JP2015065720A - Power reception device, power transmission device, and vehicle - Google Patents

Power reception device, power transmission device, and vehicle Download PDF

Info

Publication number
JP2015065720A
JP2015065720A JP2013196743A JP2013196743A JP2015065720A JP 2015065720 A JP2015065720 A JP 2015065720A JP 2013196743 A JP2013196743 A JP 2013196743A JP 2013196743 A JP2013196743 A JP 2013196743A JP 2015065720 A JP2015065720 A JP 2015065720A
Authority
JP
Japan
Prior art keywords
power
unit
power receiving
power transmission
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013196743A
Other languages
Japanese (ja)
Other versions
JP6123607B2 (en
Inventor
浩章 湯浅
Hiroaki Yuasa
浩章 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013196743A priority Critical patent/JP6123607B2/en
Priority to PCT/JP2014/004024 priority patent/WO2015045246A1/en
Publication of JP2015065720A publication Critical patent/JP2015065720A/en
Application granted granted Critical
Publication of JP6123607B2 publication Critical patent/JP6123607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power reception device and a power transmission device including a structure capable of suppressing temperature rise of the power reception device and/or the power transmission device when a structure where a coil and a core unit are sealed by a sealing member is adopted in the power reception device and/or the power transmission device, and to provide a vehicle including the power reception device.SOLUTION: A power reception part 210 includes: a core unit 260 having a plate-like shape and including a side surface, an upper surface, and a lower surface; a power reception coil 250 which is wound into a spiral shape around the core unit 260; a resin member 230 having a plate shape including a side surface, an upper surface, and a lower surface, the resin member 230 in which the core unit 260 and the power reception coil 250 are embedded; a shield 240 which is disposed on the upper surface side of the resin member 230 spaced away from the resin member 230; and a heat insulation layer 280 which is disposed between the shield 240 and the upper surface of the resin member 230 and achieves higher heat insulation performance than the resin member 230.

Description

本発明は、非接触で電力を送受電する受電装置および送電装置、ならびにそのような受電装置を備えた車両に関する。   The present invention relates to a power receiving device and a power transmitting device that transmit and receive power without contact, and a vehicle including such a power receiving device.

特許文献1〜6に開示されているように、非接触で電力を送受電する受電装置および送電装置が知られている。特許文献1(特開2013−154815号公報:図9参照)に開示された受電部を含む受電装置は、下方に向けて開口するシールドケースと、このシールドケースの開口部を閉塞するように設けられた樹脂製の蓋と、シールドケース内に設けられたフェライトコアを有するコアユニットと、このコアユニットに巻きつけられた受電コイルとを備えている。送電装置も同様の構成を有している。   As disclosed in Patent Documents 1 to 6, a power receiving device and a power transmitting device that transmit and receive power in a contactless manner are known. A power receiving device including a power receiving unit disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2013-154815: see FIG. 9) is provided with a shield case that opens downward and an opening of the shield case that is closed. And a core unit having a ferrite core provided in a shield case, and a power receiving coil wound around the core unit. The power transmission device has the same configuration.

特許文献2(特開2013−132171号公報)に開示された受電装置および送電装置においては、シールドの形状を工夫することで、周囲への電磁界の漏れを抑制するシールドの構造が開示されている。   In the power receiving device and the power transmitting device disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2013-132171), a shield structure that suppresses leakage of an electromagnetic field to the surroundings by devising the shape of the shield is disclosed. Yes.

特開2013−154815号公報JP2013-154815A 特開2013−132171号公報JP 2013-132171 A 特開2013−146154号公報JP2013-146154A 特開2013−146148号公報JP2013-146148A 特開2013−110822号公報JP 2013-110822 A 特開2013−126327号公報JP 2013-126327 A

部品点数の低減、および、外部への放熱性能の向上を図るため、コアユニット(フェライトコア)の周囲に受電コイルを巻き付け、コアユニットおよび受電コイルを樹脂で封止する構造の採用が考えられる。   In order to reduce the number of parts and improve the heat dissipation performance to the outside, it is conceivable to employ a structure in which a power receiving coil is wound around a core unit (ferrite core) and the core unit and the power receiving coil are sealed with resin.

受電装置に樹脂で封止する構造を採用し、この構造の上面にシールドを配置すると、電力の受電時に受電コイルの周囲に形成される磁束がシールドを通過する。この際、シールドに渦電流が発生し、この渦電流によってシールドの温度が上昇する。シールドの温度が上昇した場合、シールドで発生した熱が樹脂を通過し、受電コイルおよびフェライトコアの温度を上昇させるおそれがある。その結果、受電装置の温度上昇が懸念される。   When a structure in which a resin is sealed with a resin is employed in the power receiving device and a shield is disposed on the upper surface of the structure, magnetic flux formed around the power receiving coil passes through the shield when power is received. At this time, an eddy current is generated in the shield, and the temperature of the shield rises due to the eddy current. When the temperature of the shield rises, the heat generated in the shield may pass through the resin and raise the temperature of the power receiving coil and the ferrite core. As a result, there is a concern about the temperature rise of the power receiving device.

送電装置に樹脂で封止する構造を採用した場合も、樹脂の下方にシールドを配置すると、上記と同様の課題が発生するおそれがある。   Even when a structure that is sealed with a resin is employed in the power transmission device, the same problem as described above may occur if a shield is disposed below the resin.

本発明は、受電装置および/または送電装置に、コイルおよびコアユニットを封止部材で封止する構造を採用した場合に、受電装置および/または送電装置の温度上昇を抑制することができる構造を備える、受電装置および送電装置、ならびにそのような受電装置を備えた車両を提供することを目的とする。   The present invention provides a structure capable of suppressing a temperature rise of a power receiving device and / or a power transmitting device when the power receiving device and / or the power transmitting device adopt a structure in which a coil and a core unit are sealed with a sealing member. An object is to provide a power receiving device and a power transmitting device, and a vehicle including such a power receiving device.

受電装置は、送電コイルを有する送電装置に対向した状態で上記送電装置から非接触で電力を受電する受電装置であって、コアユニットおよび受電コイルが埋め込まれる封止部材と、この封止部材の上面側において、間隔を隔てて配置されたシールドと、このシールドと上記封止部材の上面との間に配置され、上記封止部材よりも断熱性能が良い断熱層とを備えている。   The power receiving device is a power receiving device that receives power from the power transmitting device in a contactless manner with the power transmitting device having a power transmitting coil, a sealing member in which the core unit and the power receiving coil are embedded, and the sealing member On the upper surface side, there are provided shields arranged at intervals, and a heat insulating layer disposed between the shield and the upper surface of the sealing member and having better heat insulating performance than the sealing member.

上記構成によれば、上記封止部材と上記シールドとの間に断熱層が設けられていることにより、電力の受電時に上記受電コイルの周囲に形成される磁束が上記シールドを通過し、上記シールドの温度が上昇した場合であっても、上記シールドの温度上昇による熱が上記封止部材に直接伝わることがない。その結果、上記シールドの温度上昇による、上記受電コイルおよび上記コアユニットの温度上昇を抑制させることが可能となる。   According to the above configuration, since the heat insulating layer is provided between the sealing member and the shield, magnetic flux formed around the power receiving coil during power reception passes through the shield, and the shield Even when the temperature rises, heat due to the temperature rise of the shield is not directly transmitted to the sealing member. As a result, it is possible to suppress the temperature rise of the power receiving coil and the core unit due to the temperature rise of the shield.

好ましくは、上記断熱層は、空気層である。これにより、部品点数を増加させことなく、上記シールドの温度上昇による、上記受電コイルおよび上記コアユニットの温度上昇を抑制させることが可能となる。   Preferably, the heat insulation layer is an air layer. Thereby, it becomes possible to suppress the temperature rise of the said receiving coil and the said core unit by the temperature rise of the said shield, without increasing a number of parts.

好ましくは、上記シールドは、上記封止部材の上面側にのみ設けられている。この構成により、シールドの領域が小さくなり、シールドの温度上昇領域を小さくすることができる。   Preferably, the shield is provided only on the upper surface side of the sealing member. With this configuration, the shield area can be reduced, and the temperature rise area of the shield can be reduced.

