JP2015068356A - Fluid sealed type cylindrical vibration-proofing device - Google Patents

Fluid sealed type cylindrical vibration-proofing device Download PDF

Info

Publication number
JP2015068356A
JP2015068356A JP2013200119A JP2013200119A JP2015068356A JP 2015068356 A JP2015068356 A JP 2015068356A JP 2013200119 A JP2013200119 A JP 2013200119A JP 2013200119 A JP2013200119 A JP 2013200119A JP 2015068356 A JP2015068356 A JP 2015068356A
Authority
JP
Japan
Prior art keywords
circumferential direction
fluid
circumferential
groove
fluid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013200119A
Other languages
Japanese (ja)
Other versions
JP6148951B2 (en
Inventor
荒川 昇
Noboru Arakawa
昇 荒川
真也 桑原
Shinya Kuwahara
真也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2013200119A priority Critical patent/JP6148951B2/en
Publication of JP2015068356A publication Critical patent/JP2015068356A/en
Application granted granted Critical
Publication of JP6148951B2 publication Critical patent/JP6148951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid sealed type cylindrical vibration-proofing device having a new structure capable of preventing vibration-proofing performance from being reduced due to short-circuit while a passage length of an orifice passage is efficiently assured.SOLUTION: Both ends of an orifice member 36 are fitted to each of circumferential ends of a fitting groove 22, an intermediate portion in a circumferential direction within the fitting groove 22 is provided with a bottom wall connecting rubber 54 projected from a groove bottom surface toward an outer circumferential side and the bottom wall connecting rubber 54 is held between both ends of a circumferential direction of the bottom wall part of the orifice member 36. In turn, the intermediate portion in a groove width direction of the bottom wall connecting rubber 54 is formed with a division wall connecting rubber 56 protruded at the outer circumferential side and abutted against the inner circumferential surface of an outer cylindrical member 14. A division wall part 48 between each of a plurality of communication grooves 44, 46 opened to each of both end portions in a circumferential direction of the orifice member 36 is pushed against the division wall connecting rubber 56 from both sides in a circumferential direction and the division wall connecting rubber 56 is compressed in a circumferential direction without being buckled.

Description

本発明は、自動車のサスペンションブッシュや、エンジンマウント、ボデーマウント、サブフレームマウント、デフマウントなどに用いられる流体封入式筒形防振装置に関するものである。   The present invention relates to a fluid-filled cylindrical vibration isolator used for a suspension bush of an automobile, an engine mount, a body mount, a subframe mount, a differential mount, and the like.

従来から、振動伝達系を構成する部材間に介装される防振支持体乃至は防振連結体の一種として、筒形防振装置が知られている。更に、内部に封入された流体の流動作用に基づく防振効果を利用する流体封入式筒形防振装置も提案されている。この流体封入式筒形防振装置は、例えば、特許第2583212号公報(特許文献1)に記載されているように、インナ軸部材とアウタ筒部材が本体ゴム弾性体で弾性連結されていると共に、本体ゴム弾性体の外周面に開口する一対のポケット部をアウタ筒部材で覆蓋して非圧縮性流体を封入することで、振動入力時に相対的な圧力変動が生ぜしめられる第一の流体室と第二の流体室が形成されている。更に、第一の流体室と第二の流体室を跨いで周方向に延びるオリフィス部材が取り付けられており、オリフィス部材の外周面に開口する連通溝がアウタ筒部材で覆蓋されることによって、第一の流体室と第二の流体室を相互に連通するオリフィス通路が形成されている。   2. Description of the Related Art Conventionally, a cylindrical vibration isolator is known as a type of anti-vibration support body or anti-vibration coupling body interposed between members constituting a vibration transmission system. Furthermore, a fluid-filled cylindrical vibration damping device that utilizes a vibration damping effect based on the flow action of the fluid sealed inside has also been proposed. In this fluid-filled cylindrical vibration isolator, for example, as described in Japanese Patent No. 2583212 (Patent Document 1), an inner shaft member and an outer cylindrical member are elastically connected by a main rubber elastic body. A first fluid chamber in which relative pressure fluctuations are generated when vibration is input by covering a pair of pocket portions opened on the outer peripheral surface of the main rubber elastic body with an outer cylinder member and enclosing an incompressible fluid And a second fluid chamber is formed. Furthermore, an orifice member that extends in the circumferential direction across the first fluid chamber and the second fluid chamber is attached, and the communication groove that opens to the outer peripheral surface of the orifice member is covered with the outer cylinder member. An orifice passage is formed to communicate the one fluid chamber and the second fluid chamber with each other.

ところで、第一の流体室と第二の流体室を跨いで延びるオリフィス部材は、本体ゴム弾性体への装着を容易にするために、特許文献1に示されているように一対の半割体を組み合わせて構成される場合がある。また、特許文献1では、所定の外径寸法を有する流体封入式筒形防振装置において、オリフィス通路の通路長を大きく得るために、周方向に一周を超える長さの連通溝が螺旋状に形成されている。   Incidentally, the orifice member extending across the first fluid chamber and the second fluid chamber has a pair of halves as shown in Patent Document 1 in order to facilitate mounting to the main rubber elastic body. May be configured in combination. Further, in Patent Document 1, in a fluid-filled cylindrical vibration isolator having a predetermined outer diameter, in order to obtain a large passage length of the orifice passage, a communication groove having a length exceeding one turn in the circumferential direction is spiral. Is formed.

しかしながら、特許文献1の第1図(c)に示されているように、硬質とされた各半割体の周方向端部が周方向で相互に直接的に当接されていることから、それら半割体の周方向端部間に隙間が形成され易い。特に、半割体の周方向端部において軸方向に二つの連通溝が並列的に設けられていることから、二つの連通溝が形成された半割体の周方向端部間に隙間が生じると、二つの連通溝が隙間を通じて短絡することで、短絡した流体の流れがオリフィス通路の通路長方向での流体流動を妨げて、目的とする防振性能が有効に発揮されないおそれもあった。   However, as shown in FIG. 1 (c) of Patent Document 1, since the circumferential ends of the halves made rigid are in direct contact with each other in the circumferential direction, A gap is easily formed between the circumferential ends of the halves. In particular, since two communication grooves are provided in parallel in the axial direction at the circumferential end portion of the half body, a gap is generated between the circumferential end portions of the half body in which the two communication grooves are formed. When the two communication grooves are short-circuited through the gap, the short-circuited fluid flow hinders fluid flow in the passage length direction of the orifice passage, and the target vibration-proof performance may not be effectively exhibited.

特許第2583212号公報Japanese Patent No. 2583212

本発明は、上述の事情を背景に為されたものであって、その解決課題は、オリフィス通路の通路長を効率的に確保しながら、短絡による防振性能の低下を防いで目的とする防振性能を有効に得ることができる、新規な構造の流体封入式筒形防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and its solution is to prevent the deterioration of the vibration proof performance due to a short circuit while efficiently securing the length of the orifice passage. An object of the present invention is to provide a fluid-filled cylindrical vibration isolator having a novel structure capable of effectively obtaining vibration performance.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

すなわち、本発明の第一の態様は、インナ軸部材とアウタ筒部材が本体ゴム弾性体で弾性連結されていると共に、該本体ゴム弾性体の外周面に開口する一対のポケット部を該アウタ筒部材で覆蓋することによって、非圧縮性流体を封入されて振動入力時に相対的な圧力変動を生じる第一の流体室と第二の流体室が形成されている一方、それら第一の流体室と第二の流体室を跨いで周方向に延びるオリフィス部材が該本体ゴム弾性体と該アウタ筒部材との間に組み付けられていると共に、該オリフィス部材には外周面に開口して周方向螺旋状に延びる連通溝が形成されており、該連通溝の外周開口を該アウタ筒部材で覆うことによって該第一の流体室と該第二の流体室を相互に連通するオリフィス通路が形成されている流体封入式筒形防振装置において、前記第一の流体室と前記第二の流体室の周方向間には周方向に延びる嵌合溝部が形成されており、前記オリフィス部材において互いに周方向で突き合わされる両端部が該嵌合溝部の周方向各一方の端部に嵌め合わされていると共に、該嵌合溝部内の周方向中間部分には溝底面から外周側に突出する底壁接続ゴムが設けられて、該底壁接続ゴムが該オリフィス部材の底壁部の周方向両端部間に挟まれている一方、該底壁接続ゴムの溝幅方向中間部分には外周側に突出して前記アウタ筒部材の内周面に当接する隔壁接続ゴムが形成されており、該オリフィス部材の周方向両端部にそれぞれ開口する各複数の前記連通溝の間の隔壁部が該隔壁接続ゴムに周方向の両側から押し当てられて、該隔壁接続ゴムが座屈することなく周方向に圧縮されていることを、特徴とする。   That is, according to the first aspect of the present invention, the inner shaft member and the outer cylinder member are elastically connected by the main rubber elastic body, and a pair of pocket portions that open to the outer peripheral surface of the main rubber elastic body are provided in the outer cylinder. By covering with a member, a first fluid chamber and a second fluid chamber are formed in which an incompressible fluid is enclosed and a relative pressure fluctuation occurs when vibration is input. An orifice member extending in the circumferential direction across the second fluid chamber is assembled between the main rubber elastic body and the outer cylinder member, and the orifice member opens to the outer peripheral surface to form a circumferential spiral shape. A communication groove extending in the direction is formed, and an outer peripheral opening of the communication groove is covered with the outer cylindrical member, thereby forming an orifice passage that allows the first fluid chamber and the second fluid chamber to communicate with each other. Fluid filled cylindrical vibration isolator A fitting groove extending in the circumferential direction is formed between the first fluid chamber and the second fluid chamber in the circumferential direction, and both end portions of the orifice member that face each other in the circumferential direction are A bottom wall connecting rubber that is fitted to one end in the circumferential direction of the fitting groove and that protrudes from the groove bottom surface to the outer circumferential side is provided at a circumferential intermediate portion in the fitting groove. While the connecting rubber is sandwiched between both circumferential ends of the bottom wall portion of the orifice member, the bottom wall connecting rubber projects in the middle in the groove width direction to the outer peripheral side to the inner peripheral surface of the outer cylindrical member. A partition connecting rubber to be in contact is formed, and partition portions between the plurality of communication grooves respectively opening at both ends in the circumferential direction of the orifice member are pressed against the partition connecting rubber from both sides in the circumferential direction, The partition rubber is compressed in the circumferential direction without buckling It is possible to, characterized that.

