JP2015065473A - Wiring member, manufacturing method of the same, and manufacturing method of wiring member adhesion body - Google Patents

Wiring member, manufacturing method of the same, and manufacturing method of wiring member adhesion body Download PDF

Info

Publication number
JP2015065473A
JP2015065473A JP2014249952A JP2014249952A JP2015065473A JP 2015065473 A JP2015065473 A JP 2015065473A JP 2014249952 A JP2014249952 A JP 2014249952A JP 2014249952 A JP2014249952 A JP 2014249952A JP 2015065473 A JP2015065473 A JP 2015065473A
Authority
JP
Japan
Prior art keywords
wiring member
conductive material
temperature
eutectic solder
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014249952A
Other languages
Japanese (ja)
Inventor
祥晃 栗原
Yoshiaki Kurihara
祥晃 栗原
吉田 誠人
Masato Yoshida
誠人 吉田
野尻 剛
Takeshi Nojiri
剛 野尻
倉田 靖
Yasushi Kurata
靖 倉田
修一郎 足立
Shuichiro Adachi
修一郎 足立
隆彦 加藤
Takahiko Kato
隆彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014249952A priority Critical patent/JP2015065473A/en
Publication of JP2015065473A publication Critical patent/JP2015065473A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a wiring member, which is adhered to various adherends without using flux and a special device, and a manufacturing method of the wiring member, and to provide a wiring member adhesion body obtained by using the wiring member and a manufacturing method of the wiring member adhesion body.SOLUTION: The invention provides a wiring member including: a conductive material; and a solder coating layer disposed in at least a part of a region on a surface of the conductive material and includes a non-eutectic solder material.

Description

本発明は、配線部材及びその製造方法、並びに配線部材接着体の製造方法に関する。   The present invention relates to a wiring member, a manufacturing method thereof, and a manufacturing method of a wiring member bonded body.

太陽電池の構造について、図1を用いて説明する。図1は太陽電池の構造の一形態を示す斜視図である。図1に示されるように、太陽電池200は、半導体基板101(多結晶及び単結晶のSiセル)から発電した電力を取り出すための表面電極(表面フィンガー電極)103と、裏面電極106と、表面電極103で取り出した電力を集める表面電極(バスバー電極)105と、裏面電極106で取り出した電力を集める裏面電極(バスバー電極)107とを有する。更に表面電極105と裏面電極107には、配線部材102がはんだ104で接着されている。太陽電池200では、半導体基板101内で発電された電力を、配線部材102を通じて外部へ伝送する。   The structure of the solar cell will be described with reference to FIG. FIG. 1 is a perspective view showing one embodiment of the structure of a solar cell. As shown in FIG. 1, a solar cell 200 includes a surface electrode (surface finger electrode) 103 for extracting power generated from a semiconductor substrate 101 (polycrystalline and single crystal Si cells), a back electrode 106, a surface It has a front electrode (bus bar electrode) 105 that collects the electric power extracted by the electrode 103 and a back electrode (bus bar electrode) 107 that collects the electric power extracted by the back electrode 106. Further, the wiring member 102 is bonded to the front electrode 105 and the back electrode 107 with solder 104. In the solar cell 200, the electric power generated in the semiconductor substrate 101 is transmitted to the outside through the wiring member 102.

最近は、太陽電池製造工程の簡略化のために、はんだ104と配線部材102を用いる代わりに、はんだで導電材を予め被覆した配線部材を用いて接着する方法が用いられている(図示せず)。このような配線部材は、銅などからなる導電材の周囲の一部又は全面にはんだ合金層を備える。   Recently, in order to simplify the solar cell manufacturing process, instead of using the solder 104 and the wiring member 102, a method of bonding using a wiring member in which a conductive material is previously coated with solder has been used (not shown). ). Such a wiring member includes a solder alloy layer on a part or the entire surface of a conductive material made of copper or the like.

はんだ合金層には、通常共晶はんだが用いられる。共晶はんだとは、合金の共晶点に対応する組成を有するはんだである。共晶はんだは、その融点以上の温度で即座に溶融し、その融点以下の温度で凝固が即座に起こる(例えば、特許文献1参照)。   Eutectic solder is usually used for the solder alloy layer. The eutectic solder is a solder having a composition corresponding to the eutectic point of the alloy. The eutectic solder immediately melts at a temperature equal to or higher than its melting point, and solidification occurs immediately at a temperature equal to or lower than the melting point (see, for example, Patent Document 1).

従来、配線部材を表面電極や裏面電極に接着する際には、濡れ性を向上し、配線部材と電極との接着性を付与するために、配線部材、表面電極又は裏面電極に予めフラックスを塗布する必要があった。またフラックスを塗布する他の理由としては、配線部材のはんだ合金層の表面に形成されている酸化物層をエッチング除去すること、はんだ合金層を加熱溶融する際に再度その表面に酸化物層が形成されることを抑制することが挙げられる。しかし、フラックスは、太陽電池モジュール製造工程において用いられる太陽電池をラミネートする封止材(EVA:エチレンビニルアセテート)を腐食してしまい、長期信頼性に悪影響を及ぼす傾向がある。   Conventionally, when bonding a wiring member to a front electrode or a back electrode, a flux is applied in advance to the wiring member, the front electrode, or the back electrode in order to improve wettability and provide adhesion between the wiring member and the electrode. There was a need to do. Another reason for applying the flux is that the oxide layer formed on the surface of the solder alloy layer of the wiring member is removed by etching. When the solder alloy layer is heated and melted, the oxide layer is again formed on the surface. For example, it is possible to suppress the formation. However, the flux corrodes the sealing material (EVA: ethylene vinyl acetate) for laminating solar cells used in the solar cell module manufacturing process, and tends to adversely affect long-term reliability.

またフラックスを用いずに配線部材を接着する方法も提案されている。例えば、特許文献2や、特許文献3には、摩擦はんだ付け法や超音波はんだ付け法が開示されている。   A method of bonding wiring members without using flux has also been proposed. For example, Patent Document 2 and Patent Document 3 disclose a friction soldering method and an ultrasonic soldering method.

特開2002−263880号公報JP 2002-263880 A 特許第3205423号公報Japanese Patent No. 3205423 特開平9−216052号公報Japanese Patent Laid-Open No. 9-216052

配線部材を接着する際にフラックスを用いる場合、配線部材の接着後にフラックスを完全に洗浄除去する必要があるが、フラックスを完全に除去することは困難であった。また摩擦はんだ付け法や超音波はんだ付け法には、特別な装置を必要とするという課題がある。   When flux is used when bonding the wiring member, it is necessary to completely remove the flux after bonding the wiring member, but it is difficult to completely remove the flux. Further, the friction soldering method and the ultrasonic soldering method have a problem that a special apparatus is required.

そこで本発明では、フラックスを使用せずに、且つ特別な装置を用いることなく、様々な被着体に接着することができる配線部材及びその製造方法を提供することを課題とする。また本発明は、前記配線部材を用いて得られる配線部材接着体及びその製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a wiring member that can be bonded to various adherends without using a flux and without using a special device, and a method for manufacturing the wiring member. Moreover, this invention makes it a subject to provide the wiring member adhesive body obtained using the said wiring member, and its manufacturing method.

本発明は以下の態様を包含する。
<1> 導電材と、前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層と、を有する配線部材である。
The present invention includes the following aspects.
<1> A wiring member having a conductive material and a solder coating layer disposed in at least a part of the surface of the conductive material and including a non-eutectic solder material.

<2> 前記非共晶はんだ材料は、錫(Sn)、銅(Cu)、銀(Ag)、ビスマス(Bi)、鉛(Pb)、アルミニウム(Al)、チタン(Ti)及びシリコン(Si)からなる群より選ばれる2種以上の金属を含み、融点が450℃以下であり、亜鉛の含有率が1質量%以下であり、インジウムの含有率が1質量%以下であり、且つ固相線温度と液相線温度の差が2℃以上である前記<1>に記載の配線部材である。 <2> The non-eutectic solder material is tin (Sn), copper (Cu), silver (Ag), bismuth (Bi), lead (Pb), aluminum (Al), titanium (Ti), and silicon (Si). The melting point is 450 ° C. or less, the zinc content is 1% by mass or less, the indium content is 1% by mass or less, and the solidus It is a wiring member as described in said <1> whose difference of temperature and liquidus temperature is 2 degreeC or more.

<3> 前記導電材は、銅(Cu)、銀(Ag)、金(Au)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種を含む前記<1>又は<2>に記載の配線部材である。 <3> The wiring according to <1> or <2>, wherein the conductive material includes at least one selected from the group consisting of copper (Cu), silver (Ag), gold (Au), and aluminum (Al). It is a member.

<4> 前記導電材が、純度99.99%以上の高純度銅(Cu)からなる前記<1>〜<3>のいずれか1つに記載の配線部材である。 <4> The wiring member according to any one of <1> to <3>, wherein the conductive material is made of high-purity copper (Cu) having a purity of 99.99% or more.

<5> 前記導電材の平均厚みが0.001mm以上である前記<1>〜<4>のいずれか1つに記載の配線部材である。 <5> The wiring member according to any one of <1> to <4>, wherein an average thickness of the conductive material is 0.001 mm or more.

<6> 太陽電池用配線部材である前記<1>〜<5>のいずれか1項に記載の配線部材。 <6> The wiring member according to any one of <1> to <5>, which is a solar cell wiring member.

<7> 圧延加工、射出加工、押出し加工又はスリット加工によって導電材を長尺形状に成形する工程と、前記長尺形状の導電材の表面の少なくとも一部の領域に非共晶はんだ材料を付与してはんだ被覆層を形成する工程と、を有する前記<1>〜<6>のいずれか1つに記載の配線部材の製造方法である。 <7> A step of forming a conductive material into a long shape by rolling, injection, extrusion, or slit processing, and applying a non-eutectic solder material to at least a partial region of the surface of the long conductive material And forming a solder coating layer. The method for manufacturing a wiring member according to any one of <1> to <6>.

<8> 被着体に、前記<1>〜<6>のいずれか1つに記載の配線部材を、前記非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で接着する工程を有する配線部材接着体の製造方法である。 <8> The wiring member according to any one of <1> to <6> is applied to an adherend in a temperature range not lower than a solidus temperature of the non-eutectic solder material and not higher than a liquidus temperature. It is a manufacturing method of the wiring member adhesion object which has the process to adhere.

<9> 前記温度範囲は、前記はんだ被覆層に含まれる非共晶はんだ材料の総量における液相の占める割合が30質量%以上100質量%未満となる温度範囲である前記<8>に記載の配線部材接着体の製造方法である。 <9> The temperature range according to <8>, wherein the ratio of the liquid phase in the total amount of the non-eutectic solder material included in the solder coating layer is a temperature range of 30% by mass or more and less than 100% by mass. It is a manufacturing method of a wiring member adhesion object.

<10> 超音波接着工程を有さない前記<8>又は<9>に記載の配線部材接着体の製造方法である。 <10> The method for producing a bonded wiring member assembly according to <8> or <9>, which does not include an ultrasonic bonding step.

<11> 前記被着体が、酸化物、酸化物層で被覆された金属、ガラス及び酸化物セラミックスからなる群から選ばれる少なくとも1種である前記<8>〜<10>のいずれか1つに記載の配線部材接着体の製造方法である。 <11> Any one of the above <8> to <10>, wherein the adherend is at least one selected from the group consisting of an oxide, a metal covered with an oxide layer, glass, and oxide ceramics. It is a manufacturing method of the wiring member adhesion object given in.

<12> 前記<8>〜<11>のいずれか1つに記載の製造方法により得られる配線部材接着体である。 <12> A bonded wiring member obtained by the production method according to any one of <8> to <11>.

本発明によれば、フラックスを使用せずに、且つ特別な装置を用いることなく、様々な被着体に接着することができる配線部材及びその製造方法を提供することができる。また本発明によれば、前記配線部材を用いて得られる配線部材接着体及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wiring member which can be adhere | attached on various to-be-adhered bodies, without using a flux and without using a special apparatus, and its manufacturing method can be provided. Moreover, according to this invention, the wiring member adhesion body obtained using the said wiring member and its manufacturing method can be provided.

太陽電池の構造の一形態を示す概略斜視図である。It is a schematic perspective view which shows one form of the structure of a solar cell. 配線部材の一形態を示す概略断面図であるIt is a schematic sectional drawing which shows one form of a wiring member はんだ材料Xの冷却曲線である。3 is a cooling curve of the solder material X. 太陽電池モジュールの製造方法の一実施形態を示す断面図、斜視図及び分解斜視図である。It is sectional drawing, a perspective view, and an exploded perspective view which show one Embodiment of the manufacturing method of a solar cell module. 両面電極型の太陽電池モジュールの一形態を示す上面図である。It is a top view which shows one form of a double-sided electrode type solar cell module. 両面電極型の太陽電池モジュールの一形態を示す下面図である。It is a bottom view which shows one form of a double-sided electrode type solar cell module. バックコンタクト型の太陽電池の一形態を示す概略平面図である。It is a schematic plan view which shows one form of a back contact type solar cell. 図6AにおけるAA断面構成の一形態を示す斜視図である。It is a perspective view which shows one form of AA cross-section structure in FIG. 6A. 本実施形態の配線部材の製造方法に用いる溶融はんだめっき層形成用設備の概略図である。It is the schematic of the equipment for molten solder plating layer forming used for the manufacturing method of the wiring member of this embodiment.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . Moreover, the numerical range shown using "to" shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. Furthermore, the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.

<配線部材>
本発明の配線部材は、導電材と、前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層とを有する。はんだ被覆層が非共晶はんだ材料を含むことで、フラックスを使用せずに、且つ特別な装置を用いることなく、様々な被着体に接着することが可能となる。前記配線部材は、例えば、非共晶はんだ材料を含むはんだ被覆層を、前記非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で、被着体と接触させることで、フラックスを使用せずに、且つ特別な装置を用いることなく、様々な被着体と接着することができる。
<Wiring member>
The wiring member of the present invention includes a conductive material and a solder coating layer that is disposed in at least a part of the surface of the conductive material and includes a non-eutectic solder material. By including the non-eutectic solder material in the solder coating layer, it is possible to adhere to various adherends without using a flux and without using a special device. The wiring member is obtained, for example, by bringing a solder coating layer containing a non-eutectic solder material into contact with an adherend in a temperature range not lower than the solidus temperature of the non-eutectic solder material and not higher than the liquidus temperature. It is possible to bond to various adherends without using a flux and without using a special apparatus.

前記配線部材は、導電材の表面の少なくとも一部の領域に非共晶はんだ材料を含むはんだ被覆層を有していればよい。配線部材におけるはんだ被覆層は、接着性の観点から、導電材の表面の少なくとも1つの面を被覆していることが好ましく、導電材の表面全体を被覆していることがより好ましい。   The wiring member only needs to have a solder coating layer containing a non-eutectic solder material in at least a part of the surface of the conductive material. From the viewpoint of adhesiveness, the solder coating layer in the wiring member preferably covers at least one surface of the conductive material, and more preferably covers the entire surface of the conductive material.

前記配線部材の形状としては特に制限されず目的等に応じて適宜選択することができる。配線部材の形状として具体的には、平角線状、リボン状、丸線状等の長尺形状、シート状、メッシュ状などが挙げられる。連続生産性やリール状に巻き取り梱包可能である点から、長尺形状であることが好ましく、平角線状の形状であることがより好ましい。ここでいう平角線状とは、長手方向に垂直な断面が長方形様の形状を有している長尺の線状形状であることを意味する。   The shape of the wiring member is not particularly limited and can be appropriately selected according to the purpose. Specific examples of the shape of the wiring member include a rectangular shape, a ribbon shape, a long shape such as a round wire shape, a sheet shape, and a mesh shape. From the standpoint of continuous productivity and being able to be wound and packed in a reel shape, it is preferably a long shape, and more preferably a rectangular wire shape. The term “flat rectangular shape” as used herein means a long linear shape in which a cross section perpendicular to the longitudinal direction has a rectangular shape.

前記配線部材の構成の一例を、図面を用いて説明する。なお、本発明は、図面により何ら制限されるものではない。図2は、配線部材10の一形態を示し、長手方向に垂直な断面における断面図である。図2に示す配線部材10においては、導電材12が平角線状の導体から構成され、その断面輪郭が角丸長方形(角の丸い長方形)である。また導電材12の周囲を被覆して配置されたはんだ被覆層13は、断面輪郭が角丸長方形であり、はんだ被覆層13の上面13aと下面13bが、ほぼ平坦に形成されている。配線部材10の厚みaは、はんだ被覆層13の上面13aと下面13bとの距離として測定される。   An example of the configuration of the wiring member will be described with reference to the drawings. In addition, this invention is not restrict | limited at all by drawing. FIG. 2 shows one embodiment of the wiring member 10 and is a cross-sectional view in a cross section perpendicular to the longitudinal direction. In the wiring member 10 shown in FIG. 2, the conductive material 12 is composed of a flat wire conductor, and the cross-sectional outline thereof is a rounded rectangle (rounded rectangle). The solder coating layer 13 disposed so as to cover the periphery of the conductive material 12 has a rounded rectangular cross section, and the upper surface 13a and the lower surface 13b of the solder coating layer 13 are formed substantially flat. The thickness a of the wiring member 10 is measured as the distance between the upper surface 13a and the lower surface 13b of the solder coating layer 13.

なお、図2に記載の配線部材10は、導電材12の表面の全てにはんだ被覆層13が配置されているが、はんだ被覆層13は導電材12の表面の一部の領域に配置されていてもよい。また前記配線部材10は、被着体(例えば、半導体基板の表面電極及び裏面電極)への設置が容易となるように、かつ、接合時に必要な熱伝導が十分に確保されるように、はんだ被覆層13の表面が平坦に形成されていることが好ましい。又はんだ被覆層の表面が平坦なことで、平角線状に構成した配線部材10をボビン等に巻き取る際に安定した積層状態が得られ易く、巻き崩れが起こりにくい。よって、巻き崩れにより配線部材が絡まって引き出されなくなることがなくなる傾向がある。   In the wiring member 10 illustrated in FIG. 2, the solder coating layer 13 is disposed on the entire surface of the conductive material 12, but the solder coating layer 13 is disposed in a part of the surface of the conductive material 12. May be. Further, the wiring member 10 is soldered so that it can be easily installed on an adherend (for example, the front surface electrode and the back surface electrode of the semiconductor substrate), and the heat conduction necessary for bonding is sufficiently ensured. The surface of the coating layer 13 is preferably formed flat. Or, since the surface of the covering layer is flat, it is easy to obtain a stable laminated state when the wiring member 10 configured as a flat wire is wound around a bobbin or the like, and is not easily collapsed. Therefore, there is a tendency that the wiring member is not entangled due to winding collapse and cannot be pulled out.

