JP2015064157A - Condenser for compression type refrigerator - Google Patents

Condenser for compression type refrigerator Download PDF

Info

Publication number
JP2015064157A
JP2015064157A JP2013199323A JP2013199323A JP2015064157A JP 2015064157 A JP2015064157 A JP 2015064157A JP 2013199323 A JP2013199323 A JP 2013199323A JP 2013199323 A JP2013199323 A JP 2013199323A JP 2015064157 A JP2015064157 A JP 2015064157A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tube group
condenser
baffle plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199323A
Other languages
Japanese (ja)
Other versions
JP6295051B2 (en
Inventor
荒井 憲雄
Norio Arai
憲雄 荒井
遠藤 哲也
Tetsuya Endo
哲也 遠藤
俊輔 天野
Shunsuke Amano
俊輔 天野
佐藤 忠
Tadashi Sato
忠 佐藤
甲介 平田
Kosuke Hirata
甲介 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2013199323A priority Critical patent/JP6295051B2/en
Priority to CN201410490492.7A priority patent/CN104515328A/en
Publication of JP2015064157A publication Critical patent/JP2015064157A/en
Application granted granted Critical
Publication of JP6295051B2 publication Critical patent/JP6295051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a condenser for a compression type refrigerator capable of improving the heat transfer performance by increasing the flow rate of refrigerant gas flowing through the interior of the heat transfer tube group so as to blow off refrigerant liquid condensed on the surface of the heat-transfer pipe while enabling the refrigerant gas to be introduced to the interior of the heat transfer tube group by preventing the open ceiling of the refrigerant gas between the inner wall of a boiler drum and the heat transfer tube group.SOLUTION: The condenser for a compression type refrigerator comprises: a cylindrical boiler drum 11; tube plates for blocking up both ends of the boiler drum 11; and a heat transfer tube group 14 arranged inside the boiler drum 11, and by heat-exchanging between the refrigerant gas introduced to the interior of the boiler drum 11 and coolant circulating through the heat transfer tube group 14 so as to condense the refrigerant gas, in which at the clearance gap between the inner wall of the boiler drum 11 and the heat transfer tube group 14, baffle plates 17 and 18 are provided for preventing the refrigerant gas from blowing off through the gap on the downstream side.

Description

本発明は、圧縮機から吐出された高圧の冷媒ガスと冷却水(冷却流体)との間で熱交換を行って冷媒ガスを凝縮させる圧縮式冷凍機用凝縮器に関するものである。   The present invention relates to a condenser for a compression refrigeration machine that condenses refrigerant gas by exchanging heat between high-pressure refrigerant gas discharged from a compressor and cooling water (cooling fluid).

従来、冷凍空調装置などに利用されるターボ冷凍機等の圧縮式冷凍機は、冷媒を封入したクローズドシステムで構成され、冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスにする圧縮機と、高圧の冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁(膨張機構)とを、冷媒配管によって連結して構成されている。   Conventionally, a compression type refrigerator such as a turbo refrigerator used in a refrigeration air conditioner or the like is configured by a closed system in which a refrigerant is enclosed, and heat is taken from cold water (fluid to be cooled) to evaporate the refrigerant, thereby achieving a freezing effect. An evaporator to exhibit, a compressor that compresses the refrigerant gas evaporated in the evaporator into a high-pressure refrigerant gas, a condenser that cools and condenses the high-pressure refrigerant gas with cooling water (cooling fluid), An expansion valve (expansion mechanism) that decompresses and expands the condensed refrigerant is connected by a refrigerant pipe.

