JP5668676B2 - Power receiving device, vehicle including the same, power transmitting device, and power transmission system - Google Patents

Power receiving device, vehicle including the same, power transmitting device, and power transmission system Download PDF

Info

Publication number
JP5668676B2
JP5668676B2 JP2011274498A JP2011274498A JP5668676B2 JP 5668676 B2 JP5668676 B2 JP 5668676B2 JP 2011274498 A JP2011274498 A JP 2011274498A JP 2011274498 A JP2011274498 A JP 2011274498A JP 5668676 B2 JP5668676 B2 JP 5668676B2
Authority
JP
Japan
Prior art keywords
power
power transmission
magnetic field
electric
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011274498A
Other languages
Japanese (ja)
Other versions
JP2013126327A (en
Inventor
秀樹 戸嶋
秀樹 戸嶋
中智 周
中智 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011274498A priority Critical patent/JP5668676B2/en
Publication of JP2013126327A publication Critical patent/JP2013126327A/en
Application granted granted Critical
Publication of JP5668676B2 publication Critical patent/JP5668676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

この発明は、受電装置およびそれを備える車両、送電装置、ならびに電力伝送システムに関し、特に、送電装置から受電装置へ非接触で電力を伝送する電力伝送システムにおいて効率的に電力を利用する技術に関する。   The present invention relates to a power receiving device, a vehicle including the power receiving device, a power transmission device, and a power transmission system, and more particularly to a technique for efficiently using power in a power transmission system that transmits power from the power transmission device to the power receiving device in a contactless manner.

電源コードや送電ケーブルを用いないワイヤレス電力伝送が注目されている。ワイヤレス電力伝送技術としては、有力なものとして、電磁誘導を用いた送電、マイクロ波を用いた送電、および所謂共鳴型の送電の3つの技術が知られている。   Wireless power transmission that does not use power cords or power cables is drawing attention. As a wireless power transmission technique, three techniques, known as power transmission using electromagnetic induction, power transmission using microwaves, and so-called resonance type power transmission, are known.

たとえば、特開2010−130878号公報(特許文献1)は、共鳴型の電力伝送技術を利用した非接触電力伝送装置を開示する。この特許文献1には、磁場共鳴により一次側(送電装置)の共鳴コイルから二次側(受電装置)の共鳴コイルへ非接触で電力が伝送され、二次側の共鳴コイルにより受電された電力を電気負荷としての電球へ供給することが開示されている(特許文献1参照)。   For example, Japanese Patent Laying-Open No. 2010-130878 (Patent Document 1) discloses a non-contact power transmission device using a resonance type power transmission technology. In Patent Document 1, power is transmitted in a non-contact manner from a resonance coil on the primary side (power transmission device) to a resonance coil on the secondary side (power reception device) by magnetic field resonance, and is received by the resonance coil on the secondary side. Is supplied to a light bulb as an electric load (see Patent Document 1).

特開2010−130878号公報JP 2010-130878 A 国際公開第2010/106648号パンフレットInternational Publication No. 2010/106648 Pamphlet

上記の非接触電力伝送装置によれば、送電装置から受電装置へ電力が伝送されているときに電球が点灯するので、送電装置から受電装置へ電力伝送中であることを利用者に報知することができる。   According to the above non-contact power transmission device, since the light bulb is turned on when power is transmitted from the power transmission device to the power reception device, the user is notified that power is being transmitted from the power transmission device to the power reception device. Can do.

しかしながら、送電装置から受電装置へ電力を伝送する直接の目的が電球の点灯でない場合、たとえば、車両等に設けられる蓄電部(電池やキャパシタ等)を充電することが電力伝送の目的の場合、受電器(特許文献1では二次側共鳴コイル)により受電された電力や、送電器(特許文献1では一次側共鳴コイル)に供給される電力を報知用の電球に用いることは、蓄電部の充電電力としてはロスとなる。   However, when the direct purpose of transmitting power from the power transmitting device to the power receiving device is not lighting a light bulb, for example, when the purpose of power transmission is to charge a power storage unit (battery, capacitor, etc.) provided in a vehicle or the like. Using the power received by the electrical device (secondary resonance coil in Patent Document 1) or the power supplied to the power transmitter (primary resonance coil in Patent Literature 1) for the notification light bulb is charging the power storage unit. It becomes a loss as electric power.

このような電力ロスを生じることなく、かつ、電源を別途設けることなく、電球を点灯させることができれば望ましい。そして、電球に限らず、その他の電気機器に対しても、上記のような電力ロスを生じることなく、かつ、電源を別途設けることなく、電気機器へ電力を供給することが本発明の課題である。   It would be desirable if the light bulb could be lit without such power loss and without providing a separate power source. And it is the subject of this invention to supply electric power not only to a light bulb but also to other electric devices without causing the above-mentioned power loss and without providing a separate power source. is there.

それゆえに、この発明の目的は、送電装置から非接触で受電するための受電器によって受電された電力を用いることなく、かつ、電源を別途設けることなく、電気機器へ電力を供給可能な受電装置を提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a power receiving device capable of supplying power to an electrical device without using power received by a power receiver for receiving power from the power transmitting device in a contactless manner and without providing a separate power source. Is to provide.

また、この発明の別の目的は、受電装置へ非接触で送電するための送電器に供給される電力を用いることなく、かつ、電源を別途設けることなく、電気機器へ電力を供給可能な送電装置を提供することである。   Another object of the present invention is to transmit power that can supply power to an electric device without using power supplied to a power transmitter for transmitting power to a power receiving device in a contactless manner and without providing a separate power source. Is to provide a device.

また、この発明の別の目的は、上記のような受電装置および送電装置の少なくとも一方を備える電力伝送システムを提供することである。   Another object of the present invention is to provide a power transmission system including at least one of the power receiving device and the power transmitting device as described above.

この発明によれば、受電装置は、受電器と、電磁シールド部と、電気機器とを備える。受電器は、送電装置から非接触で受電するためのものである。電磁シールド部は、受電器による受電時に発生する磁界の拡散を抑制する。電気機器は、受電器による受電時に、その磁界によって電磁シールド部に発生する電流を受ける。   According to this invention, the power receiving device includes a power receiver, an electromagnetic shield part, and an electric device. The power receiver is for receiving power from the power transmission device in a contactless manner. The electromagnetic shield part suppresses the diffusion of the magnetic field generated during power reception by the power receiver. When the electric device receives power by the power receiver, the electric device receives a current generated in the electromagnetic shield portion by the magnetic field.

好ましくは、電磁シールド部は、導電性部材を含む。導電性部材は、磁界を遮蔽するとともに電流の電路を構成する。電気機器は、導電性部材の両端部間に電気的に接続されることによって、受電器による受電時に導電性部材に発生する電流を受ける。   Preferably, the electromagnetic shield part includes a conductive member. The conductive member shields the magnetic field and constitutes an electric current path. The electrical device is electrically connected between both ends of the conductive member, and thus receives an electric current generated in the conductive member when receiving power by the power receiver.

さらに好ましくは、導電性部材は、受電器と送電装置の送電器とを結ぶ仮想直線の周りに設けられる。   More preferably, the conductive member is provided around a virtual straight line connecting the power receiver and the power transmitter of the power transmission device.

好ましくは、電磁シールド部は、抵抗部材をさらに含む。抵抗部材は、導電性部材の両端部間に配設され、磁界を遮蔽するとともに電気機器よりもインピーダンスが大きい。   Preferably, the electromagnetic shield part further includes a resistance member. The resistance member is disposed between both end portions of the conductive member, shields the magnetic field, and has a larger impedance than the electric device.

好ましくは、電気機器は、表示装置、冷却装置、および蓄電装置の少なくとも1つを含む。   Preferably, the electrical device includes at least one of a display device, a cooling device, and a power storage device.

好ましくは、受電器の固有周波数と送電装置の送電器の固有周波数との差は、受電器の固有周波数または送電器の固有周波数の±10%以下である。   Preferably, the difference between the natural frequency of the power receiver and the natural frequency of the power transmitter is less than ± 10% of the natural frequency of the power receiver or the natural frequency of the power transmitter.

好ましくは、受電器と送電装置の送電器との結合係数は0.1以下である。
好ましくは、受電器は、受電器と送電装置の送電器との間に形成され、かつ、特定の周波数で振動する磁界と、受電器と送電器との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、送電器から受電する。
Preferably, the coupling coefficient between the power receiver and the power transmitter of the power transmission device is 0.1 or less.
Preferably, the power receiver is formed between the power receiver and the power transmitter of the power transmission device, and formed between the power receiver and the power transmitter, and a magnetic field that vibrates at a specific frequency, and the specific frequency. The power is received from the power transmitter through at least one of the electric field oscillating at.

また、この発明によれば、車両は、上述したいずれかに記載の受電装置を備える。
また、この発明によれば、送電装置は、送電器と、電磁シールド部と、電気機器とを備える。送電器は、受電装置へ非接触で送電するためのものである。電磁シールド部は、送電器による送電時に発生する磁界の拡散を抑制する。電気機器は、送電器による送電時に、磁界によって電磁シールド部に発生する電流を受ける。
According to the invention, the vehicle includes any one of the power receiving devices described above.
Moreover, according to this invention, a power transmission apparatus is provided with a power transmitter, an electromagnetic shielding part, and an electric equipment. The power transmitter is for transmitting power to the power receiving device in a contactless manner. The electromagnetic shield part suppresses diffusion of a magnetic field generated during power transmission by the power transmitter. The electric device receives a current generated in the electromagnetic shield portion by a magnetic field during power transmission by the power transmitter.

好ましくは、電磁シールド部は、導電性部材を含む。導電性部材は、磁界を遮蔽するとともに電流の電路を構成する。電気機器は、導電性部材の両端部間に電気的に接続されることによって、送電器による送電時に導電性部材に発生する電流を受ける。   Preferably, the electromagnetic shield part includes a conductive member. The conductive member shields the magnetic field and constitutes an electric current path. The electric device is electrically connected between both ends of the conductive member, and thus receives an electric current generated in the conductive member during power transmission by the power transmitter.

さらに好ましくは、導電性部材は、送電器と受電装置の受電器とを結ぶ仮想直線の周りに設けられる。   More preferably, the conductive member is provided around a virtual straight line connecting the power transmitter and the power receiver of the power receiving apparatus.

好ましくは、電磁シールド部は、抵抗部材をさらに含む。抵抗部材は、導電性部材の両端部間に配設され、磁界を遮蔽するとともに電気機器よりもインピーダンスが大きい。   Preferably, the electromagnetic shield part further includes a resistance member. The resistance member is disposed between both end portions of the conductive member, shields the magnetic field, and has a larger impedance than the electric device.

好ましくは、電気機器は、表示装置、冷却装置、および蓄電装置の少なくとも1つを含む。   Preferably, the electrical device includes at least one of a display device, a cooling device, and a power storage device.

好ましくは、送電器の固有周波数と受電装置の受電器の固有周波数との差は、送電器の固有周波数または受電器の固有周波数の±10%以下である。   Preferably, the difference between the natural frequency of the power transmitter and the natural frequency of the power receiver of the power receiving apparatus is ± 10% or less of the natural frequency of the power transmitter or the natural frequency of the power receiver.

好ましくは、送電器と受電装置の受電器との結合係数は0.1以下である。
好ましくは、送電器は、送電器と受電装置の受電器との間に形成され、かつ、特定の周波数で振動する磁界と、送電器と受電器との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、受電器へ送電する。
Preferably, the coupling coefficient between the power transmitter and the power receiver of the power receiving apparatus is 0.1 or less.
Preferably, the power transmitter is formed between the power transmitter and the power receiver of the power receiving device, and is formed between the magnetic field oscillating at a specific frequency, the power transmitter and the power receiver, and the specific frequency. The power is transmitted to the power receiver through at least one of the electric field oscillating at.

また、この発明によれば、電力伝送システムは、送電装置から受電装置へ非接触で電力を伝送する電力伝送システムである。送電装置は、受電装置へ非接触で送電するための送電器を備える。受電装置は、受電器と、電磁シールド部と、電気機器とを備える。受電器は、送電装置から非接触で受電するためのものである。電磁シールド部は、受電器による受電時に発生する磁界の拡散を抑制する。電気機器は、受電器による受電時に、磁界によって電磁シールド部に発生する電流を受ける。   Moreover, according to this invention, an electric power transmission system is an electric power transmission system which transmits electric power non-contactingly from a power transmission apparatus to a power receiving apparatus. The power transmission device includes a power transmitter for transmitting power to the power receiving device in a contactless manner. The power receiving device includes a power receiver, an electromagnetic shield unit, and an electric device. The power receiver is for receiving power from the power transmission device in a contactless manner. The electromagnetic shield part suppresses the diffusion of the magnetic field generated during power reception by the power receiver. The electric device receives a current generated in the electromagnetic shield portion by a magnetic field when receiving power by the power receiver.