前記配線部材の平均厚みは制限されず目的等に応じて適宜選択することができる。配線部材の平均厚みとして具体的には、0.001mm以上であることが好ましく、0.001mm〜1mmであることがより好ましく、0.002mm〜0.8mmであることがより好ましく、0.005mm〜0.5mmであることが更に好ましく、0.1mm〜0.5mmであることが特に好ましく、0.1mm〜0.3mmであることが極めて好ましい。なお配線部材の厚みとは、長尺形状の配線部材の長手方向に垂直な断面を観察した場合に、短軸方向の長さのうちの最大長である。具体的には図2における厚みaのことを指す。配線部材の平均厚みはマイクロメータを用いて、配線部材の5箇所の厚みを測定し、その算術平均値として求められる。   The average thickness of the wiring member is not limited and can be appropriately selected according to the purpose. Specifically, the average thickness of the wiring member is preferably 0.001 mm or more, more preferably 0.001 mm to 1 mm, more preferably 0.002 mm to 0.8 mm, and 0.005 mm. More preferably, it is -0.5mm, It is especially preferable that it is 0.1mm-0.5mm, It is very preferable that it is 0.1mm-0.3mm. The thickness of the wiring member is the maximum length of the lengths in the short axis direction when a cross section perpendicular to the longitudinal direction of the long wiring member is observed. Specifically, it refers to the thickness a in FIG. The average thickness of the wiring member is obtained as an arithmetic average value of five thicknesses of the wiring member measured using a micrometer.

また配線部材の長手方向に垂直な断面の形状は特に制限されず目的等に応じて適宜選択できる。配線部材の長手方向に垂直な断面の形状としては、直方形、楕円形、円形等を挙げることができる。中でも断面の形状は、生産性や生産コストの観点から、図2に示すような角丸長方形であることが好ましい。   The shape of the cross section perpendicular to the longitudinal direction of the wiring member is not particularly limited and can be appropriately selected according to the purpose. Examples of the shape of the cross section perpendicular to the longitudinal direction of the wiring member include a rectangular shape, an elliptical shape, and a circular shape. In particular, the cross-sectional shape is preferably a rounded rectangle as shown in FIG. 2 from the viewpoint of productivity and production cost.

配線部材の長手方向に垂直な断面における厚み方向に垂直な方向の長さ(以下、「幅」ともいう)は特に制限されず目的等に応じて適宜選択される。配線部材の幅は例えば0.5mm〜10mmであることが好ましく、1mm〜4mmであることがより好ましい。
更に配線部材の長手方向の長さは目的等に応じて適宜選択されるものであり、特に制限はない。
The length in the direction perpendicular to the thickness direction (hereinafter also referred to as “width”) in the cross section perpendicular to the longitudinal direction of the wiring member is not particularly limited and is appropriately selected depending on the purpose and the like. The width of the wiring member is preferably 0.5 mm to 10 mm, for example, and more preferably 1 mm to 4 mm.
Furthermore, the length of the wiring member in the longitudinal direction is appropriately selected according to the purpose and is not particularly limited.

(導電材)
配線部材は導電体を有する。配線部材に用いる導電材は、体積抵抗率が小さいこと(例えば、約1×10−5Ωcm以下)が好ましい。このような導電材としては、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)等を含有するものが挙げられる。銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)等を含有することで体積抵抗率を小さく抑えることができるため、配線部材を構成する導電材として好ましい。すなわち導電材は、銅(Cu)、銀(Ag)、金(Au)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の金属を含むことが好ましく、Cu、Ag、Au及びAlからなる群より選ばれる少なくともの1種の金属を50質量%以上含むものがより好ましい。また配線部材の耐力の低減の観点から、Cuを90%以上含有するものが更に好ましい。
(Conductive material)
The wiring member has a conductor. The conductive material used for the wiring member preferably has a small volume resistivity (for example, about 1 × 10 −5 Ωcm or less). Examples of such a conductive material include those containing copper (Cu), silver (Ag), gold (Au), aluminum (Al), and the like. By containing copper (Cu), silver (Ag), gold (Au), aluminum (Al), and the like, the volume resistivity can be kept small, which is preferable as a conductive material constituting the wiring member. That is, the conductive material preferably contains at least one metal selected from the group consisting of copper (Cu), silver (Ag), gold (Au), and aluminum (Al), and is made of Cu, Ag, Au, and Al. It is more preferable to contain 50% by mass or more of at least one metal selected from the group. Further, from the viewpoint of reducing the proof stress of the wiring member, it is more preferable to contain 90% or more Cu.

導電材に含まれるCuとしては、タフピッチCu、低酸素Cu、無酸素Cu、リン脱酸Cu、純度99.99%以上の高純度Cuが挙げられる。導電材の0.2%耐力を最も小さくするためには、純度が高いCuを用いることが好ましく、純度99.99%以上の高純度Cuを用いることがより好ましく、純度99.9999%以上の高純度Cuを用いることが特に好ましい。なお0.2%耐力とは、引っ張ったときに0.2%の歪みが導入される力であり、この数値が小さい程は、伸びやすい。
また導電材としてタフピッチCu又はリン脱酸Cuを用いると、配線部材を低コストに構成することができる。
Examples of Cu contained in the conductive material include tough pitch Cu, low oxygen Cu, oxygen free Cu, phosphorus deoxidized Cu, and high purity Cu having a purity of 99.99% or more. In order to minimize the 0.2% proof stress of the conductive material, it is preferable to use Cu having a high purity, more preferably using a high purity Cu having a purity of 99.99% or more, and a purity having a purity of 99.9999% or more. It is particularly preferable to use high purity Cu. The 0.2% proof stress is a force that introduces 0.2% strain when pulled, and the smaller this value, the easier it is to stretch.
If tough pitch Cu or phosphorus deoxidized Cu is used as the conductive material, the wiring member can be configured at low cost.

導電材の形状としては特に制限されず目的等に応じて適宜選択される。導電材の形状として具体的には、帯板状、平角線、丸線、楕円線等の長尺形状、平角状、シート状、メッシュ等の複数の導体の接合体形状などが挙げられる。導電材の形状は、被着体に接合する際の使いやすさの観点から平角線状を用いることが好ましい。   The shape of the conductive material is not particularly limited and is appropriately selected according to the purpose. Specific examples of the shape of the conductive material include a strip shape, a long shape such as a flat wire, a round wire, and an elliptical wire, and a joined shape of a plurality of conductors such as a flat shape, a sheet shape, and a mesh. The shape of the conductive material is preferably a rectangular wire from the viewpoint of ease of use when bonding to the adherend.

導電材の平均厚みは用途等に応じて適宜選択することができる。導電材の平均厚みは、生産性や長手方向への線抵抗値の観点から、0.001mm以上であることが好ましい。また上限値に特に制限はないが、1mm以下であることが好ましい。更に導電材の平均厚みは0.002mm〜0.8mmであることがより好ましく、0.005mm〜0.5mmであることが更に好ましく、0.1mm〜0.5mmであることが更に好ましく、0.1mm〜0.3mmであることが特に好ましい。導電材の平均厚みはマイクロメータを用いて、導電材の5箇所の厚みを測定し、その算術平均値として求められる。また配線部材の長手方向に垂直な断面の観察により、導電材の5箇所の厚みを測定し、その算術平均値として求められる。   The average thickness of the conductive material can be appropriately selected according to the application. The average thickness of the conductive material is preferably 0.001 mm or more from the viewpoint of productivity and the line resistance value in the longitudinal direction. Moreover, although there is no restriction | limiting in particular in an upper limit, it is preferable that it is 1 mm or less. Further, the average thickness of the conductive material is more preferably 0.002 mm to 0.8 mm, further preferably 0.005 mm to 0.5 mm, further preferably 0.1 mm to 0.5 mm, 0 It is particularly preferable that the thickness is 1 mm to 0.3 mm. The average thickness of the conductive material is obtained as an arithmetic average value obtained by measuring the thickness of five portions of the conductive material using a micrometer. In addition, the thickness of five portions of the conductive material is measured by observing a cross section perpendicular to the longitudinal direction of the wiring member, and the arithmetic average value is obtained.

導電材は、目的に応じて所望の形状を有する導電材を製造して得てもよいし、市販の導電材から適宜選択して得てもよい。   The conductive material may be obtained by producing a conductive material having a desired shape according to the purpose, or may be obtained by appropriately selecting from commercially available conductive materials.

導電材の製造方法としては特に制限はなく、導電材の形状等に応じて適宜選択することができる。例えば、アップキャスト法、SCR法、ヘズレー法、ダウンキャスト法、プロペルチェ法等が挙げられる。また導電材が長尺形状を有する場合、例えば圧延加工、射出加工、押出し加工又はスリット加工によって長尺形状の導電材を製造することができる。   There is no restriction | limiting in particular as a manufacturing method of an electrically conductive material, According to the shape etc. of an electrically conductive material, it can select suitably. For example, the upcast method, the SCR method, the Hazeley method, the downcast method, the Propeltier method and the like can be mentioned. When the conductive material has a long shape, the long conductive material can be produced by, for example, rolling, injection processing, extrusion processing, or slit processing.

更に平角線状の導電材を製造する方法としては、以下の方法が挙げられる。
まず、銅等の導体からなる平板をスリット加工する、又は銅等の導体からなる圧延材(丸状)を圧延加工し、導体を平角線状に成形する。ここで、圧延加工とは、丸線を圧延して平角線化する方式である。圧延加工により平角線状に成形すると、長尺で長手方向に幅が均一なものが形成できる。スリット加工は、種々の幅の材料に対応できる。つまり、原料導体の幅が長手方向に均一でなくても、幅が異なる多様な原料導体を使用する場合でも、スリット加工によって長尺で長手方向に幅が均一なものに成形できる。
次に平角線状に成形した原料導体を、連続通電加熱炉又は連続式加熱炉又はバッチ式加熱設備で熱処理することで平角線状の導電材を得ることができる。この熱処理工程は、導電材の軟らかさを向上させ、0.2%耐力を低減させる目的で行なわれる。安定した熱処理が必要な場合には、バッチ式加熱が好ましい。酸化を防止する観点から、熱処理では、窒素などの不活性ガス雰囲気あるいはタフピッチ銅以外の酸素の少ない銅では水素還元雰囲気の炉を用いるのが好ましい。不活性ガス雰囲気あるいは水素還元雰囲気の炉は、連続通電加熱炉又は連続式加熱炉又はバッチ式加熱設備により提供される。
Furthermore, the following method is mentioned as a method of manufacturing a rectangular conductive material.
First, a flat plate made of a conductor such as copper is slit, or a rolled material (round shape) made of a conductor such as copper is rolled to form the conductor into a rectangular wire. Here, the rolling process is a method of rolling a round wire into a flat wire. If it is formed into a rectangular wire shape by rolling, a long and uniform width in the longitudinal direction can be formed. Slit processing can be applied to materials of various widths. In other words, even when the raw material conductors are not uniform in the longitudinal direction, even when various raw material conductors having different widths are used, they can be formed into a long and uniform width in the longitudinal direction by slit processing.
Next, the rectangular conductor material can be obtained by heat-treating the raw material conductor formed into a rectangular wire shape in a continuous energizing heating furnace, a continuous heating furnace, or a batch-type heating facility. This heat treatment step is performed for the purpose of improving the softness of the conductive material and reducing the 0.2% yield strength. Batch heating is preferred when stable heat treatment is required. From the viewpoint of preventing oxidation, it is preferable to use a furnace in a hydrogen reducing atmosphere for heat treatment in an inert gas atmosphere such as nitrogen or copper with less oxygen other than tough pitch copper. A furnace having an inert gas atmosphere or a hydrogen reduction atmosphere is provided by a continuous energizing heating furnace, a continuous heating furnace, or a batch heating facility.

(はんだ被覆層)
配線部材は、前記導電材の表面の少なくとも一部の領域に、はんだ被覆層を有する。用いられるはんだ被覆層を構成するはんだ材料は、非共晶はんだ材料を含むものである。前記はんだ材料は、非共晶はんだ材料から実質的になることが好ましく、非共晶はんだ材料からなることがより好ましい。ここで「非共晶はんだ材料から実質的になる」とは不可避的に混入する他の成分の存在を許容することを意味する。
(Solder coating layer)
The wiring member has a solder coating layer in at least a part of the surface of the conductive material. The solder material constituting the solder coating layer used includes a non-eutectic solder material. The solder material is preferably substantially composed of a non-eutectic solder material, and more preferably composed of a non-eutectic solder material. Here, “consisting essentially of a non-eutectic solder material” means allowing the presence of other components inevitably mixed.

非共晶はんだ材料とは、液相線温度と固相線温度とが一致せず、液相線温度と固相線温度との間に差が存在するはんだ合金である。非共晶はんだ材料の液相線温度と固相線温度の差は、2℃以上であることが好ましく、2℃以上300℃以下であることがより好ましい。また作業性の観点からは、前記差が2℃以上であるものが好ましく、前記差が2℃以上100℃以下であるものがより好ましく、前記差が5℃以上100℃以下であるものが更に好ましい。液相線温度と固相線温度との差が上記範囲内にあると、配線部材を被着体に接着する際の温度を制御しやすくなり、はんだ接着の作業性に優れる。   The non-eutectic solder material is a solder alloy in which the liquidus temperature and the solidus temperature do not match and there is a difference between the liquidus temperature and the solidus temperature. The difference between the liquidus temperature and the solidus temperature of the non-eutectic solder material is preferably 2 ° C or higher, more preferably 2 ° C or higher and 300 ° C or lower. From the viewpoint of workability, the difference is preferably 2 ° C. or more, more preferably the difference is 2 ° C. or more and 100 ° C. or less, and the difference is 5 ° C. or more and 100 ° C. or less. preferable. When the difference between the liquidus temperature and the solidus temperature is within the above range, the temperature at which the wiring member is bonded to the adherend can be easily controlled, and the soldering workability is excellent.

前記非共晶はんだ材料の液相線温度及び固相線温度は、溶融状態(液相状態)にある非共晶はんだ材料を冷却する時の非共晶はんだ材料の温度を測定した冷却曲線を調べることによって確認することができる。具体的には液相線温度及び固相線温度は、冷却曲線に基づく接線法により求めることができる。   The liquidus temperature and solidus temperature of the non-eutectic solder material are cooling curves obtained by measuring the temperature of the non-eutectic solder material when cooling the non-eutectic solder material in a molten state (liquid phase state). It can be confirmed by examining. Specifically, the liquidus temperature and the solidus temperature can be obtained by a tangent method based on a cooling curve.

例えば、図3に示される冷却曲線を描く非共晶はんだ材料Xの液相線温度と固相線温度は、以下のようにして求められる。
液相状態の非共晶はんだ材料Xを冷却する際に得られた冷却曲線から、液相状態の非共晶はんだ材料Xを冷却する際に現れる直線領域(冷却曲線の傾きが一定となる領域、以下同じ)を延長した第一の直線Aと、固相状態の非共晶はんだ材料Xを冷却する際に現れる直線領域を延長した第二の直線Bと、第一の直線Aを描く際に適用される直線領域と第二の直線Bを描く際に適用される直線領域との間に存在する直線領域を延長した第三の直線Cとを得る。
このとき、前記第一の直線Aと第三の直線Cとの交点の温度を、液相線温度とする。
前記第二の直線Bと第三の直線Cとの交点の温度を、固相線温度とする。
なお、非共晶はんだ材料の冷却曲線は、非共晶はんだ材料の温度変化を経時的に測定可能な方法、例えば、熱電対が接続されたレコーダによって得られる。
また前記非共晶はんだ材料の液相線温度及び固相線温度は、非共晶はんだ材料を構成する金属の種類及び混合比率を適宜選択することで所望の範囲とすることができる。
For example, the liquidus temperature and the solidus temperature of the non-eutectic solder material X that draws the cooling curve shown in FIG. 3 are obtained as follows.
From the cooling curve obtained when cooling the non-eutectic solder material X in the liquid phase state, a linear region appearing when the non-eutectic solder material X in the liquid phase state is cooled (the region where the slope of the cooling curve is constant). , The same applies hereinafter), when drawing the first straight line A, the second straight line B extending the straight line region that appears when cooling the non-eutectic solder material X in the solid state, and the first straight line A The third straight line C obtained by extending the straight line region existing between the straight line region applied to the straight line region and the straight line region applied when the second straight line B is drawn is obtained.
At this time, the temperature at the intersection of the first straight line A and the third straight line C is defined as a liquidus temperature.
The temperature at the intersection of the second straight line B and the third straight line C is the solidus temperature.
The cooling curve of the non-eutectic solder material is obtained by a method capable of measuring the temperature change of the non-eutectic solder material over time, for example, a recorder to which a thermocouple is connected.
Further, the liquidus temperature and solidus temperature of the non-eutectic solder material can be set to a desired range by appropriately selecting the type and mixing ratio of the metal constituting the non-eutectic solder material.

非共晶はんだ材料の融点は450℃以下であればよく、96℃以上450℃以下であることが好ましく、96℃以上327℃以下であることがより好ましく、96℃以上232℃以下であることが更に好ましい。
一般に融点が450℃を超える合金はロウ材と呼ばれる。このような高融点のロウ材を電子回路基板などに適用すると、接着に高温度での加熱を要し、回路などの破損を生じさせるおそれがあるため好ましくない。
The non-eutectic solder material may have a melting point of 450 ° C. or lower, preferably 96 ° C. or higher and 450 ° C. or lower, more preferably 96 ° C. or higher and 327 ° C. or lower, and 96 ° C. or higher and 232 ° C. or lower. Is more preferable.
In general, an alloy having a melting point exceeding 450 ° C. is called a brazing material. If such a high melting point brazing material is applied to an electronic circuit board or the like, it is not preferable because it requires heating at a high temperature for bonding, and may cause damage to the circuit or the like.

非共晶はんだ材料を構成する金属は特に制限されない。接着性をより高め且つより適切な材料コストにできる点で、錫(Sn)、銅(Cu)、銀(Ag)、ビスマス(Bi)、鉛(Zn)、アルミニウム(Al)、チタン(Ti)及びシリコン(Si)からなる群より選ばれる2種以上の金属を含むことが好ましい。   The metal constituting the non-eutectic solder material is not particularly limited. Tin (Sn), Copper (Cu), Silver (Ag), Bismuth (Bi), Lead (Zn), Aluminum (Al), Titanium (Ti) in terms of higher adhesion and more appropriate material cost And two or more metals selected from the group consisting of silicon (Si).