車両は、上述に記載のいずれかの受電装置と、底面に排気管を有する車両本体とを備え、上記受電装置は、上記排気管の下方に配置され、上記シールドは、上記排気管と上記断熱層との間に位置している。この構成により、上記排気管から放射される放射熱が上記シールドに伝わっても、上記断熱層により上記封止部材への伝熱を抑制することができる。   A vehicle includes any one of the power receiving devices described above and a vehicle body having an exhaust pipe on a bottom surface, the power receiving device is disposed below the exhaust pipe, and the shield includes the exhaust pipe and the heat insulation. Located between the layers. With this configuration, even if radiant heat radiated from the exhaust pipe is transmitted to the shield, heat transfer to the sealing member can be suppressed by the heat insulating layer.

好ましくは、上記封止部材の側面には、側方に張り出しボルト孔を有するフランジが設けられており、上記フランジの上記ボルト孔にボルトを挿通して、上記受電装置が上記車両本体に固定されている。これにより、部品点数の削減、および取付作業の向上を図ることが可能となる。   Preferably, a flange having a projecting bolt hole is provided on a side surface of the sealing member, and the power receiving device is fixed to the vehicle body by inserting a bolt into the bolt hole of the flange. ing. Thereby, it is possible to reduce the number of parts and improve the mounting work.

送電装置は、受電コイルを有する受電装置に対向した状態で上記受電装置に非接触で電力を送電する送電装置であって、コアユニットおよび送電コイルが埋め込まれる封止部材と、この封止部材の下面側において、間隔を隔てて配置されたシールドと、このシールドと上記封止部材の下面との間に配置され、上記封止部材よりも断熱性能が良い断熱層とを備えている。   The power transmission device is a power transmission device that transmits power to the power reception device in a contactless manner with the power reception device having the power reception coil, and includes a sealing member in which the core unit and the power transmission coil are embedded, and the sealing member On the lower surface side, there are provided shields arranged at intervals, and a heat insulating layer disposed between the shield and the lower surface of the sealing member and having better heat insulating performance than the sealing member.

上記構成によれば、上記封止部材と上記シールドとの間に断熱層が設けられていることにより、電力の送電時に上記送電コイルの周囲に形成される磁束が上記シールドを通過し、上記シールドの温度が上昇した場合であっても、上記シールドの温度上昇による熱が上記封止部材に直接伝わることがない。その結果、上記シールドの温度上昇による、上記送電コイルおよび上記コアユニットの温度上昇を抑制させることが可能となる。   According to the above configuration, since the heat insulating layer is provided between the sealing member and the shield, magnetic flux formed around the power transmission coil during power transmission passes through the shield, and the shield Even when the temperature rises, heat due to the temperature rise of the shield is not directly transmitted to the sealing member. As a result, it is possible to suppress the temperature rise of the power transmission coil and the core unit due to the temperature rise of the shield.

以上の構成によれば、受電装置および/または送電装置に、コイルおよびコアユニットを封止部材で封止する構造を採用した場合に、受電装置および/または送電装置の温度上昇を抑制することができる構造を備える、受電装置および送電装置、ならびにそのような受電装置を備えた車両を提供することを可能とする。   According to the above configuration, when the structure in which the coil and the core unit are sealed with the sealing member is adopted for the power receiving device and / or the power transmitting device, the temperature increase of the power receiving device and / or the power transmitting device can be suppressed. It is possible to provide a power receiving device and a power transmitting device, and a vehicle including such a power receiving device.

実施の形態1の電力伝送システムを模式的に示す図である。1 is a diagram schematically showing a power transmission system according to a first embodiment. 実施の形態1の電動車両を示す底面図である。1 is a bottom view showing an electric vehicle according to Embodiment 1. FIG. 図2中のIII−III線矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 実施の形態1の電動車両に装着される受電部を示す底面図である。FIG. 3 is a bottom view showing a power reception unit attached to the electric vehicle according to the first embodiment. 図4中のV−V線矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 実施の形態1の受電部のコアユニットを示す斜視図である。3 is a perspective view illustrating a core unit of a power receiving unit according to Embodiment 1. FIG. 実施の形態1の送電部の構成を示す平面図である。FIG. 3 is a plan view showing a configuration of a power transmission unit according to the first embodiment. 図7中のVIII−VIII線矢視断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7. 実施の形態2の受電部の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a power receiving unit according to Embodiment 2. FIG. 実施の形態2の送電部の構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a power transmission unit according to a second embodiment.

本発明に基づいた各実施の形態について、以下、図面を参照しながら説明する。実施の形態の説明において、個数および量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数およびその量などに限定されない。実施の形態および各実施例の説明において、同一の部品および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。   Embodiments based on the present invention will be described below with reference to the drawings. In the description of the embodiments, when the number and amount are referred to, the scope of the present invention is not necessarily limited to the number and amount unless otherwise specified. In the description of the embodiments and the respective examples, the same reference numerals are assigned to the same parts and corresponding parts, and redundant description may not be repeated.

[実施の形態1]
図1を参照して、実施の形態1における電力伝送システム1000について説明する。図1は、電力伝送システム1000の全体構成を模式的に示す図である。電力伝送システム1000は、電動車両100(車両)および外部給電装置300を備える。
[Embodiment 1]
With reference to FIG. 1, the power transmission system 1000 in Embodiment 1 is demonstrated. FIG. 1 is a diagram schematically illustrating the overall configuration of the power transmission system 1000. The power transmission system 1000 includes an electric vehicle 100 (vehicle) and an external power feeding device 300.

(電動車両100)
図1を参照して、電動車両100は、車両本体110および受電装置200を備える。車両本体110には、車両ECU120(制御部)、整流器130、DC/DCコンバータ(以下、単に「コンバータ」と称する。)140、バッテリ150、パワーコントロールユニット(以下、単に「PCU」と称する。)160、モータユニット170、および通信部180などが設けられる。受電装置200は、受電コイル250を有し、車両本体110の底面に配置される。
(Electric vehicle 100)
Referring to FIG. 1, electrically powered vehicle 100 includes a vehicle main body 110 and a power receiving device 200. The vehicle main body 110 includes a vehicle ECU 120 (control unit), a rectifier 130, a DC / DC converter (hereinafter simply referred to as “converter”) 140, a battery 150, and a power control unit (hereinafter simply referred to as “PCU”). 160, a motor unit 170, a communication unit 180, and the like. The power receiving device 200 has a power receiving coil 250 and is disposed on the bottom surface of the vehicle main body 110.

外部給電装置300は送電装置400を含み、送電装置400は送電コイル450を有している。受電装置200の受電コイル250が送電装置400の送電コイル450に対向した状態で、受電装置200は送電装置400から電力を非接触で受電する。   The external power supply apparatus 300 includes a power transmission apparatus 400, and the power transmission apparatus 400 includes a power transmission coil 450. In a state where the power receiving coil 250 of the power receiving device 200 faces the power transmitting coil 450 of the power transmitting device 400, the power receiving device 200 receives power from the power transmitting device 400 in a contactless manner.

受電装置200は、受電部210と、受電部210に接続されたコンデンサ220とを有する。受電部210は、ソレノイド型のコアユニット260と受電コイル250とを有する。   The power receiving device 200 includes a power receiving unit 210 and a capacitor 220 connected to the power receiving unit 210. The power receiving unit 210 includes a solenoid type core unit 260 and a power receiving coil 250.

受電コイル250は、浮遊容量を有し、整流器130に接続されている。受電コイル250の誘導係数と、受電コイル250の浮遊容量およびコンデンサ220の電気容量とによって、電気回路が形成される。コンデンサ220および受電コイル250は、直列に接続されるが、これらは並列に接続されていてもよい。   The power receiving coil 250 has a stray capacitance and is connected to the rectifier 130. An electric circuit is formed by the induction coefficient of the power receiving coil 250, the stray capacitance of the power receiving coil 250, and the electric capacity of the capacitor 220. The capacitor 220 and the power receiving coil 250 are connected in series, but they may be connected in parallel.

電力伝送システム1000において、車両本体110が停止しているときに給電ボタンがオン状態に設定されたことを車両ECU120が検出した場合、車両の動作モードは充電モードに切り替えられる。車両ECU120は、通信部180を介して、外部給電装置300によるバッテリ150の充電制御の実行を指示する。   In the power transmission system 1000, when the vehicle ECU 120 detects that the power supply button is set to the on state when the vehicle main body 110 is stopped, the operation mode of the vehicle is switched to the charging mode. Vehicle ECU 120 instructs execution of charging control of battery 150 by external power supply device 300 via communication unit 180.