また、この発明によれば、電力伝送システムは、送電装置から受電装置へ非接触で電力を伝送する電力伝送システムである。受電装置は、送電装置から非接触で受電するための受電器を備える。送電装置は、送電器と、電磁シールド部と、電気機器とを備える。送電器は、受電装置へ非接触で送電するためのものである。電磁シールド部は、送電器による送電時に発生する磁界の拡散を抑制する。電気機器は、送電器による送電時に、磁界によって電磁シールド部に発生する電流を受ける。   Moreover, according to this invention, an electric power transmission system is an electric power transmission system which transmits electric power non-contactingly from a power transmission apparatus to a power receiving apparatus. The power receiving device includes a power receiver for receiving power from the power transmitting device in a contactless manner. The power transmission device includes a power transmitter, an electromagnetic shield unit, and an electric device. The power transmitter is for transmitting power to the power receiving device in a contactless manner. The electromagnetic shield part suppresses diffusion of a magnetic field generated during power transmission by the power transmitter. The electric device receives a current generated in the electromagnetic shield portion by a magnetic field during power transmission by the power transmitter.

この発明においては、受電器による受電時(または送電器による送電時)に発生する磁界の拡散を抑制する電磁シールド部が設けられる。電磁シールド部には、受電器による受電時(または送電器による送電時)に、磁界の影響によって渦電流が発生する。そこで、この発明においては、受電器による受電時(または送電器による送電時)に、この渦電流によって電磁シールド部に発生する電流が電気機器に供給される。したがって、この発明によれば、受電装置の受電器によって受電された電力(または送電装置の送電器に供給される電力)を用いることなく、かつ、電源を別途設けることなく、電気機器へ電力を供給することができる。   In this invention, the electromagnetic shielding part which suppresses the spreading | diffusion of the magnetic field which generate | occur | produces at the time of power reception by a power receiver (or power transmission by a power transmitter) is provided. An eddy current is generated in the electromagnetic shield part by the influence of a magnetic field when receiving power by the power receiver (or when transmitting power by the power transmitter). Therefore, in the present invention, when the power is received by the power receiver (or when the power is transmitted by the power transmitter), the current generated in the electromagnetic shield portion by the eddy current is supplied to the electric device. Therefore, according to the present invention, electric power can be supplied to an electrical device without using power received by the power receiver of the power receiving device (or power supplied to the power transmitter of the power transmitting device) and without providing a separate power source. Can be supplied.

この発明の実施の形態による電力伝送システムの全体構成図である。1 is an overall configuration diagram of a power transmission system according to an embodiment of the present invention. 図1に示す受電部および送電部の構成を示した図である。It is the figure which showed the structure of the power receiving part and power transmission part which are shown in FIG. 受電器に電流が流れるときに受電器に発生する磁界の様子の一例を示した図である。It is the figure which showed an example of the mode of the magnetic field which generate | occur | produces in a power receiver when an electric current flows into a power receiver. 受電器による受電時に電磁シールド部に電流が発生する様子を示した第1の図である。It is the 1st figure which showed a mode that an electric current generate | occur | produces in an electromagnetic shielding part at the time of the power receiving by a power receiver. 受電器による受電時に電磁シールド部に電流が発生する様子を示した第2の図である。It is the 2nd figure which showed a mode that an electric current generate | occur | produces in an electromagnetic shielding part at the time of the power reception by a power receiver. 電磁シールド部および電気機器の構成の一例を示した図である。It is the figure which showed an example of the structure of an electromagnetic shielding part and an electric equipment. 導電性部材の両端部近傍を仮想直線の軸方向から見た図である。It is the figure which looked at the both ends vicinity of the electroconductive member from the axial direction of the virtual straight line. 電気機器が表示装置によって構成される例を示した図である。It is the figure which showed the example with which an electric equipment is comprised with a display apparatus. 電気機器が冷却装置によって構成される例を示した図である。It is the figure which showed the example by which an electric equipment is comprised with a cooling device. 電気機器が蓄電装置によって構成される例を示した図である。It is the figure which showed the example with which an electric equipment is comprised with an electrical storage apparatus. 給電設備から車両への電力伝送時の等価回路図である。It is an equivalent circuit diagram at the time of power transmission from the power feeding facility to the vehicle. 電力伝送システムのシミュレーションモデルを示す図である。It is a figure which shows the simulation model of an electric power transmission system. 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。It is a figure which shows the relationship between the shift | offset | difference of the natural frequency of a power transmission part and a power receiving part, and electric power transmission efficiency. 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、送電器に供給される電流の周波数との関係を示すグラフである。It is a graph which shows the relationship between the power transmission efficiency when changing an air gap in the state which fixed the natural frequency, and the frequency of the electric current supplied to a power transmission device. 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity | strength of an electromagnetic field. 電磁誘導による給電設備から車両への電力伝送時の等価回路図である。It is an equivalent circuit diagram at the time of electric power transmission from the power supply equipment by electromagnetic induction to the vehicle.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、この発明の実施の形態による電力伝送システムの全体構成図である。図1を参照して、電力伝送システム10は、車両100と、給電設備200とを備える。車両100は、受電部110と、整流器120と、蓄電部130と、動力出力装置140と、電子制御部(以下「ECU(Electronic Control Unit)」と称する。)150と、通信部160と、電気機器170とを含む。   FIG. 1 is an overall configuration diagram of a power transmission system according to an embodiment of the present invention. Referring to FIG. 1, power transmission system 10 includes a vehicle 100 and a power supply facility 200. The vehicle 100 includes a power reception unit 110, a rectifier 120, a power storage unit 130, a power output device 140, an electronic control unit (hereinafter referred to as “ECU (Electronic Control Unit)”) 150, a communication unit 160, Device 170.

受電部110は、給電設備200の送電部230(後述)から出力される交流電力を電磁界を介して非接触で受電する。受電部110は、たとえば車体底面に設置されるが、設置位置は車体底面に限定されるものではない。なお、受電部110の構成については、送電部230の構成、ならびに送電部230から受電部110への電力伝送とともに、後ほど説明する。   The power reception unit 110 receives AC power output from a power transmission unit 230 (described later) of the power supply facility 200 in a contactless manner via an electromagnetic field. The power receiving unit 110 is installed on the bottom surface of the vehicle body, for example, but the installation position is not limited to the bottom surface of the vehicle body. Note that the configuration of the power reception unit 110 will be described later together with the configuration of the power transmission unit 230 and power transmission from the power transmission unit 230 to the power reception unit 110.

整流器120は、受電部110によって受電された交流電力を整流して蓄電部130へ出力する。蓄電部130は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池を含む。蓄電部130は、整流器120から受ける電力を蓄えるほか、動力出力装置140によって発電される回生電力も蓄える。そして、蓄電部130は、その蓄えた電力を動力出力装置140へ供給する。なお、蓄電部130として大容量のキャパシタも採用可能である。なお、整流器120と蓄電部130との間に、整流器120から出力される直流電圧を蓄電部130の充電電圧に変換するDC/DCコンバータを設けてもよい。   Rectifier 120 rectifies the AC power received by power receiving unit 110 and outputs the rectified power to power storage unit 130. Power storage unit 130 is a rechargeable DC power source, and includes, for example, a secondary battery such as lithium ion or nickel metal hydride. The power storage unit 130 stores power received from the rectifier 120 and also stores regenerative power generated by the power output device 140. Then, power storage unit 130 supplies the stored power to power output device 140. Note that a large-capacity capacitor can also be used as the power storage unit 130. Note that a DC / DC converter that converts a DC voltage output from the rectifier 120 into a charging voltage of the power storage unit 130 may be provided between the rectifier 120 and the power storage unit 130.

動力出力装置140は、蓄電部130に蓄えられる電力を用いて車両100の走行駆動力を発生する。特に図示しないが、動力出力装置140は、たとえば、蓄電部130から電力を受けるインバータ、インバータによって駆動されるモータ、モータによって駆動される駆動輪等を含む。なお、動力出力装置140は、蓄電部130を充電するための発電機と、発電機を駆動可能なエンジンを含んでもよい。   Power output device 140 generates the driving force for driving vehicle 100 using the electric power stored in power storage unit 130. Although not particularly illustrated, power output device 140 includes, for example, an inverter that receives electric power from power storage unit 130, a motor driven by the inverter, a drive wheel driven by the motor, and the like. Power output device 140 may include a generator for charging power storage unit 130 and an engine capable of driving the generator.

ECU150は、予め記憶されたプログラムをCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、車両100における種々の制御を実行する。具体的には、ECU150は、動力出力装置140の制御や、蓄電部130の充放電管理等を行なう。また、ECU150は、通信部160によって給電設備200と無線通信することができる。通信部160は、車両100が給電設備200と通信を行なうための通信インターフェースである。   ECU 150 executes various controls in vehicle 100 by software processing by executing a program stored in advance by a CPU (Central Processing Unit) and / or hardware processing by a dedicated electronic circuit. Specifically, ECU 150 performs control of power output device 140, charge / discharge management of power storage unit 130, and the like. Further, the ECU 150 can wirelessly communicate with the power supply facility 200 through the communication unit 160. Communication unit 160 is a communication interface for vehicle 100 to communicate with power supply facility 200.

電気機器170は、受電部110に接続される。詳しくは、電気機器170は、受電部110の電磁シールド部(後述)に電気的に接続され、受電部110による給電設備200からの受電時に、受電に伴ない発生する磁界によって受電部110の電磁シールド部に発生する電流を受ける。この電気機器170は、受電部110の電磁シールド部に発生する電力を受ける電気機器を総括的に示したものである。たとえば、電気機器170は、表示装置(表示ランプ)、冷却装置、および蓄電装置の少なくとも一つを含むものとするが、必ずしもこれらに限定されるものではない。電気機器170の構成については、受電部110の構成とともに後ほど説明する。   The electric device 170 is connected to the power receiving unit 110. Specifically, the electric device 170 is electrically connected to an electromagnetic shield unit (described later) of the power receiving unit 110, and when the power receiving unit 110 receives power from the power supply facility 200, the electric device 170 generates an electromagnetic wave generated by the power reception. Receives current generated in the shield. The electric device 170 is a general view of electric devices that receive electric power generated in the electromagnetic shield part of the power receiving unit 110. For example, the electrical device 170 includes at least one of a display device (display lamp), a cooling device, and a power storage device, but is not necessarily limited thereto. The configuration of the electric device 170 will be described later together with the configuration of the power receiving unit 110.

一方、給電設備200は、電源部210と、インピーダンス整合器220と、送電部230と、ECU240と、通信部250と、電気機器260とを含む。電源部210は、所定の周波数を有する交流電力を発生する。一例として、電源部210は、図示されない系統電源から電力を受けて高周波の交流電力を発生し、その発生した交流電力をインピーダンス整合器220を介して送電部230へ供給する。   On the other hand, the power supply facility 200 includes a power supply unit 210, an impedance matching unit 220, a power transmission unit 230, an ECU 240, a communication unit 250, and an electric device 260. The power supply unit 210 generates AC power having a predetermined frequency. As an example, the power supply unit 210 generates high-frequency AC power by receiving power from a system power supply (not shown), and supplies the generated AC power to the power transmission unit 230 via the impedance matching unit 220.

インピーダンス整合器220は、電源部210と送電部230との間に設けられ、内部のインピーダンスを変更可能に構成される。一例として、インピーダンス整合器220は、可変コンデンサとコイルとによって構成され(図示せず)、可変コンデンサの容量を変化させることによってインピーダンスを変更することができる。このインピーダンス整合器220においてインピーダンスを変更することによって、給電設備200のインピーダンスを車両100のインピーダンスと整合させることができる(インピーダンスマッチング)。なお、電源部210がインピーダンスの整合機能を有する場合には、このインピーダンス整合器220を省略することも可能である。   The impedance matching unit 220 is provided between the power supply unit 210 and the power transmission unit 230 and is configured to be able to change the internal impedance. As an example, the impedance matching unit 220 includes a variable capacitor and a coil (not shown), and can change the impedance by changing the capacitance of the variable capacitor. By changing the impedance in the impedance matching unit 220, the impedance of the power supply facility 200 can be matched with the impedance of the vehicle 100 (impedance matching). When the power supply unit 210 has an impedance matching function, the impedance matching unit 220 can be omitted.