非共晶はんだ材料は、インジウム(In)を更に含んでいてもよい。インジウムは単体で被着体への接着性を有し、且つ非共晶はんだ材料に含有されることにより、非共晶はんだ材料の融点を下げることができる。しかしながらインジウムは高価な材料であるため、その用途が制限される場合がある。更に非共晶はんだ材料がインジウムを含有することにより、形成されるはんだ層の耐久性が低下してしまうことが知られており、はんだ接続の長期信頼性が求められる用途には適さない場合がある。前記非共晶はんだ材料におけるインジウムの含有率は、はんだ接続の長期信頼性の観点から、非共晶はんだ材料中に1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。   The non-eutectic solder material may further contain indium (In). Indium alone has adhesiveness to the adherend and is contained in the non-eutectic solder material, whereby the melting point of the non-eutectic solder material can be lowered. However, since indium is an expensive material, its use may be limited. Furthermore, it is known that the non-eutectic solder material contains indium, so that the durability of the formed solder layer is lowered, and may not be suitable for applications requiring long-term reliability of solder connection. is there. The content of indium in the non-eutectic solder material is preferably 1% by mass or less and preferably 0.5% by mass or less in the non-eutectic solder material from the viewpoint of long-term reliability of solder connection. More preferably, it is still more preferably 0.1% by mass or less.

非共晶はんだ材料は、亜鉛(Zn)を更に含んでいてもよい。非共晶はんだ材料が亜鉛を含むことで、被着体の表面に存在する酸化物の酸素原子と亜鉛とが結合するものと考えられ、被着体に対する接着性が向上する。しかしながら、亜鉛の含有量が多すぎると、場合によっては被着体との濡れ性が低下する場合がある。したがって非共晶はんだ材料は、後述する被着体との濡れ性及び被着体との接着性の観点から、亜鉛の含有率が1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。亜鉛の含有率が1質量%以下であれば、非共晶はんだ材料は亜鉛を含んでいてもよい。   The non-eutectic solder material may further contain zinc (Zn). When the non-eutectic solder material contains zinc, it is considered that the oxygen atoms of the oxide existing on the surface of the adherend and zinc are combined, and the adhesion to the adherend is improved. However, when there is too much zinc content, wettability with a to-be-adhered body may fall depending on the case. Therefore, the non-eutectic solder material preferably has a zinc content of 1% by mass or less, and 0.5% by mass or less from the viewpoint of wettability with the adherend to be described later and adhesiveness with the adherend. It is more preferable that the content is 0.1% by mass or less. If the zinc content is 1% by mass or less, the non-eutectic solder material may contain zinc.

前記非共晶はんだ材料は、被着体への接着性の観点から、錫(Sn)、銅(Cu)、銀(Ag)、ビスマス(Bi)、鉛(Pb)、アルミニウム(Al)、チタン(Ti)及びシリコン(Si)からなる群より選ばれる2種以上の金属を含み、融点が450℃以下であり、亜鉛(Zn)及びインジウム(In)の含有率がそれぞれ1質量%以下であり、且つ固相線温度と液相線温度との差が2℃以上であることが好ましい。
より好ましくは、前記非共晶はんだ材料は、錫(Sn)、銅(Cu)、銀(Ag)、ビスマス(Bi)、鉛(Pb)、アルミニウム(Al)、チタン(Ti)及びシリコン(Si)からなる群より選ばれる2種以上の金属を含み、融点が96℃以上327℃以下であり、亜鉛(Zn)及びインジウム(In)の含有率がそれぞれ0.5質量%以下であり、且つ固相線温度と液相線温度との差が2℃以上100℃以下である。
更に好ましくは、前記非共晶はんだ材料は、錫(Sn)、銅(Cu)、銀(Ag)、ビスマス(Bi)、鉛(Pb)、アルミニウム(Al)、チタン(Ti)及びシリコン(Si)からなる群より選ばれる2種以上の金属を含み、融点が96℃以上232℃以下であり、亜鉛(Zn)及びインジウム(In)の含有率がそれぞれ0.1質量%以下であり、且つ固相線温度と液相線温度との差が2℃以上100℃以下である。
The non-eutectic solder material is tin (Sn), copper (Cu), silver (Ag), bismuth (Bi), lead (Pb), aluminum (Al), titanium from the viewpoint of adhesion to the adherend. It contains two or more metals selected from the group consisting of (Ti) and silicon (Si), has a melting point of 450 ° C. or less, and each of zinc (Zn) and indium (In) content is 1% by mass or less. The difference between the solidus temperature and the liquidus temperature is preferably 2 ° C. or higher.
More preferably, the non-eutectic solder material is tin (Sn), copper (Cu), silver (Ag), bismuth (Bi), lead (Pb), aluminum (Al), titanium (Ti) and silicon (Si). ), A melting point of 96 ° C. or more and 327 ° C. or less, a content ratio of zinc (Zn) and indium (In) of 0.5% by mass or less, and The difference between the solidus temperature and the liquidus temperature is 2 ° C. or higher and 100 ° C. or lower.
More preferably, the non-eutectic solder material is tin (Sn), copper (Cu), silver (Ag), bismuth (Bi), lead (Pb), aluminum (Al), titanium (Ti) and silicon (Si). ), Two or more metals selected from the group consisting of: a melting point of 96 ° C. to 232 ° C., and a content of zinc (Zn) and indium (In) of 0.1% by mass or less, respectively The difference between the solidus temperature and the liquidus temperature is 2 ° C. or higher and 100 ° C. or lower.

また前記非共晶はんだ材料は、鉛含有はんだ材料であっても、鉛フリーはんだ材料であってもよい。具体的には、鉛含有はんだ材料としては、Sn−Pb、Sn−Pb−Bi、Sn−Pb−Ag、などを挙げることができる。また鉛フリーはんだ材料としては、Sn−Ag−Cu、Sn−Ag、Sn−Cu、Bi−Snなどを挙げることができる。   The non-eutectic solder material may be a lead-containing solder material or a lead-free solder material. Specifically, examples of the lead-containing solder material include Sn—Pb, Sn—Pb—Bi, and Sn—Pb—Ag. Examples of the lead-free solder material include Sn—Ag—Cu, Sn—Ag, Sn—Cu, and Bi—Sn.

前記非共晶はんだ材料は、また環境問題への対応等の観点から、実質的に鉛を含まない非共晶はんだ材料であることもまた好ましい。ここで実質的に鉛を含まないとは、非共晶はんだ材料中の鉛含有率が0.1質量%以下であることを意味し、鉛含有率が0.05質量%以下であることが好ましい。   It is also preferable that the non-eutectic solder material is a non-eutectic solder material that does not substantially contain lead from the viewpoint of dealing with environmental problems. Here, substantially free of lead means that the lead content in the non-eutectic solder material is 0.1% by mass or less, and the lead content is 0.05% by mass or less. preferable.

また前記非共晶はんだ材料は、必要に応じて他の金属原子を更に含んでいてもよい。他の金属原子としては特に制限されず、目的に応じて適宜選択することができる。他の金属原子として具体的には、マンガン(Mn)、アンチモン(Sb)、カリウム(K)、ナトリウム(Na)、リチウム(Li)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)、マグネシウム(Mg)、ベリリウム(Be)、カドミウム(Cd)、タリウム(Tl)、バナジウム(V)、ジルコニウム(Zr)、タングステン(W)、モリブデン(Mo)、コバルト(Co)、ニッケル(Ni)、金(Au)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、ゲルマニウム(Ge)、ロジウム(Rh)、イリジウム(Ir)、イットリウム(Y)等のランタノイドなどを挙げることができる。また前記非共晶はんだ材料が他の金属原子を含む場合の他の金属原子の含有率は目的に応じて適宜選択できる。例えば前記非共晶はんだ材料中に1質量%以下とすることができ、融点及び被着体との接着性の観点から、0.5質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。   The non-eutectic solder material may further contain other metal atoms as necessary. Other metal atoms are not particularly limited and can be appropriately selected according to the purpose. Specific examples of other metal atoms include manganese (Mn), antimony (Sb), potassium (K), sodium (Na), lithium (Li), barium (Ba), strontium (Sr), calcium (Ca), Magnesium (Mg), beryllium (Be), cadmium (Cd), thallium (Tl), vanadium (V), zirconium (Zr), tungsten (W), molybdenum (Mo), cobalt (Co), nickel (Ni), Examples thereof include lanthanoids such as gold (Au), chromium (Cr), iron (Fe), gallium (Ga), germanium (Ge), rhodium (Rh), iridium (Ir), and yttrium (Y). Further, when the non-eutectic solder material contains other metal atoms, the content of other metal atoms can be appropriately selected according to the purpose. For example, it can be 1% by mass or less in the non-eutectic solder material, and is preferably 0.5% by mass or less, preferably 0.1% by mass or less from the viewpoint of the melting point and the adhesion to the adherend. It is more preferable that

前記非共晶はんだ材料は、所望の組成を有する市販品を用いてもよいし、通常用いられる製造方法で製造したものであってもよい。具体的には、非共晶はんだ材料を構成する各原料を所定の割合で混合し、これを溶融した後に急冷することで所望の非共晶はんだ材料を製造することができる。   The non-eutectic solder material may be a commercially available product having a desired composition, or may be manufactured by a commonly used manufacturing method. Specifically, a desired non-eutectic solder material can be produced by mixing the raw materials constituting the non-eutectic solder material at a predetermined ratio, melting the mixture, and then rapidly cooling it.

前記配線部材においては、導電材の表面の少なくとも一部の領域に、非共晶はんだ材料を含むはんだ被覆層が配置されている。配線部材におけるはんだ被覆層の導電材に対する含有率は特に制限されず目的等に応じて適宜選択される。はんだ被覆層の導電材に対する含有率は接着性の観点から、2質量%以上であることが好ましく、3質量%以上50質量%以下であることがより好ましく、5質量%以上40質量%以下であることが更に好ましい。また前記配線部材における導電材の表面積に対するはんだ被覆層の被覆面積の割合は特に制限されず目的等に応じて適宜選択される。前記被覆面積の割合は、75%以上であることが好ましく、90%以上であることがより好ましく、99%以上であることが更に好ましい。   In the wiring member, a solder coating layer containing a non-eutectic solder material is disposed in at least a part of the surface of the conductive material. The content rate with respect to the electrically conductive material of the solder coating layer in a wiring member is not restrict | limited, According to the objective etc., it selects suitably. From the viewpoint of adhesiveness, the content of the solder coating layer with respect to the conductive material is preferably 2% by mass or more, more preferably 3% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 40% by mass or less. More preferably it is. Further, the ratio of the coating area of the solder coating layer to the surface area of the conductive material in the wiring member is not particularly limited and is appropriately selected according to the purpose. The ratio of the covered area is preferably 75% or more, more preferably 90% or more, and further preferably 99% or more.

はんだ被覆層の厚みは特に制限されない。一般的にはんだ被覆層の厚みは、5μm〜100μmであることが好ましく、10μm〜80μmであることがより好ましい。又はんだ被覆層と導電材の厚みの比は特に制限されない。一般的には、はんだ被覆層の厚みの導電材の厚みに対する比(はんだ被覆層/導電材)は、0.025〜0.5であることが好ましく、0.05〜0.4であることがより好ましい。
なお、はんだ被覆層の厚みは、光学顕微鏡や電子顕微鏡を用いて、長手方向に垂直な断面を観察することで測定することができる。
The thickness of the solder coating layer is not particularly limited. Generally, the thickness of the solder coating layer is preferably 5 μm to 100 μm, and more preferably 10 μm to 80 μm. The ratio of the thickness of the covering layer and the conductive material is not particularly limited. In general, the ratio of the thickness of the solder coating layer to the thickness of the conductive material (solder coating layer / conductive material) is preferably 0.025 to 0.5, and preferably 0.05 to 0.4. Is more preferable.
The thickness of the solder coating layer can be measured by observing a cross section perpendicular to the longitudinal direction using an optical microscope or an electron microscope.

前記はんだ被覆層は、必要に応じてフラックスを含んでいてもよい。フラックスとしては比較的活性の弱いフラックスが好ましい。具体的には、ロジン系、RMA系、R系のフラックスを挙げることができる。   The solder coating layer may contain a flux as necessary. As the flux, a flux having relatively weak activity is preferable. Specific examples include rosin-based, RMA-based, and R-based fluxes.

しかしながら、前記はんだ被覆層はフラックスを実質的に含有しないことが好ましい。前記はんだ被覆層がフラックスを実質的に含有しないことで、被着体上に前記配線部材を接着する際に、フラックス中の溶剤分を乾燥させる工程を省略することができる。また被着体上に前記配線部材を接着したのちのフラックス洗浄工程を省略することができる。更に前記フラックスによる前記被着体の腐食作用を防ぐことができる。ここでフラックスを実質的に含有しないとは、はんだ被覆層中に含まれるフラックスの総量が2質量%以下であることを意味し、1質量%以下であることが好ましい。   However, it is preferable that the solder coating layer contains substantially no flux. Since the solder coating layer does not substantially contain the flux, the step of drying the solvent in the flux can be omitted when the wiring member is bonded onto the adherend. Further, the flux cleaning step after bonding the wiring member on the adherend can be omitted. Further, the corrosive action of the adherend due to the flux can be prevented. Here, the phrase “substantially containing no flux” means that the total amount of flux contained in the solder coating layer is 2% by mass or less, and preferably 1% by mass or less.

(配線部材の用途)
本発明の配線部材の用途は特に限定されず、太陽電池、エレクトロルミネッセンス発光素子などの配線部材として用いることができる。特に太陽電池用配線部材として用いることが好適である。従来の被着体と配線部材の接続方法では、フラックスを用いる必要があったが、このフラックスは太陽電池の部材(封止材など)を腐食する傾向があった。本発明の配線部材を用いた場合、フラックスを用いなくても、良好な被着体との密着性を発現するという優れた効果を有する。
(Use of wiring members)
The use of the wiring member of the present invention is not particularly limited, and can be used as a wiring member for solar cells, electroluminescence light emitting elements and the like. It is particularly suitable for use as a solar cell wiring member. In the conventional method of connecting the adherend and the wiring member, it was necessary to use a flux, but this flux tended to corrode solar cell members (such as a sealing material). When the wiring member of the present invention is used, it has an excellent effect of expressing good adhesion to an adherend without using a flux.

本発明の実施形態は、導電材と、前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層を有する配線部材としての非共晶はんだ材料の使用を含む。また本発明の実施形態は、導電材と、前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層を有する配線部材の被着体との接着における使用を含む。更に本発明の実施形態は、導電材と、前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層を有する配線部材の太陽電池用配線部材としての使用を含む。   Embodiments of the present invention include the use of a non-eutectic solder material as a wiring member having a conductive material and a solder coating layer that is disposed in at least a partial region of the surface of the conductive material and includes a non-eutectic solder material. Including. In addition, the embodiment of the present invention is used in bonding between a conductive material and an adherend of a wiring member having a solder coating layer disposed in at least a part of the surface of the conductive material and containing a non-eutectic solder material. including. Furthermore, according to an embodiment of the present invention, a wiring member having a conductive material and a solder coating layer disposed in at least a part of the surface of the conductive material and containing a non-eutectic solder material is used as a wiring member for a solar cell. including.

<配線部材の製造方法>
本発明の配線部材の製造方法は、圧延加工、射出加工、押出加工又はスリット加工によって導電材を長尺状に成形する工程と、前記長尺状の導電材の表面の少なくとも一部の領域に非共晶はんだ材料を付与してはんだ被覆層を形成する工程とを有する。前記製造方法は必要に応じてその他の工程を更に含んでいてもよい。
<Manufacturing method of wiring member>
The method for manufacturing a wiring member according to the present invention includes a step of forming a conductive material into a long shape by rolling, injection processing, extrusion processing, or slit processing, and at least a part of the surface of the long conductive material. Forming a solder coating layer by applying a non-eutectic solder material. The manufacturing method may further include other steps as necessary.

導電材を長尺状に成形する工程の詳細は、既述の通りである。
長尺状の導電材の表面にはんだ被覆層を形成する工程の一例を、図面を参照しながら説明するが、本発明はこれらの記載により何ら制限されるものではない。
Details of the process of forming the conductive material into a long shape are as described above.
Although an example of the process of forming a solder coating layer on the surface of a long conductive material will be described with reference to the drawings, the present invention is not limited by these descriptions.

図7では、溶融めっき設備20を用いて、導電材12の表面に溶融はんだを供給してはんだ被覆層(図示せず)が形成された配線部材25を製造する。溶融めっき設備20は、平角線状導体又は丸線状導体からなる長尺の導電材12を送り出す送り出しリール22、非共晶はんだ材料を溶融状態に維持するはんだ浴(溶融はんだめっき槽)23、はんだ浴23内に設置され導電材12を反転させて上方に向く反転ローラ14、はんだ浴23外で反転ローラ14の上方に設置され、はんだ被覆層が形成された配線部材25Aを冷却する冷却部26、冷却部26の上方に上下に複数段に設置されそれぞれ左右一対のローラからなる圧延ロール27、28、29、はんだ被覆層が形成された配線部材25Aを加熱処理する加熱部30、加熱部30の上方に設置され左右一対のローラからなる圧延ロール31、最上方に設置された引き上げローラ32、配線部材25を巻き取る巻取りリール33を備える。   In FIG. 7, a wiring member 25 in which a solder coating layer (not shown) is formed by supplying molten solder to the surface of the conductive material 12 using the hot dipping equipment 20 is manufactured. The hot dipping equipment 20 includes a feed reel 22 for sending out a long conductive material 12 made of a flat wire conductor or a round wire conductor, a solder bath (hot solder plating tank) 23 for maintaining a non-eutectic solder material in a molten state, A reversing roller 14 installed in the solder bath 23 to invert the conductive material 12 and facing upward, and a cooling unit installed outside the solder bath 23 and above the reversing roller 14 to cool the wiring member 25A on which the solder coating layer is formed. 26, a heating unit 30 for heating the wiring members 25A, which are installed in a plurality of stages above and below the cooling unit 26 and are each formed of a pair of left and right rollers, each having a solder coating layer. 30 is provided with a rolling roll 31 that is a pair of left and right rollers installed above 30, a lifting roller 32 that is installed at the top, and a take-up reel 33 that winds up the wiring member 25. .

図7では、導電材12は、はんだ浴23に浸漬されることで上下面及び側面に非共晶はんだ材料が供給されてはんだ被覆層が形成され、反転ローラ24で反転されて上方に向う。次に、図7に示されるように、形成されたはんだ被覆層が溶融状態の配線部材25Aを冷却部26に送り込む。冷却部26では、例えば、50℃以下の気体を吹き付けるなどによって冷却することで配線部材25Aのはんだ被覆層を固体状態とする。なお、冷却部26は、50℃以下の気体を吹き付ける場合に限定するものではない。冷却部26では、酸化を防止するためアルゴン(Ar)、ネオン(Ne)、窒素(N)等の不活性ガス単体又は混合ガスを室温以下の温度で吹き付けることで迅速に固化することが生産効率を上げるうえで望ましい。 In FIG. 7, the conductive material 12 is immersed in the solder bath 23, so that a non-eutectic solder material is supplied to the upper and lower surfaces and the side surfaces to form a solder coating layer, which is reversed by the reversing roller 24 and directed upward. Next, as shown in FIG. 7, the wiring member 25 </ b> A in which the formed solder coating layer is melted is fed into the cooling unit 26. In the cooling unit 26, for example, the solder coating layer of the wiring member 25A is brought into a solid state by cooling by blowing a gas of 50 ° C. or less. The cooling unit 26 is not limited to the case of blowing a gas of 50 ° C. or less. In the cooling unit 26, in order to prevent oxidation, it is possible to quickly solidify by blowing an inert gas or a mixed gas such as argon (Ar), neon (Ne), nitrogen (N 2 ), etc. at a temperature below room temperature. It is desirable to increase efficiency.