(外部給電装置300)
外部給電装置300は、送電装置400、高周波電力装置310、送電ECU320、および通信部322を含む。高周波電力装置310は、交流電源330に接続される。交流電源330は、商用電源または独立電源装置等である。送電装置400は、駐車スペース内に設けられ、高周波電力装置310に接続される。送電ECU320は、高周波電力装置310などの駆動を制御する。
(External power supply device 300)
External power supply device 300 includes a power transmission device 400, a high frequency power device 310, a power transmission ECU 320, and a communication unit 322. The high frequency power device 310 is connected to the AC power source 330. The AC power supply 330 is a commercial power supply or an independent power supply device. The power transmission device 400 is provided in the parking space and connected to the high frequency power device 310. The power transmission ECU 320 controls driving of the high-frequency power device 310 and the like.

通信部322は、外部給電装置300と電動車両100との間で無線通信を行なうための通信インターフェースである。通信部322は、電動車両100の通信部180から送信されるバッテリ情報、送電の開始、継続、および停止を指示する信号、ならびに、送電電力の増加若しくは減少を指示する信号などを受信し、これらの情報を送電ECU320へ出力する。   Communication unit 322 is a communication interface for performing wireless communication between external power supply apparatus 300 and electric vehicle 100. The communication unit 322 receives battery information transmitted from the communication unit 180 of the electric vehicle 100, a signal instructing start, continuation, and stop of power transmission, a signal instructing increase or decrease in transmitted power, and the like. Is output to the power transmission ECU 320.

送電装置400は、送電部410と、送電部410に接続されたコンデンサ420とを有する。送電部410は、ソレノイド型のコアユニット440と送電コイル450とを有する。   The power transmission device 400 includes a power transmission unit 410 and a capacitor 420 connected to the power transmission unit 410. The power transmission unit 410 includes a solenoid type core unit 440 and a power transmission coil 450.

送電コイル450は、浮遊容量を有し、高周波電力装置310に接続されている。送電コイル450の誘導係数と、送電コイル450の浮遊容量およびコンデンサ420の電気容量とによって、電気回路が形成される。コンデンサ420および送電コイル450は、直列に接続されるが、これらは並列に接続されていてもよい。   The power transmission coil 450 has a stray capacitance and is connected to the high frequency power device 310. An electric circuit is formed by the induction coefficient of power transmission coil 450, the stray capacitance of power transmission coil 450, and the electric capacity of capacitor 420. The capacitor 420 and the power transmission coil 450 are connected in series, but they may be connected in parallel.

高周波電力装置310は、交流電源330から受ける電力を高周波の電力に変換し、変換した高周波電力を送電コイル450へ供給する。送電コイル450は、受電部210の受電コイル250へ、電磁誘導により非接触で電力を送電する。   The high frequency power device 310 converts the power received from the AC power source 330 into high frequency power, and supplies the converted high frequency power to the power transmission coil 450. The power transmission coil 450 transmits power to the power reception coil 250 of the power reception unit 210 in a non-contact manner by electromagnetic induction.

このように送電装置400において、高周波電力装置310は、交流電源330から受ける電力を高周波の電力に変換し、変換した高周波電力を送電コイル450へ供給する。送電部410および受電部210の各々は、コイル(450,250)とコンデンサ(420,220)とを含み、伝送周波数において共振するように設計されている。送電部410および受電部210の共振強度を示すQ値は、100以上であることが好ましい。   Thus, in power transmission device 400, high frequency power device 310 converts the power received from AC power supply 330 into high frequency power, and supplies the converted high frequency power to power transmission coil 450. Each of power transmission unit 410 and power reception unit 210 includes coils (450, 250) and capacitors (420, 220), and is designed to resonate at a transmission frequency. The Q value indicating the resonance intensity of the power transmission unit 410 and the power reception unit 210 is preferably 100 or more.

(受電部210の詳細配置位置)
図2および図3を参照して、受電部210の詳細配置位置について説明する。図2は、電動車両100を示す底面図、図3は、図2中のIII−III線に沿った矢視断面図である。図2および図3において、「D」は、鉛直方向下方Dを示す。「L」は、車両左方向Lを示す。「R」は、車両右方向Rを示す。「F」は、車両前進方向Fを示す。「B」は、車両後退方向Bを示す。「U」は、鉛直方向上方Uを示す。これらについては、後述する図5、図6、図8〜図10においても共通している。
(Detailed arrangement position of power reception unit 210)
The detailed arrangement position of the power receiving unit 210 will be described with reference to FIGS. 2 and 3. FIG. 2 is a bottom view showing the electric vehicle 100, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 and 3, “D” indicates a downward direction D in the vertical direction. “L” indicates the left direction L of the vehicle. “R” indicates the vehicle right direction R. “F” indicates the vehicle forward direction F. “B” indicates the vehicle reverse direction B. “U” indicates the upper U in the vertical direction. These are common to FIGS. 5, 6, and 8 to 10 described later.

図2を参照して、電動車両100の車両本体110は、底面112を有している。底面112とは、車輪111R,111L,118R,118Lが地面に接地した状態において、地面に対して鉛直方向下方Dに離れた位置から車両本体110を見たときに、車両本体110のうちの視認可能な領域である。   Referring to FIG. 2, vehicle body 110 of electrically powered vehicle 100 has a bottom surface 112. The bottom surface 112 is a visual recognition of the vehicle main body 110 when the vehicle main body 110 is viewed from a position vertically downward D with respect to the ground in a state where the wheels 111R, 111L, 118R, 118L are in contact with the ground. This is a possible area.

底面112は、中心位置P1を有する。中心位置P1は、車両本体110の前後方向(車両前進方向Fおよび車両後退方向B)における底面112の中心に位置し、かつ、車両本体110の車幅方向(車両左方向Lおよび車両右方向R)における底面112の中心に位置する。   The bottom surface 112 has a center position P1. The center position P1 is located at the center of the bottom surface 112 in the front-rear direction of the vehicle main body 110 (the vehicle forward direction F and the vehicle reverse direction B), and the vehicle width direction of the vehicle main body 110 (the vehicle left direction L and the vehicle right direction R). ) At the center of the bottom surface 112.

底面112には、フロアパネル114、サイドメンバ115R,115L、排気管116、および図示しないクロスメンバ等が設けられる。フロアパネル114は、板状の形状を有し、車両本体110の内部と車両本体110の外部とを区画する。サイドメンバ115R,115Lおよびクロスメンバは、フロアパネル114の下面に配置される。   On the bottom surface 112, a floor panel 114, side members 115R and 115L, an exhaust pipe 116, a cross member (not shown), and the like are provided. Floor panel 114 has a plate-like shape and partitions the inside of vehicle body 110 from the outside of vehicle body 110. The side members 115R and 115L and the cross member are disposed on the lower surface of the floor panel 114.

車両本体110は、エンジン119を備え、このエンジン119は、前後方向における中心位置P1よりも前方側(車両前進方向Fの側)に配置されている。排気管116は、触媒117を通してエンジン119に接続されている。   The vehicle main body 110 includes an engine 119, and the engine 119 is disposed on the front side (the vehicle forward direction F side) with respect to the center position P1 in the front-rear direction. The exhaust pipe 116 is connected to the engine 119 through the catalyst 117.

受電部210は、車両本体110の底面112に設けられる。受電部210は、前後方向におけるエンジン119よりも後方側(車両後退方向Bの側)であって、かつ、前後方向における中心位置P1よりも前方側(車両前進方向Fの側)に配置されている。   The power receiving unit 210 is provided on the bottom surface 112 of the vehicle main body 110. The power reception unit 210 is disposed behind the engine 119 in the front-rear direction (on the vehicle reverse direction B side) and further forward than the center position P1 in the front-rear direction (on the vehicle forward direction F side). Yes.

受電部210の受電コイル250のコイル巻回軸O2は、車両本体110の前後方向に対して平行な方向に延びている。電動車両100が駐車スペース内の電力伝送可能な所定位置に駐車した場合に、受電コイル250のコイル巻回軸O2と送電コイル450(図1)のコイル巻回軸とが互いに平行になることが企図されている。   The coil winding axis O2 of the power receiving coil 250 of the power receiving unit 210 extends in a direction parallel to the front-rear direction of the vehicle main body 110. When the electric vehicle 100 is parked at a predetermined position in the parking space where power can be transmitted, the coil winding axis O2 of the power receiving coil 250 and the coil winding axis of the power transmission coil 450 (FIG. 1) may be parallel to each other. Is intended.