送電部230は、電源部210から交流電力の供給を受け、送電部230の周囲に発生する電磁界を介して車両100の受電部110へ非接触で電力を出力する。送電部230は、たとえば駐車場の床面に設置されるが、設置位置はそのような場所に限定されるものではない。なお、送電部230の構成についても、受電部110の構成、ならびに送電部230から受電部110への電力伝送とともに、後ほど説明する。   The power transmission unit 230 receives supply of AC power from the power supply unit 210 and outputs power to the power reception unit 110 of the vehicle 100 in a non-contact manner via an electromagnetic field generated around the power transmission unit 230. The power transmission unit 230 is installed, for example, on the floor of a parking lot, but the installation position is not limited to such a place. The configuration of the power transmission unit 230 will be described later together with the configuration of the power reception unit 110 and the power transmission from the power transmission unit 230 to the power reception unit 110.

ECU240は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、電源部210およびインピーダンス整合器220を制御する。具体的には、ECU240は、電源部210の動作開始指令および停止指令、ならびに電源部210の出力電力の目標値を示す電力指令値を生成して電源部210へ出力する。また、ECU240は、インピーダンス整合器220を制御することによって、給電設備200のインピーダンスを車両100のインピーダンスと整合させる。また、ECU240は、通信部250によって車両100と無線通信することができる。通信部250は、給電設備200が車両100と通信を行なうための通信インターフェースである。   The ECU 240 controls the power supply unit 210 and the impedance matching unit 220 by software processing by executing a program stored in advance by the CPU and / or hardware processing by a dedicated electronic circuit. Specifically, ECU 240 generates an operation start command and a stop command for power supply unit 210 and a power command value indicating a target value of output power of power supply unit 210 and outputs the generated power command value to power supply unit 210. In addition, ECU 240 controls impedance matching unit 220 to match the impedance of power supply facility 200 with the impedance of vehicle 100. Further, ECU 240 can wirelessly communicate with vehicle 100 through communication unit 250. Communication unit 250 is a communication interface for power supply facility 200 to communicate with vehicle 100.

電気機器260は、送電部230に接続される。詳しくは、電気機器260は、送電部230の電磁シールド部(後述)に電気的に接続され、送電部230による車両100への送電時に、送電に伴ない発生する磁界によって送電部230の電磁シールド部に発生する電流を受ける。この電気機器260は、送電部230の電磁シールド部に発生する電力を受ける電気機器を総括的に示したものである。車両100の電気機器170と同様に、電気機器260も、たとえば、表示装置(表示ランプ)、冷却装置、および蓄電装置の少なくとも一つを含むものとするが、必ずしもこれらに限定されるものではない。電気機器260の構成についても、送電部230の構成とともに後ほど説明する。   The electric device 260 is connected to the power transmission unit 230. Specifically, the electric device 260 is electrically connected to an electromagnetic shield unit (described later) of the power transmission unit 230, and when the power transmission unit 230 transmits power to the vehicle 100, an electromagnetic shield of the power transmission unit 230 is generated by a magnetic field generated along with power transmission. The current generated in the part is received. The electrical device 260 generally represents electrical devices that receive power generated in the electromagnetic shield portion of the power transmission unit 230. Similarly to the electric device 170 of the vehicle 100, the electric device 260 includes, for example, at least one of a display device (display lamp), a cooling device, and a power storage device, but is not necessarily limited thereto. The configuration of the electric device 260 will be described later together with the configuration of the power transmission unit 230.

この電力伝送システム10においては、給電設備200の送電部230から車両100の受電部110へ非接触で電力が伝送される。受電部110の電磁シールド部には、電気機器170が電気的に接続され、受電部110による送電部230からの受電時に、磁界の遮蔽に伴ない受電部110の電磁シールド部に発生する電流が電気機器170に供給される。また、送電部230の電磁シールド部には、電気機器260が電気的に接続され、送電部230による受電部110への送電時に、磁界の遮蔽に伴ない送電部230の電磁シールド部に発生する電流が電気機器260に供給される。   In the power transmission system 10, power is transmitted from the power transmission unit 230 of the power supply facility 200 to the power reception unit 110 of the vehicle 100 in a contactless manner. The electric device 170 is electrically connected to the electromagnetic shield part of the power receiving unit 110, and current generated in the electromagnetic shield part of the power receiving unit 110 due to shielding of the magnetic field when the power receiving unit 110 receives power from the power transmission unit 230. It is supplied to the electric device 170. In addition, the electric device 260 is electrically connected to the electromagnetic shield part of the power transmission unit 230, and is generated in the electromagnetic shield part of the power transmission unit 230 when the power transmission unit 230 transmits power to the power reception unit 110 due to shielding of the magnetic field. An electric current is supplied to the electric device 260.

(受電部110および送電部230の構成)
図2は、図1に示した受電部110および送電部230の構成を示した図である。図2を参照して、受電部110は、受電器180と、電磁シールド部190とを含む。送電部230は、送電器270と、電磁シールド部280とを含む。
(Configuration of power receiving unit 110 and power transmitting unit 230)
FIG. 2 is a diagram illustrating the configuration of power reception unit 110 and power transmission unit 230 illustrated in FIG. 1. Referring to FIG. 2, power receiving unit 110 includes a power receiver 180 and an electromagnetic shield unit 190. The power transmission unit 230 includes a power transmitter 270 and an electromagnetic shield unit 280.

送電器270は、インピーダンス整合器220(図1)に電気的に接続され、インピーダンス整合器220を介して電源部210から受ける交流電力を受電部110の受電器180へ非接触で送電する。送電器270には、コイルやアンテナ等を採用可能であり、この実施の形態では、送電器270は、電力の供給を受けて磁界を発生するヘリカルコイルを含むものとする。   The power transmitter 270 is electrically connected to the impedance matching unit 220 (FIG. 1), and transmits AC power received from the power supply unit 210 via the impedance matching unit 220 to the power receiving unit 180 of the power receiving unit 110 in a contactless manner. A coil, an antenna, or the like can be adopted as the power transmitter 270. In this embodiment, the power transmitter 270 includes a helical coil that generates a magnetic field when supplied with electric power.

電磁シールド部280は、送電器270による送電時に発生する磁界の拡散を抑制する。たとえば、電磁シールド部280は、送電器270を格納し、かつ、送電器270から受電器180への送電方向が開口されたケースによって構成される。詳しくは、電磁シールド部280は、たとえば、上記ケースの内側表面に塗布された高透磁性の金属物や、高透磁性の金属製ケース自体によって構成される。   The electromagnetic shield unit 280 suppresses diffusion of a magnetic field that is generated during power transmission by the power transmitter 270. For example, the electromagnetic shield unit 280 is configured by a case in which the power transmitter 270 is stored and the power transmission direction from the power transmitter 270 to the power receiver 180 is opened. Specifically, the electromagnetic shield part 280 is constituted by, for example, a highly permeable metal object applied to the inner surface of the case or a highly permeable metal case itself.

受電器180は、送電器270から送出される電力を非接触で受電するためのものである。受電器180は、整流器120(図1)に電気的に接続され、送電器270から受電した電力を整流器120へ出力する。受電器180についても、コイルやアンテナ等を採用可能であり、この実施の形態では、受電器180は、送電器270と同様にヘリカルコイルを含むものとする。   The power receiver 180 is for receiving the power transmitted from the power transmitter 270 in a contactless manner. The power receiver 180 is electrically connected to the rectifier 120 (FIG. 1), and outputs the power received from the power transmitter 270 to the rectifier 120. A coil, an antenna, or the like can also be adopted for the power receiver 180. In this embodiment, the power receiver 180 includes a helical coil as with the power transmitter 270.

電磁シールド部190は、受電器180による受電時に発生する磁界の拡散を抑制する。たとえば、電磁シールド部190は、受電器180を格納し、かつ、送電器270から受電器180の受電方向が開口されたケースによって構成される。詳しくは、送電部230の電磁シールド部280と同様に、電磁シールド部190も、たとえば、上記ケースの内側表面に塗布された高透磁性の金属物や、高透磁性の金属製ケース自体によって構成される。   The electromagnetic shield unit 190 suppresses diffusion of a magnetic field generated when receiving power by the power receiver 180. For example, the electromagnetic shield unit 190 is configured by a case in which the power receiver 180 is housed and the power receiving direction of the power receiver 180 is opened from the power transmitter 270. Specifically, similarly to the electromagnetic shield part 280 of the power transmission part 230, the electromagnetic shield part 190 is also constituted by, for example, a highly permeable metal object applied to the inner surface of the case or a highly permeable metal case itself. Is done.

(電流発生のメカニズム)
図3は、受電器180に電流が流れるときに受電器180に発生する磁界の様子の一例を示した図である。なお、送電器270に電流が流れるときも送電器270から同様の磁界が発生するので、以下では、受電器180について代表的に説明する。
(Mechanism of current generation)
FIG. 3 is a diagram illustrating an example of a state of a magnetic field generated in the power receiver 180 when a current flows through the power receiver 180. In addition, since a similar magnetic field is generated from the power transmitter 270 when a current flows through the power transmitter 270, the power receiver 180 will be representatively described below.

図3を参照して、受電器180に電流が流れると、すなわち受電器180による送電器270(図示せず)からの受電時、受電器180からは磁界が発生する(点線)。なお、点線で図示される磁界は一例であり、磁界の向きおよび大きさは、受電器180の構成や、受電器180に供給される電流の向きおよび大きさ等によって変化する。   Referring to FIG. 3, when a current flows through power receiver 180, that is, when power is received from power transmitter 270 (not shown) by power receiver 180, a magnetic field is generated from power receiver 180 (dotted line). Note that the magnetic field illustrated by the dotted line is an example, and the direction and magnitude of the magnetic field vary depending on the configuration of the power receiver 180, the direction and magnitude of the current supplied to the power receiver 180, and the like.

図4,5は、受電器180による受電時に電磁シールド部190に電流が発生する様子を示した図である。なお、送電器270による送電時に電磁シールド部280に電流が発生する様子も同様であるので、以下では、受電部110の電磁シールド部190について代表的に説明する。   4 and 5 are diagrams illustrating a state in which a current is generated in the electromagnetic shield unit 190 when receiving power by the power receiver 180. In addition, since it is the same also about a mode that an electric current generate | occur | produces in the electromagnetic shielding part 280 at the time of the power transmission by the power transmission device 270, below, the electromagnetic shielding part 190 of the power receiving part 110 is demonstrated typically.

図4,5を参照して、送電部230から受電部110への電力伝送時に受電器180と図示しない送電器270とを結ぶ仮想直線SLの周りに、磁界を遮蔽するとともに電路を構成する導電性部材192が設けられる。この導電性部材192は、電磁シールド部190の内側表面に塗布される高透磁性の金属物であってもよいし、高透磁性の金属によって構成された電磁シールド部190そのものであってもよい。導電性部材192は、たとえば鉄によって構成される。   Referring to FIGS. 4 and 5, the conductive material that shields the magnetic field and configures the electric circuit around virtual line SL that connects power receiver 180 and power transmitter 270 (not shown) during power transmission from power transmission unit 230 to power reception unit 110. A sex member 192 is provided. The conductive member 192 may be a highly permeable metal object applied to the inner surface of the electromagnetic shield part 190, or may be the electromagnetic shield part 190 itself made of a highly permeable metal. . The conductive member 192 is made of, for example, iron.

受電器180による受電時、受電器180から発生する磁界(図3)や図示しない送電器270からの磁界によって、導電性部材192に渦電流が発生する。これらの渦電流は、導電性部材192の非周辺部においては互いに相殺し合うが、導電性部材192の周辺部においては、同一方向の電流Iを形成する(図5)。そこで、この実施の形態においては、受電器180による受電時に導電性部材192に発生する渦電流が合成されることによって生成される電流Iを取出して、電気機器170(図1)に供給することとしたものである。   When power is received by the power receiver 180, an eddy current is generated in the conductive member 192 by a magnetic field generated from the power receiver 180 (FIG. 3) or a magnetic field from the power transmitter 270 (not shown). These eddy currents cancel each other at the non-peripheral portion of the conductive member 192, but form a current I in the same direction at the peripheral portion of the conductive member 192 (FIG. 5). Therefore, in this embodiment, the current I generated by combining the eddy currents generated in the conductive member 192 at the time of power reception by the power receiver 180 is extracted and supplied to the electric device 170 (FIG. 1). It is what.