この状態では、配線部材25Aのはんだ被覆層は表面張力によって、導電材12の上下面に山形に膨らんだ形状であるため、次にはんだ被覆層を平坦に形成する工程を行なう。ここで「平坦」とは、めっき表面を基準とする凹凸の高低差が7μm以下であることを表す。はんだ被覆層が固体状態の配線部材25Aは、複数段の圧延ロール27、28、29で圧延され、更に加熱部30で熱処理後に圧延ロール31で圧延されることにより、平坦化、及び最終のはんだ被覆層の厚みが調整された配線部材25となる。
はんだ被覆層の厚みが調整された配線部材25は巻取りリール33に巻取られて、配線部材のロール体となる。
In this state, since the solder coating layer of the wiring member 25A has a shape that bulges in the upper and lower surfaces of the conductive material 12 due to surface tension, a step of forming the solder coating layer flat is performed next. Here, “flat” means that the height difference of the unevenness with respect to the plating surface is 7 μm or less. The wiring member 25A having a solid solder coating layer is rolled by a plurality of stages of rolling rolls 27, 28, and 29, and further heated by the heating unit 30 and then rolled by the rolling roll 31, thereby flattening and final soldering. The wiring member 25 is adjusted in the thickness of the covering layer.
The wiring member 25 in which the thickness of the solder coating layer is adjusted is wound around the take-up reel 33 to form a roll body of the wiring member.

<配線部材接着体の製造方法>
本発明の配線部材接着体の製造方法は、被着体に、前記配線部材を、前記非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で接着する工程(以下、「接着工程」ともいう)を有する。非共晶はんだ材料を含むはんだ被覆層を有する配線部材を、特定の温度範囲で被着体に接着することで、フラックスを使用せずに、且つ特別な装置を用いることなく、様々な被着体に接着することができる。
<Manufacturing Method of Wiring Member Adhesive>
In the method for producing a bonded wiring member of the present invention, the wiring member is bonded to an adherend in a temperature range not lower than the solidus temperature of the non-eutectic solder material and not higher than the liquidus temperature (hereinafter, (Also referred to as “adhesion step”). By adhering a wiring member having a solder coating layer containing a non-eutectic solder material to an adherend in a specific temperature range, various kinds of deposition can be performed without using a flux and using a special apparatus. Can be glued to the body.

前記配線部材接着体は、配線部材を、配線部材が有する非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で被着体に接着して得られる。配線部材接着体とは、配線部材が後述する被着体に接着した構造物を意味する。配線部材接着体は、配線部材を被着体に接触させて、その配線部材のはんだ被覆層の非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で加熱処理することで、フラックスの使用や特別な超音波接着工程を有さなくても、様々な被着体(例えば、表面に酸化物が形成された被着体)の表面にはんだ被覆層が直接接着して形成される。このような配線部材接着体が得られる理由は明確ではないが、例えば以下のように考えられる。   The wiring member bonded body is obtained by bonding the wiring member to the adherend in a temperature range not lower than the solidus temperature of the non-eutectic solder material of the wiring member and not higher than the liquidus temperature. The wiring member bonded body means a structure in which the wiring member is bonded to an adherend described later. The wiring member adhesive is heat-treated in a temperature range between the solidus temperature and the liquidus temperature of the non-eutectic solder material of the solder coating layer of the wiring member by bringing the wiring member into contact with the adherend. Thus, the solder coating layer can be directly adhered to the surface of various adherends (for example, adherends with oxides formed on the surface) without using flux or special ultrasonic bonding process. It is formed. The reason why such a wiring member bonded body is obtained is not clear, but is considered as follows, for example.

固相線温度以上、液相線温度以下の温度範囲では、非共晶はんだ材料は液相と固相が共存可能な状態となっている。液相線温度を越えた温度、つまり、非共晶はんだ材料全体が液相となった状態で非共晶はんだ材料を接着しようとすると、表面張力によって液相状態の非共晶はんだ材料が弾かれてしまい、被着体表面、特に酸化物が形成された被着体表面には接着しない。これに対して、液相状態の非共晶はんだ材料と固相状態の非共晶はんだ材料とが共存した状態では、固相状態の非共晶はんだ材料の存在によって液相状態の非共晶はんだ材料の表面張力が小さくなり、非共晶はんだ材料の弾きが抑えられ、かつ液相状態の非共晶はんだ材料によって非共晶はんだ材料全体としての濡れ性が向上することで、被着体表面にはんだ被覆層が良好に接着されるものと考えられる。   In the temperature range above the solidus temperature and below the liquidus temperature, the non-eutectic solder material is in a state where the liquid phase and the solid phase can coexist. If a non-eutectic solder material is to be bonded at a temperature exceeding the liquidus temperature, that is, when the non-eutectic solder material is entirely in a liquid phase, the non-eutectic solder material in the liquid phase is elasticated by the surface tension. Therefore, it does not adhere to the adherend surface, particularly to the adherend surface on which the oxide is formed. In contrast, in the state where the non-eutectic solder material in the liquid phase and the non-eutectic solder material in the solid phase coexist, the non-eutectic in the liquid phase is present due to the presence of the non-eutectic solder material in the solid phase. The surface tension of the solder material is reduced, the repelling of the non-eutectic solder material is suppressed, and the wettability of the non-eutectic solder material as a whole is improved by the non-eutectic solder material in the liquid phase. It is considered that the solder coating layer adheres well to the surface.

前記配線部材接着体は、良好な接着性及び配線部材接着体の生産性の観点から、はんだ被覆層が固相線温度以上、液相線温度未満の温度範囲で、又は固相線温度を超え、液相線温度以下の温度範囲で、被着体に接着されてなる配線部材接着体であることが好ましい。より好ましくは、はんだ被覆層が固相線温度を超え、液相線温度未満の温度範囲で被着体に接着されてなる配線部材接着体である。   From the viewpoint of good adhesion and productivity of the wiring member bonded body, the wiring member bonded body has a solder coating layer in a temperature range higher than the solidus temperature and lower than the liquidus temperature, or exceeds the solidus temperature. It is preferable that the wiring member adhesive is bonded to the adherend in a temperature range below the liquidus temperature. More preferably, it is a wiring member bonded body in which the solder coating layer is bonded to the adherend in a temperature range exceeding the solidus temperature and lower than the liquidus temperature.

また、接着性を更に向上させる観点から、接着時の配線部材のはんだ被覆層における液相と固相の割合を調整することが好ましい。具体的には、前記配線部材のはんだ被覆層の全体における液相の占める割合が30質量%以上100質量%未満となるような温度で接着することが好ましく、35質量%以上99質量%以下となる温度で接着することがより好ましく、40質量%以上98質量%以下となる温度で接着することが更に好ましい。
なお、配線部材接着時におけるはんだ被覆層の液相の占める割合は、用いるはんだ組成の平衡状態図より求めることができる。
From the viewpoint of further improving the adhesiveness, it is preferable to adjust the ratio of the liquid phase to the solid phase in the solder coating layer of the wiring member at the time of bonding. Specifically, the bonding is preferably performed at a temperature such that the proportion of the liquid phase in the entire solder coating layer of the wiring member is 30% by mass or more and less than 100% by mass, and 35% by mass or more and 99% by mass or less. It is more preferable to bond at a temperature of 40% by mass or more and 98% by mass or less.
In addition, the ratio for which the liquid phase of the solder coating layer at the time of wiring member adhesion | attachment can be calculated | required from the equilibrium state figure of the solder composition to be used.

配線部材を被着体に接着する際の熱処理の方法は特に制限されず、従来公知の方法を採用することができる。例えば、被着体を、ホットプレートなどで加熱し、この被着体の上に配線部材を乗せて、配線部材のはんだ被覆層の温度を制御しつつ、ホットプレートと同じ温度に設定したはんだこてを用いてはんだ被覆層を熱処理する方法や、被着体上に配線部材をはんだ被覆層が接するように乗せた状態で一定温度のリフロー炉を通過させる方法などが挙げられる。   The heat treatment method for adhering the wiring member to the adherend is not particularly limited, and a conventionally known method can be employed. For example, the adherend is heated with a hot plate or the like, a wiring member is placed on the adherend, and the temperature of the solder coating layer of the wiring member is controlled, and the soldering iron set at the same temperature as the hot plate is used. For example, a method of heat-treating the solder coating layer using a solder, a method of passing through a reflow furnace at a constant temperature in a state where the wiring member is placed on the adherend so that the solder coating layer is in contact, and the like.

前記接着工程では、配線部材を被着体に押し付けながら接着することが好ましい。これにより配線部材のはんだ被覆層中の固相が前記被着体に押し付けられることになり、より接着性が向上する。この押し付けの圧力は適宜設定することができ、例えば、200Pa〜5MPaとすることが好ましく、1kPa〜2MPaとすることが好ましい。   In the bonding step, it is preferable to bond the wiring member while pressing it against the adherend. Thereby, the solid phase in the solder coating layer of the wiring member is pressed against the adherend, and the adhesion is further improved. The pressing pressure can be set as appropriate. For example, the pressure is preferably 200 Pa to 5 MPa, and preferably 1 kPa to 2 MPa.

また、接着工程では、熱処理時間を1秒以上とすることが好ましく、3秒以上とすることがより好ましく、10秒以上とすることが更に好ましい。これにより、はんだ被覆層中の固相が前記被着体に、より接触されることとなって、配線部材と被着体との接着性がより向上する。   In the bonding step, the heat treatment time is preferably 1 second or longer, more preferably 3 seconds or longer, and even more preferably 10 seconds or longer. Thereby, the solid phase in the solder coating layer is further brought into contact with the adherend, and the adhesion between the wiring member and the adherend is further improved.

(被着体)
本発明の配線部材接着体の製造方法において用いられる被着体は特に制限されない。例えば、酸化物被着体、半導体基板、電極などが挙げられる。
(Adherent)
The adherend used in the method for producing a bonded wiring member of the present invention is not particularly limited. Examples thereof include an oxide adherend, a semiconductor substrate, and an electrode.

酸化物被着体としては、少なくともその表面の一部又は全面に酸化物層を有するものであれば、特に制限されない。前記酸化物被着体が表面に酸化物層を有しているかの確認は、エネルギー分散型エックス線分析(EDX)によって行うことができる。例えば、酸化物被着体は、酸化物、酸化層で被覆された金属、ガラス及び酸化物セラミックスからなる群から選ばれることが好ましい。   The oxide adherend is not particularly limited as long as it has an oxide layer on at least a part or the entire surface thereof. Whether or not the oxide adherend has an oxide layer on the surface can be confirmed by energy dispersive X-ray analysis (EDX). For example, the oxide adherend is preferably selected from the group consisting of an oxide, a metal coated with an oxide layer, glass, and oxide ceramics.

酸化物としては、酸化インジウム錫(ITO)、二酸化ケイ素、酸化クロム、酸化ホウ素などが挙げられる。酸化膜で被覆された金属における金属種としては、銅、鉄、チタン、アルミニウム、銀、ステンレス鋼などが挙げられる。ガラスとしては特に制限されず、無アルカリガラス、石英ガラス、低アルカリガラス、アルカリガラスなどが挙げられる。酸化物セラミックスとしては、アルミナセラミックス、ジルコニアセラミックス、マグネシアセラミックス、カルシアセラミックスなどが挙げられる。   Examples of the oxide include indium tin oxide (ITO), silicon dioxide, chromium oxide, and boron oxide. Examples of the metal species in the metal covered with the oxide film include copper, iron, titanium, aluminum, silver, and stainless steel. The glass is not particularly limited, and examples thereof include alkali-free glass, quartz glass, low alkali glass, and alkali glass. Examples of oxide ceramics include alumina ceramics, zirconia ceramics, magnesia ceramics, and calcia ceramics.

なお、前記配線部材を用いて形成される配線部材接着体は、被着体が酸化物被着体であっても、酸化物層に対する非共晶はんだ材料の弾きが抑えられ、被着体と配線部材とが良好な接着性を発現する。   In addition, the wiring member adhesive formed using the wiring member can prevent the non-eutectic solder material from repelling the oxide layer even when the adherend is an oxide adherend. Good adhesion to the wiring member.

半導体基板としては、例えば太陽電池形成用のpn接合を有するシリコン基板、半導体デバイスに用いるシリコン基板、発光ダイオードの基材に用いられる炭化ケイ素基板、等を挙げることができる。   As a semiconductor substrate, the silicon substrate which has a pn junction for solar cell formation, the silicon substrate used for a semiconductor device, the silicon carbide substrate used for the base material of a light emitting diode, etc. can be mentioned, for example.

電極は、例えば前記半導体基板上に付与した電極用ペーストを焼成することなどにより形成される。電極用ペーストに特に制限はないが、例えば、ガラス粒子とリン含有銅合金粒子と溶剤と樹脂とを含むものが挙げられる。このような電極用ペーストを用いて半導体基板上に電極を形成すると、焼成時において、表面に酸化物であるガラス層が形成し、前記ガラス層が形成することにより銅の酸化が抑制され、抵抗率の低い電極が形成可能である。また形成される電極は更に錫を含有することが好ましい。錫は、前記電極用ペーストにおいて、前記リン含有銅合金粒子中に含有されていてもよいし、リン含有合金粒子とは別に錫含有粒子として含まれていてもよい。   The electrode is formed, for example, by firing an electrode paste applied on the semiconductor substrate. Although there is no restriction | limiting in particular in the paste for electrodes, For example, what contains glass particle | grains, phosphorus containing copper alloy particle | grains, a solvent, and resin is mentioned. When an electrode is formed on a semiconductor substrate using such an electrode paste, a glass layer that is an oxide is formed on the surface during firing, and the formation of the glass layer suppresses oxidation of copper, and resistance A low rate electrode can be formed. The formed electrode preferably further contains tin. Tin may be contained in the phosphorus-containing copper alloy particles in the electrode paste, or may be contained as tin-containing particles separately from the phosphorus-containing alloy particles.

前記配線部材接着体におけるはんだ被覆層は、必要に応じて更に別の配線部材や電子回路素子等と接着していてもよい。すなわち、被着体に接着した配線材料と、別の配線部材や電子回路素子等とがはんだ被覆層を介して接着していてもよい。前記はんだ被覆層が配線部材や電子回路素子等と接着していることで、被着体と配線部材や電子回路素子等とを機械的及び電気的に接続することができる。   The solder coating layer in the wiring member bonded body may be bonded to another wiring member, an electronic circuit element, or the like as necessary. That is, the wiring material bonded to the adherend may be bonded to another wiring member, an electronic circuit element, or the like via the solder coating layer. Since the solder coating layer is bonded to a wiring member, an electronic circuit element, or the like, the adherend and the wiring member, the electronic circuit element, or the like can be mechanically and electrically connected.

前記配線部材接着体は、被着体と配線部材とが機械的にも電気的にも接続されていることから、セラミック基板やガラス基板を用いた電子回路基板や半導体基板、MEMS素子、ITO膜やIZO膜のような酸化物導電膜を電極とするフラットパネルディスプレイ素子、金属−ガラス−酸化物セラミックス−非酸化物セラミックスのろう付け部材、電気配線、酸化物の配線等の一部分を構成することができる。   Since the adherend and the wiring member are mechanically and electrically connected to each other, the wiring member adhesive body is an electronic circuit board or semiconductor substrate using a ceramic substrate or a glass substrate, a MEMS element, or an ITO film. And a part of a flat panel display element having an oxide conductive film such as IZO film as an electrode, brazing member of metal-glass-oxide ceramic-non-oxide ceramic, electric wiring, oxide wiring, etc. Can do.

<太陽電池及びその製造方法>
本発明の配線部材は太陽電池用配線部材として用いることができる。これにより前記配線部材を用いた太陽電池を提供することができる。すなわち本実施形態にかかる太陽電池は、不純物拡散層を有しpn接合された半導体基板と、前記不純物拡散層上に設けられた電極と、前記電極上に接着された前記配線部材とを有する。前記太陽電池は、換言すれば、前記配線部材と、被着体である太陽電池用の半導体基板とが接着された配線部材接着体である。
<Solar cell and manufacturing method thereof>
The wiring member of this invention can be used as a wiring member for solar cells. Thereby, the solar cell using the said wiring member can be provided. That is, the solar cell according to the present embodiment includes a semiconductor substrate having an impurity diffusion layer and pn-junction, an electrode provided on the impurity diffusion layer, and the wiring member bonded on the electrode. In other words, the solar cell is a wiring member bonded body in which the wiring member and a semiconductor substrate for a solar cell which is an adherend are bonded.

本実施形態にかかる太陽電池の製造方法は、被着体として前記半導体基板を用いる配線部材接着体の製造方法と同様である。太陽電池の製造方法では、半導体基板として、不純物拡散層を有してpn接合されたものを用い、そして、この不純物拡散層の上に電極が設けられる。不純物拡散層を有しpn接合された半導体基板と、前記不純物拡散層上に設けられた電極とを有する太陽電池基板は、市販品であってもよいし、前述のように電極用ペーストを用いて、半導体基板上に電極を形成して作製してもよい。   The manufacturing method of the solar cell concerning this embodiment is the same as the manufacturing method of the wiring member adhesion body which uses the said semiconductor substrate as a to-be-adhered body. In the method for manufacturing a solar cell, a semiconductor substrate having an impurity diffusion layer and having a pn junction is used, and an electrode is provided on the impurity diffusion layer. A solar cell substrate having a semiconductor substrate having an impurity diffusion layer and pn-junction and an electrode provided on the impurity diffusion layer may be a commercially available product or using an electrode paste as described above. Then, an electrode may be formed on a semiconductor substrate.