ターボ冷凍機等の圧縮式冷凍機に用いられる凝縮器は、円筒形の缶胴と該缶胴の両端部に設けられた管板とにより形成された空間内に、多数の伝熱管を千鳥状等に配列した伝熱管群を配置して構成されている。圧縮機から吐出された高圧の冷媒ガスは、缶胴の上部から前記空間内に流入して伝熱管群を通過する間に伝熱管内を流れる冷却水との間の熱交換によって冷却されて凝縮される。   A condenser used for a compression refrigerator such as a turbo refrigerator is a staggered arrangement of heat transfer tubes in a space formed by a cylindrical can body and tube plates provided at both ends of the can body. The heat transfer tube group arranged in the same manner is arranged. The high-pressure refrigerant gas discharged from the compressor is cooled and condensed by heat exchange with the cooling water flowing in the heat transfer tubes while flowing into the space from the upper part of the can body and passing through the heat transfer tube group. Is done.

特開2012−63120号公報JP 2012-63120 A

ターボ冷凍機等の圧縮式冷凍機に用いられている冷媒の種類には、R123等の低圧冷媒と、R134a等の高圧冷媒とがある。低圧冷媒と高圧冷媒では、比容積が大きく異なっている。そのため、R123等の低圧冷媒を用いたときには凝縮器の伝熱管群を流れる冷媒ガスの体積流量は多いが、R134a等の高圧冷媒を用いたときには凝縮器の伝熱管群を流れる冷媒ガスの体積流量は低圧冷媒の場合に比べて極めて少ない。   Types of refrigerants used in compression refrigerators such as turbo refrigerators include low-pressure refrigerants such as R123 and high-pressure refrigerants such as R134a. The specific volume differs greatly between the low-pressure refrigerant and the high-pressure refrigerant. Therefore, when a low pressure refrigerant such as R123 is used, the volume flow rate of the refrigerant gas flowing through the heat transfer tube group of the condenser is large, but when a high pressure refrigerant such as R134a is used, the volume flow rate of the refrigerant gas flowing through the heat transfer tube group of the condenser. Is much less than in the case of low-pressure refrigerant.

本発明者らは、図12に示すような構造の凝縮器を具備したターボ冷凍機を高圧冷媒(R134a)を用いて連続運転を行う過程で以下の知見を得たものである。
図12に示すように、凝縮器100は、円筒形の缶胴101内に、多数の伝熱管102を千鳥状に配列した伝熱管群103を配置して構成されている。冷媒ガスGは、缶胴101の上部にある冷媒入口101INより流入し、冷媒液は缶胴101の下部にある冷媒出口101OUTから流出する。多数の伝熱管102からなる伝熱管群103は、缶胴101の中心より上側の上段伝熱管群103Uと下側の下段伝熱管群103Lとから構成されている。伝熱管群103と缶胴101の缶壁の間は、製造上の問題により、やや広めに隙間Cを設けている。
The present inventors have obtained the following knowledge in a process of continuously operating a turbo refrigerator including a condenser having a structure as shown in FIG. 12 using a high-pressure refrigerant (R134a).
As shown in FIG. 12, the condenser 100 is configured by arranging a heat transfer tube group 103 in which a large number of heat transfer tubes 102 are arranged in a staggered manner in a cylindrical can body 101. The refrigerant gas G flows from the refrigerant inlet 101 IN at the upper part of the can body 101, and the refrigerant liquid flows out from the refrigerant outlet 101 OUT at the lower part of the can body 101. The heat transfer tube group 103 made up of a large number of heat transfer tubes 102 is composed of an upper heat transfer tube group 103U above the center of the can body 101 and a lower heat transfer tube group 103L below. A gap C is provided slightly wider between the heat transfer tube group 103 and the can wall of the can body 101 due to manufacturing problems.