(電気機器の構成)
図6は、電磁シールド部190および電気機器170の構成の一例を示した図である。なお、送電部230の電磁シールド部280および電気機器260の構成も同様であり、以下では、受電部110の電磁シールド部190および電気機器170の構成について代表的に説明する。
(Configuration of electrical equipment)
FIG. 6 is a diagram illustrating an example of the configuration of the electromagnetic shield unit 190 and the electric device 170. The configurations of the electromagnetic shield unit 280 and the electric device 260 of the power transmission unit 230 are the same, and the configurations of the electromagnetic shield unit 190 and the electric device 170 of the power receiving unit 110 will be representatively described below.

図6を参照して、電磁シールド部190は、上述の導電性部材192と、抵抗部材310とを含む。導電性部材192は、一部で切離されており、その切離された部分に抵抗部材310が設けられる。すなわち、抵抗部材310は、導電性部材192の両端部間に配設される。抵抗部材310は、磁界を遮蔽するとともに電気機器170よりもインピーダンスが大きい部材(高抵抗の部材)によって構成される。この抵抗部材310は、導電性部材192に発生した電流Iを取出し可能にしつつ、導電性部材192を一部切離すことによってその部分から磁界が漏洩するのを抑制するために設けられるものである。   Referring to FIG. 6, electromagnetic shield 190 includes the above-described conductive member 192 and resistance member 310. The conductive member 192 is partly separated, and the resistance member 310 is provided in the separated part. That is, the resistance member 310 is disposed between both ends of the conductive member 192. The resistance member 310 is configured by a member (high resistance member) that shields the magnetic field and has a larger impedance than the electric device 170. This resistance member 310 is provided to suppress leakage of a magnetic field from a part of the conductive member 192 by separating the part of the conductive member 192 while allowing the current I generated in the conductive member 192 to be taken out. .

そして、電気機器170は、電力線対312によって、導電性部材192の両端部間に電気的に接続される。すなわち、電気機器170は、抵抗部材310に電気的に並列接続される。これにより、受電器180による受電時に導電性部材192に発生する電流Iを電気機器170へ取出すことができる。   The electric device 170 is electrically connected between both ends of the conductive member 192 by the power line pair 312. That is, the electric device 170 is electrically connected in parallel to the resistance member 310. Thereby, the current I generated in the conductive member 192 when receiving power by the power receiver 180 can be taken out to the electric device 170.

なお、導電性部材192に発生した電流Iが、たとえば電磁シールド部190の面Sを伝って流れてしまう場合には、電磁シールド部190の面Sの部分についても、抵抗部材310と同様に、磁界を遮蔽するとともに電気機器170よりもインピーダンスが大きい部材(高抵抗の部材)によって構成する必要がある。   When the current I generated in the conductive member 192 flows, for example, along the surface S of the electromagnetic shield part 190, the surface S part of the electromagnetic shield part 190 is also similar to the resistance member 310. It is necessary to form a member (high resistance member) that shields the magnetic field and has a larger impedance than the electric device 170.

なお、抵抗部材310を設ける代わりに、たとえば、導電性部材192の両端部近傍を仮想直線SL(図4)の軸方向から見た図7に示すように、導電性部材192の両端部間からの磁界漏洩を抑制するための、磁界遮蔽効果を有する部材194を設けてもよい。   Instead of providing the resistance member 310, for example, as shown in FIG. 7 in which the vicinity of both ends of the conductive member 192 is viewed from the axial direction of the virtual straight line SL (FIG. 4), from between both ends of the conductive member 192. A member 194 having a magnetic field shielding effect for suppressing magnetic field leakage may be provided.

図8は、電気機器170(260)が表示装置320によって構成される例を示した図である。図8を参照して、表示装置320は、導電性部材192の両端部間に電気的に接続される。すなわち、表示装置320は、抵抗部材310に電気的に並列接続される。表示装置320は、たとえばLEDランプによって構成される。受電器180による受電時(送電器270による送電時)に、導電性部材192に発生する電流Iが表示装置320に供給され、表示装置320が点灯する。   FIG. 8 is a diagram illustrating an example in which the electric device 170 (260) is configured by the display device 320. Referring to FIG. 8, display device 320 is electrically connected between both ends of conductive member 192. That is, the display device 320 is electrically connected to the resistance member 310 in parallel. The display device 320 is constituted by, for example, an LED lamp. When power is received by the power receiver 180 (when power is transmitted by the power transmitter 270), the current I generated in the conductive member 192 is supplied to the display device 320, and the display device 320 is turned on.

図9は、電気機器170(260)が冷却装置によって構成される例を示した図である。図9を参照して、冷却装置は、モータ330と、ファン332とを含む。モータ330は、導電性部材192の両端部間に電気的に接続される。すなわち、モータ330は、抵抗部材310に電気的に並列接続される。ファン332は、モータ330によって駆動され、受電部110(送電部230)を冷却するための冷却風を生成する。受電器180による受電時(送電器270による送電時)に、導電性部材192に発生する電流Iがモータ330に供給され、モータ330により駆動されたファン332によって受電部110(送電部230)が冷却される。   FIG. 9 is a diagram illustrating an example in which the electric device 170 (260) is configured by a cooling device. Referring to FIG. 9, the cooling device includes a motor 330 and a fan 332. The motor 330 is electrically connected between both ends of the conductive member 192. That is, the motor 330 is electrically connected to the resistance member 310 in parallel. Fan 332 is driven by motor 330 and generates cooling air for cooling power reception unit 110 (power transmission unit 230). When power is received by the power receiver 180 (when power is transmitted by the power transmitter 270), the current I generated in the conductive member 192 is supplied to the motor 330, and the power receiving unit 110 (power transmitting unit 230) is driven by the fan 332 driven by the motor 330. To be cooled.

図10は、電気機器170(260)が蓄電装置340によって構成される例を示した図である。図10を参照して、蓄電装置340は、導電性部材192の両端部間に電気的に接続される。すなわち、蓄電装置340は、抵抗部材310に電気的に並列接続される。車両100においては、蓄電装置340は、図1に示した蓄電部130とは別に設けられたものでもよいし、蓄電部130であってもよい。そして、受電器180による受電時(送電器270による送電時)に、導電性部材192に発生する電流Iが蓄電装置340に供給され、蓄電装置340が充電される。   FIG. 10 is a diagram illustrating an example in which the electric device 170 (260) includes the power storage device 340. Referring to FIG. 10, power storage device 340 is electrically connected between both ends of conductive member 192. That is, the power storage device 340 is electrically connected to the resistance member 310 in parallel. In vehicle 100, power storage device 340 may be provided separately from power storage unit 130 shown in FIG. 1 or may be power storage unit 130. Then, when the power receiver 180 receives power (when the power transmitter 270 transmits power), the current I generated in the conductive member 192 is supplied to the power storage device 340 and the power storage device 340 is charged.

なお、特に図示しないが、電気機器170(260)として、温度センサや電圧センサ等のセンサ類を用いてもよい。   Although not particularly illustrated, sensors such as a temperature sensor and a voltage sensor may be used as the electric device 170 (260).

以上のようにして、給電設備200の送電部230から車両100の受電部110への電力伝送時に、受電部110の電磁シールド部190に発生する電流を電気機器170へ供給し、送電部230の電磁シールド部280に発生する電流を電気機器260へ供給することができる。   As described above, at the time of power transmission from the power transmission unit 230 of the power supply facility 200 to the power reception unit 110 of the vehicle 100, the current generated in the electromagnetic shield unit 190 of the power reception unit 110 is supplied to the electric device 170. The electric current generated in the electromagnetic shield unit 280 can be supplied to the electric device 260.

(非接触電力伝送)
次に、給電設備200から車両100への電力伝送について説明する。
(Non-contact power transmission)
Next, power transmission from the power supply facility 200 to the vehicle 100 will be described.

図11は、給電設備200から車両100への電力伝送時の等価回路図である。図11を参照して、給電設備200の送電部230は、電磁誘導コイル232と、共振コイル234と、キャパシタ236とを含む。   FIG. 11 is an equivalent circuit diagram when power is transmitted from the power supply facility 200 to the vehicle 100. Referring to FIG. 11, power transmission unit 230 of power supply facility 200 includes an electromagnetic induction coil 232, a resonance coil 234, and a capacitor 236.

電磁誘導コイル232は、共振コイル234と所定の間隔をおいて共振コイル234と略同軸上に配設される。電磁誘導コイル232は、電磁誘導により共振コイル234と磁気的に結合し、電源部210から供給される高周波電力を電磁誘導により共振コイル234へ供給する。   The electromagnetic induction coil 232 is disposed substantially coaxially with the resonance coil 234 at a predetermined interval from the resonance coil 234. The electromagnetic induction coil 232 is magnetically coupled to the resonance coil 234 by electromagnetic induction, and supplies high frequency power supplied from the power supply unit 210 to the resonance coil 234 by electromagnetic induction.

共振コイル234は、キャパシタ236とともにLC共振回路を形成する。なお、後述するように、車両100の受電部110においてもLC共振回路が形成される。共振コイル234およびキャパシタ236によって形成されるLC共振回路の固有周波数と、受電部110のLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%以下である。そして、共振コイル234は、電磁誘導コイル232から電磁誘導により電力を受け、車両100の受電部110へ非接触で送電する。   The resonance coil 234 forms an LC resonance circuit together with the capacitor 236. As will be described later, an LC resonance circuit is also formed in the power receiving unit 110 of the vehicle 100. The difference between the natural frequency of the LC resonance circuit formed by the resonance coil 234 and the capacitor 236 and the natural frequency of the LC resonance circuit of the power receiving unit 110 is ± 10% or less of the former natural frequency or the latter natural frequency. The resonance coil 234 receives electric power from the electromagnetic induction coil 232 by electromagnetic induction, and transmits the electric power to the power receiving unit 110 of the vehicle 100 in a non-contact manner.

なお、電磁誘導コイル232は、電源部210から共振コイル234への給電を容易にするために設けられるものであり、電磁誘導コイル232を設けずに共振コイル234に電源部210を直接接続してもよい。また、キャパシタ236は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル234の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ236を設けない構成としてもよい。   The electromagnetic induction coil 232 is provided to facilitate power feeding from the power supply unit 210 to the resonance coil 234, and the power supply unit 210 is directly connected to the resonance coil 234 without providing the electromagnetic induction coil 232. Also good. The capacitor 236 is provided to adjust the natural frequency of the resonance circuit. When a desired natural frequency is obtained using the stray capacitance of the resonance coil 234, the capacitor 236 is not provided. Also good.

車両100の受電部110は、共振コイル112と、キャパシタ114と、電磁誘導コイル116とを含む。共振コイル112は、キャパシタ114とともにLC共振回路を形成する。上述のように、共振コイル112およびキャパシタ114によって形成されるLC共振回路の固有周波数と、給電設備200の送電部230における、共振コイル234およびキャパシタ236によって形成されるLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%である。そして、共振コイル112は、給電設備200の送電部230から非接触で受電する。   Power receiving unit 110 of vehicle 100 includes a resonance coil 112, a capacitor 114, and an electromagnetic induction coil 116. The resonance coil 112 forms an LC resonance circuit together with the capacitor 114. As described above, the natural frequency of the LC resonance circuit formed by the resonance coil 112 and the capacitor 114 and the natural frequency of the LC resonance circuit formed by the resonance coil 234 and the capacitor 236 in the power transmission unit 230 of the power supply facility 200. The difference is ± 10% of the former natural frequency or the latter natural frequency. The resonance coil 112 receives power from the power transmission unit 230 of the power supply facility 200 in a non-contact manner.