図2および図3に示すように、受電部210は、受電部210の側部に設けられたフランジ230F(4箇所)を利用して、ボルトB1を用いて、フロアパネル114に固定されている。フロアパネル114には予めナットN1(又は、タップ)が設けられている。フランジ230Fは、樹脂部材230に対してインサート成型により一体に設けられている。   As shown in FIGS. 2 and 3, the power receiving unit 210 is fixed to the floor panel 114 using bolts B <b> 1 using flanges 230 </ b> F (four places) provided on the side of the power receiving unit 210. . The floor panel 114 is provided with a nut N1 (or a tap) in advance. The flange 230F is provided integrally with the resin member 230 by insert molding.

排気管116は、フロアパネル114のセンタートンネル114T内に配置されている。受電装置200の受電部210は、排気管116の下方において排気管116に間隔を空けて対向するように配置されている。   The exhaust pipe 116 is disposed in the center tunnel 114T of the floor panel 114. The power receiving unit 210 of the power receiving device 200 is disposed below the exhaust pipe 116 so as to face the exhaust pipe 116 with a space therebetween.

(受電部210の詳細構造)
図4から図6を参照して、受電部210の詳細構造について説明する。図4は、受電部210を示す底面図である。図5は、図4中のV−V線矢視断面図、図6は、コアユニットを示す斜視図である。
(Detailed structure of power reception unit 210)
The detailed structure of the power reception unit 210 will be described with reference to FIGS. FIG. 4 is a bottom view showing the power reception unit 210. 5 is a cross-sectional view taken along line VV in FIG. 4, and FIG. 6 is a perspective view showing the core unit.

受電部210は、受電コイル250、コアユニット260、コアユニット260および受電コイル250が埋め込まれる樹脂部材230、樹脂部材230の上面側において、間隔を隔てて配置されたシールド240と含む。コアユニット260には、コイル巻回軸O2を中心として、コアユニット260の上面および下面を含む周囲において螺旋状に受電コイル250が巻回されている。樹脂部材230の上面側の四隅には、樹脂部材等を用いたスペーサ270が配置されている。   The power receiving unit 210 includes a power receiving coil 250, a core unit 260, a resin member 230 in which the core unit 260 and the power receiving coil 250 are embedded, and a shield 240 disposed at an interval on the upper surface side of the resin member 230. The power receiving coil 250 is spirally wound around the core unit 260 around the coil winding axis O2 around the core unit 260 including the upper surface and the lower surface. Spacers 270 using a resin member or the like are disposed at the four corners on the upper surface side of the resin member 230.

このように、コアユニット260および受電コイル250を樹脂部材230内に埋め込む樹脂封止構造を採用することで、コアユニット260および受電コイル250から発せられる熱は樹脂部材を通して外部に放熱させることができる。さらに、コアユニット260に対する受電コイル250の位置決めに用いられるボビンの採用も不要となる。   Thus, by adopting the resin sealing structure in which the core unit 260 and the power receiving coil 250 are embedded in the resin member 230, the heat generated from the core unit 260 and the power receiving coil 250 can be radiated to the outside through the resin member. . Further, it is not necessary to employ a bobbin used for positioning the power receiving coil 250 with respect to the core unit 260.

シールド240には、シールド機能を有する銅板またはアルミ板等が用いられる。樹脂部材230の上面の4隅には、スペーサ270が配置されている。スペーサ270によって開けられる樹脂部材230の上面とシールド240との間の空間が、樹脂部材230よりも断熱性能が良い空気層よりなる断熱層280を構成する。   For the shield 240, a copper plate or an aluminum plate having a shielding function is used. Spacers 270 are arranged at the four corners of the upper surface of the resin member 230. A space between the upper surface of the resin member 230 opened by the spacer 270 and the shield 240 constitutes a heat insulating layer 280 made of an air layer having better heat insulating performance than the resin member 230.

ここで、断熱性能とは、熱を伝え難い性能を意味し、樹脂部材230よりも断熱性能が良いとは、樹脂部材230よりも熱を伝え難いことを意味する。   Here, the heat insulation performance means performance that hardly transfers heat, and the heat insulation performance better than the resin member 230 means that heat is harder to transfer than the resin member 230.

樹脂部材230は、側面、上面および下面を有する板状の形状を有し、内部にコアユニット260および受電コイル250が埋め込まれている。樹脂部材230には、たとえば、不燃性のポリエステル等が用いられる。   The resin member 230 has a plate shape having a side surface, an upper surface, and a lower surface, and the core unit 260 and the power receiving coil 250 are embedded therein. For the resin member 230, for example, incombustible polyester or the like is used.

図5において、受電部210の総高さ(h)は約20mmである。コアユニット260の厚さは約9mm、受電コイル250のコイル直径は約3mm、樹脂部材230の上面側および下面側での厚さ(樹脂のかぶり厚さ)は約4mm、シールド240の板厚(t1)は約0.5mmである。よって、図5中の樹脂部材230の高さh1は約17mm、断熱層280の厚さ(h2)は、約2.5mm程度である。平面視においては、後述のフランジ230Fを除いた寸法は、約240mm×290mm程度である。これらの寸法は、一例であり、この寸法に限定されるものではない。   In FIG. 5, the total height (h) of the power receiving unit 210 is about 20 mm. The thickness of the core unit 260 is about 9 mm, the coil diameter of the power receiving coil 250 is about 3 mm, the thickness of the resin member 230 on the upper surface side and the lower surface side (resin cover thickness) is about 4 mm, and the plate thickness of the shield 240 ( t1) is about 0.5 mm. Therefore, the height h1 of the resin member 230 in FIG. 5 is about 17 mm, and the thickness (h2) of the heat insulating layer 280 is about 2.5 mm. In plan view, the dimensions excluding the flange 230F described later are about 240 mm × 290 mm. These dimensions are examples, and are not limited to these dimensions.

樹脂部材230の側面には、4箇所に、側方に張り出しボルト孔231を有するフランジ230Fがインサート成型により一体成型されている。なお、フランジ230Fは、樹脂部材230と同一の材料により一体成型してもよい。   On the side surface of the resin member 230, flanges 230F having projecting bolt holes 231 on the side are integrally formed at four locations by insert molding. The flange 230F may be integrally formed of the same material as that of the resin member 230.

(コアユニット260)
図6は、コアユニット260を示す斜視図である。コアユニット260は、複数の分割コア261〜268が組み合わされ、この分割コア261〜268が絶縁紙269により包囲されている。分割コア261〜268にはいずれもフェライトが用いられる。
(Core unit 260)
FIG. 6 is a perspective view showing the core unit 260. In the core unit 260, a plurality of divided cores 261 to 268 are combined, and the divided cores 261 to 268 are surrounded by insulating paper 269. Ferrite is used for each of the split cores 261 to 268.

分割コア261〜268は、直方体状に形成され、同一の形状および大きさを有する。分割コア261〜264は、車両本体110の車幅方向(列方向)に沿って4列に並べられており、分割コア265〜268も、車両本体110の車幅方向(列方向)に沿って4列に並べられている。   The divided cores 261 to 268 are formed in a rectangular parallelepiped shape and have the same shape and size. The divided cores 261 to 264 are arranged in four rows along the vehicle width direction (column direction) of the vehicle main body 110, and the divided cores 265 to 268 are also arranged along the vehicle width direction (column direction) of the vehicle main body 110. It is arranged in 4 rows.

分割コア261〜264および分割コア265〜268は、車両前後方向において2列に並んでおり、分割コア265〜268は、分割コア261〜264の車両前進方向Fの側に0.1mm程度の隙間290を空けて配置されている。この隙間には接着剤が充填されている。   The split cores 261 to 264 and the split cores 265 to 268 are arranged in two rows in the vehicle front-rear direction, and the split cores 265 to 268 have a gap of about 0.1 mm on the side of the split cores 261 to 264 in the vehicle forward direction F. 290 is arranged with a gap. This gap is filled with an adhesive.

コアユニット260は、全体として板状の形状を有し、鉛直方向上方Uの側には上面260Aが形成され、鉛直方向下方Dの側には下面260Bが形成される。車両右方向Rの側には側面260Cが形成され、車両後退方向Bの側には側面260Dが形成され、車両左方向Lの側には側面260Eが形成され、車両前進方向Fの側には側面260Fが形成される。   The core unit 260 has a plate-like shape as a whole, and an upper surface 260A is formed on the upper side U in the vertical direction, and a lower surface 260B is formed on the lower side D in the vertical direction. A side surface 260C is formed on the vehicle right direction R side, a side surface 260D is formed on the vehicle backward direction B side, a side surface 260E is formed on the vehicle left direction L side, and a vehicle forward direction F side is formed. A side surface 260F is formed.