太陽電池の製造に用いられる半導体基板上の電極は表面に酸化物層を有していることが多いため、太陽電池は前記酸化物層上に配線部材が接着された構造となっていることが多い。本発明の配線部材を用いた太陽電池の製造方法では、電極表面の酸化物層をフラックスなどにより除去する必要がないため、前記フラックスによる前記電極の腐食作用を防ぐことができる。また、フラックスを用いないことで、前記電極上に前記はんだ層を接着する際に、前記フラックス中の溶剤分を乾燥させる工程を省略することができ、また、前記電極上に前記はんだ層を接着したのちのフラックス洗浄工程を省略することができる。結果として、前記表面に酸化物層を有する電極と配線部材とは電気的に接続され、発電性能に優れた太陽電池が得られる。   Since an electrode on a semiconductor substrate used for manufacturing a solar cell often has an oxide layer on the surface, the solar cell may have a structure in which a wiring member is bonded onto the oxide layer. Many. In the method for manufacturing a solar cell using the wiring member of the present invention, it is not necessary to remove the oxide layer on the electrode surface with a flux or the like, so that the corrosive action of the electrode due to the flux can be prevented. Further, by not using a flux, when the solder layer is bonded onto the electrode, the step of drying the solvent in the flux can be omitted, and the solder layer is bonded onto the electrode. The subsequent flux cleaning step can be omitted. As a result, the electrode having the oxide layer on the surface and the wiring member are electrically connected, and a solar cell excellent in power generation performance is obtained.

<太陽電池モジュール及びその製造方法>
本実施形態にかかる太陽電池モジュールは、不純物拡散層を有しpn接合された半導体基板と、前記不純物拡散層上に設けられた電極と、前記電極上に接着された前記配線部材とを有する太陽電池が、前記配線部材を介して複数連結されてなる。また必要に応じて配線部材上に封止樹脂、保護ガラス、保護フィルム等が更に積層されていてもよい。
前記太陽電池モジュールは公知の方法で製造することができる。例えば、以下に一例として示す太陽電池モジュールの製造方法で製造することができる。
<Solar cell module and manufacturing method thereof>
The solar cell module according to the present embodiment includes a semiconductor substrate having an impurity diffusion layer and pn-junction, an electrode provided on the impurity diffusion layer, and the wiring member bonded on the electrode. A plurality of batteries are connected via the wiring member. Moreover, sealing resin, protective glass, a protective film, etc. may be further laminated | stacked on the wiring member as needed.
The solar cell module can be manufactured by a known method. For example, it can manufacture with the manufacturing method of the solar cell module shown as an example below.

図4は、太陽電池モジュールの製造方法の一形態を概念的に示す断面図、斜視図及び分解斜視図である。
図4(a)では、バスバー電極である表面電極105、フィンガーバー電極である表面電極103、裏面電極106及びバスバー電極である裏面電極107が形成された複数の半導体基板101の表面電極105上及び裏面電極107上に本発明の配線部材110、102が配置されている。更に、一方の半導体基板101上の表面電極105と、他方の半導体基板101上の裏面電極107とは、配線材料110で連結されて、積層体100を構成している。
図4(b)では、図4(a)に示すように配置された半導体基板101及び配線部材110、102に対して、配線部材110、102と同幅同長である狭幅のセラミックヒーター21を使用して、第一の加熱工程を行って、表面電極105及び裏面電極107と配線部材110、102とをそれぞれ接着する。加熱方法としては、セラミックヒーター21を用いる方法の他に、ホットプレート、加熱オーブン、セラミックヒーター、ノズルヒーター、IH(induction heating:誘導加熱)等の公知の方法を適用することもできる。より簡便に加熱できる点から、加熱方法はセラミックヒーター21を使用する方法が好ましい。またノズルから熱風を噴射するノズルヒーターを配線部材110、102の幅や長さに合わせて複数使用することでも簡便に加熱することができる。例えば、狭幅のセラミックヒーター及びノズルヒーターを用いることでより均一に熱が伝わり、半導体基板101上の表面電極105及び裏面電極107と、配線部材110、102との接着性より良好となる。
FIG. 4 is a cross-sectional view, a perspective view, and an exploded perspective view conceptually showing one embodiment of a method for manufacturing a solar cell module.
In FIG. 4A, the surface electrode 105 as a bus bar electrode, the surface electrode 103 as a finger bar electrode, the back electrode 106, and the back electrode 107 as a bus bar electrode are formed on the surface electrode 105 of the plurality of semiconductor substrates 101 and The wiring members 110 and 102 of the present invention are disposed on the back electrode 107. Furthermore, the front surface electrode 105 on one semiconductor substrate 101 and the back surface electrode 107 on the other semiconductor substrate 101 are connected by a wiring material 110 to form the stacked body 100.
4B, the narrow ceramic heater 21 having the same width and the same length as the wiring members 110 and 102 with respect to the semiconductor substrate 101 and the wiring members 110 and 102 arranged as shown in FIG. Is used to perform the first heating step to bond the front surface electrode 105 and the back surface electrode 107 to the wiring members 110 and 102, respectively. As a heating method, in addition to the method using the ceramic heater 21, a known method such as a hot plate, a heating oven, a ceramic heater, a nozzle heater, or IH (induction heating) can also be applied. The heating method is preferably a method using a ceramic heater 21 from the viewpoint of easier heating. In addition, heating can be easily performed by using a plurality of nozzle heaters that inject hot air from the nozzles in accordance with the width and length of the wiring members 110 and 102. For example, by using a narrow ceramic heater and nozzle heater, heat is transmitted more uniformly, and the adhesion between the front surface electrode 105 and the rear surface electrode 107 on the semiconductor substrate 101 and the wiring members 110 and 102 is improved.

上記加熱工程の加熱温度は特に制限されない。本実施形態においては上記の配線部材接着体を製造する際と同様に、配線部材110、102のはんだ被覆層に含まれる非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で、被着体である半導体基板101の表面電極105及び裏面電極107に接着されることが好ましい。例えば、加熱工程は、183℃〜214℃で行なわれる。   The heating temperature in the heating step is not particularly limited. In the present embodiment, as in the case of manufacturing the above-mentioned wiring member bonded body, a temperature not lower than the solidus temperature and not higher than the liquidus temperature of the non-eutectic solder material contained in the solder coating layer of the wiring members 110 and 102. In the range, it is preferable to adhere to the front electrode 105 and the back electrode 107 of the semiconductor substrate 101 which is an adherend. For example, the heating step is performed at 183 ° C. to 214 ° C.

加熱時間については、1秒〜180秒が好ましく、2秒〜90秒がより好ましく、3秒〜30秒が特に好ましい。加熱時間が1秒以上であると、十分に被着体である半導体基板101と配線部材110、102とが接着される傾向があり、180秒以下であると、被着体である半導体基板101に反りが発生することが抑制され、太陽電池製造における歩留まりが向上する傾向がある。   The heating time is preferably 1 second to 180 seconds, more preferably 2 seconds to 90 seconds, and particularly preferably 3 seconds to 30 seconds. When the heating time is 1 second or longer, the semiconductor substrate 101 as the adherend and the wiring members 110 and 102 tend to adhere sufficiently, and when the heating time is 180 seconds or shorter, the semiconductor substrate 101 as the adherend. Generation of warpage is suppressed, and the yield in solar cell production tends to be improved.

加熱工程の際に、配線部材110、102を配置した半導体基板101上に重りを搭載したり、狭幅セラミックヒーター21を用いて加圧処理を同時に行ったりしてもよい。加熱工程の際に加圧処理することにより、より均一に熱が伝わり、また配線部材110、102のゆがみを防ぎながら配線部材110、102と半導体基板101との接続を行うことが可能となる。加える圧力としては0.02MPa〜5MPaが好ましく、0.05MPa〜3MPaがより好ましく、0.1MPa〜2MPaが特に好ましい。0.2MPa以上であると熱がより伝わりやすく、配線部材110、102を半導体基板101により強固に接着することができる。また5MPa以下であると、半導体基板101が割れる又は半導体基板101にクラックが生じることを抑制することができる。   During the heating process, a weight may be mounted on the semiconductor substrate 101 on which the wiring members 110 and 102 are disposed, or a pressurizing process may be simultaneously performed using the narrow ceramic heater 21. By performing pressure treatment during the heating process, heat can be transmitted more uniformly, and the wiring members 110 and 102 and the semiconductor substrate 101 can be connected while preventing the wiring members 110 and 102 from being distorted. The pressure to be applied is preferably 0.02 MPa to 5 MPa, more preferably 0.05 MPa to 3 MPa, and particularly preferably 0.1 MPa to 2 MPa. When the pressure is 0.2 MPa or more, heat is more easily transmitted, and the wiring members 110 and 102 can be firmly bonded to the semiconductor substrate 101. Moreover, it can suppress that the semiconductor substrate 101 cracks or a crack arises in the semiconductor substrate 101 as it is 5 Mpa or less.

図4(c)では、配線部材110を接着した半導体基板101の両面に封止樹脂120を積層し、半導体基板101の受光面側の封止樹脂120上に保護ガラス(強化ガラス)121を、半導体基板101の裏面側の封止樹脂120上に保護フィルム122を積層して加熱処理する第二の加熱工程を行って、太陽電池モジュールを製造する。   4C, the sealing resin 120 is laminated on both surfaces of the semiconductor substrate 101 to which the wiring member 110 is bonded, and a protective glass (tempered glass) 121 is provided on the sealing resin 120 on the light receiving surface side of the semiconductor substrate 101. A solar cell module is manufactured by performing a second heating step in which a protective film 122 is stacked on the sealing resin 120 on the back surface side of the semiconductor substrate 101 and heat-treated.

封止樹脂120としては、透明性、柔軟性、価格等の観点からエチレン・酢酸ビニル共重合樹脂(以下、「EVA」という。)やポリビニルブチラールが好ましい。また、保護ガラス121は片面にエンボス加工が施されたものが好ましい。また、保護フィルム122としてはフッ素樹脂フィルム、PET(ポリエチレンテレフタレート等)が挙げられる。耐候性・水蒸気バリヤー性・電気絶縁性等の観点から、保護フィルム122は各種複合フィルムを用いることが好ましい。複合フィルムとしては、例えば、半導体基板101側から電気絶縁性フィルム/接着剤/水蒸気バリヤー性のフィルム/接着剤/対候性フィルムがこの順で積層されたものを用いることができる。電気絶縁性フィルムとしては電気絶縁用PETフィルムを、水蒸気バリヤー性のフィルムとしてはアルミ箔、アルミナ、シリカ蒸着PETフィルムを、対候性フィルムとしてはフッ素樹脂フィルム、フッ素樹脂塗膜、耐熱低オリゴマーPETフィルムをそれぞれ適用することができる。   The sealing resin 120 is preferably an ethylene / vinyl acetate copolymer resin (hereinafter referred to as “EVA”) or polyvinyl butyral from the viewpoints of transparency, flexibility, price, and the like. Further, the protective glass 121 preferably has one surface embossed. Examples of the protective film 122 include a fluororesin film and PET (polyethylene terephthalate or the like). From the viewpoint of weather resistance, water vapor barrier properties, electrical insulation, and the like, it is preferable to use various composite films for the protective film 122. As the composite film, for example, an insulating film / adhesive / water vapor barrier film / adhesive / weatherproof film laminated in this order from the semiconductor substrate 101 side can be used. PET film for electrical insulation is used as the electrical insulating film, aluminum foil, alumina, silica-deposited PET film is used as the water vapor barrier film, and fluororesin film, fluororesin coating film, heat-resistant low oligomer PET is used as the weather-resistant film. Each film can be applied.

第二の加熱工程では、一般的なホットプレートや加熱オーブンを用いることができる。また、太陽電池素子の封止処理に一般に使用されている装置である、真空ラミネータを使用することができる。真空ラミネータは、チャンバー内を真空脱気後、蓋部のみを開放することで大気圧(0.1MPa)の圧力を一定に加えながら加熱することができる。汚れ防止の観点からテフロン(登録商標)シートを用いることが好ましい。   In the second heating step, a general hot plate or heating oven can be used. Moreover, the vacuum laminator which is an apparatus generally used for the sealing process of a solar cell element can be used. The vacuum laminator can be heated while applying a constant pressure of atmospheric pressure (0.1 MPa) by opening only the lid after vacuum degassing inside the chamber. From the viewpoint of preventing contamination, it is preferable to use a Teflon (registered trademark) sheet.


第二の加熱工程における加熱温度は、封止樹脂120やバックシートである保護フィルム122に影響を及ぼさない温度であれば特に制限はない。一般的に加熱温度は80℃〜200℃が好ましく、110℃〜160℃がより好ましく、120℃〜150℃が特に好ましい。加熱温度が100℃以上であると、封止樹脂であるEVAの流動性、接着性が充分に得られ、良好な封止状態となる。加熱温度が160℃以下であると、EVAやバックシートが熱による劣化を抑制できる傾向がある。
.
The heating temperature in the second heating step is not particularly limited as long as it does not affect the sealing resin 120 or the protective film 122 that is the back sheet. Generally, the heating temperature is preferably 80 ° C to 200 ° C, more preferably 110 ° C to 160 ° C, and particularly preferably 120 ° C to 150 ° C. When the heating temperature is 100 ° C. or higher, the fluidity and adhesiveness of EVA which is a sealing resin are sufficiently obtained, and a good sealing state is obtained. When the heating temperature is 160 ° C. or lower, the EVA and the back sheet tend to be able to suppress deterioration due to heat.

第二の加熱工程における加熱時間は、1分〜60分間が好ましく、3分〜50分間がより好ましく5分〜30分間が特に好ましい。加熱時間が1分以上であると、複数の太陽電池を処理した際の温度ばらつきが大きくならず、封止樹脂がより均一に重合して、良好な封止状態の太陽電池モジュールが得られる傾向がある。更に1分以上であると、封止樹脂のEVAの硬化が充分に進み、信頼性がより向上する傾向がある。また加熱時間が60分以下であると、半導体基板が反ってしてしまうことが抑制され、太陽電池モジュールの製造における歩留まりがより向上する傾向がある。   The heating time in the second heating step is preferably 1 minute to 60 minutes, more preferably 3 minutes to 50 minutes, and particularly preferably 5 minutes to 30 minutes. When the heating time is 1 minute or longer, the temperature variation at the time of processing a plurality of solar cells does not increase, and the sealing resin is more uniformly polymerized, and a solar cell module in a favorable sealed state tends to be obtained. There is. Furthermore, when it is 1 minute or more, the curing of EVA of the sealing resin proceeds sufficiently, and the reliability tends to be further improved. Moreover, it is suppressed that a semiconductor substrate warps that heating time is 60 minutes or less, and there exists a tendency for the yield in manufacture of a solar cell module to improve more.

更に第二の加熱工程の後、封止をより十分に完了させるために、付加的な加熱処理を行ってもよい。付加的な加熱処理は例えば、加熱オーブンを使用して、60℃〜150℃で1分〜120分間で行うことができる。   Further, after the second heating step, additional heat treatment may be performed in order to complete the sealing more sufficiently. The additional heat treatment can be performed, for example, at 60 ° C. to 150 ° C. for 1 minute to 120 minutes using a heating oven.

なお、ここでは、両面に電極を有する構造の太陽電池素子を用いた太陽電池モジュールの製造方法について記載したが、本発明にかかる太陽電池モジュールはこれに限定されるものではない。両面に電極を有する構造の太陽電池素子としては例えば、図5Aに上面側の平面図を、図5Bに下面側の平面図を示すような太陽電池素子が挙げられる。図5Aでは半導体基板101上に、フィンガーバー電極である表面電極103とバスバー電極である表面電極105とが配置されている。図5Bでは半導体基板101上に、裏面電極106とバスバー電極である裏面電極107とが配置されている。   In addition, although the manufacturing method of the solar cell module using the solar cell element of the structure which has an electrode on both surfaces was described here, the solar cell module concerning this invention is not limited to this. As a solar cell element having a structure having electrodes on both sides, for example, a solar cell element shown in FIG. 5A is a plan view on the upper surface side, and FIG. 5B is a plan view on the lower surface side. In FIG. 5A, a surface electrode 103 that is a finger bar electrode and a surface electrode 105 that is a bus bar electrode are arranged on a semiconductor substrate 101. In FIG. 5B, a back electrode 106 and a back electrode 107 which is a bus bar electrode are arranged on the semiconductor substrate 101.

両面電極型以外の太陽電池素子として、例えば、図6Aに平面図を、図6Bに斜視図を示すバックコンタクト型の太陽電池素子が挙げられる。バックコンタクト型の太陽電池素子は、例えば、表面にn型拡散層3が形成されたp型半導体基板1の受光面側(図6Bにおいて矢印で示す)に、発生した電力を集める集電用グリッド電極2が形成されており、半導体基板1の内部を通って集電用グリッド電極2で集めた電気を裏面に流すためのスルーホール電極4と、スルーホール電極に流れた電力を集電する裏面電極6と、裏面の表層に形成されたp型拡散層5上に形成された裏面電極7とを備える構造を有する太陽電池である。 As a solar cell element other than the double-sided electrode type, for example, a back contact type solar cell element shown in a plan view in FIG. 6A and a perspective view in FIG. 6B can be given. The back contact type solar cell element is, for example, a current collecting grid that collects generated power on the light receiving surface side (indicated by an arrow in FIG. 6B) of a p type semiconductor substrate 1 having an n type diffusion layer 3 formed on the surface. A through-hole electrode 4 for flowing electricity collected by the collecting grid electrode 2 through the inside of the semiconductor substrate 1 to the back surface, and a back surface for collecting the power flowing through the through-hole electrode. It is a solar cell having a structure including an electrode 6 and a back electrode 7 formed on a p + -type diffusion layer 5 formed on the surface layer on the back surface.

本発明の配線部材を用いて製造される太陽電池は、半導体基板と配線部材との接着強度が高く、かつ、接着時のセル割れを抑制することができるので、太陽電池の歩留まりの向上が図れる。   Since the solar cell manufactured using the wiring member of the present invention has high adhesive strength between the semiconductor substrate and the wiring member and can suppress cell cracking during bonding, the yield of the solar cell can be improved. .

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。また導電材及び配線部材の平均厚みは、マイクロメータで5箇所の厚みを測定し、その算術平均値として求めた。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass. In addition, the average thickness of the conductive material and the wiring member was obtained as an arithmetic average value by measuring the thickness at five locations with a micrometer.

<実施例1>
(導電材の作製)
導電材としてCu材料(純度99.99%)を圧延加工して幅1.5mm、平均厚み0.2mmの平角線状の導電材を作製した。
<Example 1>
(Preparation of conductive material)
A Cu material (purity 99.99%) was rolled as a conductive material to produce a rectangular conductive material having a width of 1.5 mm and an average thickness of 0.2 mm.

(非共晶はんだ材料の調製)
図7は、本発明の配線部材を製造する装置である溶融めっき設備20の概略を示したものである。本発明の配線部材の導電材を被覆するはんだ合金の組成は、図7のはんだ浴23に投入する金属地金の構成により制御した。すなわち、金属地金として錫板と鉛板を用いて、錫10部及び鉛90部となるようにして非共晶はんだ材料を調製した。
(Preparation of non-eutectic solder material)
FIG. 7 shows an outline of a hot dipping equipment 20 which is an apparatus for manufacturing the wiring member of the present invention. The composition of the solder alloy that coats the conductive material of the wiring member of the present invention was controlled by the configuration of the metal ingot introduced into the solder bath 23 of FIG. That is, using a tin plate and a lead plate as a metal ingot, a non-eutectic solder material was prepared so as to be 10 parts of tin and 90 parts of lead.