電磁誘導コイル116は、共振コイル112と所定の間隔をおいて共振コイル112と略同軸上に配設される。電磁誘導コイル116は、電磁誘導により共振コイル112と磁気的に結合し、共振コイル112によって受電された電力を電磁誘導により取出して整流器120(図1)以降の電気負荷195(蓄電部130)へ出力する。   The electromagnetic induction coil 116 is disposed substantially coaxially with the resonance coil 112 at a predetermined interval from the resonance coil 112. The electromagnetic induction coil 116 is magnetically coupled to the resonance coil 112 by electromagnetic induction, takes out the electric power received by the resonance coil 112 by electromagnetic induction, and supplies the electric load 195 (power storage unit 130) after the rectifier 120 (FIG. 1). Output.

なお、電磁誘導コイル116は、共振コイル112からの電力の取出しを容易にするために設けられるものであり、電磁誘導コイル116を設けずに共振コイル112に整流器120を直接接続してもよい。また、キャパシタ114は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル112の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ114を設けない構成としてもよい。   The electromagnetic induction coil 116 is provided to facilitate the extraction of electric power from the resonance coil 112, and the rectifier 120 may be directly connected to the resonance coil 112 without providing the electromagnetic induction coil 116. The capacitor 114 is provided to adjust the natural frequency of the resonance circuit. When a desired natural frequency is obtained using the stray capacitance of the resonance coil 112, the capacitor 114 is not provided. Also good.

給電設備200において、電源部210から電磁誘導コイル232へ高周波の交流電力が供給され、電磁誘導コイル232を用いて共振コイル234へ電力が供給される。そうすると、共振コイル234と車両100の共振コイル112との間に形成される磁界を通じて共振コイル234から共振コイル112へエネルギー(電力)が移動する。共振コイル112へ移動したエネルギー(電力)は、電磁誘導コイル116を用いて取出され、車両100の電気負荷195へ伝送される。   In the power supply facility 200, high-frequency AC power is supplied from the power supply unit 210 to the electromagnetic induction coil 232, and power is supplied to the resonance coil 234 using the electromagnetic induction coil 232. Then, energy (electric power) moves from the resonance coil 234 to the resonance coil 112 through a magnetic field formed between the resonance coil 234 and the resonance coil 112 of the vehicle 100. The energy (electric power) moved to the resonance coil 112 is taken out using the electromagnetic induction coil 116 and transmitted to the electric load 195 of the vehicle 100.

上述のように、この電力伝送システムにおいては、給電設備200の送電部230の固有周波数と、車両100の受電部110の固有周波数との差は、送電部230の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部230および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる。   As described above, in this power transmission system, the difference between the natural frequency of the power transmission unit 230 of the power supply facility 200 and the natural frequency of the power reception unit 110 of the vehicle 100 is the natural frequency of the power transmission unit 230 or the natural frequency of the power reception unit 110. It is ± 10% or less of the frequency. By setting the natural frequencies of the power transmission unit 230 and the power reception unit 110 in such a range, the power transmission efficiency can be increased. On the other hand, when the difference between the natural frequencies is larger than ± 10%, the power transmission efficiency is smaller than 10%, and the power transmission time becomes longer.

なお、送電部230(受電部110)の固有周波数とは、送電部230(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部230(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を実質的に零としたときの固有周波数は、送電部230(受電部110)の共振周波数とも呼ばれる。   Note that the natural frequency of the power transmission unit 230 (power reception unit 110) means a vibration frequency when the electric circuit (resonance circuit) constituting the power transmission unit 230 (power reception unit 110) freely vibrates. In the electric circuit (resonance circuit) constituting the power transmission unit 230 (power reception unit 110), the natural frequency when the braking force or the electrical resistance is substantially zero is the resonance frequency of the power transmission unit 230 (power reception unit 110). Also called.

図12および図13を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図12は、電力伝送システムのシミュレーションモデルを示す図である。また、図13は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。   Simulation results obtained by analyzing the relationship between the natural frequency difference and the power transmission efficiency will be described with reference to FIGS. 12 and 13. FIG. 12 is a diagram illustrating a simulation model of the power transmission system. FIG. 13 is a diagram illustrating the relationship between the deviation of the natural frequencies of the power transmission unit and the power reception unit and the power transmission efficiency.

図12を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。   Referring to FIG. 12, the power transmission system 89 includes a power transmission unit 90 and a power reception unit 91. The power transmission unit 90 includes a first coil 92 and a second coil 93. The second coil 93 includes a resonance coil 94 and a capacitor 95 provided in the resonance coil 94. The power receiving unit 91 includes a third coil 96 and a fourth coil 97. The third coil 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.

共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は、下記の式(2)によって示される。   The inductance of the resonance coil 94 is defined as an inductance Lt, and the capacitance of the capacitor 95 is defined as a capacitance C1. Further, the inductance of the resonance coil 99 is an inductance Lr, and the capacitance of the capacitor 98 is a capacitance C2. When each parameter is set in this way, the natural frequency f1 of the second coil 93 is expressed by the following equation (1), and the natural frequency f2 of the third coil 96 is expressed by the following equation (2).

f1=1/{2π(Lt×C1)1/2}・・・(1)
f2=1/{2π(Lr×C2)1/2}・・・(2)
ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図13に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
f1 = 1 / {2π (Lt × C1) 1/2 } (1)
f2 = 1 / {2π (Lr × C2) 1/2 } (2)
Here, when the inductance Lr and the capacitances C1 and C2 are fixed and only the inductance Lt is changed, the relationship between the deviation of the natural frequency of the second coil 93 and the third coil 96 and the power transmission efficiency is shown in FIG. Show. In this simulation, the relative positional relationship between the resonance coil 94 and the resonance coil 99 is fixed, and the frequency of the current supplied to the second coil 93 is constant.

図13に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数での電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。   In the graph shown in FIG. 13, the horizontal axis indicates the deviation (%) of the natural frequency, and the vertical axis indicates the power transmission efficiency (%) at a constant frequency. The deviation (%) in natural frequency is expressed by the following equation (3).

(固有周波数のズレ)={(f1−f2)/f2}×100(%)・・・(3)
図13からも明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
(Deviation of natural frequency) = {(f1−f2) / f2} × 100 (%) (3)
As is clear from FIG. 13, when the deviation (%) in natural frequency is 0%, the power transmission efficiency is close to 100%. When the deviation (%) in natural frequency is ± 5%, the power transmission efficiency is about 40%. When the deviation (%) in natural frequency is ± 10%, the power transmission efficiency is about 10%. When the deviation (%) in natural frequency is ± 15%, the power transmission efficiency is about 5%. That is, the natural frequencies of the second coil 93 and the third coil 96 are set so that the absolute value (natural frequency difference) of the deviation (%) of the natural frequency falls within the range of 10% or less of the natural frequency of the third coil 96. It can be seen that the power transmission efficiency can be increased to a practical level by setting. Furthermore, when the natural frequency of the second coil 93 and the third coil 96 is set so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the third coil 96, the power transmission efficiency is further increased. This is more preferable. The simulation software employs electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation).

再び図11を参照して、給電設備200の送電部230および車両100の受電部110は、送電部230と受電部110との間に形成され、かつ、特定の周波数で振動する磁界と、送電部230と受電部110との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、非接触で電力を授受する。送電部230と受電部110との結合係数κは0.1以下が好ましく、送電部230と受電部110とを電磁界によって共振(共鳴)させることで、送電部230から受電部110へ電力が伝送される。   Referring again to FIG. 11, power transmission unit 230 of power supply facility 200 and power reception unit 110 of vehicle 100 are formed between power transmission unit 230 and power reception unit 110, and a magnetic field that vibrates at a specific frequency and power transmission Power is exchanged in a non-contact manner through at least one of an electric field that is formed between the unit 230 and the power receiving unit 110 and vibrates at a specific frequency. The coupling coefficient κ between the power transmission unit 230 and the power reception unit 110 is preferably 0.1 or less, and power is transmitted from the power transmission unit 230 to the power reception unit 110 by causing the power transmission unit 230 and the power reception unit 110 to resonate with each other by an electromagnetic field. Is transmitted.

ここで、送電部230の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と送電部230に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、送電部230に供給される電流の周波数との関係について説明する。送電部230から受電部110に電力を伝送するときの電力伝送効率は、送電部230および受電部110間の距離などの様々な要因よって変化する。たとえば、送電部230および受電部110の固有周波数(共振周波数)をf0とし、送電部230に供給される電流の周波数をf3とし、送電部230および受電部110の間のエアギャップをエアギャップAGとする。   Here, a magnetic field having a specific frequency formed around the power transmission unit 230 will be described. The “magnetic field of a specific frequency” typically has a relationship with the power transmission efficiency and the frequency of the current supplied to the power transmission unit 230. First, the relationship between the power transmission efficiency and the frequency of the current supplied to the power transmission unit 230 will be described. The power transmission efficiency when power is transmitted from the power transmission unit 230 to the power reception unit 110 varies depending on various factors such as the distance between the power transmission unit 230 and the power reception unit 110. For example, the natural frequency (resonance frequency) of the power transmission unit 230 and the power reception unit 110 is f0, the frequency of the current supplied to the power transmission unit 230 is f3, and the air gap between the power transmission unit 230 and the power reception unit 110 is the air gap AG. And

図14は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、送電部230に供給される電流の周波数f3との関係を示すグラフである。図14を参照して、横軸は、送電部230に供給される電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、送電部230に供給される電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、送電部230に供給される電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。   FIG. 14 is a graph showing the relationship between the power transmission efficiency when the air gap AG is changed and the frequency f3 of the current supplied to the power transmission unit 230 with the natural frequency f0 fixed. Referring to FIG. 14, the horizontal axis indicates the frequency f3 of the current supplied to the power transmission unit 230, and the vertical axis indicates the power transmission efficiency (%). The efficiency curve L1 schematically shows the relationship between the power transmission efficiency when the air gap AG is small and the frequency f3 of the current supplied to the power transmission unit 230. As shown in the efficiency curve L1, when the air gap AG is small, the peak of power transmission efficiency occurs at frequencies f4 and f5 (f4 <f5). When the air gap AG is increased, the two peaks when the power transmission efficiency is increased change so as to approach each other. As shown in the efficiency curve L2, when the air gap AG is larger than the predetermined distance, the power transmission efficiency has one peak, and the power transmission efficiency is obtained when the frequency of the current supplied to the power transmission unit 230 is the frequency f6. Becomes a peak. When the air gap AG is further increased from the state of the efficiency curve L2, the peak of power transmission efficiency is reduced as shown by the efficiency curve L3.

たとえば、電力伝送効率の向上を図るため手法として次のような手法が考えられる。第1の手法としては、エアギャップAGにあわせて、送電部230に供給される電流の周波数を一定として、キャパシタ236やキャパシタ114のキャパシタンスを変化させることで、送電部230と受電部110との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、送電部230に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ236およびキャパシタ114のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、送電部230および受電部110に流れる電流の周波数は一定である。なお、電力伝送効率の特性を変化させる手法としては、給電設備200のインピーダンス整合器220を利用する手法や、車両100において整流器120と蓄電部130との間に設けられるコンバータを利用する手法などを採用することも可能である。   For example, the following method can be considered as a method for improving the power transmission efficiency. As a first technique, the frequency of the current supplied to the power transmission unit 230 is made constant in accordance with the air gap AG, and the capacitance of the capacitor 236 and the capacitor 114 is changed, so that the power transmission unit 230 and the power reception unit 110 can be changed. It is conceivable to change the power transmission efficiency characteristics between the two. Specifically, the capacitances of the capacitor 236 and the capacitor 114 are adjusted so that the power transmission efficiency reaches a peak in a state where the frequency of the current supplied to the power transmission unit 230 is constant. In this method, the frequency of the current flowing through the power transmission unit 230 and the power reception unit 110 is constant regardless of the size of the air gap AG. Note that, as a method of changing the characteristics of the power transmission efficiency, a method of using the impedance matching device 220 of the power supply facility 200, a method of using a converter provided between the rectifier 120 and the power storage unit 130 in the vehicle 100, or the like. It is also possible to adopt.

また、第2の手法としては、エアギャップAGの大きさに基づいて、送電部230に供給される電流の周波数を調整する手法である。たとえば、電力伝送特性が効率曲線L1となる場合には、周波数f4またはf5の電流を送電部230に供給する。周波数特性が効率曲線L2,L3となる場合には、周波数f6の電流を送電部230に供給する。この場合においては、エアギャップAGの大きさに合わせて送電部230および受電部110に流れる電流の周波数を変化させることになる。   The second method is a method of adjusting the frequency of the current supplied to the power transmission unit 230 based on the size of the air gap AG. For example, when the power transmission characteristic is the efficiency curve L1, a current of frequency f4 or f5 is supplied to the power transmission unit 230. When the frequency characteristic is the efficiency curves L2 and L3, the current having the frequency f6 is supplied to the power transmission unit 230. In this case, the frequency of the current flowing through power transmission unit 230 and power reception unit 110 is changed in accordance with the size of air gap AG.