このような第一の態様に従う構造とされた流体封入式筒形防振装置によれば、嵌合溝部に嵌め合わされたオリフィス部材の周方向両端部が、底壁接続ゴムと隔壁接続ゴムに対して周方向両側から押し当てられていることによって、オリフィス部材の周方向両端部間において流体の漏れが防止される。それ故、複数の連通溝が開口するオリフィス部材の周方向両端部において、それら連通溝間の短絡とそれによるオリフィス通路内での乱流の発生などが回避されて、流体の流動作用に基づく防振効果が効率的に発揮される。   According to the fluid-filled cylindrical vibration isolator having the structure according to the first aspect as described above, both ends in the circumferential direction of the orifice member fitted into the fitting groove portion are in contact with the bottom wall connecting rubber and the partition wall connecting rubber. By being pressed from both sides in the circumferential direction, fluid leakage is prevented between both ends in the circumferential direction of the orifice member. Therefore, at both ends in the circumferential direction of the orifice member where a plurality of communication grooves are opened, a short circuit between the communication grooves and the occurrence of turbulent flow in the orifice passage are avoided, thereby preventing the flow based on fluid flow. The vibration effect is exhibited efficiently.

さらに、外周側に突出する隔壁接続ゴムが、座屈して歪に変形することなく、周方向に圧縮されている。それ故、隔壁接続ゴムとオリフィス部材およびアウタ筒部材との間が、流体密に封止された状態に保持されて、オリフィス通路を通じた流体流動が効率的に生ぜしめられて、目的とする防振効果を有利に得ることができる。   Furthermore, the partition wall connecting rubber protruding to the outer peripheral side is compressed in the circumferential direction without buckling and deforming into strain. Therefore, the partition wall connecting rubber and the orifice member and the outer cylinder member are maintained in a fluid-tight sealed state, and fluid flow through the orifice passage is efficiently generated, so that the intended protection is achieved. The vibration effect can be obtained advantageously.

本発明の第二の態様は、第一の態様に記載された流体封入式筒形防振装置において、前記オリフィス部材の前記連通溝の底面が前記底壁接続ゴムの外周面と同じ径方向位置に位置せしめられているものである。   According to a second aspect of the present invention, in the fluid-filled cylindrical vibration damping device described in the first aspect, the bottom surface of the communication groove of the orifice member has the same radial position as the outer peripheral surface of the bottom wall connecting rubber. It is the one that is positioned in.

第二の態様によれば、オリフィス部材の底壁部と底壁接続ゴムの接続部分に生じる段差の大きさを低減することができることから、オリフィス通路の流動抵抗を小さくすることができて、流体の流動作用に基づく防振効果をより有利に得ることができる。   According to the second aspect, it is possible to reduce the size of the step generated at the connecting portion between the bottom wall portion of the orifice member and the bottom wall connecting rubber, so that the flow resistance of the orifice passage can be reduced, and the fluid The vibration isolation effect based on the fluid action can be obtained more advantageously.

本発明の第三の態様は、第一又は第二の態様に記載された流体封入式筒形防振装置において、前記オリフィス部材における前記隔壁部の周方向端部が周方向外側に向かって次第に軸方向で厚肉となっているものである。   According to a third aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in the first or second aspect, the circumferential end of the partition wall portion of the orifice member is gradually increased outward in the circumferential direction. It is thick in the axial direction.

第三の態様によれば、隔壁部との境界に大きな段差を生じることなく、軸方向で厚肉の隔壁接続ゴムを採用することが可能となる。これにより、隔壁接続ゴムを周方向により大きな力で圧縮しても座屈することなく形状が保持されて、オリフィス通路の短絡がより効果的に回避されると共に、オリフィス通路の流動抵抗の増大が防止されることから、目的とする防振効果を有利に得ることができる。加えて、隔壁部が周方向で徐々に厚肉となっていることから、隔壁部にも段差が形成されることはなく、オリフィス通路における流体の流動抵抗が抑えられる。   According to the 3rd aspect, it becomes possible to employ | adopt a thick partition connection rubber | gum in an axial direction, without producing a big level | step difference in a boundary with a partition part. This keeps the shape without buckling even if the bulkhead connecting rubber is compressed with greater force in the circumferential direction, avoiding the short circuit of the orifice passage more effectively and preventing the flow resistance of the orifice passage from increasing. As a result, the intended vibration isolation effect can be obtained advantageously. In addition, since the partition wall is gradually thickened in the circumferential direction, no step is formed in the partition wall, and the flow resistance of the fluid in the orifice passage is suppressed.

本発明の第四の態様は、第一〜第三の何れか一つの態様に記載された流体封入式筒形防振装置において、前記オリフィス部材の周方向両端部にそれぞれ開口する各複数の前記連通溝における軸方向外側の軸端壁部が前記隔壁部よりも周方向内側に控えて設けられていると共に、該軸端壁部で構成された該連通溝の溝内面が周方向外側に向かって次第に軸方向外側に傾斜するテーパ面を備えている一方、前記嵌合溝部の軸方向外側の溝内面を覆う被覆ゴムの表面が周方向内側に向かって次第に軸方向外側に傾斜するテーパ面とされており、それらテーパ面が周方向に接続されて連続的に広がっているものである。   According to a fourth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to third aspects, each of the plurality of the openings opening at both circumferential ends of the orifice member is provided. A shaft end wall portion on the outer side in the axial direction of the communication groove is provided in a circumferentially inner side than the partition wall portion, and a groove inner surface of the communication groove formed by the shaft end wall portion faces the outer side in the circumferential direction. A taper surface that is gradually inclined outward in the axial direction, and a surface of the covering rubber that covers the groove inner surface on the axially outer side of the fitting groove portion is gradually inclined inward in the circumferential direction. These tapered surfaces are connected in the circumferential direction and continuously spread.

第四の態様によれば、軸端壁部のテーパ面と被覆ゴムのテーパ面が連続的に広がるように接続されることで、オリフィス部材の周方向両端部およびその周方向間において、オリフィス通路が軸方向外側に広がって設けられている。これにより、例えば、隔壁部の周方向端部と隔壁接続ゴムを軸方向に厚肉としても、オリフィス通路の通路断面積が小さくなるのを防ぐことができて、所定の周波数で目的とする防振効果を有効に得ることができる。   According to the fourth aspect, by connecting the taper surface of the shaft end wall portion and the taper surface of the covering rubber so as to continuously spread, the orifice passage between the circumferential end portions of the orifice member and between the circumferential directions thereof. Is spread outward in the axial direction. As a result, for example, even if the circumferential end of the partition wall and the partition connecting rubber are thick in the axial direction, it is possible to prevent the passage cross-sectional area of the orifice passage from becoming small, and to achieve the desired prevention at a predetermined frequency. The vibration effect can be obtained effectively.

しかも、テーパ面を備えることで周方向外側に向かって次第に軸方向で薄肉となる軸端壁部が、隔壁部よりも周方向内側に控えて設けられて、軸端壁部のテーパ面が被覆ゴムのテーパ面と接続されていることにより、軸端壁部の周方向端を著しく薄肉にすることなく、オリフィス通路の通路断面積を大きく確保することができる。その結果、軸端壁部の周方向端が触れることによる被覆ゴムの損傷や製造作業者の負傷を回避することができると共に、流体の流動作用に基づく防振効果を有利に得ることができる。   In addition, by providing a tapered surface, a shaft end wall portion that becomes gradually thinner in the axial direction toward the outer side in the circumferential direction is provided in the circumferential direction inner side than the partition wall portion, and the tapered surface of the shaft end wall portion is covered. By being connected to the tapered surface of the rubber, a large passage cross-sectional area of the orifice passage can be secured without making the circumferential end of the shaft end wall portion extremely thin. As a result, it is possible to avoid damage to the covering rubber and injury of the manufacturing worker due to contact with the circumferential end of the shaft end wall portion, and it is possible to advantageously obtain a vibration isolation effect based on the fluid flow action.

本発明の第五の態様は、第一〜第四の何れか一つの態様に記載された流体封入式筒形防振装置において、前記隔壁接続ゴムの外周面には外周側に突出するシールリップが周方向全長に亘って連続して形成されているものである。   According to a fifth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to fourth aspects, a seal lip projecting outward from the outer peripheral surface of the partition wall connecting rubber. Is formed continuously over the entire length in the circumferential direction.

第五の態様によれば、シールリップがアウタ筒部材の内周面に押し当てられることで、隔壁接続ゴムとアウタ筒部材の間がより高いシール性をもって流体密に封止されることから、隔壁接続ゴムとアウタ筒部材の間を通じて複数の連通溝が相互に短絡するのを有利に防いで、流体の流動作用による防振効果を効率的に得ることができる。   According to the fifth aspect, since the seal lip is pressed against the inner peripheral surface of the outer cylinder member, the space between the partition wall connecting rubber and the outer cylinder member is fluid-tightly sealed with higher sealing properties. A plurality of communication grooves can be advantageously prevented from short-circuiting each other between the partition wall connecting rubber and the outer cylinder member, and a vibration isolation effect due to fluid flow can be obtained efficiently.

本発明の第六の態様は、第一〜第五の何れか一つの態様に記載された流体封入式筒形防振装置において、前記オリフィス部材が周方向に分割された一組の半割体で構成されており、一方の該半割体が前記第一の流体室を周方向に跨いで延びていると共に、他方の該半割体が前記第二の流体室を周方向に跨いで延びているものである。   According to a sixth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to fifth aspects, a set of halves in which the orifice member is divided in the circumferential direction. One of the halves extends across the first fluid chamber in the circumferential direction, and the other half halves extends across the second fluid chamber in the circumferential direction. It is what.

第六の態様によれば、オリフィス部材が周方向に分割されていることから、オリフィス部材を本体ゴム弾性体とアウタ筒部材との間に組付け易くなる。しかも、オリフィス部材が一組の半割体に分割されていることから、オリフィス部材の本体ゴム弾性体およびアウタ筒部材への組付け易さを確保しながら、オリフィス部材の分割数が最小とされており、簡単な構造によって流体の短絡が有利に回避される。   According to the sixth aspect, since the orifice member is divided in the circumferential direction, the orifice member can be easily assembled between the main rubber elastic body and the outer cylinder member. In addition, since the orifice member is divided into a set of halves, the number of divisions of the orifice member is minimized while ensuring easy assembly of the orifice member to the main rubber elastic body and the outer cylinder member. With a simple structure, a fluid short circuit is advantageously avoided.