得られたはんだ合金の冷却曲線を熱電対及びペンレコーダ(横河電機株式会社製チャートレコーダLR4200E)を用いて調べた結果、液相線温度302℃、固相線温度275℃であった。   As a result of examining the cooling curve of the obtained solder alloy using a thermocouple and a pen recorder (Chart Recorder LR4200E manufactured by Yokogawa Electric Corporation), the liquidus temperature was 302 ° C. and the solidus temperature was 275 ° C.

(配線部材の作製)
図7に概略を示す装置を用い、非酸化性ガスによって表面を覆われた上記で得られたはんだ合金が入ったはんだ浴23に反転ローラ14を配置した。送り出しリール22から上記平角線状の導電材12を送り出して反転ローラ14の下方からはんだ浴23を通過させ、これを引き上げローラ32によって上方に引き上げることで、導電材の表面全体に非共晶はんだ材料を含むはんだ被覆層を形成して配線部材1を作製した。
得られた配線部材1の幅は1.5mm、平均厚みは0.24mmであった。
(Production of wiring members)
Using the apparatus schematically shown in FIG. 7, the reversing roller 14 was placed in the solder bath 23 containing the solder alloy obtained above, the surface of which was covered with a non-oxidizing gas. The rectangular conductive material 12 is fed from the feed reel 22 and passed through the solder bath 23 from below the reversing roller 14, and is pulled up by the pulling roller 32, so that the entire surface of the conductive material is non-eutectic solder. The wiring member 1 was produced by forming a solder coating layer containing the material.
The obtained wiring member 1 had a width of 1.5 mm and an average thickness of 0.24 mm.

(引張り接着強さ測定端子の製作)
上記で得られた配線部材1を20mmの長さに切断し、その一方の片端から1.5mmのところでL字形状になるように曲げ、更に他方の片端から3.5mmのところでU字形状になるように曲げ、これを引張り接着強さ測定端子として用いた。
(Manufacture of tensile adhesive strength measuring terminals)
The wiring member 1 obtained above is cut into a length of 20 mm, bent to be L-shaped at 1.5 mm from one end, and further U-shaped at 3.5 mm from the other end. It was bent so that it was pulled, and this was used as a tensile adhesive strength measurement terminal.

(被着体の作製)
被着体として、裏面電極(バスバー電極)を形成した太陽電池用半導体基板を用いた。
受光面にn型半導体層、テクスチャー及び反射防止膜(窒化珪素膜)が形成された膜厚190μmのp型半導体基板を用意し、125mm×125mmの大きさに切り出した。続いて、その裏面にスクリーン印刷法を用い、市販の銀(Ag)ペースト(デュポン株式会社製、導体ペーストSolametPV1505)を図5Bの裏面電極107に示すような電極パターンとなるように印刷した。裏面電極のパターンは4mm幅のバスバーで構成され、焼成後の膜厚が約5μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いて、赤外線急速加熱炉内で大気雰囲気下、800℃で3秒〜4秒間の熱処理(焼成)を行い、裏面電極を形成した。得られた裏面電極の表面には、銀系酸化物層が形成されていた。
(Preparation of adherend)
As the adherend, a semiconductor substrate for solar cells on which a back electrode (bus bar electrode) was formed was used.
A p-type semiconductor substrate having a film thickness of 190 μm having an n-type semiconductor layer, a texture, and an antireflection film (silicon nitride film) formed on the light receiving surface was prepared and cut into a size of 125 mm × 125 mm. Subsequently, a commercially available silver (Ag) paste (manufactured by DuPont, conductor paste Solamet PV1505) was printed on the back surface using a screen printing method so as to have an electrode pattern as shown on the back electrode 107 in FIG. 5B. The pattern of the back electrode was composed of a 4 mm wide bus bar, and the printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the film thickness after firing was about 5 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
Subsequently, heat treatment (baking) was performed at 800 ° C. for 3 seconds to 4 seconds in an infrared rapid heating furnace in an air atmosphere to form a back electrode. A silver-based oxide layer was formed on the surface of the obtained back electrode.

(配線部材接着体の作製)
上記で得られた、裏面電極を形成した半導体基板を被着体として用い、前記被着体をホットプレート(アズワン(株)製;HP−1SA)の上で加熱し、温度が一定となるまで充分に時間を置いた。温度は表面温度計で被着体の表面を測定した。
上記で作製した引張り接着強さ測定端子を、そのL字形状に曲げた幅1.5mm、長さ1.5mmの面が、電極裏面の上に接触するように乗せ、ホットプレートと同じ温度に設定したはんだこて(太洋電機産業(株)製RV−802AS)を用いて電極裏面に、3秒間押し付けて接着した。
ホットプレート及びはんだこての温度は、表1のように調節して、それぞれの接着温度で接着を行った。
(Preparation of bonded wiring member)
Using the semiconductor substrate formed with the back electrode obtained above as an adherend, the adherend is heated on a hot plate (manufactured by ASONE Corp .; HP-1SA) until the temperature becomes constant. I had enough time. The temperature was measured on the surface of the adherend with a surface thermometer.
The tensile adhesive strength measuring terminal produced above is placed so that the surface of 1.5 mm in width and 1.5 mm in length bent into the L-shape is in contact with the back surface of the electrode, and is kept at the same temperature as the hot plate. Using a set soldering iron (RV-802AS manufactured by Taiyo Denki Sangyo Co., Ltd.), it was pressed and adhered to the back surface of the electrode for 3 seconds.
The temperature of the hot plate and the soldering iron was adjusted as shown in Table 1, and bonding was performed at each bonding temperature.

(接着性の評価)
接着性については、プッシュプルゲージ(テクロック社製:プッシュプルゲージDDN−705−10))を用いて、めっきの密着性試験方法(JIS H8504)に準じて引張り接着強さを測定し、以下の評価基準により評価した。A及びBを合格とし、C及びDを不合格とした。
−評価基準−
A:引張り接着強さが3N/φ1.8mm以上であり、よく接着した。
B:引張り接着強さが1.5N/φ1.8mm以上、3N/φ1.8mm未満で接着した。
C:引張り接着強さが1.5N/φ1.8mm未満で接着したが、はんだが弾き気味、又は接着はするが固形分が多いなどの理由により、接着作業性に難があった。
D:接着しなかった(はじいてしまい接着しない、固形分が多く接着しない、凝固し接着しない、という状態をそれぞれ含む)。
それぞれの接着温度における接着性の評価結果を表1に示す。なお、以降の表中における「−」は未評価を意味する。
(Adhesive evaluation)
For adhesiveness, the tensile adhesion strength was measured according to the plating adhesion test method (JIS H8504) using a push-pull gauge (manufactured by Teclock: Push-pull gauge DDN-705-10). Evaluation was based on the evaluation criteria. A and B were accepted, and C and D were rejected.
-Evaluation criteria-
A: Tensile bond strength was 3 N / φ1.8 mm or more, and well adhered.
B: Bonding was performed at a tensile adhesive strength of 1.5 N / φ1.8 mm or more and less than 3 N / φ1.8 mm.
C: Bonding was performed with a tensile adhesive strength of less than 1.5 N / φ1.8 mm, but the bonding workability was difficult due to the fact that the solder was repelled, or the adhesive was bonded but the solid content was high.
D: It did not adhere (including states where it repels and does not adhere, solids do not adhere much, and it solidifies and does not adhere).
Table 1 shows the evaluation results of adhesion at each bonding temperature. In the following tables, “−” means not evaluated.

<実施例2>
実施例1において、配線部材の作製に用いたはんだ合金の組成を錫10部及び鉛90部から、錫20部及び鉛80部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材2を作製し、これを用いた以外は実施例1と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材2の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度280℃、固相線温度183℃であった。結果を表1に示す。
<Example 2>
In Example 1, the composition of the solder alloy used to fabricate the wiring member was changed from 10 parts tin and 90 parts lead to 20 parts tin and 80 parts lead to form a solder coating layer containing a non-eutectic solder material. The wiring member 2 thus prepared was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as in Example 1 except that this was used. The obtained non-eutectic solder material of the wiring member 2 was found to have a liquidus temperature of 280 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 1.

<実施例3>
実施例1において、配線部材の作製に用いたはんだ合金の組成を錫10部及び鉛90部か、ら錫30部及び鉛70部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材3を作製し、これを用いた以外は実施例1と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材3の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度255℃、固相線温度183℃であった。結果を表1に示す。
<Example 3>
In Example 1, the composition of the solder alloy used to manufacture the wiring member was changed from 10 parts tin and 90 parts lead to 30 parts tin and 70 parts lead, and a solder coating layer containing a non-eutectic solder material was obtained. The formed wiring member 3 was produced, and the adhesiveness at each bonding temperature was evaluated in the same manner as in Example 1 except that this was used. The obtained non-eutectic solder material of the wiring member 3 was found to have a liquidus temperature of 255 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 1.

<実施例4>
実施例1において、配線部材の作製に用いたはんだ合金の組成を錫10部及び鉛90部から錫45部及び鉛55部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材4を作製し、これを用いた以外は実施例1と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材4の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度227℃、固相線温度183℃であった。結果を表2に示す。
<Example 4>
In Example 1, the composition of the solder alloy used to fabricate the wiring member was changed from 10 parts tin and 90 parts lead to 45 parts tin and 55 parts lead to form a solder coating layer containing a non-eutectic solder material. The wiring member 4 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as in Example 1 except that this was used. The obtained non-eutectic solder material of the wiring member 4 was found to have a liquidus temperature of 227 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 2.

<実施例5>
実施例1において、配線部材の作製に用いたはんだ合金の組成を錫10部及び鉛90部から錫50部及び鉛50部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材5を作製し、これを用いた以外は実施例1と同様にして、各接着温度における接着性の評価を行った。配線部材5の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度214℃、固相線温度183℃であった。結果を表2に示す。
<Example 5>
In Example 1, the composition of the solder alloy used to fabricate the wiring member was changed from 10 parts tin and 90 parts lead to 50 parts tin and 50 parts lead to form a solder coating layer containing a non-eutectic solder material. The wiring member 5 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as in Example 1 except that this was used. As a result of examining the cooling curve, the non-eutectic solder material of the wiring member 5 was found to have a liquidus temperature of 214 ° C. and a solidus temperature of 183 ° C. The results are shown in Table 2.

<実施例6>
実施例1において、配線部材の作製に用いたはんだ合金の組成を錫10部及び鉛90部から錫60部及び鉛40部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材6を作製し、これを用いた以外は実施例1と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材6の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度188℃、固相線温度183℃であった。結果を表3に示す。
<Example 6>
In Example 1, the composition of the solder alloy used to manufacture the wiring member was changed from 10 parts tin and 90 parts lead to 60 parts tin and 40 parts lead to form a solder coating layer containing a non-eutectic solder material. The wiring member 6 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as in Example 1 except that this was used. The obtained non-eutectic solder material of the wiring member 6 was found to have a liquidus temperature of 188 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 3.

<実施例7>
実施例6において、配線部材の作製に用いたはんだ合金の組成を錫60部及び鉛40部から錫63部及び鉛37部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材7を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材7の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度185℃、固相線温度183℃であった。結果を表3に示す。
<Example 7>
In Example 6, the composition of the solder alloy used to manufacture the wiring member was changed from tin 60 parts and lead 40 parts to tin 63 parts and lead 37 parts to form a solder coating layer containing a non-eutectic solder material. The wiring member 7 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as above except that this was used. The obtained non-eutectic solder material of the wiring member 7 was found to have a liquidus temperature of 185 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 3.

<実施例8>
実施例6において、配線部材の作製に用いたはんだ合金の組成を錫60部及び鉛40部から錫70部及び鉛30部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材8を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材8の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度192℃、固相線温度183℃であった。結果を表3に示す。
<Example 8>
In Example 6, the composition of the solder alloy used to manufacture the wiring member was changed from tin 60 parts and lead 40 parts to tin 70 parts and lead 30 parts to form a solder coating layer containing a non-eutectic solder material. The wiring member 8 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as above except that this was used. The obtained non-eutectic solder material of the wiring member 8 was found to have a liquidus temperature of 192 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 3.

<実施例9>
実施例6において、配線部材の作製に用いたはんだ合金の組成を錫60部及び鉛40部から錫80部及び鉛20部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材9を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材10の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度205℃、固相線温度183℃であった。結果を表4に示す。
<Example 9>
In Example 6, the composition of the solder alloy used to manufacture the wiring member was changed from tin 60 parts and lead 40 parts to tin 80 parts and lead 20 parts to form a solder coating layer containing a non-eutectic solder material. The wiring member 9 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as above except that this was used. The obtained non-eutectic solder material of the wiring member 10 was found to have a liquidus temperature of 205 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 4.

<実施例10>
実施例6において、配線部材の作製に用いたはんだ合金の組成を錫60部及び鉛40部から錫90部及び鉛10部に変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材10を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材10の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度218℃、固相線温度183℃であった。結果を表4に示す。
<Example 10>
In Example 6, the composition of the solder alloy used to manufacture the wiring member was changed from tin 60 parts and lead 40 parts to tin 90 parts and lead 10 parts to form a solder coating layer containing a non-eutectic solder material. The wiring member 10 was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as above except that this was used. The obtained non-eutectic solder material of the wiring member 10 was found to have a liquidus temperature of 218 ° C. and a solidus temperature of 183 ° C. as a result of examining the cooling curve. The results are shown in Table 4.

<実施例11>
実施例1において、配線部材の作製に用いたはんだ合金の組成を錫10部及び鉛90部から錫42部及びビスマス58部となるように変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材11を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材11の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度141℃、固相線温度139℃であった。結果を表5に示す。
<Example 11>
In Example 1, the composition of the solder alloy used for the production of the wiring member was changed from 10 parts tin and 90 parts lead to 42 parts tin and 58 parts bismuth, and a solder coating layer containing a non-eutectic solder material The wiring member 11 formed with was prepared, and the adhesiveness at each bonding temperature was evaluated in the same manner as above except that this was used. The obtained non-eutectic solder material of the wiring member 11 was found to have a liquidus temperature of 141 ° C. and a solidus temperature of 139 ° C. as a result of examining the cooling curve. The results are shown in Table 5.

<実施例12>
実施例11において、更に配線部材の作製に用いるはんだ合金の組成を錫42部及びビスマス58部から錫42部、ビスマス57部及び銀1部となるように変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材12を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材12の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度140℃、固相線温度138℃であった。結果を表5に示す。
<Example 12>
In Example 11, the composition of the solder alloy used for the production of the wiring member was further changed from 42 parts tin and 58 parts bismuth to 42 parts tin, 57 parts bismuth and 1 part silver. The wiring member 12 on which the solder coating layer was formed was prepared, and the adhesion at each bonding temperature was evaluated in the same manner as above except that this was used. The obtained non-eutectic solder material of the wiring member 12 was found to have a liquidus temperature of 140 ° C. and a solidus temperature of 138 ° C. as a result of examining the cooling curve. The results are shown in Table 5.

<実施例13>
実施例11において、配線部材の作製に用いるはんだ合金の組成を錫42部及びビスマス58部から錫61部及びビスマス39部となるように変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材13を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材13の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度177℃、固相線温度138℃であった。結果を表6に示す。
<Example 13>
In Example 11, the composition of the solder alloy used for manufacturing the wiring member was changed from 42 parts tin and 58 parts bismuth to 61 parts tin and 39 parts bismuth, and a solder coating layer containing a non-eutectic solder material was obtained. The formed wiring member 13 was produced, and the adhesiveness at each bonding temperature was evaluated in the same manner as described above except that this was used. The obtained non-eutectic solder material of the wiring member 13 was found to have a liquidus temperature of 177 ° C. and a solidus temperature of 138 ° C. as a result of examining the cooling curve. The results are shown in Table 6.

<実施例14>
実施例11において、配線部材の作製に用いるはんだ合金の組成を錫42部及びビスマス58部から錫56部及びビスマス44部となるように変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材14を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材14の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度167℃、固相線温度138℃であった。結果を表6に示す。
<Example 14>
In Example 11, the composition of the solder alloy used for manufacturing the wiring member was changed from 42 parts tin and 58 parts bismuth to 56 parts tin and 44 parts bismuth, and a solder coating layer containing a non-eutectic solder material was obtained. The formed wiring member 14 was produced, and the adhesiveness at each bonding temperature was evaluated in the same manner as described above except that this was used. The obtained non-eutectic solder material of the wiring member 14 was found to have a liquidus temperature of 167 ° C. and a solidus temperature of 138 ° C. as a result of examining the cooling curve. The results are shown in Table 6.

<実施例15>
実施例12において、配線部材の作製に用いるはんだ合金の組成を錫42部及びビスマス58部から錫52部及びビスマス48部となるように変更して、非共晶はんだ材料を含むはんだ被覆層が形成された配線部材15を作製し、これを用いた以外は上記と同様にして、各接着温度における接着性の評価を行った。また得られた配線部材15の非共晶はんだ材料は、冷却曲線を調べた結果、液相線温度158℃、固相線温度138℃であった。結果を表6に示す。
<Example 15>
In Example 12, the composition of the solder alloy used for manufacturing the wiring member was changed from 42 parts tin and 58 parts bismuth to 52 parts tin and 48 parts bismuth, and a solder coating layer containing a non-eutectic solder material was obtained. The formed wiring member 15 was produced, and the adhesiveness at each bonding temperature was evaluated in the same manner as described above except that this was used. The obtained non-eutectic solder material of the wiring member 15 was found to have a liquidus temperature of 158 ° C. and a solidus temperature of 138 ° C. as a result of examining the cooling curve. The results are shown in Table 6.

<比較例1>
実施例1において、配線部材の作製に用いるはんだ合金の組成を錫10部及び鉛90部から錫62部及び鉛38部となるように変更して、共晶はんだ材料を含むはんだ被覆層が形成された配線部材S1を得て、これを用いた以外は実施例1と同様にして、各接着温度における接着性の評価を行った。得られた配線部材S1のはんだ合金は、冷却曲線を調べた結果、液相線温度と固相線温度は分離できず、ともに183℃を示し、固相線温度と液相線温度の差が2℃未満である共晶はんだ材料であった。結果を表1に示す。
<Comparative Example 1>
In Example 1, the composition of the solder alloy used to fabricate the wiring member was changed from 10 parts tin and 90 parts lead to 62 parts tin and 38 parts lead to form a solder coating layer containing a eutectic solder material The obtained wiring member S1 was obtained, and the adhesiveness at each bonding temperature was evaluated in the same manner as in Example 1 except that this was used. As a result of examining the cooling curve of the obtained solder alloy of the wiring member S1, the liquidus temperature and the solidus temperature cannot be separated and both show 183 ° C., and the difference between the solidus temperature and the liquidus temperature is The eutectic solder material was less than 2 ° C. The results are shown in Table 1.