第1の手法では、送電部230を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、送電部230を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が送電部230に供給される。送電部230に特定の周波数の電流が流れることで、送電部230の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部110は、受電部110と送電部230との間に形成され、かつ特定の周波数で振動する磁界を通じて送電部230から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、送電部230に供給される電流の周波数を設定するようにしているが、電力伝送効率は、送電部230および受電部110の水平方向のずれ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、送電部230に供給される電流の周波数を調整する場合がある。   In the first method, the frequency of the current flowing through the power transmission unit 230 is a fixed constant frequency, and in the second method, the frequency flowing through the power transmission unit 230 is a frequency that changes as appropriate depending on the air gap AG. A current having a specific frequency set so as to increase the power transmission efficiency is supplied to the power transmission unit 230 by the first method, the second method, or the like. When a current having a specific frequency flows through the power transmission unit 230, a magnetic field (electromagnetic field) that vibrates at a specific frequency is formed around the power transmission unit 230. The power receiving unit 110 receives power from the power transmitting unit 230 through a magnetic field that is formed between the power receiving unit 110 and the power transmitting unit 230 and vibrates at a specific frequency. Therefore, the “magnetic field oscillating at a specific frequency” is not necessarily a magnetic field having a fixed frequency. In the above example, focusing on the air gap AG, the frequency of the current supplied to the power transmission unit 230 is set. However, the power transmission efficiency depends on the horizontal direction of the power transmission unit 230 and the power reception unit 110. The frequency changes depending on other factors such as a deviation, and the frequency of the current supplied to the power transmission unit 230 may be adjusted based on the other factors.

なお、上記の説明では、共振コイルとしてヘリカルコイルを採用した例について説明したが、共振コイルとして、メアンダラインなどのアンテナなどを採用した場合には、送電部230に特定の周波数の電流が流れることで、特定の周波数の電界が送電部230の周囲に形成される。そして、この電界をとおして、送電部230と受電部110との間で電力伝送が行われる。   In the above description, an example in which a helical coil is used as the resonance coil has been described. However, when an antenna such as a meander line is used as the resonance coil, a current having a specific frequency flows in the power transmission unit 230. Thus, an electric field having a specific frequency is formed around the power transmission unit 230. And electric power transmission is performed between the power transmission part 230 and the power receiving part 110 through this electric field.

この電力伝送システムにおいては、電磁界の「静電界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。   In this power transmission system, power transmission and power receiving efficiency are improved by using a near field (evanescent field) in which the “electrostatic field” of the electromagnetic field is dominant.

図15は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図15を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電界」と「誘導電界」と「静電界」との強さが略等しくなる距離は、λ/2πと表わすことができる。   FIG. 15 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field. Referring to FIG. 15, the electromagnetic field is composed of three components. A curve k1 is a component inversely proportional to the distance from the wave source, and is referred to as a “radiating electric field”. A curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induced electric field”. The curve k3 is a component that is inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic field”. When the wavelength of the electromagnetic field is “λ”, the distance at which the “radiation electric field”, the “induction electric field”, and the “electrostatic field” are approximately equal to each other can be expressed as λ / 2π.

「静電界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態に係る電力伝送システムでは、この「静電界」が支配的な近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、「静電界」が支配的な近接場において、近接する固有周波数を有する送電部230および受電部110(たとえば一対のLC共振コイル)を共鳴させることにより、送電部230から他方の受電部110へエネルギー(電力)を伝送する。この「静電界」は遠方にエネルギーを伝播しないので、遠方までエネルギーを伝播する「輻射電界」によってエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。   The “electrostatic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source. In the power transmission system according to this embodiment, the near field (evanescent field) in which the “electrostatic field” is dominant is defined. Energy (electric power) is transmitted using this. That is, in the near field where the “electrostatic field” is dominant, by resonating the power transmitting unit 230 and the power receiving unit 110 (for example, a pair of LC resonance coils) having adjacent natural frequencies, the power receiving unit 110 and the other power receiving unit 110 are resonated. Transmit energy (electric power) to Since this “electrostatic field” does not propagate energy far away, the resonance method can transmit power with less energy loss than electromagnetic waves that transmit energy (electric power) by “radiant electric field” that propagates energy far away. it can.

このように、この電力伝送システムにおいては、送電部230と受電部110とを電磁界によって共振(共鳴)させることで、送電部230と受電部110との間で非接触で電力が伝送される。そして、送電部230と受電部110との間の結合係数(κ)は、好ましくは0.1以下である。なお、結合係数(κ)は、この値に限定されるものではなく、電力伝送が良好となる種々の値をとり得る。一般的に、電磁誘導を利用した電力伝送では、送電部と受電部と間の結合係数(κ)は1.0に近いものとなっている。   As described above, in this power transmission system, power is transmitted in a non-contact manner between the power transmission unit 230 and the power reception unit 110 by causing the power transmission unit 230 and the power reception unit 110 to resonate with each other by an electromagnetic field. . The coupling coefficient (κ) between the power transmission unit 230 and the power reception unit 110 is preferably 0.1 or less. Note that the coupling coefficient (κ) is not limited to this value, and may take various values that improve power transmission. Generally, in power transmission using electromagnetic induction, the coupling coefficient (κ) between the power transmission unit and the power reception unit is close to 1.0.

なお、電力伝送における、上記のような送電部230と受電部110との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。   Note that the coupling between the power transmission unit 230 and the power reception unit 110 in the power transmission is, for example, “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, “electromagnetic field (electromagnetic field) resonance coupling”, “ Electric field (electric field) resonance coupling ". The “electromagnetic field (electromagnetic field) resonance coupling” means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.

送電部230と受電部110とが上記のようにコイルによって形成される場合には、送電部230と受電部110とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、送電部230と受電部110とに、たとえば、メアンダライン等のアンテナを採用することも可能であり、この場合には、送電部230と受電部110とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。   When the power transmission unit 230 and the power reception unit 110 are formed of coils as described above, the power transmission unit 230 and the power reception unit 110 are coupled mainly by a magnetic field (magnetic field), and are referred to as “magnetic resonance coupling” or “magnetic field”. (Magnetic field) resonance coupling "is formed. For example, an antenna such as a meander line may be employed for the power transmission unit 230 and the power reception unit 110. In this case, the power transmission unit 230 and the power reception unit 110 are mainly based on an electric field (electric field). The “electric field (electric field) resonance coupling” is formed.

なお、上記においては、送電部230と受電部110とを電磁界によって共振(共鳴)させることで、送電部230と受電部110との間で非接触で電力を伝送するものとしたが、電磁誘導によって送電部230から受電部110へ非接触で電力を伝送してもよい。   In the above description, power is transmitted between the power transmission unit 230 and the power reception unit 110 in a non-contact manner by causing the power transmission unit 230 and the power reception unit 110 to resonate with each other by an electromagnetic field. Electric power may be transmitted from the power transmitting unit 230 to the power receiving unit 110 in a non-contact manner by induction.

図16は、電磁誘導による給電設備200から車両100への電力伝送時の等価回路図である。図16を参照して、給電設備200の送電部230は、電磁誘導コイル238を含む。また、車両100の受電部110は、電磁誘導コイル118を含む。   FIG. 16 is an equivalent circuit diagram when power is transmitted from the power supply facility 200 to the vehicle 100 by electromagnetic induction. Referring to FIG. 16, power transmission unit 230 of power supply facility 200 includes an electromagnetic induction coil 238. Power receiving unit 110 of vehicle 100 includes an electromagnetic induction coil 118.

電源部210から電磁誘導コイル238へ交流電力が供給される。そうすると、電磁誘導コイル238に近接して配設される受電部110の電磁誘導コイル118において電磁誘導により起電力が発生し、電磁誘導コイル238から電磁誘導コイル118へエネルギー(電力)が移動する。そして、電磁誘導コイル118へ移動したエネルギー(電力)が電気負荷195へ供給される。   AC power is supplied from the power supply unit 210 to the electromagnetic induction coil 238. Then, an electromotive force is generated by electromagnetic induction in the electromagnetic induction coil 118 of the power receiving unit 110 disposed in the vicinity of the electromagnetic induction coil 238, and energy (electric power) moves from the electromagnetic induction coil 238 to the electromagnetic induction coil 118. Then, the energy (electric power) moved to the electromagnetic induction coil 118 is supplied to the electric load 195.

なお、給電設備200から車両100へ電磁誘導により電力伝送が行なわれる場合では、送電部230と受電部110との間の結合係数(κ)は、1.0に近いものとなる。   When electric power is transmitted from power supply facility 200 to vehicle 100 by electromagnetic induction, the coupling coefficient (κ) between power transmission unit 230 and power reception unit 110 is close to 1.0.

なお、特に図示しないが、給電設備200から車両100への電力伝送手法として、マイクロ波を用いた非接触電力伝送を採用することも可能である。   Although not particularly illustrated, it is also possible to employ non-contact power transmission using microwaves as a power transmission method from the power supply facility 200 to the vehicle 100.

以上のように、この実施の形態においては、受電器180による受電時に発生する磁界の拡散を抑制する電磁シールド部190が設けられる。電磁シールド部190には、受電器180による受電時に、磁界の影響によって渦電流が発生する。この実施の形態では、受電器180による受電時に、この渦電流によって電磁シールド部190に発生する電流Iが電気機器170に供給される。したがって、この実施の形態によれば、受電器180によって受電された電力を用いることなく、かつ、電源を別途設けることなく、電気機器170へ電力を供給することができる。   As described above, in this embodiment, the electromagnetic shield unit 190 that suppresses the diffusion of the magnetic field generated during power reception by the power receiver 180 is provided. An eddy current is generated in the electromagnetic shield 190 due to the influence of a magnetic field when receiving power by the power receiver 180. In this embodiment, the current I generated in the electromagnetic shield unit 190 by this eddy current is supplied to the electric device 170 when receiving power by the power receiver 180. Therefore, according to this embodiment, it is possible to supply power to the electric device 170 without using the power received by the power receiver 180 and without providing a separate power source.

また、この実施の形態においては、送電器270による送電時に発生する磁界の拡散を抑制する電磁シールド部280が設けられる。電磁シールド部280には、送電器270による送電時に、磁界の影響によって渦電流が発生する。この実施の形態では、送電器270による送電時に、この渦電流によって電磁シールド部280に発生する電流Iが電気機器260に供給される。したがって、この実施の形態によれば、送電器270によって受電された電力を用いることなく、かつ、電源を別途設けることなく、電気機器260へ電力を供給することができる。   Further, in this embodiment, an electromagnetic shield unit 280 that suppresses diffusion of a magnetic field generated during power transmission by the power transmitter 270 is provided. An eddy current is generated in the electromagnetic shield unit 280 due to the influence of a magnetic field during power transmission by the power transmitter 270. In this embodiment, during the power transmission by the power transmitter 270, the current I generated in the electromagnetic shield unit 280 by this eddy current is supplied to the electric device 260. Therefore, according to this embodiment, it is possible to supply power to the electric device 260 without using the power received by the power transmitter 270 and without providing a separate power source.

また、この実施の形態によれば、電磁シールド部190(280)の導電性部材192は、送電部230から受電部110への電力伝送時に受電器180と送電器270とを結ぶ仮想直線SLの周りに受電器180(送電器270)を取り囲むように設けられるので、十分なシールド効果を確保しつつ、導電性部材192に発生する電流Iを大きくすることができる。   In addition, according to this embodiment, the conductive member 192 of the electromagnetic shield unit 190 (280) has a virtual straight line SL that connects the power receiver 180 and the power transmitter 270 during power transmission from the power transmitter 230 to the power receiver 110. Since it is provided so as to surround the power receiver 180 (power transmitter 270), the current I generated in the conductive member 192 can be increased while ensuring a sufficient shielding effect.

また、この実施の形態によれば、電気機器170(260)を表示装置320により構成することによって、送電器270から受電器180へ伝送される電力を用いることなく、かつ、電源を別途設けることなく、電力伝送中であることを利用者に報知することができる。   Further, according to this embodiment, the electric device 170 (260) is configured by the display device 320, so that the power transmitted from the power transmitter 270 to the power receiver 180 is not used, and a power source is separately provided. In addition, the user can be notified that power transmission is in progress.