本発明の第七の態様は、第一〜第六の何れか1つの態様に記載された流体封入式筒形防振装置において、前記インナ軸部材に中間スリーブが外挿されており、それらインナ軸部材と中間スリーブが前記本体ゴム弾性体によって弾性連結されていると共に、該中間スリーブに前記アウタ筒部材が外嵌されている一方、該本体ゴム弾性体に形成された前記一対のポケット部が該中間スリーブに形成された一対の窓部を通じて外周面に開口しており、該中間スリーブにおける該一対の窓部の周方向間に前記嵌合溝部が形成されているものである。   According to a seventh aspect of the present invention, in the fluid-filled cylindrical vibration damping device described in any one of the first to sixth aspects, an intermediate sleeve is extrapolated to the inner shaft member. The shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and the outer cylindrical member is externally fitted to the intermediate sleeve, while the pair of pocket portions formed in the main rubber elastic body It opens to an outer peripheral surface through a pair of window part formed in this intermediate sleeve, and the said fitting groove part is formed between the circumferential directions of this pair of window part in this intermediate sleeve.

第七の態様によれば、本体ゴム弾性体の外周面が硬質の中間スリーブで拘束されて、形状の安定性が高められることから、第一の流体室や第二の流体室、オリフィス通路といった流体封入領域において流体の漏れがより確実に防止される。しかも、オリフィス部材を支持する嵌合溝部が中間スリーブによって形成されることから、オリフィス部材が安定して支持されて、オリフィス通路の短絡が有利に回避され得る。   According to the seventh aspect, since the outer peripheral surface of the main rubber elastic body is restrained by the hard intermediate sleeve and the stability of the shape is improved, the first fluid chamber, the second fluid chamber, the orifice passage, etc. In the fluid sealing region, fluid leakage is more reliably prevented. Moreover, since the fitting groove for supporting the orifice member is formed by the intermediate sleeve, the orifice member is stably supported, and a short circuit of the orifice passage can be advantageously avoided.

本発明によれば、嵌合溝部に嵌め合わされたオリフィス部材の周方向両端部が、底壁部を底壁接続ゴムに周方向両側から押し当てられていると共に、隔壁部を隔壁接続ゴムに周方向両側から押し当てられている。これにより、オリフィス部材の周方向両端部間において複数の連通溝の短絡が防止されて、オリフィス通路の通路長方向での流体流動が効率的に生ぜしめられることから、目的とする防振効果を有利に得ることができる。しかも、オリフィス部材の隔壁部が周方向両側から押し当てられた隔壁接続ゴムは、座屈することなく周方向に圧縮されていることから、隔壁接続ゴムと隔壁部およびアウタ筒部材との当接面間に隙間ができるのが防止されて、複数の連通溝の短絡による防振性能の低下が回避される。   According to the present invention, both ends in the circumferential direction of the orifice member fitted in the fitting groove are pressed against the bottom wall connecting rubber from both sides in the circumferential direction, and the partition is surrounded by the partition connecting rubber. It is pressed from both directions. This prevents a short circuit of the plurality of communication grooves between the circumferential ends of the orifice member, and the fluid flow in the passage length direction of the orifice passage is efficiently generated. Can be advantageously obtained. In addition, since the partition wall connecting rubber with which the partition wall portion of the orifice member is pressed from both sides in the circumferential direction is compressed in the circumferential direction without buckling, the contact surface between the partition wall connecting rubber and the partition wall portion and the outer cylinder member A gap is prevented from being formed between them, and a reduction in the vibration isolation performance due to a short circuit of the plurality of communication grooves is avoided.

本発明の一実施形態としてのサスペンションブッシュを示す断面図であって、図2中のI−I断面に相当する図。It is sectional drawing which shows the suspension bush as one Embodiment of this invention, Comprising: The figure corresponded in the II cross section in FIG. 図1のII−II断面図。II-II sectional drawing of FIG. 図1に示すサスペンションブッシュを構成する一体加硫成形品の右側面図。The right view of the integral vulcanization molded product which comprises the suspension bush shown in FIG. 図3のIV−IV断面図。IV-IV sectional drawing of FIG. 図1に示すサスペンションブッシュを構成するオリフィス部材の平面図。The top view of the orifice member which comprises the suspension bush shown in FIG. 図5に示すオリフィス部材の正面図。The front view of the orifice member shown in FIG. 図6に示すオリフィス部材の背面図。FIG. 7 is a rear view of the orifice member shown in FIG. 6. 図3に示す一体加硫成形品に図5に示すオリフィス部材を装着した左側面図。The left view which attached the orifice member shown in FIG. 5 to the integral vulcanization molded product shown in FIG. 図3に示す一体加硫成形品に図5に示すオリフィス部材を装着した右側面図。The right view which attached the orifice member shown in FIG. 5 to the integral vulcanization molded product shown in FIG. 図9の要部を拡大して示す図。The figure which expands and shows the principal part of FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1,2には、本発明に従う構造とされた流体封入式筒形防振装置の第一の実施形態として、自動車用のサスペンションブッシュ10が示されている。サスペンションブッシュ10は、インナ軸部材12とアウタ筒部材14を本体ゴム弾性体16によって弾性連結した構造を有している。以下の説明において、軸方向とは、インナ軸部材12およびアウタ筒部材14の中心軸方向である図2中の左右方向を言う。   1 and 2 show a suspension bush 10 for an automobile as a first embodiment of a fluid-filled cylindrical vibration isolator having a structure according to the present invention. The suspension bush 10 has a structure in which an inner shaft member 12 and an outer cylinder member 14 are elastically connected by a main rubber elastic body 16. In the following description, the axial direction refers to the left-right direction in FIG. 2 that is the central axial direction of the inner shaft member 12 and the outer cylinder member 14.

より詳細には、インナ軸部材12は、厚肉小径の略円筒形状を有しており、鉄やアルミニウム合金などで形成された高剛性の部材とされている。そして、インナ軸部材12は、図示しないサスペンションアームに固設されたロッド部材がその中心孔に挿通されることにより、サスペンションアーム側に取り付けられるようになっている。   More specifically, the inner shaft member 12 has a thick and small-diameter, generally cylindrical shape, and is a highly rigid member formed of iron, aluminum alloy, or the like. The inner shaft member 12 is attached to the suspension arm side by inserting a rod member fixed to a suspension arm (not shown) through the center hole thereof.

また、インナ軸部材12には、中間スリーブ18が外挿されている。中間スリーブ18は、インナ軸部材12と同様の材料で形成された高剛性の部材であって、薄肉大径の略円筒形状を有している。   An intermediate sleeve 18 is externally inserted into the inner shaft member 12. The intermediate sleeve 18 is a highly rigid member formed of the same material as the inner shaft member 12 and has a thin cylindrical shape with a large diameter.

さらに、中間スリーブ18には、一対の窓部20,20が形成されている。窓部20は、中間スリーブ18の軸方向中間部分を径方向に貫通しており、それぞれ周方向に半周に満たない長さで延びる一対が、径方向一方向(図1中、上下方向)で対向する位置に設けられている。   Further, the intermediate sleeve 18 is formed with a pair of windows 20 and 20. The window portion 20 penetrates the intermediate portion in the axial direction of the intermediate sleeve 18 in the radial direction, and a pair extending in a length less than a half circumference in the circumferential direction is in one radial direction (up and down direction in FIG. 1). It is provided at an opposing position.

更にまた、中間スリーブ18には、一対の嵌合溝部22,22が形成されている。嵌合溝部22は、中間スリーブ18の軸方向中間部分において外周面に開口しながら周方向に延びる凹溝であって、一対の窓部20,20の周方向間に設けられて、周方向両端が一対の窓部20,20の各一方に連通されている。   Furthermore, the intermediate sleeve 18 is formed with a pair of fitting groove portions 22, 22. The fitting groove portion 22 is a concave groove that extends in the circumferential direction while opening to the outer peripheral surface at the intermediate portion in the axial direction of the intermediate sleeve 18, and is provided between the pair of window portions 20, 20 in the circumferential direction. Is communicated with one of the pair of windows 20.

そして、インナ軸部材12と中間スリーブ18は、本体ゴム弾性体16によって連結されている。本体ゴム弾性体16は、厚肉の略円筒形状を有しており、内周面がインナ軸部材12に加硫接着されていると共に、外周面が中間スリーブ18に加硫接着されている。本実施形態の本体ゴム弾性体16は、図3,4に示すように、インナ軸部材12と中間スリーブ18を備えた一体加硫成形品23として形成されている。なお、中間スリーブ18の嵌合溝部22の溝内面が、本体ゴム弾性体16と一体形成された被覆ゴム24で覆われている。更に、嵌合溝部22の溝底面を覆う被覆ゴム24には、外周に向かって突出して嵌合溝部22の溝幅方向に延びる封止突条25が形成されている。   The inner shaft member 12 and the intermediate sleeve 18 are connected by a main rubber elastic body 16. The main rubber elastic body 16 has a thick, substantially cylindrical shape, and its inner peripheral surface is vulcanized and bonded to the inner shaft member 12 and its outer peripheral surface is vulcanized and bonded to the intermediate sleeve 18. As shown in FIGS. 3 and 4, the main rubber elastic body 16 of the present embodiment is formed as an integrally vulcanized molded product 23 including an inner shaft member 12 and an intermediate sleeve 18. The groove inner surface of the fitting groove portion 22 of the intermediate sleeve 18 is covered with a covering rubber 24 formed integrally with the main rubber elastic body 16. Further, the covering rubber 24 that covers the groove bottom surface of the fitting groove 22 is formed with a sealing protrusion 25 that protrudes toward the outer periphery and extends in the groove width direction of the fitting groove 22.

さらに、本体ゴム弾性体16には、一対のポケット部26,26が形成されている。ポケット部26は、本体ゴム弾性体16の軸方向中間部分において外周面に開口する凹所であって、それぞれ周方向に半周に満たない長さで延びる一対が、径方向一方向で対向する位置に設けられている。そして、一対のポケット部26,26は、中間スリーブ18の一対の窓部20,20の各一方を通じて、一体加硫成形品23の外周面に開口している。   Furthermore, a pair of pocket portions 26 and 26 are formed in the main rubber elastic body 16. The pocket portion 26 is a recess that opens to the outer peripheral surface in the axially intermediate portion of the main rubber elastic body 16, and a pair of pairs extending in a length less than a half circumference in the circumferential direction is opposed to each other in one radial direction. Is provided. The pair of pocket portions 26, 26 are open to the outer peripheral surface of the integrally vulcanized molded product 23 through one of the pair of window portions 20, 20 of the intermediate sleeve 18.

更にまた、一対のポケット部26,26の各底面には、ストッパゴム28が突設されている。ストッパゴム28は、本体ゴム弾性体16と一体形成されており、インナ軸部材12の外周面上から径方向一方向で外周に向かって突出している。   Furthermore, a stopper rubber 28 protrudes from each bottom surface of the pair of pocket portions 26 and 26. The stopper rubber 28 is formed integrally with the main rubber elastic body 16 and protrudes from the outer peripheral surface of the inner shaft member 12 toward the outer periphery in one radial direction.