図12に示すように、缶胴101の上部にある冷媒入口101INより缶胴内に流入した冷媒ガスGは、上段伝熱管群103Uの中を通過せず、上段伝熱管群103Uと缶胴内壁の間を吹き抜けて優先的に通過するため、上段伝熱管群103Uが有効に使用されていないので、上段伝熱管群103Uの交換熱量が小さいという問題がある。
また、伝熱管群103の中を流れる冷媒ガスの体積流量が少ないため、伝熱管群103の中を流れる冷媒ガスの流速が小さい場合、伝熱管102の表面で凝縮した冷媒液を吹き飛ばすことが出来ず、伝熱管の表面の液膜厚が大きくなり、熱抵抗となる。そのため、伝熱が低下して、凝縮器の性能が十分に発揮されないという問題がある。
As shown in FIG. 12, the refrigerant gas G which has flowed into the can body in the refrigerant inlet 101 IN at the top of the can barrel 101 does not pass through the upper heat transfer tube group 103U, the upper heat transfer tube group 103U and the can body Since the upper stage heat transfer tube group 103U is not used effectively because it passes through the inner walls and passes preferentially, there is a problem that the exchange heat quantity of the upper stage heat transfer tube group 103U is small.
Further, since the volume flow rate of the refrigerant gas flowing through the heat transfer tube group 103 is small, the refrigerant liquid condensed on the surface of the heat transfer tube 102 can be blown off when the flow rate of the refrigerant gas flowing through the heat transfer tube group 103 is small. First, the liquid film thickness on the surface of the heat transfer tube increases, resulting in thermal resistance. Therefore, there exists a problem that heat transfer falls and the performance of a condenser is not fully demonstrated.

本発明は、上述の事情に鑑みなされたもので、缶胴内壁と伝熱管群との間の冷媒ガスの吹き抜けを防止して冷媒ガスを伝熱管群の内部に導くことができるとともに伝熱管群の内部を流れる冷媒ガスの流速を上げて伝熱管の表面で凝縮した冷媒液を吹き飛ばすことにより伝熱性能を向上させることができる圧縮式冷凍機用凝縮器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can prevent the refrigerant gas from being blown between the inner wall of the can body and the heat transfer tube group, and can guide the refrigerant gas to the inside of the heat transfer tube group and the heat transfer tube group. It aims at providing the condenser for compression type refrigerators which can improve heat-transfer performance by raising the flow velocity of the refrigerant gas which flows through the inside, and blowing away the refrigerant liquid condensed on the surface of the heat exchanger tube.

上述の目的を達成するため、本発明の圧縮式冷凍機用凝縮器は、円筒状の缶胴と、該缶胴の両端を閉塞する管板と、前記缶胴内に配置された伝熱管群とを備え、前記缶胴内に導入された冷媒ガスと前記伝熱管群を流通する冷却水との間で熱交換を行って冷媒ガスを凝縮させる圧縮式冷凍機用凝縮器において、前記缶胴の内壁と前記伝熱管群との間の隙間に、該隙間を通って冷媒ガスが下流側に吹き抜けることを防止するバッフル板を設けたことを特徴とする。   In order to achieve the above object, a condenser for a compression refrigerator of the present invention includes a cylindrical can body, a tube plate that closes both ends of the can body, and a heat transfer tube group arranged in the can body. A condenser for a compression refrigeration machine that condenses the refrigerant gas by exchanging heat between the refrigerant gas introduced into the can body and the cooling water flowing through the heat transfer tube group. A baffle plate is provided in a gap between the inner wall and the heat transfer tube group to prevent the refrigerant gas from blowing through the gap to the downstream side.

本発明によれば、バッフル板からなる吹き抜け防止板により、冷媒ガスは伝熱管群の内部の方へ導かれ、伝熱管群全体の交換熱量を増加させることができる。また、缶胴内壁と伝熱管群との間の冷媒ガスの吹き抜けを防止することができるため、伝熱管群の内部を流れる冷媒ガスの流速が大きくなるので、冷媒ガスの流れにより伝熱管の表面の凝縮液を吹き飛ばすことができ、伝熱管の表面の液膜の厚さが減少し、伝熱管の熱抵抗が下がる。   According to the present invention, the refrigerant gas is guided toward the inside of the heat transfer tube group by the blow-off preventing plate made of the baffle plate, and the amount of exchange heat of the entire heat transfer tube group can be increased. Further, since the refrigerant gas can be prevented from being blown through between the inner wall of the can body and the heat transfer tube group, the flow velocity of the refrigerant gas flowing inside the heat transfer tube group is increased. The condensate can be blown away, the thickness of the liquid film on the surface of the heat transfer tube is reduced, and the heat resistance of the heat transfer tube is reduced.