また、この実施の形態によれば、電気機器170(260)を冷却装置により構成することによって、送電器270から受電器180へ伝送される電力を用いることなく、かつ、電源を別途設けることなく、受電部110(送電部230)を冷却することができる。   Further, according to this embodiment, the electric device 170 (260) is configured by a cooling device, so that the power transmitted from the power transmitter 270 to the power receiver 180 is not used, and a power source is not separately provided. The power receiving unit 110 (power transmission unit 230) can be cooled.

また、この実施の形態によれば、電気機器170(260)を蓄電装置340により構成することによって、電磁シールド部190(280)に発生する電力を蓄えて有効利用することができる。   Further, according to this embodiment, by configuring the electric device 170 (260) with the power storage device 340, the electric power generated in the electromagnetic shield unit 190 (280) can be stored and effectively used.

なお、上記においては、車両100および給電設備200の各々において、電磁シールド部に電気的に接続される電気機器を備えるものとしたが、車両100および給電設備200のいずれかのみに電気機器を備える電力伝送システムであってもよい。   In the above description, each of vehicle 100 and power supply facility 200 includes an electrical device that is electrically connected to the electromagnetic shield portion. However, only one of vehicle 100 and power supply facility 200 includes the electrical device. It may be a power transmission system.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.

10 電力伝送システム、100 車両、110 受電部、112,234 共振コイル、114,236 キャパシタ、116,118,232,238 電磁誘導コイル、120 整流器、130 蓄電部、140 動力出力装置、150,240 ECU、160,250 通信部、170,260 電気機器、180 受電器、190,280 電磁シールド部、192 導電性部材、194 部材、195 電気負荷、200 給電設備、210 電源部、220 インピーダンス整合器、230 送電部、270 送電器、310 抵抗部材、312 電力線対、320 表示装置、330 モータ、332 ファン、340 蓄電装置、SL 仮想直線。   DESCRIPTION OF SYMBOLS 10 Electric power transmission system, 100 Vehicle, 110 Power receiving part, 112,234 Resonance coil, 114,236 Capacitor, 116,118,232,238 Electromagnetic induction coil, 120 Rectifier, 130 Power storage part, 140 Power output device, 150,240 ECU , 160, 250 Communication unit, 170, 260 Electrical equipment, 180 Power receiver, 190, 280 Electromagnetic shield unit, 192 Conductive member, 194 member, 195 Electric load, 200 Power supply facility, 210 Power source unit, 220 Impedance matching unit, 230 Power transmission unit, 270 power transmitter, 310 resistance member, 312 power line pair, 320 display device, 330 motor, 332 fan, 340 power storage device, SL virtual straight line.

Claims (15)

送電装置から非接触で受電するための受電器と、
前記受電器による受電時に発生する磁界の拡散を抑制する電磁シールド部と、
前記受電器による受電時に、前記磁界によって前記電磁シールド部に発生する電流を受ける電気機器とを備え、
前記電磁シールド部は、前記磁界を遮蔽するとともに前記電流の電路を構成する導電性部材を含み、
前記電気機器は、前記導電性部材の両端部間に電気的に接続されることによって、前記受電器による受電時に前記導電性部材に発生する電流を受ける、受電装置。
A power receiver for receiving power from a power transmission device in a contactless manner;
An electromagnetic shield part for suppressing diffusion of a magnetic field generated at the time of power reception by the power receiver;
An electric device that receives a current generated in the electromagnetic shield part by the magnetic field when receiving power by the power receiver;
The electromagnetic shield part includes a conductive member that shields the magnetic field and constitutes an electric path of the current,
The electrical equipment by being electrically connected between the ends of the conductive members, receiving a current generated in the conductive member when power reception by said receiving unit, powered device.
前記導電性部材は、前記受電器と前記送電装置の送電器とを結ぶ仮想直線の周りに設けられる、請求項1に記載の受電装置。 The power receiving device according to claim 1 , wherein the conductive member is provided around a virtual straight line connecting the power receiver and the power transmitter of the power transmitting device. 前記電磁シールド部は、前記導電性部材の両端部間に配設され、前記磁界を遮蔽するとともに前記電気機器よりもインピーダンスが大きい抵抗部材をさらに含む、請求項1に記載の受電装置。 The power reception device according to claim 1 , wherein the electromagnetic shield part further includes a resistance member that is disposed between both ends of the conductive member, shields the magnetic field, and has a larger impedance than the electric device. 前記電気機器は、表示装置、冷却装置、および蓄電装置の少なくとも1つを含む、請求項1に記載の受電装置。   The power receiving device according to claim 1, wherein the electrical device includes at least one of a display device, a cooling device, and a power storage device. 前記受電器の固有周波数と前記送電装置の送電器の固有周波数との差は、前記受電器の固有周波数または前記送電器の固有周波数の±10%以下である、請求項1に記載の受電装置。   The power receiving device according to claim 1, wherein a difference between a natural frequency of the power receiver and a natural frequency of the power transmitter of the power transmitting device is ± 10% or less of the natural frequency of the power receiver or the natural frequency of the power transmitter. . 前記受電器は、前記受電器と前記送電装置の送電器との間に形成され、かつ、特定の周波数で振動する磁界と、前記受電器と前記送電器との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、前記送電器から受電する、請求項1に記載の受電装置。   The power receiver is formed between the power receiver and the power transmitter of the power transmission device, and is formed between a magnetic field that vibrates at a specific frequency, the power receiver and the power transmitter, and is specified. The power receiving device according to claim 1, wherein the power is received from the power transmitter through at least one of an electric field that vibrates at a frequency of 2. 請求項1からのいずれかに記載の受電装置を備える車両。 Vehicle equipped with a power receiving device according to any one of claims 1 to 6. 受電装置へ非接触で送電するための送電器と、
前記送電器による送電時に発生する磁界の拡散を抑制する電磁シールド部と、
前記送電器による送電時に、前記磁界によって前記電磁シールド部に発生する電流を受ける電気機器とを備え、
前記電磁シールド部は、前記磁界を遮蔽するとともに前記電流の電路を構成する導電性部材を含み、
前記電気機器は、前記導電性部材の両端部間に電気的に接続されることによって、前記送電器による送電時に前記導電性部材に発生する電流を受ける、送電装置。
A power transmitter for non-contact power transmission to the power receiving device;
An electromagnetic shielding part for suppressing diffusion of a magnetic field generated during power transmission by the power transmitter;
An electric device that receives a current generated in the electromagnetic shield part by the magnetic field during power transmission by the power transmitter;
The electromagnetic shield part includes a conductive member that shields the magnetic field and constitutes an electric path of the current,
The electrical equipment by being electrically connected between the ends of the conductive members, receiving a current generated in the conductive member during power transmission by the power transmitting device, feeding collector.
前記導電性部材は、前記送電器と前記受電装置の受電器とを結ぶ仮想直線の周りに設けられる、請求項8に記載の送電装置。 The power transmission device according to claim 8 , wherein the conductive member is provided around a virtual straight line connecting the power transmission device and a power reception device of the power reception device. 前記電磁シールド部は、前記導電性部材の両端部間に配設され、前記磁界を遮蔽するとともに前記電気機器よりもインピーダンスが大きい抵抗部材をさらに含む、請求項8に記載の送電装置。 The power transmission apparatus according to claim 8 , wherein the electromagnetic shield part further includes a resistance member that is disposed between both ends of the conductive member, shields the magnetic field, and has a larger impedance than the electric device. 前記電気機器は、表示装置、冷却装置、および蓄電装置の少なくとも1つを含む、請求項8に記載の送電装置。 The power transmission device according to claim 8 , wherein the electrical device includes at least one of a display device, a cooling device, and a power storage device. 前記送電器の固有周波数と前記受電装置の受電器の固有周波数との差は、前記送電器の固有周波数または前記受電器の固有周波数の±10%以下である、請求項8に記載の送電装置。 The power transmission device according to claim 8 , wherein a difference between a natural frequency of the power transmitter and a natural frequency of the power receiver of the power receiving device is ± 10% or less of the natural frequency of the power transmitter or the natural frequency of the power receiver. . 前記送電器は、前記送電器と前記受電装置の受電器との間に形成され、かつ、特定の周波数で振動する磁界と、前記送電器と前記受電器との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、前記受電器へ送電する、請求項8に記載の送電装置。 The power transmitter is formed between the power transmitter and a power receiver of the power receiving device, and is formed between a magnetic field that vibrates at a specific frequency, the power transmitter and the power receiver, and a specific The power transmission device according to claim 8 , wherein power is transmitted to the power receiver through at least one of an electric field that vibrates at a frequency of 10 MHz. 送電装置から受電装置へ非接触で電力を伝送する電力伝送システムであって、
前記送電装置は、前記受電装置へ非接触で送電するための送電器を備え、
前記受電装置は、
前記送電装置から非接触で受電するための受電器と、
前記受電器による受電時に発生する磁界の拡散を抑制する電磁シールド部と、
前記受電器による受電時に、前記磁界によって前記電磁シールド部に発生する電流を受ける電気機器とを備え
前記電磁シールド部は、前記磁界を遮蔽するとともに前記電流の電路を構成する導電性部材を含み、
前記電気機器は、前記導電性部材の両端部間に電気的に接続されることによって、前記受電器による受電時に前記導電性部材に発生する電流を受ける、電力伝送システム。
A power transmission system for transmitting power from a power transmission device to a power reception device in a contactless manner,
The power transmission device includes a power transmitter for transmitting power to the power receiving device in a contactless manner,
The power receiving device is:
A power receiver for receiving power from the power transmission device in a contactless manner;
An electromagnetic shield part for suppressing diffusion of a magnetic field generated at the time of power reception by the power receiver;
An electric device that receives a current generated in the electromagnetic shield part by the magnetic field when receiving power by the power receiver ;
The electromagnetic shield part includes a conductive member that shields the magnetic field and constitutes an electric path of the current,
The electric device is a power transmission system that receives a current generated in the conductive member when receiving power by the power receiver by being electrically connected between both ends of the conductive member .
送電装置から受電装置へ非接触で電力を伝送する電力伝送システムであって、
前記受電装置は、前記送電装置から非接触で受電するための受電器を備え、
前記送電装置は、
前記受電装置へ非接触で送電するための送電器と、
前記送電器による送電時に発生する磁界の拡散を抑制する電磁シールド部と、
前記送電器による送電時に、前記磁界によって前記電磁シールド部に発生する電流を受ける電気機器とを備え
前記電磁シールド部は、前記磁界を遮蔽するとともに前記電流の電路を構成する導電性部材を含み、
前記電気機器は、前記導電性部材の両端部間に電気的に接続されることによって、前記送電器による送電時に前記導電性部材に発生する電流を受ける、電力伝送システム。
A power transmission system for transmitting power from a power transmission device to a power reception device in a contactless manner,
The power receiving device includes a power receiver for receiving power from the power transmitting device in a contactless manner,
The power transmission device is:
A power transmitter for non-contact power transmission to the power receiving device;
An electromagnetic shielding part for suppressing diffusion of a magnetic field generated during power transmission by the power transmitter;
An electric device that receives a current generated in the electromagnetic shield part by the magnetic field during power transmission by the power transmitter ;
The electromagnetic shield part includes a conductive member that shields the magnetic field and constitutes an electric path of the current,
The electric device is a power transmission system that receives a current generated in the conductive member during power transmission by the power transmitter by being electrically connected between both ends of the conductive member .
JP2011274498A 2011-12-15 2011-12-15 Power receiving device, vehicle including the same, power transmitting device, and power transmission system Active JP5668676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274498A JP5668676B2 (en) 2011-12-15 2011-12-15 Power receiving device, vehicle including the same, power transmitting device, and power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274498A JP5668676B2 (en) 2011-12-15 2011-12-15 Power receiving device, vehicle including the same, power transmitting device, and power transmission system

Publications (2)

Publication Number Publication Date
JP2013126327A JP2013126327A (en) 2013-06-24
JP5668676B2 true JP5668676B2 (en) 2015-02-12

Family

ID=48777274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274498A Active JP5668676B2 (en) 2011-12-15 2011-12-15 Power receiving device, vehicle including the same, power transmitting device, and power transmission system