また、本体ゴム弾性体16の一体加硫成形品23には、アウタ筒部材14が取り付けられている。アウタ筒部材14は、インナ軸部材12および中間スリーブ18と同様に高剛性の部材であって、薄肉大径の略円筒形状を有している。更に、アウタ筒部材14の内周面は、薄肉大径の略円筒形状を呈するシールゴム層30が固着されており、シールゴム層30によって略全面が覆われている。   The outer cylinder member 14 is attached to the integrally vulcanized molded product 23 of the main rubber elastic body 16. The outer cylinder member 14 is a highly rigid member similar to the inner shaft member 12 and the intermediate sleeve 18 and has a thin cylindrical shape with a large diameter. Further, the inner peripheral surface of the outer cylinder member 14 is fixed with a seal rubber layer 30 having a thin and large diameter substantially cylindrical shape, and the seal rubber layer 30 covers almost the entire surface.

そして、アウタ筒部材14は、中間スリーブ18に外挿されて八方絞り等の縮径加工を施されることにより、中間スリーブ18に外嵌固定されている。更に、アウタ筒部材14の内周面を覆うシールゴム層30が、中間スリーブ18の外周面に押し当てられて、中間スリーブ18とアウタ筒部材14との間で狭圧されることにより、中間スリーブ18とアウタ筒部材14の重ね合わせ面間が流体密に封止されている。   The outer cylinder member 14 is externally fitted to the intermediate sleeve 18 by being extrapolated to the intermediate sleeve 18 and subjected to diameter reduction processing such as an eight-way drawing. Further, the seal rubber layer 30 that covers the inner peripheral surface of the outer cylindrical member 14 is pressed against the outer peripheral surface of the intermediate sleeve 18 and is compressed between the intermediate sleeve 18 and the outer cylindrical member 14, whereby the intermediate sleeve is formed. A space between the overlapping surfaces of the outer cylinder member 18 and the outer cylinder member 14 is hermetically sealed.

このようにアウタ筒部材14が取り付けられることによって、中間スリーブ18の一対の窓部20,20および一対のポケット部26,26がアウタ筒部材14によって流体密に覆蓋されている。これにより、一対のポケット部26,26によって、インナ軸部材12を挟んだ径方向両側に第一の流体室32と第二の流体室34の各一方が形成されており、それら第一の流体室32と第二の流体室34に非圧縮性流体が封入されている。なお、一体加硫成形品23に対するアウタ筒部材14の取付けを、非圧縮性流体を満たした水槽中で行うことにより、第一の流体室32および第二の流体室34に非圧縮性流体を容易に封入することができる。また、一対の嵌合溝部22,22は、第一の流体室32と第二の流体室34の周方向間に形成されている。   By attaching the outer cylinder member 14 in this manner, the pair of window portions 20 and 20 and the pair of pocket portions 26 and 26 of the intermediate sleeve 18 are covered with the outer cylinder member 14 in a fluid-tight manner. Accordingly, each of the first fluid chamber 32 and the second fluid chamber 34 is formed on both sides in the radial direction across the inner shaft member 12 by the pair of pocket portions 26, 26. An incompressible fluid is sealed in the chamber 32 and the second fluid chamber 34. In addition, by attaching the outer cylinder member 14 to the integrally vulcanized molded product 23 in a water tank filled with an incompressible fluid, the incompressible fluid is supplied to the first fluid chamber 32 and the second fluid chamber 34. Can be easily encapsulated. Further, the pair of fitting groove portions 22 and 22 are formed between the first fluid chamber 32 and the second fluid chamber 34 in the circumferential direction.

第一の流体室32と第二の流体室34に封入される非圧縮性流体は、特に限定されるものではないが、例えば、水やエチレングリコール、アルキレングリコール、ポリアルキレングリコール、シリコーン油、或いはそれらの混合液などが、好適に用いられる。更に、後述する流体の流動作用に基づく防振効果を効率的に得るためには、封入流体が0.1Pa・s以下の低粘性流体であることが望ましい。   The incompressible fluid sealed in the first fluid chamber 32 and the second fluid chamber 34 is not particularly limited. For example, water, ethylene glycol, alkylene glycol, polyalkylene glycol, silicone oil, or A mixed solution thereof is preferably used. Furthermore, in order to efficiently obtain a vibration isolation effect based on the fluid flow action described later, it is desirable that the sealed fluid is a low viscosity fluid of 0.1 Pa · s or less.

また、図1,2に示すように、本体ゴム弾性体16の一体加硫成形品23とアウタ筒部材14の間には、オリフィス部材36が取り付けられている。オリフィス部材36は、全体として略円筒形状とされており、一組の半割体38,38を周方向に組み合わせて構成されている。   As shown in FIGS. 1 and 2, an orifice member 36 is attached between the integrally vulcanized molded product 23 of the main rubber elastic body 16 and the outer cylinder member 14. The orifice member 36 has a substantially cylindrical shape as a whole, and is configured by combining a pair of halves 38, 38 in the circumferential direction.

より具体的には、半割体38は、図5〜7に示すように、略半円筒形状とされており、金属や合成樹脂などで形成された硬質の部材とされている。更に、半割体38の周方向中間部分には、軸方向中間部分で内周側に向かって突出するストッパ受部40が形成されている。このストッパ受部40は、内周面がストッパゴム28の突出先端面に対応する形状とされており、表面が緩衝ゴム層42で覆われている。更にまた、半割体38の周方向中間部分には、軸方向外側に向かって突出する突出部43が一体形成されている。この突出部43の周方向端面は径方向一方向(図6中、上下)に広がっており、突出部43の周方向端部が軸方向視で内周に行くに従って次第に狭幅となる形状を有している。   More specifically, as shown in FIGS. 5 to 7, the halved body 38 has a substantially semi-cylindrical shape, and is a hard member formed of metal, synthetic resin, or the like. Furthermore, a stopper receiving portion 40 that protrudes toward the inner peripheral side at the intermediate portion in the axial direction is formed in the intermediate portion in the peripheral direction of the half body 38. The stopper receiving portion 40 has an inner peripheral surface corresponding to the protruding front end surface of the stopper rubber 28, and the surface is covered with a buffer rubber layer 42. Furthermore, a projecting portion 43 that projects outward in the axial direction is integrally formed at the circumferential intermediate portion of the half body 38. The circumferential end surface of the projecting portion 43 extends in one radial direction (up and down in FIG. 6), and the circumferential end portion of the projecting portion 43 has a shape that gradually becomes narrower as it goes to the inner circumference as viewed in the axial direction. Have.

さらに、半割体38には、外周面に第一の連通溝44と第二の連通溝46が形成されている。第一の連通溝44と第二の連通溝46は、それぞれ外周面に開口しながら周方向に延びており、軸方向に並列的に設けられている。また、第一の連通溝44の周方向両端部が半割体38の周方向各一方の端面に開口している一方、第二の連通溝46の周方向一方の端部が半割体38の周方向一方の端部付近において軸方向端面に開口していると共に、第二の連通溝46の周方向他方の端部が半割体38の周方向他方の端面に開口している。要するに、半割体38の周方向一方の端面には第一の連通溝44だけが開口していると共に、周方向他方の端面には二つの連通溝44,46が何れも開口している。なお、第一の連通溝44と第二の連通溝46の間には、周方向に連続して延びる隔壁部48が形成されており、それら第一,第二の連通溝44,46が全長に亘って隔壁部48で相互に隔てられている。   Further, the halved body 38 is formed with a first communication groove 44 and a second communication groove 46 on the outer peripheral surface. The first communication groove 44 and the second communication groove 46 extend in the circumferential direction while opening on the outer peripheral surface, and are provided in parallel in the axial direction. In addition, both end portions in the circumferential direction of the first communication groove 44 are open to one end surface in the circumferential direction of the half body 38, while one end portion in the circumferential direction of the second communication groove 46 is in the half body 38. The other end in the circumferential direction of the second communication groove 46 is open in the other end surface in the circumferential direction of the half body 38. In short, only the first communication groove 44 is opened on one end surface in the circumferential direction of the half body 38, and two communication grooves 44 and 46 are opened on the other end surface in the circumferential direction. A partition wall 48 extending continuously in the circumferential direction is formed between the first communication groove 44 and the second communication groove 46, and the first and second communication grooves 44 and 46 have a full length. They are separated from each other by partition walls 48.

このような構造とされた半割体38は、図8,9に示すように、一組が本体ゴム弾性体16の一体加硫成形品23に取り付けられている。即ち、一組の半割体38,38が、相互に反転した状態で対向するように、一体加硫成形品23に対して径方向両側から取り付けられている。そして、図1,2に示すように、一方の半割体38が第一の流体室32を周方向に跨いで配設されると共に、他方の半割体38が第二の流体室34を周方向に跨いで配設される。   As shown in FIGS. 8 and 9, a set of the halves 38 having such a structure is attached to the integral vulcanization molded product 23 of the main rubber elastic body 16. That is, the pair of halves 38, 38 are attached to the integrally vulcanized molded product 23 from both sides in the radial direction so as to face each other in an inverted state. As shown in FIGS. 1 and 2, one half 38 is disposed across the first fluid chamber 32 in the circumferential direction, and the other half 38 passes through the second fluid chamber 34. It is disposed across the circumferential direction.

さらに、一組の半割体38,38は、周方向端部が一対の嵌合溝部22,22の各一方に嵌め合わされている。即ち、図8に示すように、第一の連通溝44だけが開口する半割体38,38の周方向一方の端部が、一方の嵌合溝部22に嵌め合わされて、周方向で直接的に突き合わされていると共に、図9に示すように、第一,第二の連通溝44,46が何れも開口する半割体38,38の周方向他方の端部が、他方の嵌合溝部22の周方向各一方の端部に嵌め合わされている。   Further, the pair of halves 38, 38 are fitted to the respective ones of the pair of fitting grooves 22, 22 at the circumferential ends. That is, as shown in FIG. 8, one end in the circumferential direction of the halves 38, 38 in which only the first communication groove 44 opens is fitted into one fitting groove 22, and directly in the circumferential direction. As shown in FIG. 9, the other end in the circumferential direction of the halves 38 and 38 in which both the first and second communication grooves 44 and 46 are open is the other fitting groove. 22 is fitted to one end of each circumferential direction.