本発明の好ましい態様によれば、前記伝熱管群は、前記缶胴の中心より上側の上段伝熱管群と下側の下段伝熱管群とを備えたことを特徴とする。   According to a preferred aspect of the present invention, the heat transfer tube group includes an upper heat transfer tube group above and a lower lower heat transfer tube group above the center of the can body.

本発明の好ましい態様によれば、前記バッフル板は、前記上段伝熱管群と前記下段伝熱管群の中間位置に設けられていることを特徴とする。
本発明によれば、上段伝熱管群と下段伝熱管群の中間位置にあるバッフル板により、上段伝熱管群の中を通過せずに下段伝熱管群に吹き抜ける冷媒ガスの流れを抑制することができる。
According to a preferred aspect of the present invention, the baffle plate is provided at an intermediate position between the upper heat transfer tube group and the lower heat transfer tube group.
According to the present invention, it is possible to suppress the flow of the refrigerant gas that blows through the lower heat transfer tube group without passing through the upper heat transfer tube group by the baffle plate at the intermediate position between the upper heat transfer tube group and the lower heat transfer tube group. it can.

本発明の好ましい態様によれば、前記バッフル板は、前記上段伝熱管群の最上部の位置に設けられていることを特徴とする。
本発明によれば、上段伝熱管群の最上部の位置にあるバッフル板により、凝縮液が中央に集まる傾向があるため、より伝熱管群中央を冷媒ガスが抜けるようにすることができる。これにより、伝熱管群中央に集まっている凝縮液を効果的に吹き飛ばすことができる。
According to a preferred aspect of the present invention, the baffle plate is provided at the uppermost position of the upper stage heat transfer tube group.
According to the present invention, since the condensate tends to collect in the center by the baffle plate at the uppermost position of the upper stage heat transfer tube group, the refrigerant gas can be further discharged from the center of the heat transfer tube group. Thereby, the condensate collected at the center of the heat transfer tube group can be effectively blown off.

本発明の好ましい態様によれば、前記バッフル板は、前記下段伝熱管群の下部の伝熱管配列に沿うように設けられていることを特徴とする。
本発明によれば、下段伝熱管群の下部の伝熱管配列に沿うように設けられたバッフル板により、冷媒ガスが未凝縮のまま伝熱管群を抜け出さないようにすることができる。
According to a preferred aspect of the present invention, the baffle plate is provided along a heat transfer tube array at a lower portion of the lower heat transfer tube group.
According to the present invention, the baffle plate provided along the lower heat transfer tube array of the lower heat transfer tube group can prevent the refrigerant gas from leaving the heat transfer tube group without being condensed.

本発明の好ましい態様によれば、前記バッフル板は、前記下段伝熱管群の伝熱管配列に沿うように設けられていることを特徴とする。
本発明によれば、バッフル板により下段伝熱管群を覆うことにより、伝熱管群中央を吹き抜ける冷媒ガス量が増し、凝縮液を伝熱管表面から吹き飛ばす機能を向上させることができる。
According to a preferred aspect of the present invention, the baffle plate is provided along the heat transfer tube array of the lower heat transfer tube group.
According to the present invention, by covering the lower heat transfer tube group with the baffle plate, the amount of refrigerant gas blown through the center of the heat transfer tube group is increased, and the function of blowing the condensate from the heat transfer tube surface can be improved.