表1〜6に示すとおり、配線部材の導電材を被覆するはんだ被覆層として、固相線温度と液相線温度の差が2℃以上である非共晶はんだ合金を用いた配線部材は、フラックスを用いずに、また特別な装置を用いること無く、固相線温度以上、液相線温度以下の温度で被着体と接着することで、優れた接着性で接着することができた。   As shown in Tables 1-6, the wiring member using the non-eutectic solder alloy having a difference between the solidus temperature and the liquidus temperature of 2 ° C. or more as the solder coating layer covering the conductive material of the wiring member is: By adhering to the adherend at a temperature not lower than the solidus temperature and not higher than the liquidus temperature without using a flux or a special apparatus, it was possible to bond with excellent adhesion.

<実施例16>
実施例5において、被着体を太陽電池用の半導体基板から石英ガラス(信越化学工業(株)製、合成石英ガラス、表面は通常のガラス面)に変更した以外は実施例5と同様にして、接着温度と接着性の評価を行ったところ、上記実施例5と同様に良好な接着性を示すことが分かった。
<Example 16>
In Example 5, the same procedure as in Example 5 was performed except that the adherend was changed from a semiconductor substrate for solar cells to quartz glass (manufactured by Shin-Etsu Chemical Co., Ltd., synthetic quartz glass, the surface being a normal glass surface). When the adhesion temperature and the adhesion were evaluated, it was found that the same adhesion as in Example 5 was exhibited.

<実施例17>
実施例5において、被着体を太陽電池用の半導体基板から無アルカリガラス上に蒸着にて形成されたITO(酸化インジウム錫)膜に変更した以外は実施例5と同様にして、接着温度と接着性の評価を行ったところ、上記実施例5と同様に、はんだ材料の固相線温度以上、液相線温度以下の温度で良好な接着性を示すことが分かった。
<Example 17>
In Example 5, the adhesion temperature was changed in the same manner as in Example 5 except that the adherend was changed from a semiconductor substrate for solar cells to an ITO (indium tin oxide) film formed by vapor deposition on non-alkali glass. As a result of evaluation of adhesiveness, it was found that, as in Example 5, the adhesiveness was exhibited at a temperature not lower than the solidus temperature of the solder material and not higher than the liquidus temperature.

<実施例18>
実施例5において、被着体を太陽電池用の半導体基板からアルミナセラミックス(酸化物セラミックス)に変更した以外は実施例5と同様にして、接着温度と接着性の評価を行ったところ、上記実施例5と同様に、はんだ材料の固相線温度以上、液相線温度以下の温度で良好な接着性を示すことが分かった。
<Example 18>
In Example 5, the adhesion temperature and the adhesiveness were evaluated in the same manner as in Example 5 except that the adherend was changed from a semiconductor substrate for solar cells to alumina ceramics (oxide ceramics). Similar to Example 5, it was found that good adhesion was exhibited at a temperature not lower than the solidus temperature of the solder material and not higher than the liquidus temperature.

<実施例19>
実施例5において、被着体を太陽電池用の半導体基板から銅板に変更した以外は実施例5と同様にして、接着温度と接着性の評価を行ったところ、上記実施例5と同様に、はんだ材料の固相線温度以上、液相線温度以下の温度で良好な接着性を示すことが分かった。銅は、その表面が酸化銅からなる酸化膜に覆われており、通常のはんだ付け作業では前記酸化膜を除去する目的で適当なフラックスを塗布し、且つはんだ付け作業後にはこのフラックスを洗浄除去する必要がある。本発明の配線部材接着体では、フラックスを塗布することを不要とすることができ、然るにフラックス洗浄工程を省略することができた。
<Example 19>
In Example 5, except that the adherend was changed from a semiconductor substrate for solar cells to a copper plate, the adhesion temperature and the adhesiveness were evaluated in the same manner as in Example 5. As in Example 5, It was found that good adhesiveness was exhibited at temperatures above the solidus temperature of the solder material and below the liquidus temperature. The surface of copper is covered with an oxide film made of copper oxide. In a normal soldering operation, an appropriate flux is applied for the purpose of removing the oxide film, and the solder is removed after the soldering operation. There is a need to. In the wiring member bonded body of the present invention, it is not necessary to apply flux, and the flux cleaning step can be omitted.

<実施例20>
(a)被着体を形成するための、電極用ペースト組成物の調製
7質量%のリンを含むリン含有銅合金粒子を調製し、これを溶解して水アトマイズ法により粉末化した後、乾燥、分級した。分級した粉末をブレンドして、脱酸素・脱水分処理し、7質量%のリンを含むリン含有銅合金粒子(以下、「Cu7P」と略記することがある)を調整した。尚、リン含有銅合金粒子の粒子径(D50%)は5μmであった。
<Example 20>
(A) Preparation of electrode paste composition for forming adherends Phosphorus-containing copper alloy particles containing 7% by mass of phosphorus are prepared, dissolved and powdered by a water atomization method, and then dried. And classified. The classified powders were blended and subjected to deoxygenation / dehydration treatment to prepare phosphorus-containing copper alloy particles containing 7% by mass of phosphorus (hereinafter sometimes abbreviated as “Cu7P”). The particle diameter (D50%) of the phosphorus-containing copper alloy particles was 5 μm.

二酸化ケイ素(SiO)3部、酸化鉛(PbO)60部、酸化ホウ素(B)18部、酸化ビスマス(Bi)5部、酸化アルミニウム(Al)5部、酸化亜鉛(ZnO)9部からなるガラス(以下、「G1」と略記することがある)を調製した。
得られたガラスG1の軟化点は、420℃、結晶化温度は600℃を超えていた。
得られたガラスG1を用いて、粒子径(D50%)が1.7μmであるガラス粒子を
得た。
3 parts of silicon dioxide (SiO 2 ), 60 parts of lead oxide (PbO), 18 parts of boron oxide (B 2 O 3 ), 5 parts of bismuth oxide (Bi 2 O 3 ), 5 parts of aluminum oxide (Al 2 O 3 ), A glass composed of 9 parts of zinc oxide (ZnO) (hereinafter sometimes abbreviated as “G1”) was prepared.
The obtained glass G1 had a softening point of 420 ° C. and a crystallization temperature of over 600 ° C.
By using the obtained glass G1, glass particles having a particle diameter (D50%) of 1.7 μm were obtained.

上記で得られたリン含有銅合金粒子Cu7Pを56.1部、錫粒子(Sn;粒子径(D50%)は10.0μm;純度99.9%以上)を29.0部、ガラスG1粒子を1.7部、及び3質量%のエチルセルロース(EC、重量平均分子量190000)を含むテルピネオール(異性混合体)溶液13.2部を混ぜ合わせ、メノウ乳鉢の中で20分間かき混ぜ、電極用ペースト組成物Cu7PG1を調製した。   56.1 parts of the phosphorus-containing copper alloy particles Cu7P obtained above, 29.0 parts of tin particles (Sn; particle diameter (D50%) 10.0 μm; purity 99.9% or more), and glass G1 particles A paste composition for electrodes is prepared by mixing 13.2 parts and 13.2 parts of a terpineol (isomer mixture) solution containing 3% by mass of ethylcellulose (EC, weight average molecular weight 190,000) and stirring in an agate mortar for 20 minutes. Cu7PG1 was prepared.

(b)被着体としての表面に酸化物層を有する電極の作製
半導体シリコン基板の上にスクリーン印刷法を用い、上記で得られた電極用ペースト組成物Cu7PG1を図4の出力取出し電極に示すような電極パターンとなるように印刷した。電極パターンは幅が4mmであり、焼成後の膜厚が15μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いて、赤外線急速加熱炉内で大気雰囲気下、600℃で10秒間の熱処理(焼成)を行い、出力取出し電極を得た。得られた出力取出し電極の表面には、Sn−P−O系ガラス酸化物層及び銅系酸化物層が形成されていた。Sn−P−O系ガラス酸化物層及び銅系酸化物層の確認は、エネルギー分散型エックス線分析装置(日立走査電子顕微鏡SU1510)により行った。
(B) Production of electrode having oxide layer on surface as adherend Using screen printing method on a semiconductor silicon substrate, electrode paste composition Cu7PG1 obtained above is shown in the output extraction electrode of FIG. It printed so that it might become such an electrode pattern. Printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the electrode pattern had a width of 4 mm and a film thickness after firing of 15 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
Subsequently, heat treatment (firing) was performed at 600 ° C. for 10 seconds in an infrared rapid heating furnace in an air atmosphere to obtain an output extraction electrode. On the surface of the obtained output extraction electrode, a Sn—PO system glass oxide layer and a copper system oxide layer were formed. Confirmation of the Sn-PO-based glass oxide layer and the copper-based oxide layer was performed using an energy dispersive X-ray analyzer (Hitachi scanning electron microscope SU1510).

(c)はんだ及び配線部材の作製
棒はんだ(Sn50質量%−Pb50質量%;新富士バーナー(株)製)と板鉛(Pb;輝陽産業(株)製)を用いて、錫10部及び鉛90部となるように秤量し、次いで黒鉛ルツボの中で、450℃で溶融し、更に鋳型に流し込み急冷することにより固形状のはんだ1を得た。得られたはんだ1は、冷却曲線を調べた結果、液相線温度302℃、固相線温度275℃であった。実施例1と同様の方法で配線部材の作成を行った。
(C) Preparation of solder and wiring member Using bar solder (Sn 50 mass% -Pb 50 mass%; manufactured by Shin-Fuji Burner Co., Ltd.) and plate lead (Pb; manufactured by Keiyo Sangyo Co., Ltd.), 10 parts of tin and It was weighed to 90 parts of lead, then melted at 450 ° C. in a graphite crucible, poured into a mold and rapidly cooled to obtain a solid solder 1. As a result of examining the cooling curve, the obtained solder 1 had a liquidus temperature of 302 ° C. and a solidus temperature of 275 ° C. A wiring member was prepared in the same manner as in Example 1.

(d)接着性の評価
接着性は、実施例1と同様の方法で評価した。結果を表7に示す。なお、ホットプレート及びはんだこての温度を200〜300℃に変化させて接続を行ったところ、280〜300℃で接続した際に、優れた接着性を示すことが分かった。つまり、本発明の配線部材を用いた場合、被着体として表面に酸化物層を有する電極を用いた場合にも、優れた接着性を示すことが分かった。
(D) Evaluation of adhesiveness The adhesiveness was evaluated by the same method as in Example 1. The results are shown in Table 7. In addition, when it connected by changing the temperature of a hotplate and a soldering iron to 200-300 degreeC, when connecting at 280-300 degreeC, it turned out that the outstanding adhesiveness is shown. That is, when the wiring member of the present invention was used, it was found that excellent adhesion was exhibited even when an electrode having an oxide layer on the surface was used as the adherend.

上記のように固相線温度以上、液相線温度以下の温度で、非共晶はんだをはんだ被覆層として有する配線部材を用いて電極と接着した際は、優れた接着性を示した。   When the wiring member having non-eutectic solder as a solder coating layer was bonded to the electrode at a temperature not lower than the solidus temperature and not higher than the liquidus temperature as described above, excellent adhesion was exhibited.

<実施例21>
〔太陽電池の作製〕
受光面にn型半導体層、テクスチャー及び反射防止膜(窒化珪素膜)が形成された膜厚190μmのp型半導体基板を用意し、125mm×125mmの大きさに切り出した。その受光面にスクリーン印刷法を用い、銀電極用ペースト組成物(デュポン(株)製、導体ペーストSolamet159A)を図5Aに示すような電極パターンとなるように印刷した。電極のパターンは150μm幅のフィンガーバー電極103と1.1mm幅のバスバー電極105で構成され、焼成後の膜厚が約5μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
<Example 21>
[Production of solar cells]
A p-type semiconductor substrate having a film thickness of 190 μm having an n-type semiconductor layer, a texture, and an antireflection film (silicon nitride film) formed on the light receiving surface was prepared and cut into a size of 125 mm × 125 mm. A silver electrode paste composition (manufactured by DuPont, conductor paste Solomet 159A) was printed on the light receiving surface using a screen printing method so as to have an electrode pattern as shown in FIG. 5A. The electrode pattern consists of a finger bar electrode 103 with a width of 150 μm and a bus bar electrode 105 with a width of 1.1 mm, and printing conditions (screen plate mesh, printing speed, printing pressure) so that the film thickness after baking is about 5 μm. Was adjusted appropriately. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.

続いて、裏面にアルミニウム電極ペースト(PVG Solutions Inc.
社製、Solar Cell Paste(Al) HyperBSF Al Paste)を同様にスクリーン印刷で、図5Bに示すようにバスバー電極である裏面電極107を形成する部分以外の全面に印刷した。焼成後の膜厚が40μmとなるよう印刷条件は適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
更に、赤外線急速加熱炉内で大気雰囲気下、850℃で2秒間の加熱処理(焼成)を行い、受光面電極(表面電極103、105)及び集電電極(裏面電極)106を得た。
Subsequently, an aluminum electrode paste (PVG Solutions Inc.
Similarly, Solar Cell Paste (Al) HyperBSF Al Paste) was printed on the entire surface except for the portion where the back electrode 107 as a bus bar electrode was formed as shown in FIG. 5B. The printing conditions were appropriately adjusted so that the film thickness after firing was 40 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
Further, a heat treatment (baking) was performed at 850 ° C. for 2 seconds in an infrared rapid heating furnace in the air atmosphere to obtain a light receiving surface electrode (front surface electrodes 103 and 105) and a current collecting electrode (back surface electrode) 106.

次いで、裏面にスクリーン印刷法を用い、上記実施例20で得られた電極用ペースト組成物Cu7PG1を図5Bのバスバー電極である裏面電極107に示すような電極パターンとなるように印刷した。電極のパターンは4mm幅のバスバーで構成され、焼成後の膜厚が15μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いて、赤外線急速加熱炉内で大気雰囲気下、600℃で10秒間の熱処理(焼成)を行い、出力取出し電極を得た。得られたバスバー電極である裏面電極107には、Sn−P−O系ガラス酸化物層及び銅系酸化物層が形成されていた。
Next, using the screen printing method on the back surface, the electrode paste composition Cu7PG1 obtained in Example 20 was printed so as to have an electrode pattern as shown in the back electrode 107 which is the bus bar electrode in FIG. 5B. The electrode pattern was composed of a bus bar having a width of 4 mm, and the printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the film thickness after firing was 15 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
Subsequently, heat treatment (firing) was performed at 600 ° C. for 10 seconds in an infrared rapid heating furnace in an air atmosphere to obtain an output extraction electrode. On the back electrode 107 which is the obtained bus bar electrode, an Sn—P—O-based glass oxide layer and a copper-based oxide layer were formed.

次に、上記で得られたバスバー電極である表面電極105及びバスバー電極である裏面電極107の上に、上記実施例5で作製した配線部材5を200℃でそれぞれ接着した。その後冷却し、所望の太陽電池を作製した。   Next, the wiring member 5 produced in Example 5 was bonded at 200 ° C. on the surface electrode 105 as the bus bar electrode and the back electrode 107 as the bus bar electrode obtained above. Thereafter, it was cooled to produce a desired solar cell.

〔太陽電池としての発電性能評価〕
実施例21で作製した太陽電池の評価は、擬似太陽光として(株)ワコム電創製WXS−155S−10、電流−電圧(I−V)評価測定器としてI−V CURVE TRACER MP−160(EKO INSTRUMENT社製)の測定装置を組み合わせて行った。
[Evaluation of power generation performance as solar cells]
Evaluation of the solar cell produced in Example 21 was performed by using WXS-155S-10 manufactured by Wacom Denso Co., Ltd. as pseudo-sunlight, and IV CURVE TRACER MP-160 (EKO) as a current-voltage (IV) evaluation measuring instrument. INSTRUMENT (manufactured by INSTRUMENT) was used in combination.

太陽電池の発電性能として、Eff(変換効率)、FF(フィルファクター)、Voc(開放電圧)及びJsc(短絡電流)を、それぞれJIS−C−8912、JIS−C−8913及びJIS−C−8914に準拠して測定した。なお、得られた各測定値は、配線部材に比較例1で得られた配線部材S1を、バスバー電極である裏面電極に市販の銀(Ag)ペースト(デュポン株式会社製、導体ペーストSolametPV1505、焼成温度は800℃)を用いて、本実施例21と同様の工程で得られた太陽電池の測定値を100.0とした相対値に換算した。すると、変換効率は99.7%、フィルファクターは97.8%、開放電圧は100.2%、短絡電圧は101.0%となり、良好な発電性能を示すことが分かった。なお、配線部材S1を出力取出し電極に接着する際には、RMAのフラックスを塗布してから接着を行った。   As the power generation performance of the solar cell, Eff (conversion efficiency), FF (fill factor), Voc (open circuit voltage) and Jsc (short circuit current) are JIS-C-8912, JIS-C-8913 and JIS-C-8914, respectively. Measured according to In addition, each measured value is obtained by using the wiring member S1 obtained in Comparative Example 1 as a wiring member, and commercially available silver (Ag) paste (made by DuPont, conductor paste Solamet PV1505, fired on the back electrode as a bus bar electrode. The temperature was 800 ° C.), and the measured value of the solar cell obtained in the same process as in Example 21 was converted to a relative value with 100.0. Then, the conversion efficiency was 99.7%, the fill factor was 97.8%, the open-circuit voltage was 100.2%, and the short-circuit voltage was 101.0%, indicating that good power generation performance was exhibited. When bonding the wiring member S1 to the output extraction electrode, the bonding was performed after applying the flux of RMA.