分割コア261〜264および分割コア265〜268の外表面が、絶縁紙269により包囲されている。絶縁紙269には、たとえば、高熱伝達率シート(たとえば、厚さ0.18mm)が用いられる。   The outer surfaces of the split cores 261 to 264 and the split cores 265 to 268 are surrounded by insulating paper 269. For the insulating paper 269, for example, a high heat transfer coefficient sheet (for example, a thickness of 0.18 mm) is used.

(作用・効果)
再び、図3を参照して、本実施の形態における受電装置200の受電部210は、樹脂部材230とシールド240との間に樹脂部材230よりも熱伝達特性が劣る空気を用いた断熱層280が設けられている。これにより、電力の受電時に受電コイル250の周囲に形成される磁束がシールド240を通過し、シールド240の温度が上昇した場合であっても、シールド240の温度上昇による熱が樹脂部材230に直接伝わることがない。その結果、シールド240の温度上昇による、受電コイル250およびコアユニット260の温度上昇を抑制させることが可能となる。
(Action / Effect)
Referring to FIG. 3 again, power reception unit 210 of power reception device 200 according to the present embodiment uses heat insulation layer 280 that uses air having lower heat transfer characteristics than resin member 230 between resin member 230 and shield 240. Is provided. Thereby, even when the magnetic flux formed around the receiving coil 250 passes through the shield 240 when power is received, and the temperature of the shield 240 rises, the heat due to the temperature rise of the shield 240 is directly applied to the resin member 230. There is no transmission. As a result, it is possible to suppress the temperature rise of the power receiving coil 250 and the core unit 260 due to the temperature rise of the shield 240.

特に、本実施の形態においては、断熱層280は、樹脂部材230の上面と、シールド240との間に間隔をあけることで形成された空気層とされている。このため、樹脂部材230とシールド240との間を外気が流通可能とされている。これにより、シールド240の熱が樹脂部材230に達することが抑制される。   In particular, in the present embodiment, the heat insulating layer 280 is an air layer formed by providing a space between the upper surface of the resin member 230 and the shield 240. For this reason, outside air can flow between the resin member 230 and the shield 240. Thereby, the heat of the shield 240 is suppressed from reaching the resin member 230.

さらに、本実施の形態における受電部210は、シールド240は、樹脂部材230の上面側にのみ設けている。この構成により、シールド240の領域が小さくなり、シールド240の温度上昇領域を小さくすることができる。   Furthermore, in power receiving unit 210 in the present embodiment, shield 240 is provided only on the upper surface side of resin member 230. With this configuration, the area of the shield 240 is reduced, and the temperature rise area of the shield 240 can be reduced.

さらに、本実施の形態における受電部210は、車両本体110に設けられる排気管116の下方に配置され、シールド240は、排気管116と断熱層280との間に位置している。これにより、排気管116から放射される放射熱がシールド240に伝わっても、断熱層280により樹脂部材230への伝熱を抑制することができる。   Furthermore, power reception unit 210 in the present embodiment is arranged below exhaust pipe 116 provided in vehicle body 110, and shield 240 is located between exhaust pipe 116 and heat insulating layer 280. Thereby, even if the radiant heat radiated from the exhaust pipe 116 is transmitted to the shield 240, the heat transfer to the resin member 230 can be suppressed by the heat insulating layer 280.

さらに、本実施の形態における樹脂部材の側面には、側方に張り出しボルト孔231を有するフランジ230Fが一体成型されている。これにより、フランジ230Fのボルト孔231にボルトを挿通して、受電部210を車両本体110に固定することができる。その結果、部品点数の削減を図るとともに、取付作業の効率化を図ることが可能となる。   Further, a flange 230F having a projecting bolt hole 231 on the side is integrally formed on the side surface of the resin member in the present embodiment. Accordingly, the power receiving unit 210 can be fixed to the vehicle main body 110 by inserting the bolt into the bolt hole 231 of the flange 230F. As a result, the number of parts can be reduced and the efficiency of the mounting work can be improved.

(送電部410の詳細構造)
図7および図8を参照して、送電部410の詳細構造について説明する。図7は、送電部410の構成を示す平面図、図8は、図7中VIII−VIII線矢視断面図である。本実施の形態における送電部410の基本的構成は、上述の受電部210と同じである。相違点は、天地が逆の構成になっている。
(Detailed structure of power transmission unit 410)
The detailed structure of the power transmission unit 410 will be described with reference to FIGS. 7 and 8. 7 is a plan view showing a configuration of the power transmission unit 410, and FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. The basic configuration of power transmission unit 410 in the present embodiment is the same as that of power reception unit 210 described above. The difference is that the top and bottom are reversed.

送電部410は、送電部410の側部に設けられたフランジ430F(4箇所)を利用して、ボルトB1を用いて、たとえば床面に固定されている。床面には予めナット又は、タップが設けられている。フランジ430Fは、後述の樹脂部材430に対して一体に設けられている。   The power transmission unit 410 is fixed to, for example, the floor surface using bolts B1 using flanges 430F (four locations) provided on the side of the power transmission unit 410. A nut or a tap is provided in advance on the floor surface. The flange 430F is provided integrally with a resin member 430 described later.

送電部410は、送電コイル450、コアユニット460、コアユニット460および送電コイル450が埋め込まれる樹脂部材430、樹脂部材430の下面側において、間隔を隔てて配置されたシールド440と含む。コアユニット460には、コイル巻回軸(受電部210のコイル巻回軸O2に対して平行に延びる軸)を中心として、コアユニット460の上面および下面を含む周囲において螺旋状に送電コイル450が巻回されている。樹脂部材430の下面側の四隅には、樹脂部材等を用いたスペーサ470が配置されている。   The power transmission unit 410 includes a power transmission coil 450, a core unit 460, a resin member 430 in which the core unit 460 and the power transmission coil 450 are embedded, and a shield 440 arranged at intervals on the lower surface side of the resin member 430. The core unit 460 has a power transmission coil 450 spirally around the coil winding axis (axis extending in parallel to the coil winding axis O2 of the power receiving unit 210) around the core unit 460 including the upper surface and the lower surface. It is wound. Spacers 470 using a resin member or the like are arranged at the four corners on the lower surface side of the resin member 430.

このように、コアユニット460および送電コイル450を樹脂部材430内に埋め込む樹脂封止構造を採用することで、コアユニット460および送電コイル450から発せられる熱は樹脂部材を通して外部に放熱させることができる。さらに、コアユニット460に対する送電コイル450の位置決めに用いられるボビンの採用も不要となる。   As described above, by adopting a resin sealing structure in which the core unit 460 and the power transmission coil 450 are embedded in the resin member 430, heat generated from the core unit 460 and the power transmission coil 450 can be radiated to the outside through the resin member. . Further, it is not necessary to employ a bobbin used for positioning the power transmission coil 450 with respect to the core unit 460.

シールド440には、シールド機能を有する銅板またはアルミ板等が用いられる。樹脂部材430の上面の4隅には、スペーサ470が配置されている。スペーサ470によって開けられる樹脂部材430の下面とシールド440との間の空間が、樹脂部材430よりも断熱性能が良い空気層よりなる断熱層480を構成する。   For the shield 440, a copper plate or an aluminum plate having a shielding function is used. Spacers 470 are arranged at the four corners of the upper surface of the resin member 430. A space between the lower surface of the resin member 430 opened by the spacer 470 and the shield 440 constitutes a heat insulating layer 480 made of an air layer having better heat insulating performance than the resin member 430.

樹脂部材430は、側面、上面および下面を有する板状の形状を有し、内部にコアユニット460および送電コイル450が埋め込まれている。樹脂部材430には、たとえば、不燃性のポリエステル等が用いられる。   The resin member 430 has a plate shape having a side surface, an upper surface, and a lower surface, and the core unit 460 and the power transmission coil 450 are embedded therein. For the resin member 430, for example, incombustible polyester or the like is used.

図8において、送電部410の総高さ(h)は約20mmである。コアユニット460の厚さは約9mm、送電コイル450のコイル直径は約3mm、樹脂部材430の上面側および下面側での厚さ(樹脂のかぶり厚さ)は約4mm、シールド440の板厚(t1)は約0.5mmである。よって、図8中の樹脂部材430の高さh1は約17mm、断熱層480の厚さ(h2)は、約2.5mm程度である。平面視においては、後述のフランジ430Fを除いた寸法は、約240mm×290mm程度である。これらの寸法は、一例であり、この寸法に限定されるものではない。   In FIG. 8, the total height (h) of the power transmission unit 410 is about 20 mm. The thickness of the core unit 460 is about 9 mm, the coil diameter of the power transmission coil 450 is about 3 mm, the thickness of the resin member 430 on the upper surface side and the lower surface side (resin cover thickness) is about 4 mm, and the thickness of the shield 440 ( t1) is about 0.5 mm. Therefore, the height h1 of the resin member 430 in FIG. 8 is about 17 mm, and the thickness (h2) of the heat insulating layer 480 is about 2.5 mm. In plan view, the dimensions excluding a flange 430F described later are about 240 mm × 290 mm. These dimensions are examples, and are not limited to these dimensions.