なお、一対の嵌合溝部22,22の溝内面が被覆ゴム24で覆われていることから、半割体38の周方向端部が嵌合溝部22,22に対して流体密に嵌め合わされている。本実施形態では、嵌合溝部22の溝底面を覆う被覆ゴム24に形成された封止突条25が半割体38の周方向端部に押し当てられることによって、半割体38と嵌合溝部22の溝底面との間がより有利に封止されている。また、半割体38の突出部43の周方向端部は、内周端が被覆ゴム24に周方向に押し当てられており、突出部43と被覆ゴム24の間が流体密に封止されている。特に、突出部43の周方向端部が内周に向かって狭幅となっていることから、被覆ゴム24に対する当接圧が高められて、シール性能が有利に得られるようになっている。   In addition, since the groove | channel inner surface of a pair of fitting groove part 22 and 22 is covered with the covering rubber 24, the circumferential direction edge part of the half split body 38 is fitted with the fitting groove part 22 and 22 fluid-tightly. Yes. In the present embodiment, the sealing protrusion 25 formed on the covering rubber 24 covering the groove bottom surface of the fitting groove 22 is pressed against the circumferential end of the half 38 to fit the half 38. The space between the groove bottom surface of the groove portion 22 is more advantageously sealed. Further, the circumferential end of the protruding portion 43 of the halved body 38 has an inner peripheral end pressed against the covering rubber 24 in the circumferential direction, and the space between the protruding portion 43 and the covering rubber 24 is sealed in a fluid-tight manner. ing. In particular, since the circumferential end of the protrusion 43 becomes narrower toward the inner periphery, the contact pressure against the covering rubber 24 is increased, and the sealing performance is advantageously obtained.

一組の半割体38,38は、一体加硫成形品23への装着状態で、周方向一方の端部が実質的に相互に連結されており、それら一組の半割体38,38によって、全体として軸方向視で略C字状のオリフィス部材36が構成される。そして、周方向で相互に突き合されるオリフィス部材36の周方向両端部が、他方の嵌合溝部22の周方向各一方の端部に嵌め合わされている。   The pair of halves 38, 38 are attached to the integrally vulcanized molded product 23, and one end in the circumferential direction is substantially connected to each other. As a result, the generally C-shaped orifice member 36 is configured as viewed in the axial direction. Then, both end portions in the circumferential direction of the orifice members 36 that are butted against each other in the circumferential direction are fitted into one end portion in the circumferential direction of the other fitting groove portion 22.

さらに、一組の半割体38,38の第一の連通溝44,44が一方の嵌合溝部22に嵌め合わされた端部において相互に連通されていると共に、一方の半割体38の第一の連通溝44と他方の半割体38の第二の連通溝46および一方の半割体38の第二の連通溝46と他方の半割体38の第一の連通溝44が、他方の嵌合溝部22に嵌め合わされた端部においてそれぞれ相互に連通されており、周方向に二周弱の所定長さで延びる螺旋状の周溝50が形成されている。なお、ここで言う螺旋状とは、周方向に一周よりも長く延びて、軸方向断面において並んで周方向に延びる部分があれば良い。更に、周溝50のリード角が一定である必要はなく、周溝50において軸方向断面で並んで周方向に延びる部分が互いに平行である必要もない。   Further, the first communication grooves 44, 44 of the pair of halves 38, 38 are communicated with each other at the ends fitted into the one fitting groove 22, and the first halves 38, One communication groove 44 and the second communication groove 46 of the other half body 38 and the second communication groove 46 of one half body 38 and the first communication groove 44 of the other half body 38 are the other. The end portions fitted to the fitting groove portions 22 communicate with each other, and a spiral circumferential groove 50 is formed extending in the circumferential direction with a predetermined length of less than two turns. In addition, the spiral shape mentioned here should just have a part extended in the circumferential direction longer than one round, and extending in the circumferential direction along with the axial cross section. Furthermore, the lead angle of the circumferential groove 50 does not need to be constant, and it is not necessary for the circumferential grooves 50 to be parallel to each other in the circumferential direction along the axial section.

ここにおいて、他方の嵌合溝部22に嵌め合わされるオリフィス部材36の周方向両端部間には、接続ゴム52が形成されている。接続ゴム52は、嵌合溝部22内の周方向中間部分に形成されており、底壁接続ゴム54と隔壁接続ゴム56とを一体で備えている。   Here, a connection rubber 52 is formed between both circumferential ends of the orifice member 36 fitted in the other fitting groove 22. The connection rubber 52 is formed at a middle portion in the circumferential direction in the fitting groove portion 22 and integrally includes a bottom wall connection rubber 54 and a partition wall connection rubber 56.

より詳細には、底壁接続ゴム54は、図3,4,10に示すように、他方の嵌合溝部22内の周方向中間部分に形成されて、嵌合溝部22の溝底面から外周側に突出している。なお、本実施形態では、嵌合溝部22の側内面に固着された被覆ゴム24が周方向中間部分において軸方向外側に拡幅しており、底壁接続ゴム54が係る拡幅部分まで広がっている。   More specifically, as shown in FIGS. 3, 4, and 10, the bottom wall connecting rubber 54 is formed in the middle portion in the circumferential direction in the other fitting groove 22, and the outer circumferential side from the groove bottom surface of the fitting groove 22. Protruding. In this embodiment, the covering rubber 24 fixed to the inner side surface of the fitting groove 22 is widened outward in the axial direction at the circumferential intermediate portion, and the bottom wall connecting rubber 54 is widened to the widened portion.

隔壁接続ゴム56は、底壁接続ゴム54の軸方向中間部分において外周側に突出しており、略一定の軸方向寸法で周方向に延びている。かかる隔壁接続ゴム56を挟んで軸方向の両側には、底壁接続ゴム54を溝底面とすると共に隔壁接続ゴム56と被覆ゴム24を溝側面とする接続溝58が、それぞれ周方向に延びて形成されている。更に、隔壁接続ゴム56の突出先端面には、軸方向中間部分から外周側に突出するシールリップ60が、周方向の全長に亘って連続して形成されている。本実施形態では、軸方向に離隔して並列的に周方向に延びる二条のシールリップ60,60が形成されている。   The partition wall connecting rubber 56 protrudes to the outer peripheral side at the axially intermediate portion of the bottom wall connecting rubber 54 and extends in the circumferential direction with a substantially constant axial dimension. On both sides in the axial direction across the partition wall connection rubber 56, connection grooves 58 having the bottom wall connection rubber 54 as the groove bottom surface and the partition wall connection rubber 56 and the covering rubber 24 as the groove side surfaces extend in the circumferential direction, respectively. Is formed. Furthermore, a sealing lip 60 that protrudes from the intermediate portion in the axial direction to the outer peripheral side is continuously formed on the protruding front end surface of the partition wall connecting rubber 56 over the entire length in the circumferential direction. In this embodiment, two seal lips 60, 60 that are spaced apart in the axial direction and extend in the circumferential direction in parallel are formed.

そして、接続ゴム52は、図10に示すように、他方の嵌合溝部22に嵌め合わされたオリフィス部材36の周方向両端部間で周方向に挟まれている。即ち、オリフィス部材36における第一,第二の連通溝44,46の底壁部が底壁接続ゴム54に周方向で押し当てられており、底壁接続ゴム54がオリフィス部材36の周方向両端部間で周方向に挟まれている。更に、オリフィス部材36の隔壁部48の周方向端部が隔壁接続ゴム56に周方向で押し当てられており、隔壁接続ゴム56がオリフィス部材36の周方向両端部間で周方向に挟まれている。   As shown in FIG. 10, the connection rubber 52 is sandwiched in the circumferential direction between the circumferential ends of the orifice member 36 fitted in the other fitting groove 22. That is, the bottom wall portions of the first and second communication grooves 44, 46 in the orifice member 36 are pressed against the bottom wall connecting rubber 54 in the circumferential direction, and the bottom wall connecting rubber 54 has both ends in the circumferential direction of the orifice member 36. It is sandwiched between the parts in the circumferential direction. Furthermore, the circumferential end of the partition wall portion 48 of the orifice member 36 is pressed against the partition wall connecting rubber 56 in the circumferential direction, and the partition wall connecting rubber 56 is sandwiched between the circumferential end portions of the orifice member 36 in the circumferential direction. Yes.

これにより、底壁接続ゴム54が周方向に圧縮されていると共に、隔壁接続ゴム56が周方向に圧縮されている。なお、オリフィス部材36を取り付けられた一体加硫成形品23にアウタ筒部材14が外嵌される際に、オリフィス部材36の周方向両端部が相互に接近変位せしめられることにより、底壁接続ゴム54と隔壁接続ゴム56が周方向に圧縮される。   Thereby, the bottom wall connecting rubber 54 is compressed in the circumferential direction, and the partition wall connecting rubber 56 is compressed in the circumferential direction. In addition, when the outer cylinder member 14 is externally fitted to the integrally vulcanized molded product 23 to which the orifice member 36 is attached, both end portions in the circumferential direction of the orifice member 36 are displaced toward each other, thereby bottom wall connecting rubber. 54 and the partition connecting rubber 56 are compressed in the circumferential direction.

さらに、隔壁接続ゴム56は、幅寸法や形成材料を適宜に設定することにより、オリフィス部材36の周方向両端部間で及ぼされる周方向の圧縮力に対して、座屈して折れ曲がることなく、周方向に圧縮されている。本実施形態では、オリフィス部材36の隔壁部48の周方向端部が、周方向外側に向かって次第に軸方向寸法が大きくなるテーパ部62を備えており、テーパ部62を挟んだ周方向外側が内側よりも軸方向で厚肉となっている。そして、隔壁接続ゴム56が厚肉とされた隔壁部48の周方向端部と略同じ軸方向寸法とされることで、隔壁接続ゴム56の座屈に対する強度が充分に大きくされている。   Further, the partition wall connecting rubber 56 is not buckled and bent against the circumferential compressive force exerted between the circumferential ends of the orifice member 36 by appropriately setting the width dimension and the forming material. Compressed in the direction. In the present embodiment, the circumferential end portion of the partition wall portion 48 of the orifice member 36 includes a tapered portion 62 whose axial dimension gradually increases toward the circumferential outer side, and the circumferential outer side sandwiching the tapered portion 62 is It is thicker in the axial direction than the inside. The partition wall connecting rubber 56 has substantially the same axial dimension as the circumferential end of the partition wall portion 48 having a thick wall, so that the strength against the buckling of the partition wall connecting rubber 56 is sufficiently increased.