Country Status (1)

Country Link
JP (1) JP5668676B2 (en)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431324B (en) 2013-08-05 2017-08-18 株式会社Ihi Screening arrangement and contactless power supply system
JP6003853B2 (en) 2013-09-11 2016-10-05 トヨタ自動車株式会社 vehicle
JP5858018B2 (en) 2013-09-11 2016-02-10 トヨタ自動車株式会社 Power receiving device, power transmitting device, and vehicle
JP6123607B2 (en) 2013-09-24 2017-05-10 トヨタ自動車株式会社 vehicle
JP6423142B2 (en) 2013-10-01 2018-11-14 トヨタ自動車株式会社 Power receiving device, power transmitting device and vehicle
JP5817813B2 (en) 2013-11-18 2015-11-18 トヨタ自動車株式会社 Power receiving device
JP6060878B2 (en) 2013-11-20 2017-01-18 トヨタ自動車株式会社 Vehicle with power transmission / reception unit
JP2015104161A (en) 2013-11-21 2015-06-04 トヨタ自動車株式会社 Non-contact power transmission device and non-contact power transmission system
JP6146272B2 (en) 2013-11-22 2017-06-14 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP5842901B2 (en) 2013-12-05 2016-01-13 トヨタ自動車株式会社 Non-contact power transmission system
JP5979125B2 (en) 2013-12-11 2016-08-24 トヨタ自動車株式会社 Contactless power transmission equipment
JP6361132B2 (en) 2013-12-24 2018-07-25 トヨタ自動車株式会社 Contactless power transfer system, charging station, and vehicle
JP6260262B2 (en) 2013-12-25 2018-01-17 トヨタ自動車株式会社 Non-contact power transmission system and control method thereof
JP6217388B2 (en) 2013-12-27 2017-10-25 トヨタ自動車株式会社 Power receiving device and vehicle including the same
JP5910642B2 (en) 2014-01-22 2016-04-27 トヨタ自動車株式会社 Contactless charging system
JP2015142019A (en) 2014-01-29 2015-08-03 トヨタ自動車株式会社 Power receiving device
JP2015144529A (en) 2014-01-31 2015-08-06 トヨタ自動車株式会社 Non-contact power transmission system and charge station
JP5937631B2 (en) 2014-01-31 2016-06-22 トヨタ自動車株式会社 Contactless power transmission system and charging station
JP5962687B2 (en) 2014-01-31 2016-08-03 トヨタ自動車株式会社 Contactless power transmission system and charging station
JP5920371B2 (en) 2014-01-31 2016-05-18 トヨタ自動車株式会社 Non-contact power transmission system
JP6160504B2 (en) 2014-02-20 2017-07-12 トヨタ自動車株式会社 Power receiving device
JP6028757B2 (en) 2014-03-19 2016-11-16 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6060330B2 (en) 2014-03-24 2017-01-18 トヨタ自動車株式会社 Power receiving device, vehicle, and power transmitting device
JP6213353B2 (en) 2014-04-04 2017-10-18 トヨタ自動車株式会社 Power receiving device and vehicle including the same
JP6299362B2 (en) 2014-04-16 2018-03-28 トヨタ自動車株式会社 Vehicle and contactless power transmission system
JP5941094B2 (en) 2014-04-22 2016-06-29 株式会社日本自動車部品総合研究所 Non-contact power transmission / reception system
JP6248785B2 (en) 2014-04-25 2017-12-20 トヨタ自動車株式会社 Power transmission device and power reception device
JP6131915B2 (en) 2014-06-11 2017-05-24 トヨタ自動車株式会社 Power transmission device and power reception device
JP6166227B2 (en) 2014-07-04 2017-07-19 トヨタ自動車株式会社 Power transmission device and power reception device
JP6070650B2 (en) 2014-07-22 2017-02-01 トヨタ自動車株式会社 Power transmission device, power reception device, and vehicle equipped with the same
JP6181614B2 (en) 2014-08-04 2017-08-16 株式会社Soken Non-contact power transmission system
JP6260493B2 (en) 2014-08-20 2018-01-17 トヨタ自動車株式会社 Power transmission device and manufacturing method thereof, power receiving device and manufacturing method thereof
JP6550718B2 (en) 2014-10-28 2019-07-31 トヨタ自動車株式会社 Power transmission system
JP6392649B2 (en) 2014-11-28 2018-09-19 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6176272B2 (en) 2015-02-27 2017-08-09 トヨタ自動車株式会社 Power transmission system
JP6172185B2 (en) 2015-03-11 2017-08-02 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6580855B2 (en) * 2015-04-03 2019-09-25 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6260578B2 (en) 2015-04-17 2018-01-17 トヨタ自動車株式会社 Power transmission device and power reception device
JP6350399B2 (en) 2015-06-10 2018-07-04 トヨタ自動車株式会社 Non-contact power transmission device and power transmission system
JP6304152B2 (en) 2015-07-10 2018-04-04 トヨタ自動車株式会社 Non-contact power transmission device and power transmission system
JP6142901B2 (en) 2015-07-17 2017-06-07 トヨタ自動車株式会社 Non-contact power transmission device and power transmission system
JP6304158B2 (en) 2015-07-21 2018-04-04 トヨタ自動車株式会社 Non-contact power transmission device and power transmission system
JP6582681B2 (en) * 2015-07-28 2019-10-02 トヨタ自動車株式会社 Contactless charging system
JP6287993B2 (en) 2015-08-04 2018-03-07 トヨタ自動車株式会社 vehicle
JP6458678B2 (en) 2015-08-05 2019-01-30 トヨタ自動車株式会社 Coil unit
JP6394534B2 (en) 2015-08-07 2018-09-26 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6314934B2 (en) 2015-08-07 2018-04-25 トヨタ自動車株式会社 vehicle
JP6327216B2 (en) 2015-08-07 2018-05-23 トヨタ自動車株式会社 Coil unit
JP6278012B2 (en) 2015-08-28 2018-02-14 トヨタ自動車株式会社 Non-contact power transmission system and power transmission device
JP6332252B2 (en) 2015-12-09 2018-05-30 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6229708B2 (en) 2015-12-15 2017-11-15 トヨタ自動車株式会社 Vehicle and contactless power transmission system
JP6299738B2 (en) 2015-12-24 2018-03-28 トヨタ自動車株式会社 Non-contact power transmission device and power transmission system
JP6296071B2 (en) 2016-01-27 2018-03-20 トヨタ自動車株式会社 Non-contact power transmission system, power receiving device, and power transmitting device
JP6299779B2 (en) 2016-02-02 2018-03-28 トヨタ自動車株式会社 Power transmission device and power transmission system
JP6477671B2 (en) 2016-11-17 2019-03-06 トヨタ自動車株式会社 Coil unit
JP6519573B2 (en) 2016-11-30 2019-05-29 トヨタ自動車株式会社 Power transmission device and power transmission system
JP6544347B2 (en) 2016-12-07 2019-07-17 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP2018101725A (en) 2016-12-21 2018-06-28 トヨタ自動車株式会社 Coil unit, power transmission device, and power reception device
JP6485440B2 (en) 2016-12-21 2019-03-20 トヨタ自動車株式会社 Vehicle and contactless power transmission / reception system
JP6565943B2 (en) 2017-01-23 2019-08-28 トヨタ自動車株式会社 Power transmission device and power transmission system
JP6665803B2 (en) * 2017-01-30 2020-03-13 トヨタ自動車株式会社 Power receiving device and wireless power transmission system
JP6772872B2 (en) 2017-02-06 2020-10-21 トヨタ自動車株式会社 vehicle
JP6589904B2 (en) 2017-02-07 2019-10-16 トヨタ自動車株式会社 vehicle
JP6631556B2 (en) 2017-02-23 2020-01-15 トヨタ自動車株式会社 Vehicle and power transmission system
JP6627802B2 (en) 2017-02-23 2020-01-08 トヨタ自動車株式会社 Vehicle and power transmission system
JP6798428B2 (en) 2017-06-08 2020-12-09 トヨタ自動車株式会社 Power transmission device and power receiving device
JP2019009161A (en) 2017-06-21 2019-01-17 トヨタ自動車株式会社 Coil unit
JP6825501B2 (en) 2017-07-03 2021-02-03 トヨタ自動車株式会社 Power transmission device and power receiving device
JP6897371B2 (en) 2017-07-03 2021-06-30 トヨタ自動車株式会社 Vehicle and power transmission system
JP6772978B2 (en) 2017-07-12 2020-10-21 トヨタ自動車株式会社 Power transmission device
JP6885241B2 (en) 2017-07-13 2021-06-09 トヨタ自動車株式会社 Transmission equipment and power transmission system
JP6798443B2 (en) 2017-08-02 2020-12-09 トヨタ自動車株式会社 Non-contact power receiving device
JP6780608B2 (en) 2017-08-15 2020-11-04 トヨタ自動車株式会社 Coil unit
JP6809420B2 (en) 2017-09-13 2021-01-06 トヨタ自動車株式会社 Transmission device, power receiving device and non-contact power transmission system
JP6889402B2 (en) 2017-09-28 2021-06-18 トヨタ自動車株式会社 Non-contact power transmission system and non-contact power receiving device
JP6907897B2 (en) 2017-11-20 2021-07-21 トヨタ自動車株式会社 Power receiving device and non-contact power transmission system equipped with it
JP6981212B2 (en) 2017-12-01 2021-12-15 トヨタ自動車株式会社 Contactless power transmission equipment and power transmission system
JP7003651B2 (en) 2017-12-27 2022-01-20 トヨタ自動車株式会社 vehicle
JP7069836B2 (en) 2018-03-02 2022-05-18 トヨタ自動車株式会社 Coil unit
JP7091798B2 (en) 2018-04-13 2022-06-28 トヨタ自動車株式会社 Vehicle charging system and vehicle charging system certification method
JP6969494B2 (en) 2018-05-18 2021-11-24 トヨタ自動車株式会社 Contactless power transmission equipment and power transmission system
JP2019207933A (en) 2018-05-29 2019-12-05 トヨタ自動車株式会社 Coil module and coil unit
JP7119598B2 (en) 2018-06-05 2022-08-17 トヨタ自動車株式会社 Contactless power transmission device and contactless power transmission system
JP2020005378A (en) * 2018-06-27 2020-01-09 トヨタ自動車株式会社 Coil unit
JP6756783B2 (en) 2018-08-09 2020-09-16 トヨタ自動車株式会社 In-vehicle control system and vehicle
JP7067376B2 (en) 2018-08-31 2022-05-16 トヨタ自動車株式会社 Power transmission device
JP7068128B2 (en) 2018-10-03 2022-05-16 トヨタ自動車株式会社 Control system and vehicle
JP7180267B2 (en) 2018-10-12 2022-11-30 トヨタ自動車株式会社 coil unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127692U (en) * 1986-02-05 1987-08-13
JP2011204836A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Coil unit, noncontact power receiving device, noncontact power transmitting device, and vehicle

Also Published As

Publication number Publication date
JP2013126327A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5668676B2 (en) Power receiving device, vehicle including the same, power transmitting device, and power transmission system
JP5810944B2 (en) Vehicle and power transmission system
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
US10202045B2 (en) Vehicle with shielded power receiving coil
JP5781882B2 (en) Power transmission device, vehicle, and power transmission system
JP5825337B2 (en) Shield and vehicle equipped with it
JP5867511B2 (en) Power transmission device, power reception device, and power transmission system
JP5077421B2 (en) Contactless power transmission equipment
JP5794203B2 (en) Power transmission device, power reception device, vehicle, and non-contact power supply system
US20150028687A1 (en) Power transmitting device, power receiving device and power transfer system
KR101564863B1 (en) Power transmitting apparatus, power receiving apparatus, and power transmitting system
JP5949773B2 (en) Power receiving device, vehicle including the same, and power transmission system
JP6009920B2 (en) Non-contact power receiving apparatus and vehicle including the same, non-contact power transmission apparatus, and non-contact power transmission system
JP2010074937A (en) Non-contact power receiving apparatus and vehicle equipped with the same
JP2013126326A (en) Non-contact power reception device and vehicle mounting the same, non-contact power transmission device, and non-contact power supply system
JP5867329B2 (en) Power receiving device and vehicle
JP2010073885A (en) Resonance coil and non-contact feeding system
JP2013132171A (en) Power transmitter, power receiver, and power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151