樹脂部材430の側面には、4箇所に、側方に張り出しボルト孔431を有するフランジ430Fがインサート成型により一体成型されている。なお、フランジ430Fは、樹脂部材430と同一の材料により一体成型してもよい。   On the side surface of the resin member 430, flanges 430F having projecting bolt holes 431 are integrally formed at four locations by insert molding. The flange 430F may be integrally formed of the same material as the resin member 430.

送電コイル450は、コアユニット460外周面に巻回され、コイル巻回軸(図示せず)の周囲を取り囲むように形成されている。コイル巻回軸は、駐車スペースの前後方向に対して平行な方向に延びている。駐車スペースの前後方向とは、駐車スペース内の電力伝送可能な所定位置に電動車両100が停車した際に、その電動車両100の前後方向に対応する方向である。   The power transmission coil 450 is wound around the outer peripheral surface of the core unit 460 and is formed so as to surround the periphery of a coil winding shaft (not shown). The coil winding axis extends in a direction parallel to the front-rear direction of the parking space. The front-rear direction of the parking space is a direction corresponding to the front-rear direction of the electric vehicle 100 when the electric vehicle 100 stops at a predetermined position in the parking space where power can be transmitted.

コイル巻回軸は、たとえば車両の左右に位置する駐車ラインに対して平行な方向に延びる。コイル巻回軸は、たとえば車両の後方(駐車スペース内の奥側)に位置する輪止の並んでいる方向に対して直交する方向に延びる。   The coil winding axis extends, for example, in a direction parallel to a parking line located on the left and right of the vehicle. The coil winding axis extends, for example, in a direction orthogonal to the direction in which the wheel stops located behind the vehicle (the back side in the parking space) are arranged.

コアユニット460の構成は、受電部210に用いたコアユニット260と同じ構成であり、複数の分割コア461〜468が組み合わされ、この分割コア461〜468が絶縁紙469により包囲されている。   The configuration of the core unit 460 is the same as that of the core unit 260 used in the power receiving unit 210. A plurality of divided cores 461 to 468 are combined, and the divided cores 461 to 468 are surrounded by insulating paper 469.

(作用・効果)
本実施の形態における送電装置400の送電部410は、樹脂部材430とシールド440との間に樹脂部材430よりも熱伝達特性が劣る空気を用いた断熱層480が設けられている。これにより、電力の送電時に送電コイル450の周囲に形成される磁束がシールド440を通過し、シールド440の温度が上昇した場合であっても、シールド440の温度上昇による熱が樹脂部材430に直接伝わることがない。その結果、シールド440の温度上昇による、送電コイル450およびコアユニット460の温度上昇を抑制させることが可能となる。
(Action / Effect)
In the power transmission unit 410 of the power transmission device 400 in the present embodiment, a heat insulating layer 480 using air having a heat transfer characteristic inferior to that of the resin member 430 is provided between the resin member 430 and the shield 440. Thereby, even when the magnetic flux formed around the power transmission coil 450 during power transmission passes through the shield 440 and the temperature of the shield 440 rises, the heat due to the temperature rise of the shield 440 is directly applied to the resin member 430. There is no transmission. As a result, it becomes possible to suppress the temperature rise of the power transmission coil 450 and the core unit 460 due to the temperature rise of the shield 440.

さらに、本実施の形態における送電部410は、シールド440は、樹脂部材430の下面側にのみ設けている。この構成により、シールド440の領域が小さくなり、シールド440の温度上昇領域を小さくすることができる。   Furthermore, in power transmission unit 410 in the present embodiment, shield 440 is provided only on the lower surface side of resin member 430. With this configuration, the area of the shield 440 is reduced, and the temperature rise area of the shield 440 can be reduced.

さらに、本実施の形態における樹脂部材の側面には、側方に張り出しボルト孔431を有するフランジ430Fが一体成型されている。これにより、フランジ430Fのボルト孔431にボルトを挿通して、送電部410を床面に固定することができる。これにより、部品点数の削減を図るとともに、取付作業の効率化を図ることが可能となる。   Further, a flange 430F having a projecting bolt hole 431 on the side is integrally formed on the side surface of the resin member in the present embodiment. Thereby, a volt | bolt can be penetrated to the bolt hole 431 of the flange 430F, and the power transmission part 410 can be fixed to a floor surface. As a result, the number of parts can be reduced and the efficiency of the mounting work can be improved.

[実施の形態2]
図9を参照して、実施の形態2の受電部210Aについて説明する。図9は、受電部210Aの構成を示す断面図である。
[Embodiment 2]
With reference to FIG. 9, power receiving unit 210A of the second embodiment will be described. FIG. 9 is a cross-sectional view illustrating a configuration of power reception unit 210A.

本実施の形態における受電部210Aの基本的構成は、上記実施の形態1の受電部210と同じである。相違点は、断熱層280としての空気層に代わり、シールド240と樹脂部材230の上面との間に、断熱部材層280Aが設けられている。この断熱部材層280Aには、樹脂部材230よりも断熱性能が良い部材が用いられている。たとえば、断熱部材層280Aとして、発泡樹脂を採用することが考えられる。   The basic configuration of power reception unit 210A in the present embodiment is the same as that of power reception unit 210 in the first embodiment. The difference is that a heat insulating member layer 280 </ b> A is provided between the shield 240 and the upper surface of the resin member 230 instead of the air layer as the heat insulating layer 280. A member having better heat insulating performance than the resin member 230 is used for the heat insulating member layer 280A. For example, it is conceivable to employ a foamed resin as the heat insulating member layer 280A.

このように、空気層に代わり断熱部材層280Aを用いた受電部210Aにおいても、実施の形態1における受電部210と同様の作用効果を得ることができる。   Thus, also in the power receiving unit 210A using the heat insulating member layer 280A instead of the air layer, the same operational effects as those of the power receiving unit 210 in the first embodiment can be obtained.

次に、図10を参照して、実施の形態2の送電部410Aについて説明する。図10は、送電部410Aの構成を示す断面図である。   Next, with reference to FIG. 10, the power transmission unit 410A of the second embodiment will be described. FIG. 10 is a cross-sectional view showing a configuration of power transmission unit 410A.

本実施の形態における送電部410Aの基本的構成は、上記実施の形態1の送電部410と同じである。相違点は、断熱層480としての空気層に代わり、シールド440と樹脂部材430の上面との間に、断熱部材層480Aが設けられている。この断熱部材層480Aには、樹脂部材430よりも断熱性能が良い部材が用いられている。たとえば、断熱部材層480Aとして、発泡樹脂を採用することが考えられる。   The basic configuration of power transmission unit 410A in the present embodiment is the same as that of power transmission unit 410 in the first embodiment. The difference is that a heat insulating member layer 480 </ b> A is provided between the shield 440 and the upper surface of the resin member 430 instead of the air layer as the heat insulating layer 480. A member having better heat insulating performance than the resin member 430 is used for the heat insulating member layer 480A. For example, it is conceivable to employ a foamed resin as the heat insulating member layer 480A.

このように、空気層に代わり断熱部材層480Aを用いた受電部410Aにおいても、実施の形態1における送電装置400と同様の作用効果を得ることができる。   Thus, also in power receiving unit 410A using heat insulating member layer 480A instead of the air layer, the same operational effects as power transmission device 400 in the first embodiment can be obtained.

[他の実施の形態]
上記各実施の形態では、樹脂部材230,430として不燃性のポリエステル等を用いた樹脂材料を用いる場合について説明しているが、これら樹脂材料と同等の機能を有し、コアユニットおよび受電/送電コイルをその内部に埋め込むことのできる封止部材であれば樹脂材料に限定されない。よって、断熱層280,480には、封止部材230,430よりも断熱性能が良い材料が用いられる。
[Other embodiments]
In each of the above-described embodiments, the case where a resin material using non-combustible polyester or the like is used as the resin members 230 and 430 has been described. The sealing material is not limited to the resin material as long as the sealing member can embed the coil therein. Therefore, a material having better heat insulating performance than the sealing members 230 and 430 is used for the heat insulating layers 280 and 480.