更にまた、第一,第二の連通溝44,46の軸方向外側の側壁部を構成するオリフィス部材36の軸端壁部64が、周方向他方の端部において隔壁部48の端部よりも周方向内側に控えており、軸端壁部64の周方向端部が嵌合溝部22の溝側面を覆う被覆ゴム24に対して周方向で当接している。更に、第一,第二の連通溝44,46の軸方向外側の溝側面には、周方向外側に向かって次第に軸方向外側に傾斜するテーパ面66が設けられていると共に、嵌合溝部22の溝側面を覆う被覆ゴム24の周方向両端部には、周方向内側に向かって次第に軸方向外側に傾斜するテーパ面68が設けられている。そして、それらテーパ面66,68が周方向に略連続するように接続されて広がっており、隔壁部48が軸方向で厚肉とされたオリフィス部材36の周方向端部および隔壁接続ゴム56の形成部分において、第一,第二の連通溝44,46および接続溝58が軸方向外側に拡げられて、溝幅が狭くなることなく確保されている。   Furthermore, the axial end wall portion 64 of the orifice member 36 that constitutes the axially outer side wall portion of the first and second communication grooves 44, 46 is more than the end portion of the partition wall portion 48 at the other end portion in the circumferential direction. The circumferential end of the shaft end wall 64 is in contact with the covering rubber 24 covering the groove side surface of the fitting groove 22 in the circumferential direction. Furthermore, a taper surface 66 that is gradually inclined outward in the axial direction toward the outer side in the circumferential direction is provided on the groove side surface in the axial direction outer side of the first and second communication grooves 44 and 46, and the fitting groove portion 22. At both ends in the circumferential direction of the covering rubber 24 covering the groove side surfaces, tapered surfaces 68 are provided which gradually incline toward the outer side in the axial direction. The tapered surfaces 66 and 68 are connected and expanded so as to be substantially continuous in the circumferential direction, and the partition wall 48 is thickened in the axial direction. In the formation portion, the first and second communication grooves 44 and 46 and the connection groove 58 are expanded outward in the axial direction, and the groove width is secured without being narrowed.

また、底壁接続ゴム54の嵌合溝部22の溝底面からの突出高さが、第一,第二の連通溝44,46の底壁部の径方向厚さと略同じとされており、底壁接続ゴム54の突出先端面が第一,第二の連通溝44,46の溝底面と略同じ径方向位置で、相互に連続的に接続されている(図1参照)。更にまた、隔壁接続ゴム56の底壁接続ゴム54からの突出高さが、隔壁部48の第一,第二の連通溝44,46底面に対する突出高さと略同じとされており、隔壁接続ゴム56の突出先端面が隔壁部48の突出先端面と略同じ径方向位置で連続的に接続されている(図1参照)。   The protruding height of the bottom wall connecting rubber 54 from the groove bottom surface of the fitting groove portion 22 is substantially the same as the radial thickness of the bottom wall portions of the first and second communication grooves 44, 46. The protruding front end surfaces of the wall connecting rubber 54 are continuously connected to each other at substantially the same radial position as the groove bottom surfaces of the first and second communication grooves 44 and 46 (see FIG. 1). Furthermore, the protruding height of the partition wall connecting rubber 56 from the bottom wall connecting rubber 54 is substantially the same as the protruding height of the partition wall portion 48 with respect to the bottom surfaces of the first and second communication grooves 44, 46. 56 protruding front end surfaces are continuously connected at substantially the same radial position as the protruding front end surface of the partition wall 48 (see FIG. 1).

そして、オリフィス部材36を取り付けられた本体ゴム弾性体16の一体加硫成形品23にアウタ筒部材14が外挿されて、アウタ筒部材14に縮径加工が施されることによって、オリフィス部材36が本体ゴム弾性体16の一体加硫成形品23とアウタ筒部材14の間に組み付けられている。   Then, the outer cylinder member 14 is extrapolated to the integrally vulcanized molded product 23 of the main rubber elastic body 16 to which the orifice member 36 is attached, and the outer cylinder member 14 is subjected to diameter reduction processing, whereby the orifice member 36. Is assembled between the integrally vulcanized molded product 23 of the main rubber elastic body 16 and the outer cylindrical member 14.

さらに、オリフィス部材36の外周面に開口する周溝50が、アウタ筒部材14によって流体密に覆蓋されて、トンネル状の流路が形成されると共に、該トンネル状の流路が周方向両端部において第一の流体室32と第二の流体室34の各一方に連通される。これにより、第一の流体室32と第二の流体室34を相互に連通するオリフィス通路70が、周溝50を利用して形成されている。なお、オリフィス通路70は、流動流体の共振周波数(オリフィス通路70のチューニング周波数)が、第一の流体室32および第二の流体室34の壁ばね剛性を考慮しながら、通路断面積(A)と通路長(L)の比(A/L)を適宜に設定することで、チューニングされている。本実施形態では、オリフィス通路70のチューニング周波数が、ブレーキシミーやブレーキジャダーなどに相当する周波数にチューニングされている。   Further, the circumferential groove 50 opened on the outer peripheral surface of the orifice member 36 is fluid-tightly covered with the outer cylinder member 14 to form a tunnel-shaped flow path, and the tunnel-shaped flow path is formed at both ends in the circumferential direction. , The first fluid chamber 32 and the second fluid chamber 34 communicate with each other. Thus, an orifice passage 70 that connects the first fluid chamber 32 and the second fluid chamber 34 to each other is formed using the circumferential groove 50. The orifice passage 70 has a passage sectional area (A) in which the resonance frequency of the flowing fluid (the tuning frequency of the orifice passage 70) takes into account the rigidity of the wall springs of the first fluid chamber 32 and the second fluid chamber 34. And the passage length (L) ratio (A / L) is set appropriately. In the present embodiment, the tuning frequency of the orifice passage 70 is tuned to a frequency corresponding to brake shimmy, brake judder or the like.

ここにおいて、接続溝58,58を隔てる隔壁接続ゴム56が、アウタ筒部材14の内周面に当接されており、隔壁接続ゴム56とアウタ筒部材14の間が流体密に封止されている。本実施形態では、隔壁接続ゴム56の外周面に設けられたシールリップ60がアウタ筒部材14の内周面に押し当てられることで、隔壁接続ゴム56とアウタ筒部材14の間がより高度に封止されている。   Here, the partition connection rubber 56 separating the connection grooves 58, 58 is in contact with the inner peripheral surface of the outer cylinder member 14, and the space between the partition connection rubber 56 and the outer cylinder member 14 is fluid-tightly sealed. Yes. In the present embodiment, the seal lip 60 provided on the outer peripheral surface of the partition wall connecting rubber 56 is pressed against the inner peripheral surface of the outer cylinder member 14, so that the space between the partition wall connection rubber 56 and the outer cylinder member 14 is higher. It is sealed.

かくの如き構造とされたサスペンションブッシュ10は、インナ軸部材12がサスペンションアームに取り付けられると共に、アウタ筒部材14が車両ボデーに取り付けられて、それらサスペンションアームと車両ボデーを防振連結するようになっている。そして、インナ軸部材12とアウタ筒部材14の間にブレーキシミーやブレーキジャダーなどに相当する周波数の振動が入力されると、第一の流体室32と第二の流体室34の間に相対的な圧力変動が生じて、オリフィス通路70を通じた流体流動が生ぜしめられることから、流体の流動作用に基づく防振効果が発揮される。オリフィス通路70は、周方向に折り返すことなく螺旋状に延びる周溝50によって形成されていることから、流体流動が小さな流動抵抗で効率的に生ぜしめられて、流体の流動作用に基づく防振効果が有利に発揮される。   In the suspension bush 10 having such a structure, the inner shaft member 12 is attached to the suspension arm, and the outer cylinder member 14 is attached to the vehicle body, so that the suspension arm and the vehicle body are connected in a vibration-proof manner. ing. When vibration having a frequency corresponding to a brake shimmy, a brake judder, or the like is input between the inner shaft member 12 and the outer cylinder member 14, the relative movement between the first fluid chamber 32 and the second fluid chamber 34 is achieved. Since the pressure fluctuation is generated and the fluid flow through the orifice passage 70 is generated, the vibration isolating effect based on the fluid flow action is exhibited. Since the orifice passage 70 is formed by the circumferential groove 50 that spirally extends without being folded back in the circumferential direction, the fluid flow is efficiently generated with a small flow resistance, and the vibration isolation effect based on the fluid flow action of the fluid. Is advantageous.

また、車両が段差を乗り越える際などに、インナ軸部材12とアウタ筒部材14の間に大きな荷重が入力されて、インナ軸部材12とアウタ筒部材14が径方向一方向に大きく相対変位せしめられると、インナ軸部材12とオリフィス部材36のストッパ受部40がストッパゴム28および緩衝ゴム層42を介して当接する。これにより、インナ軸部材12とアウタ筒部材14の相対変位量が制限されて、本体ゴム弾性体16の過大な変形による損傷が回避されるようになっている。   Further, when the vehicle gets over the step, a large load is input between the inner shaft member 12 and the outer cylinder member 14, and the inner shaft member 12 and the outer cylinder member 14 are relatively displaced in one radial direction. Then, the stopper receiving portion 40 of the inner shaft member 12 and the orifice member 36 abuts via the stopper rubber 28 and the buffer rubber layer 42. Thereby, the relative displacement amount of the inner shaft member 12 and the outer cylinder member 14 is limited, and damage due to excessive deformation of the main rubber elastic body 16 is avoided.

このような本実施形態に従う構造とされたサスペンションブッシュ10によれば、オリフィス部材36の周方向両端部が、接続ゴム52に周方向で押し当てられていることから、オリフィス部材36の周方向両端部の接続部分において、流体の漏れによる流体流動の阻害が回避されて、オリフィス通路70による防振効果が効率的に発揮される。特に、隔壁接続ゴム56は、オリフィス部材36の押当てに対して座屈することなく周方向に圧縮されることから、隔壁部48と隔壁接続ゴム56の間や隔壁接続ゴム56とアウタ筒部材14の間に隙間が生じるのを防いで、リークによる防振性能の低下が防止される。   According to the suspension bush 10 having the structure according to the present embodiment, both circumferential ends of the orifice member 36 are pressed against the connecting rubber 52 in the circumferential direction. In the connection part of the part, obstruction of the fluid flow due to fluid leakage is avoided, and the vibration isolation effect by the orifice passage 70 is efficiently exhibited. In particular, the partition wall connection rubber 56 is compressed in the circumferential direction without buckling against the pressing of the orifice member 36, so that the partition wall connection rubber 56 and the partition wall connection rubber 56 and the outer cylinder member 14 are compressed. A gap is prevented from being generated between them, and the vibration-proof performance is prevented from being deteriorated due to leakage.

さらに、隔壁接続ゴム56の突出先端面にシールリップ60が形成されて、アウタ筒部材14の内周面に押し当てられていることから、隔壁接続ゴム56の突出先端面とアウタ筒部材14の内周面との重ね合わせ面間を通じたオリフィス通路70の短絡が回避されて、目的とする防振効果を有効に得ることができる。   Further, since the seal lip 60 is formed on the protruding front end surface of the partition wall connecting rubber 56 and pressed against the inner peripheral surface of the outer cylindrical member 14, the protruding front end surface of the partition wall connecting rubber 56 and the outer cylindrical member 14 are A short circuit of the orifice passage 70 between the overlapping surfaces with the inner peripheral surface is avoided, and the intended vibration isolation effect can be effectively obtained.