日本国特許出願2011−162598号、日本国特許出願2011−176982号及び日本国特許出願2011−263043号の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2011-162598, Japanese Patent Application No. 2011-176882 and Japanese Patent Application No. 2011-263043 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

1 p型半導体基板
2 集電用グリッド電極
3 n型拡散層
4 スルーホール電極
5 p型拡散層
6、7 裏面電極
10 配線部材
12 導電材
13 被覆層
13a 上面
13b 下面
14 反転ローラ
20 溶融めっき設備
21 セラミックヒーター
22 送り出しリール
23 はんだ浴
24 反転ローラ
25、25A 配線部材
26 冷却部
27、28、29、31 圧延ロール
30 加熱部
32 引き上げローラ
33 巻取りリール
100 積層体
101 半導体基板
102、110 配線部材
103、105 表面電極
106、107 裏面電極
120 封止樹脂
121 保護ガラス
122 保護フィルム
200 太陽電池
Reference Signs List 1 p-type semiconductor substrate 2 current collecting grid electrode 3 n-type diffusion layer 4 through-hole electrode 5 p + -type diffusion layers 6 and 7 back electrode 10 wiring member 12 conductive material 13 covering layer 13a upper surface 13b lower surface 14 reverse roller 20 hot dipping Equipment 21 Ceramic heater 22 Delivery reel 23 Solder bath 24 Reversing rollers 25, 25A Wiring member 26 Cooling unit 27, 28, 29, 31 Rolling roll 30 Heating unit 32 Lifting roller 33 Take-up reel 100 Laminate 101 Semiconductor substrate 102, 110 Wiring Members 103 and 105 Front surface electrodes 106 and 107 Back surface electrode 120 Sealing resin 121 Protective glass 122 Protective film 200 Solar cell

本発明は以下の態様を包含する。
<1> 導電材と、前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層と、を有し、前記非共晶はんだ材料は、Sn−Pb、Sn−Pb−Bi、Sn−Pb−Ag、Sn−Cu又はBi−Snの非共晶はんだ材料である配線部材である。
The present invention includes the following aspects.
<1> and the conductive material, the disposed on at least a portion of the area of the conductive material surface, have a, a solder coating layer containing a non-eutectic solder material, the non-eutectic solder materials, Sn-Pb, The wiring member is a non-eutectic solder material of Sn—Pb—Bi, Sn—Pb—Ag, Sn—Cu, or Bi—Sn .

<2> 前記非共晶はんだ材料は、融点が96℃以上450℃以下である前記<1>に記載の配線部材である。
<3> 前記非共晶はんだ材料は、液晶線温度と固相線温度との差が2℃以上300℃以下である前記<1>又は<2>に記載の配線部材である。
<4> 非共晶はんだ材料が、Sn−Pbの非共晶はんだ材料であり、SnとPbの含有質量比率(Sn−Pb)が、10%−90%〜60%−40%及び63%−37%〜90%−10%の範囲内にある前記<1>〜<3>のいずれか1つに記載の配線部材である。
<5> 非共晶はんだ材料が、Sn−Biの非共晶はんだ材料であり、SnとBiの含有質量比率(Sn−Bi)が、52%−48%〜61%−39%の範囲内にある<1>〜<4>のいずれか1つに記載の配線部材である。
<2> The wiring member according to <1>, wherein the non-eutectic solder material has a melting point of 96 ° C. or higher and 450 ° C. or lower .
<3> The wiring member according to <1> or <2>, wherein the non-eutectic solder material has a difference between a liquid crystal line temperature and a solidus line temperature of 2 ° C. or more and 300 ° C. or less.
<4> The non-eutectic solder material is a Sn-Pb non-eutectic solder material, and the content ratio of Sn and Pb (Sn-Pb) is 10% -90% -60% -40% and 63%. It is a wiring member as described in any one of said <1>-<3> which exists in the range of -37% -90% -10%.
<5> The non-eutectic solder material is a Sn-Bi non-eutectic solder material, and the mass ratio of Sn to Bi (Sn-Bi) is in the range of 52% -48% to 61% -39%. The wiring member according to any one of <1> to <4>.

> 前記導電材は、銅(Cu)、銀(Ag)、金(Au)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種を含む前記<1>のいずれか1つに記載の配線部材である。 < 6 > The conductive material includes at least one selected from the group consisting of copper (Cu), silver (Ag), gold (Au), and aluminum (Al) , and any one of <1> to < 5 >. a wiring member according to One.

> 前記導電材が、純度99.99%以上の高純度銅(Cu)からなる前記<1>〜<>のいずれか1つに記載の配線部材である。 < 7 > The wiring member according to any one of <1> to < 6 >, wherein the conductive material is made of high-purity copper (Cu) having a purity of 99.99% or more.

> 前記導電材の平均厚みが0.001mm以上である前記<1>〜<>のいずれか1つに記載の配線部材である。 < 8 > The wiring member according to any one of <1> to < 7 >, wherein an average thickness of the conductive material is 0.001 mm or more.

> 太陽電池用配線部材である前記<1>〜<>のいずれか1項に記載の配線部材。 < 9 > The wiring member according to any one of <1> to < 8 >, which is a wiring member for a solar cell.

10> 圧延加工、射出加工、押出し加工又はスリット加工によって導電材を長尺形状に成形する工程と、前記長尺形状の導電材の表面の少なくとも一部の領域に非共晶はんだ材料を付与してはんだ被覆層を形成する工程と、を有する前記<1>〜<>のいずれか1つに記載の配線部材の製造方法である。 < 10 > A step of forming a conductive material into a long shape by rolling, injection, extrusion, or slitting, and a non-eutectic solder material is applied to at least a partial region of the surface of the long conductive material. And forming a solder coating layer. The method for manufacturing a wiring member according to any one of <1> to < 9 >.

11> 被着体に、前記<1>〜<>のいずれか1つに記載の配線部材を、前記非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で接着する工程を有する配線部材接着体の製造方法である。 < 11 > The wiring member according to any one of <1> to < 9 > is applied to an adherend in a temperature range not lower than the solidus temperature of the non-eutectic solder material and not higher than the liquidus temperature. It is a manufacturing method of the wiring member adhesion object which has the process to adhere.

12> 前記温度範囲は、前記はんだ被覆層に含まれる非共晶はんだ材料の総量における液相の占める割合が30質量%以上100質量%未満となる温度範囲である前記<11>に記載の配線部材接着体の製造方法である。 <12> The temperature range is the ratio of the liquid phase in the total amount of non-eutectic solder material contained in the solder coating layer is at a temperature range of less than 30 wt% to 100 wt% the <11> according to It is a manufacturing method of a wiring member adhesion object.

13> 超音波接着工程を有さない前記<11>又は<12>に記載の配線部材接着体の製造方法である。 < 13 > The method for producing a bonded wiring member assembly according to < 11 > or < 12 >, which does not include an ultrasonic bonding step.

14> 前記被着体が、酸化物、酸化物層で被覆された金属、ガラス及び酸化物セラミックスからなる群から選ばれる少なくとも1種である前記<11>〜<13>のいずれか1つに記載の配線部材接着体の製造方法である。 < 14 > Any one of the above < 11 > to < 13 >, wherein the adherend is at least one selected from the group consisting of an oxide, a metal covered with an oxide layer, glass, and oxide ceramics. It is a manufacturing method of the wiring member adhesion object given in.

15> 前記<11>〜<14>のいずれか1つに記載の製造方法により得られる配線部材接着体である。 < 15 > A bonded wiring member obtained by the production method according to any one of < 11 > to < 14 >.

Claims (12)

導電材と、
前記導電材の表面の少なくとも一部の領域に配置され、非共晶はんだ材料を含むはんだ被覆層と、
を有する配線部材。
Conductive material;
A solder coating layer disposed in at least a portion of the surface of the conductive material and comprising a non-eutectic solder material;
Wiring member having
前記非共晶はんだ材料は、錫(Sn)、銅(Cu)、銀(Ag)、ビスマス(Bi)、鉛(Pb)、アルミニウム(Al)、チタン(Ti)及びシリコン(Si)からなる群より選ばれる2種以上の金属を含み、融点が450℃以下であり、亜鉛(Zn)及びインジウム(In)の含有率がそれぞれ1質量%以下であり、且つ固相線温度と液相線温度の差が2℃以上である請求項1に記載の配線部材。   The non-eutectic solder material is made of tin (Sn), copper (Cu), silver (Ag), bismuth (Bi), lead (Pb), aluminum (Al), titanium (Ti), and silicon (Si). The melting point is 450 ° C. or less, the contents of zinc (Zn) and indium (In) are each 1% by mass or less, and the solidus temperature and the liquidus temperature. The wiring member according to claim 1, wherein the difference is 2 ° C. or more. 前記導電材は、銅(Cu)、銀(Ag)、金(Au)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種を含む請求項1又は請求項2に記載の配線部材。   The wiring member according to claim 1, wherein the conductive material includes at least one selected from the group consisting of copper (Cu), silver (Ag), gold (Au), and aluminum (Al). 前記導電材が、純度99.99%以上の高純度銅(Cu)からなる請求項1〜請求項3のいずれか1項に記載の配線部材。   The wiring member according to any one of claims 1 to 3, wherein the conductive material is made of high-purity copper (Cu) having a purity of 99.99% or more. 前記導電材の平均厚みが0.001mm以上である請求項1〜請求項4のいずれか1項に記載の配線部材。   The wiring member according to claim 1, wherein the conductive material has an average thickness of 0.001 mm or more. 太陽電池用配線部材である請求項1〜請求項5のいずれか1項に記載の配線部材。   It is a wiring member for solar cells, The wiring member of any one of Claims 1-5. 圧延加工、射出加工、押出し加工又はスリット加工によって導電材を長尺形状に成形する工程と、
前記長尺形状の導電材の表面の少なくとも一部の領域に非共晶はんだ材料を付与してはんだ被覆層を形成する工程と、
を有する請求項1〜請求項6のいずれか1項に記載の配線部材の製造方法。
Forming a conductive material into a long shape by rolling, injection, extrusion or slitting; and
Forming a solder coating layer by applying a non-eutectic solder material to at least a part of the surface of the elongated conductive material;
The manufacturing method of the wiring member of any one of Claims 1-6 which has these.
被着体に、請求項1〜請求項6のいずれか1項に記載の配線部材を、前記非共晶はんだ材料の固相線温度以上、液相線温度以下の温度範囲で接着する工程を有する配線部材接着体の製造方法。   A step of adhering the wiring member according to any one of claims 1 to 6 to an adherend in a temperature range not lower than a solidus temperature of the non-eutectic solder material and not higher than a liquidus temperature. A method for manufacturing a bonded wiring member assembly. 前記温度範囲は、前記はんだ被覆層に含まれる非共晶はんだ材料の総量における液相の占める割合が30質量%以上100質量%未満となる温度範囲である請求項8に記載の配線部材接着体の製造方法。   The wiring member bonded body according to claim 8, wherein the temperature range is a temperature range in which a proportion of the liquid phase in the total amount of the non-eutectic solder material included in the solder coating layer is 30% by mass or more and less than 100% by mass. Manufacturing method. 超音波接着工程を有さない請求項8又は請求項9に記載の配線部材接着体の製造方法。   The manufacturing method of the wiring member adhesion body according to claim 8 or 9 which does not have an ultrasonic adhesion process. 前記被着体が、酸化物、酸化物層で被覆された金属、ガラス及び酸化物セラミックスからなる群から選ばれる少なくとも1種である請求項8〜請求項10のいずれか1項に記載の配線部材接着体の製造方法。   The wiring according to any one of claims 8 to 10, wherein the adherend is at least one selected from the group consisting of an oxide, a metal covered with an oxide layer, glass, and oxide ceramics. Manufacturing method of member adhesion object. 請求項8〜請求項11のいずれか1項に記載の製造方法により得られる配線部材接着体。   The wiring member adhesion body obtained by the manufacturing method according to any one of claims 8 to 11.
JP2014249952A 2011-07-25 2014-12-10 Wiring member, manufacturing method of the same, and manufacturing method of wiring member adhesion body Pending JP2015065473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249952A JP2015065473A (en) 2011-07-25 2014-12-10 Wiring member, manufacturing method of the same, and manufacturing method of wiring member adhesion body

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011162598 2011-07-25
JP2011162598 2011-07-25
JP2011176982 2011-08-12
JP2011176982 2011-08-12
JP2011263043 2011-11-30
JP2011263043 2011-11-30
JP2014249952A JP2015065473A (en) 2011-07-25 2014-12-10 Wiring member, manufacturing method of the same, and manufacturing method of wiring member adhesion body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013525742A Division JP5729474B2 (en) 2011-07-25 2012-07-25 Wiring member, method for manufacturing the same, and method for manufacturing a bonded wiring member

Publications (1)

Publication Number Publication Date
JP2015065473A true JP2015065473A (en) 2015-04-09

Family

ID=47601168

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013525742A Expired - Fee Related JP5729474B2 (en) 2011-07-25 2012-07-25 Wiring member, method for manufacturing the same, and method for manufacturing a bonded wiring member
JP2014249952A Pending JP2015065473A (en) 2011-07-25 2014-12-10 Wiring member, manufacturing method of the same, and manufacturing method of wiring member adhesion body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013525742A Expired - Fee Related JP5729474B2 (en) 2011-07-25 2012-07-25 Wiring member, method for manufacturing the same, and method for manufacturing a bonded wiring member

Country Status (4)

Country Link
JP (2) JP5729474B2 (en)
CN (1) CN103702794B (en)
TW (1) TW201316527A (en)
WO (1) WO2013015329A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133467B1 (en) * 2016-04-13 2017-05-24 尾池工業株式会社 Method for producing laminate and method for producing transparent conductive substrate
JP2017191770A (en) * 2017-02-17 2017-10-19 尾池工業株式会社 Transparent conductive substrate and laminate for manufacturing the same
KR20210147529A (en) * 2020-05-29 2021-12-07 이응구 Solar Cell for Easy Miniaturizatioin

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101768276B1 (en) 2014-08-20 2017-08-16 삼성에스디아이 주식회사 Solar cell
KR101658733B1 (en) 2015-07-08 2016-09-21 엘지전자 주식회사 Solar cell module
CN105033498B (en) * 2015-07-21 2017-12-05 重庆市巴南区环美金属加工厂 The preparation method of solder composition and solder
KR20180024765A (en) * 2016-08-31 2018-03-08 주식회사 호진플라텍 Tin-bismuth-lead ternary alloy solder composition using electroplating
CN108666392B (en) * 2018-06-14 2024-01-12 浙江尚越新能源开发有限公司 Copper indium gallium selenium chemical water bath deposition CSD integral equipment
TWI714127B (en) * 2018-06-26 2020-12-21 日商亞特比目有限公司 Solar cell and method for manufacturing solar cell
CN109590633A (en) * 2019-01-01 2019-04-09 王伟 Lead welding filler metal and its preparation method and application for integrated antenna package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239047A (en) * 1984-01-30 1985-11-27 アンプ インコーポレーテッド Mutually connecting implement and method of producing same
JPH1174448A (en) * 1997-08-28 1999-03-16 Toshiba Corp Substrate for element mounting, electronic component and manufacture thereof
JP2001062561A (en) * 1999-06-25 2001-03-13 Nec Kansai Ltd Brazing method
JP2005081404A (en) * 2003-09-10 2005-03-31 Sony Corp Lead-free soldering paste
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432800B1 (en) * 1997-11-19 2004-05-24 마츠시타 덴끼 산교 가부시키가이샤 Stress relaxation electronic part, stress relaxation wiring board, and stress relaxation electronic part mounted body
JP2004235276A (en) * 2003-01-28 2004-08-19 Kyocera Corp Solar cell element and its forming method
JP2005191319A (en) * 2003-12-25 2005-07-14 Kyocera Corp Solar cell module
CN101504956B (en) * 2003-11-27 2012-01-11 京瓷株式会社 Solar cell module
JP2007294770A (en) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd Method and device for soldering electronic part
JP5446188B2 (en) * 2008-09-17 2014-03-19 新日鐵住金株式会社 Interconnector for semiconductor wire mounting and interconnector for solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239047A (en) * 1984-01-30 1985-11-27 アンプ インコーポレーテッド Mutually connecting implement and method of producing same
JPH1174448A (en) * 1997-08-28 1999-03-16 Toshiba Corp Substrate for element mounting, electronic component and manufacture thereof
JP2001062561A (en) * 1999-06-25 2001-03-13 Nec Kansai Ltd Brazing method
JP2005081404A (en) * 2003-09-10 2005-03-31 Sony Corp Lead-free soldering paste
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133467B1 (en) * 2016-04-13 2017-05-24 尾池工業株式会社 Method for producing laminate and method for producing transparent conductive substrate
JP2017189924A (en) * 2016-04-13 2017-10-19 尾池工業株式会社 Method for manufacturing laminate and method for manufacturing transparent conductive substrate
JP2017191770A (en) * 2017-02-17 2017-10-19 尾池工業株式会社 Transparent conductive substrate and laminate for manufacturing the same
KR20210147529A (en) * 2020-05-29 2021-12-07 이응구 Solar Cell for Easy Miniaturizatioin
KR102599054B1 (en) * 2020-05-29 2023-11-09 이응구 Solar Cell for Easy Miniaturizatioin

Also Published As

Publication number Publication date
JP5729474B2 (en) 2015-06-03
TW201316527A (en) 2013-04-16
WO2013015329A1 (en) 2013-01-31
JPWO2013015329A1 (en) 2015-02-23
CN103702794B (en) 2017-06-09
CN103702794A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5729474B2 (en) Wiring member, method for manufacturing the same, and method for manufacturing a bonded wiring member
US20130042912A1 (en) Solder bonded body, method of producing solder bonded body, element, photovoltaic cell, method of producing element and method of producing photovoltaic cell
TWI567043B (en) A glass composition, a glass frit containing it, a glass paste containing it, and an electrical and electronic component
TWI502609B (en) Photovoltaic cell element, and photovoltaic cell
EP2051304A1 (en) Semiconductor substrate, method for forming electrode, and method for manufacturing solar cell
JP5673316B2 (en) Electronic component, conductive paste for aluminum electrode applied thereto, and glass composition for aluminum electrode
US9240502B2 (en) Element and photovoltaic cell
WO2012140787A1 (en) Electrode paste composition, solar-cell element, and solar cell
WO2013073478A1 (en) Paste composition for electrode, and solar cell element and solar cell
JP5891599B2 (en) Paste composition for silicon solar cell electrode
KR20160007508A (en) Electrode-forming composition, solar-cell element, and solar cell
KR101840590B1 (en) Circular wire for solar cell module
JP5720393B2 (en) Electrode paste composition, solar cell element and solar cell
JP5772174B2 (en) ELEMENT, SOLAR CELL, AND ELECTRODE PASTE COMPOSITION
WO2015115565A1 (en) Electrode formation composition, electrode, solar cell element, method for producing same, and solar cell
WO2017033343A1 (en) Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element
WO2012012136A1 (en) Cadmium stannate sputter target
JP2017045888A (en) Connection body, element and solar cell module
JP2015195223A (en) Paste composition for electrode, solar cell element, and solar cell
JP2011119538A (en) Lead wire for solar cell, method of manufacturing the same, and solar cell using the same
JP2015144126A (en) Paste composition for electrode, and solar cell element
WO2022075456A1 (en) Electrode-forming composition, solar cell element, and aluminum/silver stacked electrode
WO2022075457A1 (en) Electrode-forming composition, solar cell element, and aluminum/silver stacked electrode
JP2016122840A (en) Device and solar battery, and paste composition for electrodes
JP2015079975A (en) Element, solar cell, and paste composition for electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018