上記各実施の形態では、受電部210の樹脂部材230の側面、および送電部410の樹脂部材430の側面にもシールドを設けてもよい。しかし、上記各実施の形態における受電部210,210Aおよび送電部410,410Aの構成においては、側面にシールドを設けなくても、側面方向に漏れる電磁界の分布に大きな影響を与えることがない。   In each of the above embodiments, shields may be provided on the side surface of the resin member 230 of the power receiving unit 210 and the side surface of the resin member 430 of the power transmission unit 410. However, in the configuration of power reception units 210 and 210A and power transmission units 410 and 410A in each of the above embodiments, even if a shield is not provided on the side surface, the distribution of electromagnetic fields leaking in the side surface direction is not significantly affected.

よって、上記各実施の形態で示したように、受電部210,210Aにおいては、樹脂部材230の上面側にのみシールド240を設ける構成を採用することができ、送電部410,410Aにおいては、樹脂部材430の下面側にのみシールド440を設ける構成を採用することができる。   Therefore, as shown in the above embodiments, the power receiving units 210 and 210A can employ a configuration in which the shield 240 is provided only on the upper surface side of the resin member 230. The power transmitting units 410 and 410A A configuration in which the shield 440 is provided only on the lower surface side of the member 430 can be employed.

上記各実施の形態では、コアユニット260,460は、図6に示す構成に限定されない。行方向および/または列方向に並んで配置された複数の分割コアにより構成されることができる。複数の分割コアを用いてコアユニット260,460を構成する場合、図6に示したように、コイル巻回軸が延びる方向の分割数(本実施の形態では「2」)は、コイル巻回軸が延びる方向に対して直交する方向の分割数(本実施の形態では「3」)よりも少ないことが好ましい。   In each said embodiment, the core units 260 and 460 are not limited to the structure shown in FIG. It can be constituted by a plurality of divided cores arranged side by side in the row direction and / or the column direction. When the core units 260 and 460 are configured using a plurality of divided cores, as shown in FIG. 6, the number of divisions in the direction in which the coil winding axis extends (“2” in the present embodiment) is the coil winding. The number is preferably smaller than the number of divisions in the direction orthogonal to the direction in which the axis extends (“3” in the present embodiment).

上記各実施の形態では、スペーサ270,470を、コアユニット260,460の4隅に設けるようにしたが、この配置には限定されない。適宜、コアユニット260,460の縁部に複数個設けるようにしてもよいし、スペーサ270,470を、コアユニット260,460の縁部に環状に配置してもよい。   In each of the above embodiments, the spacers 270 and 470 are provided at the four corners of the core units 260 and 460. However, the arrangement is not limited to this. As appropriate, a plurality of the core units 260 and 460 may be provided at the edges of the core units 260 and 460, and the spacers 270 and 470 may be annularly arranged at the edges of the core units 260 and 460.

上記各実施の形態では、受電装置200の受電部210,210Aをフロアパネル114に固定する場合について説明したが、この固定構造に限定されない。たとえば、受電部210,210Aをサイドメンバ115R,115Lまたはクロスメンバから懸架してもよい。   In each of the above embodiments, the case where the power receiving units 210 and 210A of the power receiving device 200 are fixed to the floor panel 114 has been described, but the present invention is not limited to this fixing structure. For example, the power receiving units 210 and 210A may be suspended from the side members 115R and 115L or the cross member.

上記各実施の形態では、受電装置200の受電部210は、車両本体110に設けられる排気管116の下方に配置した場合について説明しているが、排気管116の下方に配置する構成には限定されない。   In each of the above-described embodiments, the case where the power receiving unit 210 of the power receiving device 200 is disposed below the exhaust pipe 116 provided in the vehicle main body 110 has been described. However, the configuration is limited to the configuration disposed below the exhaust pipe 116. Not.

上記各実施の形態において、受電部210,210Aのコイルの巻回方向は、巻回軸O2周りには限定されない。たとえば、巻回軸O2の直交する方向(R−L)方向に延びる巻回軸を巻回方向としてもよい。この場合、送電部410,410Aも、同じ方向に延びる巻回軸を巻回方向とする。   In each of the embodiments described above, the winding direction of the coils of the power receiving units 210 and 210A is not limited to the periphery of the winding axis O2. For example, a winding axis extending in a direction (R-L) direction orthogonal to the winding axis O2 may be set as the winding direction. In this case, power transmission units 410 and 410A also have a winding axis extending in the same direction as the winding direction.

以上、各実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments have been described above, the embodiments disclosed herein are illustrative and non-restrictive in every respect. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 電動車両、110 車両本体、111L,111R,118L,118R 車輪、112 底面、114 フロアパネル、115L,115R サイドメンバ、116 排気管、117 触媒、119 エンジン、120 車両ECU、130 整流器、140 DC/DCコンバータ、150 バッテリ、160 パワーコントロールユニット(PCU)、170 モータユニット、180,322 通信部、200 受電装置、210,210A 受電部、220,420 コンデンサ、260,460 コアユニット、260A 上面、260B 下面、260C,260D,260E,260F 側面、261〜268 分割コア、250 受電コイル、290 隙間、300 外部給電装置、310 高周波電力装置、320 送電ECU、330 交流電源、400 送電装置、410,410A 送電部、450 送電コイル、1000 電力伝送システム、O2 コイル巻回軸、P1 中心位置。   100 Electric vehicle, 110 Vehicle body, 111L, 111R, 118L, 118R Wheel, 112 Bottom surface, 114 Floor panel, 115L, 115R Side member, 116 Exhaust pipe, 117 Catalyst, 119 Engine, 120 Vehicle ECU, 130 Rectifier, 140 DC / DC converter, 150 battery, 160 power control unit (PCU), 170 motor unit, 180, 322 communication unit, 200 power receiving device, 210, 210A power receiving unit, 220, 420 capacitor, 260, 460 core unit, 260A upper surface, 260B lower surface 260C, 260D, 260E, 260F Side surface, 261 to 268 split core, 250 power receiving coil, 290 gap, 300 external power supply device, 310 high frequency power device, 320 power transmission ECU, 3 30 AC power source, 400 power transmission device, 410, 410A power transmission unit, 450 power transmission coil, 1000 power transmission system, O2 coil winding axis, P1 center position.

Claims (6)

