetic core and process for producing the same |
JP2018018851A (en) * | 2016-07-25 | 2018-02-01 | Tdk株式会社 | Soft magnetic metal powder-compact magnetic core, and reactor arranged by use thereof |
-
2004
- 2004-02-09 JP JP2004032042A patent/JP2005223259A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8758906B2 (en) * | 2004-02-26 | 2014-06-24 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, powder magnetic core and process for producing the same |
JP2018018851A (en) * | 2016-07-25 | 2018-02-01 | Tdk株式会社 | Soft magnetic metal powder-compact magnetic core, and reactor arranged by use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6071211B2 (en) | Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method | |
JP6260508B2 (en) | Dust core | |
JP5058031B2 (en) | Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet | |
JP5924480B2 (en) | Magnetic powder material, low-loss composite magnetic material including the magnetic powder material, and magnetic element including the low-loss composite magnetic material | |
JP5986010B2 (en) | Powder magnetic core and magnetic core powder used therefor | |
JP6365670B2 (en) | Magnetic core, magnetic core manufacturing method, and coil component | |
JP2002305108A (en) | Composite magnetic material, magnetic element and manufacturing method of them | |
JP4327214B2 (en) | Sintered soft magnetic powder compact | |
JP2013033902A (en) | Magnetic material and coil component using the same | |
JP2008270368A (en) | Dust core and method of manufacturing the same | |
WO2010113681A1 (en) | Composite magnetic material and magnetic element | |
JP7128439B2 (en) | Dust core and inductor element | |
CN110853910B (en) | Preparation method of high-permeability low-loss soft magnetic composite material and magnetic ring thereof | |
JP2009185312A (en) | Composite soft magnetic material, dust core using the same, and their production method | |
JP5841705B2 (en) | Atomized soft magnetic powder, dust core and magnetic element | |
JP2010236020A (en) | Soft magnetic composite material, method for producing the same, and electromagnetic circuit component | |
JP2007035826A (en) | Composite magnetic material, and dust core and magnetic element using the same | |
JP5023041B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP2009164402A (en) | Manufacturing method of dust core | |
JP2011216571A (en) | High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part | |
JP2019096747A (en) | Powder-compact magnetic core | |
JP2003160847A (en) | Composite magnetic material, magnetic element using the same, and manufacture method therefor | |
JP2021163855A (en) | Material for powder-compact magnetic core, powder-compact magnetic core, and inductor | |
JP6415910B2 (en) | Magnetic materials and devices | |
JP2005223259A (en) | Dust core and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090818 |