また、隔壁接続ゴム56の厚さが充分に確保されていることから、隔壁接続ゴム56が座屈することなく周方向に圧縮されている。しかも、隔壁接続ゴム56に周方向で押し当てられる隔壁部48がテーパ部62を備えており、隔壁部48の周方向端部が隔壁接続ゴム56と略同じ厚さとされていることから、隔壁接続ゴム56と隔壁部48の接続部分に流体流動の妨げになる程の段差が形成されるのを防いで、流体の流動作用による防振効果が有効に発揮される。   Further, since the partition wall connecting rubber 56 has a sufficient thickness, the partition wall connecting rubber 56 is compressed in the circumferential direction without buckling. In addition, since the partition wall portion 48 pressed against the partition wall connection rubber 56 in the circumferential direction includes a taper portion 62, the circumferential end of the partition wall portion 48 has substantially the same thickness as the partition wall connection rubber 56. By preventing the formation of a level difference that hinders fluid flow at the connecting portion between the connection rubber 56 and the partition wall 48, the vibration isolation effect due to the fluid flow effect is effectively exhibited.

さらに、第一,第二の連通溝44,46の溝側面にテーパ面66が設けられていると共に、接続溝58の溝側面にテーパ面68が設けられて、オリフィス部材36の周方向端部付近において第一,第二の連通溝44,46および接続溝58が外周側に拡がっている。それ故、隔壁接続ゴム56および隔壁部48の周方向端部が軸方向に厚肉とされていても、オリフィス通路70の軸方向寸法が小さくなることなく確保されて、流体の流動作用に基づく防振効果が所定のチューニング周波数で有効に発揮される。   Further, a taper surface 66 is provided on the groove side surface of the first and second communication grooves 44, 46, and a taper surface 68 is provided on the groove side surface of the connection groove 58. In the vicinity, the first and second communication grooves 44 and 46 and the connection groove 58 are extended to the outer peripheral side. Therefore, even if the circumferential end portions of the partition wall connecting rubber 56 and the partition wall portion 48 are thick in the axial direction, the axial dimension of the orifice passage 70 is ensured without being reduced, and is based on the fluid flow action. The anti-vibration effect is effectively exhibited at a predetermined tuning frequency.

しかも、軸端壁部64がオリフィス部材36の周方向端部よりも周方向内側に控えて設けられており、軸端壁部64のテーパ面66と被覆ゴム24のテーパ面68が周方向に接続されていることから、軸端壁部64の周方向端部を軸方向に著しく薄肉の尖った形状とすることなく、オリフィス通路70軸方向外側の壁部の段差を防ぐことができて、効率的な流体流動が実現される。加えて、軸端壁部64の周方向端部にある程度の厚さが確保されることで、軸端壁部64の鋭利な周方向端部が被覆ゴム24に当接することで亀裂を生じたり、製造作業者が軸端壁部64の周方向端部に触れて負傷するといった不具合を、回避することができる。   Moreover, the shaft end wall portion 64 is provided on the inner side in the circumferential direction with respect to the circumferential end portion of the orifice member 36, and the tapered surface 66 of the shaft end wall portion 64 and the tapered surface 68 of the covering rubber 24 are arranged in the circumferential direction. Since it is connected, the circumferential end of the shaft end wall 64 can be prevented from having a step on the outer wall of the orifice passage 70 in the axial direction without making the end of the shaft 70 extremely thin and sharp in the axial direction. Efficient fluid flow is achieved. In addition, since a certain amount of thickness is secured at the circumferential end of the shaft end wall 64, the sharp circumferential end of the shaft end wall 64 abuts against the covering rubber 24 to cause cracks. The trouble that the manufacturing worker touches the circumferential end of the shaft end wall 64 and is injured can be avoided.

さらに、オリフィス部材36における第一,第二の連通溝44,46の溝底面と、接続ゴム52の接続溝58の溝底面とが、略同じ径方向高さで連続するように配置されており、第一,第二の連通溝44,46と接続溝58との接続部分において溝底面に段差を生じるのが防止されている。それ故、オリフィス通路70の通路長方向への流体流動が、第一,第二の連通溝44,46と接続溝58との接続部分で妨げられることがなく、スムーズな流体流動による防振効果の効率的な発揮が実現される。   Further, the bottom surface of the first and second communication grooves 44 and 46 in the orifice member 36 and the bottom surface of the connection groove 58 of the connection rubber 52 are arranged so as to be continuous at substantially the same radial height. In the connecting portion between the first and second communication grooves 44 and 46 and the connecting groove 58, a step is prevented from being generated on the bottom surface of the groove. Therefore, the fluid flow in the passage length direction of the orifice passage 70 is not hindered by the connection portion between the first and second communication grooves 44 and 46 and the connection groove 58, and the vibration isolation effect by the smooth fluid flow. Efficient display is realized.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、オリフィス部材36は、周上で三つ以上の分割体を組み合わせて構成されていても良いし、分割されない一部材であっても良い。また、オリフィス部材36が一組の半割体で構成される場合に、それら一組の半割体は互いに異なる構造とされ得る。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, the orifice member 36 may be configured by combining three or more divided bodies on the circumference, or may be a single member that is not divided. Further, when the orifice member 36 is constituted by a set of halves, the set of halves may have different structures.

また、オリフィス通路70は、二周以上の長さで周方向螺旋状に延びていても良い。換言すれば、オリフィス部材36の周方向端面に三つ以上の連通溝が開口していても良い。   The orifice passage 70 may extend in a circumferential spiral shape with a length of two or more rounds. In other words, three or more communication grooves may be opened on the circumferential end surface of the orifice member 36.

また、隔壁部48のテーパ部62は必須ではなく、例えば、隔壁部48の周方向端部が周方向中間部分と略同じ厚さであっても良い。その場合にも、隔壁部48の周方向端部と隔壁接続ゴム56の厚さが略同じとされて、段差を生じないことが望ましい。   Moreover, the taper part 62 of the partition part 48 is not essential, for example, the circumferential direction edge part of the partition part 48 may be substantially the same thickness as the circumferential direction intermediate part. Also in that case, it is desirable that the circumferential end of the partition wall portion 48 and the partition connecting rubber 56 have substantially the same thickness so that no step is generated.

さらに、隔壁部48にテーパ部62がない場合等には、第一,第二の連通溝44,46の周方向端部と接続溝58を軸方向外側に拡げる必要はなく、オリフィス部材36のテーパ面66と被覆ゴム24のテーパ面68はなくても良い。   Further, when the partition wall portion 48 does not have the taper portion 62, the circumferential end portions of the first and second communication grooves 44 and 46 and the connection groove 58 need not be expanded outward in the axial direction. The tapered surface 66 and the tapered surface 68 of the covering rubber 24 may be omitted.

また、第一,第二の連通溝44,46と接続溝58は、前記実施形態のように段差なく接続されていることが望ましいが、第一,第二の連通溝44,46の溝底面と底壁接続ゴム54の突出先端面との径方向位置が互いに異ならされて、溝底面に段差があっても良いし、隔壁部48の周方向端部と隔壁接続ゴム56が互いに異なる厚さで形成されて、溝側面に段差があっても良い。   The first and second communication grooves 44 and 46 and the connection groove 58 are preferably connected without a step as in the above-described embodiment, but the groove bottom surfaces of the first and second communication grooves 44 and 46 are used. And the protruding front end surface of the bottom wall connecting rubber 54 may have different radial positions, there may be a step on the groove bottom surface, and the circumferential end of the partition wall 48 and the partition connecting rubber 56 may have different thicknesses. The groove side surface may have a step.

本発明は、サスペンションブッシュにのみ適用されるものではなく、例えば、エンジンマウントやボデーマウント、サブフレームマウント、デフマウントなどにも適用され得る。また、本発明の適用範囲は、自動車用の流体封入式筒形防振装置に限定されず、例えば、自動二輪車や鉄道用車両、産業用車両などに用いられる流体封入式筒形防振装置にも好適に適用される。   The present invention is not only applied to the suspension bush, but can also be applied to, for example, an engine mount, a body mount, a subframe mount, and a differential mount. The scope of application of the present invention is not limited to a fluid-filled cylindrical vibration isolator for automobiles. For example, the present invention is applicable to a fluid-filled cylindrical vibration isolator used for motorcycles, railway vehicles, industrial vehicles, and the like. Are also preferably applied.

10:サスペンションブッシュ(流体封入式筒形防振装置)、12:インナ軸部材、14:アウタ筒部材、16:本体ゴム弾性体、18:中間スリーブ、20;窓部、22:嵌合溝部、24:被覆ゴム、26:ポケット部、32:第一の流体室、34:第二の流体室、36:オリフィス部材、38:半割体、44:第一の連通溝、46:第二の連通溝、48:隔壁部、54:底壁接続ゴム、56:隔壁接続ゴム、60:シールリップ、64:軸端壁部、66:テーパ面、68:テーパ面、70:オリフィス通路 10: Suspension bush (fluid-filled cylindrical vibration isolator), 12: Inner shaft member, 14: Outer cylinder member, 16: Rubber elastic body, 18: Intermediate sleeve, 20: Window, 22: Fitting groove, 24: Coated rubber, 26: Pocket portion, 32: First fluid chamber, 34: Second fluid chamber, 36: Orifice member, 38: Half split, 44: First communication groove, 46: Second Communication groove, 48: partition wall, 54: bottom wall connection rubber, 56: partition wall connection rubber, 60: seal lip, 64: shaft end wall, 66: taper surface, 68: taper surface, 70: orifice passage

Claims (7)