送電コイルを有する送電部に対向した状態で前記送電部から非接触で電力を受電する受電部を備える受電装置であって、
前記受電部は、
板状の形状を有し、側面、上面および下面を含むコアユニットと、
前記コアユニットの前記上面および前記下面を含む周囲において螺旋状に巻回された受電コイルと、
側面、上面および下面を有する板状の形状を有し、前記コアユニットおよび前記受電コイルが埋め込まれる封止部材と、
前記封止部材の前記上面側において、間隔を隔てて配置されたシールドと、
前記シールドと前記封止部材の前記上面との間に配置され、前記封止部材よりも断熱性能が良い断熱層と、を含む、
受電装置。
A power receiving device including a power receiving unit that receives power from the power transmitting unit in a non-contact manner in a state facing a power transmitting unit having a power transmission coil,
The power receiving unit
A core unit having a plate-like shape, including a side surface, an upper surface and a lower surface;
A power receiving coil spirally wound around the upper surface and the lower surface of the core unit;
A sealing member having a plate-like shape having a side surface, an upper surface and a lower surface, in which the core unit and the power receiving coil are embedded;
On the upper surface side of the sealing member, shields arranged at intervals,
A heat insulating layer that is disposed between the shield and the upper surface of the sealing member and has better heat insulating performance than the sealing member;
Power receiving device.
前記断熱層は、空気層である、請求項1に記載の受電装置。   The power receiving device according to claim 1, wherein the heat insulating layer is an air layer. 前記シールドは、前記封止部材の前記上面側にのみ設けられている、請求項1または2に記載の受電装置。   The power receiving device according to claim 1, wherein the shield is provided only on the upper surface side of the sealing member. 請求項1から3のいずれか1項に記載の受電装置と、
底面に排気管を有する車両本体と、を備え、
前記受電部は、前記排気管の下方に配置され、
前記シールドは、
前記排気管と前記断熱層との間に位置している、
車両。
The power receiving device according to any one of claims 1 to 3,
A vehicle body having an exhaust pipe on the bottom surface,
The power receiving unit is disposed below the exhaust pipe,
The shield is
Located between the exhaust pipe and the heat insulating layer,
vehicle.
前記封止部材の前記側面には、側方に張り出しボルト孔を有するフランジが設けられており、
前記フランジの前記ボルト孔にボルトを挿通して、前記受電部が前記車両本体に固定されている、請求項4に記載の車両。
The side surface of the sealing member is provided with a flange having a protruding bolt hole on the side,
The vehicle according to claim 4, wherein a bolt is inserted into the bolt hole of the flange, and the power reception unit is fixed to the vehicle body.
受電コイルを有する受電部に対向した状態で前記受電部に非接触で電力を送電する送電部を備える送電装置であって、
板状の形状を有し、側面、上面および下面を含むコアユニットと、
前記コアユニットの前記上面および前記下面を含む周囲において螺旋状に巻回された送電コイルと、
側面、上面および下面を有する板状の形状を有し、前記コアユニットおよび前記送電コイルが埋め込まれる封止部材と、
前記封止部材の前記下面側において、間隔を隔てて配置されたシールドと、
前記シールドと前記封止部材の前記下面との間に配置され、前記封止部材よりも断熱性能が良い断熱層と、を含む、
送電装置。
A power transmission device including a power transmission unit that transmits power in a non-contact manner to the power reception unit in a state of facing a power reception unit having a power reception coil,
A core unit having a plate-like shape, including a side surface, an upper surface and a lower surface;
A power transmission coil wound spirally around the upper surface and the lower surface of the core unit;
A sealing member having a plate-like shape having side surfaces, an upper surface and a lower surface, in which the core unit and the power transmission coil are embedded;
On the lower surface side of the sealing member, shields arranged at intervals,
A heat insulating layer that is disposed between the shield and the lower surface of the sealing member and has better heat insulating performance than the sealing member;
Power transmission device.
JP2013196743A 2013-09-24 2013-09-24 vehicle Active JP6123607B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013196743A JP6123607B2 (en) 2013-09-24 2013-09-24 vehicle
PCT/JP2014/004024 WO2015045246A1 (en) 2013-09-24 2014-07-31 Power reception device, power transmission device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013196743A JP6123607B2 (en) 2013-09-24 2013-09-24 vehicle

Publications (2)

Publication Number Publication Date
JP2015065720A true JP2015065720A (en) 2015-04-09
JP6123607B2 JP6123607B2 (en) 2017-05-10

Family

ID=51453788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196743A Active JP6123607B2 (en) 2013-09-24 2013-09-24 vehicle

Country Status (2)

Country Link
JP (1) JP6123607B2 (en)
WO (1) WO2015045246A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009687A (en) * 2014-06-20 2016-01-18 矢崎総業株式会社 Coil unit
EP3127741A3 (en) * 2015-08-04 2017-03-22 Toyota Jidosha Kabushiki Kaisha Vehicle
DE102017210740A1 (en) 2016-06-27 2017-12-28 Honda Motor Co., Ltd. Power receiving device, vehicle and detection method
CN108011451A (en) * 2016-10-31 2018-05-08 苹果公司 With solenoidal wireless charging system
US10227015B2 (en) 2016-06-27 2019-03-12 Honda Motor Co., Ltd. Power reception apparatus, vehicle, and detection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821104B1 (en) * 2015-04-07 2018-01-22 닛산 지도우샤 가부시키가이샤 Temperature estimation apparatus and temperature estimation method of non-contact water receiving apparatus
DE102015214983A1 (en) * 2015-08-06 2017-02-09 Bayerische Motoren Werke Aktiengesellschaft Integrated secondary coil for inductive charging of a vehicle
JP6990063B2 (en) * 2017-08-08 2022-02-03 株式会社ブルーエナジー Power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087733A (en) * 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd Noncontact power supply device
JP2011091999A (en) * 2008-09-18 2011-05-06 Toyota Motor Corp Non-contact power receiving apparatus and non-contact power transmitter
WO2012157661A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Mounting structure for non-contact charger
WO2013112047A1 (en) * 2012-01-23 2013-08-01 Environment Solutions B.V. Apparatus and method for collecting a floatable liquid
JP2013154815A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Vehicle and power transmission system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156532A4 (en) * 2007-05-10 2014-04-30 Auckland Uniservices Ltd Multi power sourced electric vehicle
JP5772535B2 (en) 2011-11-18 2015-09-02 トヨタ自動車株式会社 Power transmission system and vehicle
JP5668676B2 (en) 2011-12-15 2015-02-12 トヨタ自動車株式会社 Power receiving device, vehicle including the same, power transmitting device, and power transmission system
GB201121938D0 (en) * 2011-12-21 2012-02-01 Dames Andrew N Supply of grid power to moving vehicles
JP2013132171A (en) 2011-12-22 2013-07-04 Toyota Motor Corp Power transmitter, power receiver, and power transmission system
JP5718830B2 (en) 2012-01-16 2015-05-13 トヨタ自動車株式会社 vehicle
JP5825108B2 (en) 2012-01-16 2015-12-02 トヨタ自動車株式会社 Power receiving device and power transmitting device
DE102012202472B4 (en) * 2012-02-17 2018-03-01 Siemens Aktiengesellschaft Device for contactless transmission of energy to a corresponding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087733A (en) * 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd Noncontact power supply device
JP2011091999A (en) * 2008-09-18 2011-05-06 Toyota Motor Corp Non-contact power receiving apparatus and non-contact power transmitter
WO2012157661A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Mounting structure for non-contact charger
WO2013112047A1 (en) * 2012-01-23 2013-08-01 Environment Solutions B.V. Apparatus and method for collecting a floatable liquid
JP2013154815A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Vehicle and power transmission system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009687A (en) * 2014-06-20 2016-01-18 矢崎総業株式会社 Coil unit
EP3127741A3 (en) * 2015-08-04 2017-03-22 Toyota Jidosha Kabushiki Kaisha Vehicle
DE102017210740A1 (en) 2016-06-27 2017-12-28 Honda Motor Co., Ltd. Power receiving device, vehicle and detection method
US10227015B2 (en) 2016-06-27 2019-03-12 Honda Motor Co., Ltd. Power reception apparatus, vehicle, and detection method
US10464430B2 (en) 2016-06-27 2019-11-05 Honda Motor Co., Ltd. Power reception apparatus, vehicle, and detection method
CN108011451A (en) * 2016-10-31 2018-05-08 苹果公司 With solenoidal wireless charging system
JP2018074900A (en) * 2016-10-31 2018-05-10 アップル インコーポレイテッド Wireless charging system with solenoids
JP2020099193A (en) * 2016-10-31 2020-06-25 アップル インコーポレイテッドApple Inc. Wireless charging system with solenoid
JP7021267B2 (en) 2016-10-31 2022-02-16 アップル インコーポレイテッド Wireless charging system with solenoid
US11303155B2 (en) 2016-10-31 2022-04-12 Apple Inc. Wireless charging system with solenoids
US11611239B2 (en) 2016-10-31 2023-03-21 Apple Inc. Wireless charging system with solenoids

Also Published As

Publication number Publication date
WO2015045246A1 (en) 2015-04-02
JP6123607B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6123607B2 (en) vehicle
JP6131915B2 (en) Power transmission device and power reception device
JP5467569B2 (en) Non-contact power feeding device
JP5759716B2 (en) Wireless power transmission system
JP5817813B2 (en) Power receiving device
US9545850B2 (en) Vehicle
US10250071B2 (en) Wireless power supply coil
JP6060330B2 (en) Power receiving device, vehicle, and power transmitting device
JP2010093180A (en) Non-contact power supply
WO2014119296A1 (en) Contactless power transmission device
JP6300107B2 (en) Non-contact power transmission device
JP5858018B2 (en) Power receiving device, power transmitting device, and vehicle
JP2015070783A (en) Power incoming device, power transmitting device and vehicle
JP2016129164A (en) Power receiving device and power transmitting device
KR20230041804A (en) Efficiency enhancements through magnetic field management
JP6285810B2 (en) Coil unit in non-contact power feeder
JP5930182B2 (en) antenna
JP2017212302A (en) Coil device, non-contact power supply device and non-contact power reception device
JP5888504B2 (en) antenna
JP2015084366A (en) Power-receiving apparatus
JP2016059128A (en) Coil unit
JP2016018802A (en) Coil unit
JP2014147242A (en) Non-contact power transmission device
JPWO2013001636A1 (en) Power transmission device, power reception device, and power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R151 Written notification of patent or utility model registration

Ref document number: 6123607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151