インナ軸部材とアウタ筒部材が本体ゴム弾性体で弾性連結されていると共に、該本体ゴム弾性体の外周面に開口する一対のポケット部を該アウタ筒部材で覆蓋することによって、非圧縮性流体を封入されて振動入力時に相対的な圧力変動を生じる第一の流体室と第二の流体室が形成されている一方、それら第一の流体室と第二の流体室を跨いで周方向に延びるオリフィス部材が該本体ゴム弾性体と該アウタ筒部材との間に組み付けられていると共に、該オリフィス部材には外周面に開口して周方向螺旋状に延びる連通溝が形成されており、該連通溝の外周開口を該アウタ筒部材で覆うことによって該第一の流体室と該第二の流体室を相互に連通するオリフィス通路が形成されている流体封入式筒形防振装置において、
前記第一の流体室と前記第二の流体室の周方向間には周方向に延びる嵌合溝部が形成されており、前記オリフィス部材において互いに周方向で突き合わされる両端部が該嵌合溝部の周方向各一方の端部に嵌め合わされていると共に、
該嵌合溝部内の周方向中間部分には溝底面から外周側に突出する底壁接続ゴムが設けられて、該底壁接続ゴムが該オリフィス部材の底壁部の周方向両端部間に挟まれている一方、
該底壁接続ゴムの溝幅方向中間部分には外周側に突出して前記アウタ筒部材の内周面に当接する隔壁接続ゴムが形成されており、該オリフィス部材の周方向両端部にそれぞれ開口する各複数の前記連通溝の間の隔壁部が該隔壁接続ゴムに周方向の両側から押し当てられて、該隔壁接続ゴムが座屈することなく周方向に圧縮されていることを特徴とする流体封入式筒形防振装置。
The inner shaft member and the outer cylindrical member are elastically connected by the main rubber elastic body, and a pair of pocket portions opened on the outer peripheral surface of the main rubber elastic body are covered with the outer cylindrical member, thereby providing an incompressible fluid. The first fluid chamber and the second fluid chamber that form relative pressure fluctuations when vibration is input are formed, and the first fluid chamber and the second fluid chamber are straddled across the first fluid chamber and the second fluid chamber in the circumferential direction. An extending orifice member is assembled between the main rubber elastic body and the outer cylindrical member, and the orifice member is formed with a communication groove that opens in the outer circumferential surface and extends in a circumferential spiral shape. In a fluid-filled cylindrical vibration damping device in which an orifice passage is formed to connect the first fluid chamber and the second fluid chamber to each other by covering the outer peripheral opening of the communication groove with the outer cylinder member.
Between the circumferential direction of said 1st fluid chamber and said 2nd fluid chamber, the fitting groove part extended in the circumferential direction is formed, and both ends which are mutually faced in the circumferential direction in the said orifice member are this fitting groove part And is fitted to one end of each circumferential direction,
A bottom wall connecting rubber projecting from the groove bottom surface to the outer peripheral side is provided in the circumferential middle portion in the fitting groove, and the bottom wall connecting rubber is sandwiched between both circumferential ends of the bottom wall of the orifice member. While
Bulkhead connecting rubber is formed in the middle portion of the bottom wall connecting rubber in the groove width direction so as to protrude to the outer peripheral side and abut against the inner peripheral surface of the outer cylindrical member, and open to both ends in the circumferential direction of the orifice member. A partition wall between the plurality of communication grooves is pressed against the partition connecting rubber from both sides in the circumferential direction, and the partition connecting rubber is compressed in the circumferential direction without buckling. Type cylindrical vibration isolator.
前記オリフィス部材の前記連通溝の底面が前記底壁接続ゴムの外周面と同じ径方向位置に位置せしめられている請求項1に記載の流体封入式筒形防振装置。   The fluid-filled cylindrical vibration isolator according to claim 1, wherein a bottom surface of the communication groove of the orifice member is positioned at the same radial position as the outer peripheral surface of the bottom wall connecting rubber. 前記オリフィス部材における前記隔壁部の周方向端部が周方向外側に向かって次第に軸方向で厚肉となっている請求項1又は2に記載の流体封入式筒形防振装置。   The fluid-filled cylindrical vibration isolator according to claim 1 or 2, wherein a circumferential end portion of the partition wall in the orifice member is gradually thickened in the axial direction toward the outer side in the circumferential direction. 前記オリフィス部材の周方向両端部にそれぞれ開口する各複数の前記連通溝における軸方向外側の軸端壁部が前記隔壁部よりも周方向内側に控えて設けられていると共に、該軸端壁部で構成された該連通溝の溝内面が周方向外側に向かって次第に軸方向外側に傾斜するテーパ面を備えている一方、
前記嵌合溝部の軸方向外側の溝内面を覆う被覆ゴムの表面が周方向内側に向かって次第に軸方向外側に傾斜するテーパ面とされており、
それらテーパ面が周方向に接続されて連続的に広がっている請求項1〜3の何れか1項に記載の流体封入式筒形防振装置。
A shaft end wall portion on the outer side in the axial direction of each of the plurality of communication grooves that opens at both ends in the circumferential direction of the orifice member is provided in the circumferential direction inner side than the partition wall portion, and the shaft end wall portion While the groove inner surface of the communication groove constituted by comprises a tapered surface that gradually slopes outward in the circumferential direction toward the outer side in the circumferential direction,
The surface of the covering rubber that covers the groove inner surface on the outer side in the axial direction of the fitting groove portion is a tapered surface that gradually slopes outward in the axial direction toward the inner side in the circumferential direction,
The fluid-filled cylindrical vibration isolator according to any one of claims 1 to 3, wherein the tapered surfaces are connected in the circumferential direction and continuously spread.
前記隔壁接続ゴムの外周面には外周側に突出するシールリップが周方向全長に亘って連続して形成されている請求項1〜4の何れか1項に記載の流体封入式筒形防振装置。   5. The fluid-filled cylindrical vibration damping device according to claim 1, wherein a seal lip protruding outward is formed on the outer peripheral surface of the partition wall connecting rubber over the entire length in the circumferential direction. apparatus. 前記オリフィス部材が周方向に分割された一組の半割体で構成されており、一方の該半割体が前記第一の流体室を周方向に跨いで延びていると共に、他方の該半割体が前記第二の流体室を周方向に跨いで延びている請求項1〜5の何れか1項に記載の流体封入式筒形防振装置。   The orifice member is composed of a pair of halves divided in the circumferential direction, and one of the halves extends across the first fluid chamber in the circumferential direction and the other half of the halves. The fluid-filled cylindrical vibration isolator according to any one of claims 1 to 5, wherein the split body extends across the second fluid chamber in the circumferential direction. 前記インナ軸部材に中間スリーブが外挿されており、それらインナ軸部材と中間スリーブが前記本体ゴム弾性体によって弾性連結されていると共に、該中間スリーブに前記アウタ筒部材が外嵌されている一方、
該本体ゴム弾性体に形成された前記一対のポケット部が該中間スリーブに形成された一対の窓部を通じて外周面に開口しており、該中間スリーブにおける該一対の窓部の周方向間に前記嵌合溝部が形成されている請求項1〜6の何れか1項に記載の流体封入式筒形防振装置。
An intermediate sleeve is extrapolated to the inner shaft member, the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and the outer cylinder member is externally fitted to the intermediate sleeve. ,
The pair of pocket portions formed in the main rubber elastic body open to the outer peripheral surface through a pair of windows formed in the intermediate sleeve, and the circumferential direction between the pair of windows in the intermediate sleeve The fluid-filled cylindrical vibration isolator according to any one of claims 1 to 6, wherein a fitting groove is formed.
JP2013200119A 2013-09-26 2013-09-26 Fluid filled cylindrical vibration isolator Active JP6148951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200119A JP6148951B2 (en) 2013-09-26 2013-09-26 Fluid filled cylindrical vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200119A JP6148951B2 (en) 2013-09-26 2013-09-26 Fluid filled cylindrical vibration isolator

Publications (2)

Publication Number Publication Date
JP2015068356A true JP2015068356A (en) 2015-04-13
JP6148951B2 JP6148951B2 (en) 2017-06-14

Family

ID=52835240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200119A Active JP6148951B2 (en) 2013-09-26 2013-09-26 Fluid filled cylindrical vibration isolator

Country Status (1)

Country Link
JP (1) JP6148951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486413A (en) * 2019-08-30 2019-11-22 株洲时代新材料科技股份有限公司 A method of liquid cavity is formed by adding spacer sleeve in multi-clove type
CN110486412A (en) * 2019-08-30 2019-11-22 株洲时代新材料科技股份有限公司 A kind of the radial rigidity adjusting method and structure of liquid rubber composite node

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US8368112B2 (en) 2009-01-14 2013-02-05 Cree Huizhou Opto Limited Aligned multiple emitter package
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218683A (en) * 2003-01-10 2004-08-05 Toyo Tire & Rubber Co Ltd Liquid seal type vibration damper
JP2007292277A (en) * 2006-03-30 2007-11-08 Tokai Rubber Ind Ltd Fluid-sealed cylindrical vibration isolation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218683A (en) * 2003-01-10 2004-08-05 Toyo Tire & Rubber Co Ltd Liquid seal type vibration damper
JP2007292277A (en) * 2006-03-30 2007-11-08 Tokai Rubber Ind Ltd Fluid-sealed cylindrical vibration isolation device
US20070273076A1 (en) * 2006-03-30 2007-11-29 Tokai Rubber Industries, Ltd. Cylindrical fluid-filled elastic mount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486413A (en) * 2019-08-30 2019-11-22 株洲时代新材料科技股份有限公司 A method of liquid cavity is formed by adding spacer sleeve in multi-clove type
CN110486412A (en) * 2019-08-30 2019-11-22 株洲时代新材料科技股份有限公司 A kind of the radial rigidity adjusting method and structure of liquid rubber composite node

Also Published As

Publication number Publication date
JP6148951B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6148951B2 (en) Fluid filled cylindrical vibration isolator
JP5941966B2 (en) Fluid filled vibration isolator
JP3477920B2 (en) Fluid-filled anti-vibration support
JP4871890B2 (en) Fluid filled cylindrical vibration isolator
JP4936760B2 (en) Method for manufacturing fluid-filled cylindrical vibration-proof assembly
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
JP5783858B2 (en) Fluid filled cylindrical vibration isolator
US7845624B2 (en) Cylindrical fluid-filled elastic mount
CN109923329B (en) Fluid-filled vibration damping device
JP6240523B2 (en) Fluid filled vibration isolator
CN110168248B (en) Fluid-filled cylindrical vibration damping device
JP2013133936A (en) Vibration damping device
US10072725B2 (en) Fluid-filled tubular vibration-damping device
JP2012092875A (en) Fluid sealed type cylindrical vibration damping device
JP4367324B2 (en) Fluid-filled cylindrical vibration-proof assembly
JP4340911B2 (en) Vibration isolator
JP2019082197A (en) Fluid sealed type cylindrical vibration isolator
JP6431738B2 (en) Fluid filled cylindrical vibration isolator
JP4073028B2 (en) Fluid filled cylindrical vibration isolator
JP2017187171A (en) Fluid sealed type cylindrical vibration-proofing device
JP3998491B2 (en) Fluid filled anti-vibration bush
JPH0524836Y2 (en)
JPH11153180A (en) Cylindrical vibration control assembly and its manufacture
JP4277314B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JP4896895B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6148951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150