本発明の好ましい態様によれば、前記バッフル板は、前記上段伝熱管群の下部の伝熱管配列および前記下段伝熱管群の上部の伝熱管配列に沿うように略垂直方向に延びる上部バッフル板と、前記下段伝熱管群の下部の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板とから構成されていることを特徴とする。
本発明によれば、上段伝熱管群の上部の伝熱管は、バッフル板に覆われることなく開放されることにより、上段伝熱管群の上部全体から冷媒ガスが流れ込むことが可能となる。すなわち、冷媒ガスが上段伝熱管群内に流れ込む間口を広げ、冷媒ガスが上段伝熱管群に入り易くしている。この方式は、高圧冷媒ガスの中でもやや比容積が大きいガスを使用する場合に有効である。そして、バッフル板により上段伝熱管群の下部と下段伝熱管群を覆うことにより、伝熱管群中央を吹き抜ける冷媒ガス量が増し、凝縮液を伝熱管表面から吹き飛ばす機能を向上させることができる。
According to a preferred aspect of the present invention, the baffle plate includes an upper baffle plate extending in a substantially vertical direction so as to follow the lower heat transfer tube array of the upper heat transfer tube group and the upper heat transfer tube array of the lower heat transfer tube group. The lower baffle plate is inclined obliquely downward along the lower heat transfer tube array of the lower heat transfer tube group.
According to the present invention, the upper heat transfer tube group is opened without being covered with the baffle plate, so that the refrigerant gas can flow from the entire upper heat transfer tube group. That is, the opening through which the refrigerant gas flows into the upper heat transfer tube group is widened to make it easier for the refrigerant gas to enter the upper heat transfer tube group. This method is effective when a gas having a relatively large specific volume is used among the high-pressure refrigerant gases. By covering the lower part of the upper heat transfer tube group and the lower heat transfer tube group with the baffle plate, the amount of the refrigerant gas blown through the center of the heat transfer tube group is increased, and the function of blowing the condensate from the surface of the heat transfer tube can be improved.

本発明の好ましい態様によれば、前記バッフル板は、前記上段伝熱管群の上部の伝熱管配列に沿うように斜め上方に傾斜した上部バッフル板と、前記上段伝熱管群の下部の伝熱管配列および前記下段伝熱管群の上部の伝熱管配列に沿うように略垂直方向に延びる中間部バッフル板と、前記下段伝熱管群の下部の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板とから構成されていることを特徴とする。
本発明によれば、上部バッフル板により、上段伝熱管群の一部を覆うことにより冷媒ガスが上段伝熱管群内に流れ込む間口を狭め、凝縮液が集まり易い伝熱管群の中央部にガスを集めるようにしている。この方式は、高圧冷媒ガスの中でもやや比容積が小さいガスを使用する場合に有効である。そして、バッフル板により下段伝熱管群を覆うことにより、伝熱管群中央を吹き抜ける冷媒ガス量が増し、凝縮液を伝熱管表面から吹き飛ばす機能を向上させることができる。
According to a preferred aspect of the present invention, the baffle plate includes an upper baffle plate inclined obliquely upward along the upper heat transfer tube array of the upper heat transfer tube group, and a lower heat transfer tube array of the upper heat transfer tube group. And an intermediate baffle plate extending in a substantially vertical direction so as to follow the upper heat transfer tube group of the lower heat transfer tube group, and a lower baffle plate inclined obliquely downward so as to follow the lower heat transfer tube group of the lower heat transfer tube group It is comprised from these.
According to the present invention, the upper baffle plate covers a part of the upper heat transfer tube group so as to narrow the inlet through which the refrigerant gas flows into the upper heat transfer tube group, and the gas is introduced into the central portion of the heat transfer tube group where condensate easily collects. I try to collect it. This method is effective when using a gas having a small specific volume among the high-pressure refrigerant gases. By covering the lower heat transfer tube group with the baffle plate, the amount of refrigerant gas blown through the center of the heat transfer tube group is increased, and the function of blowing the condensate from the heat transfer tube surface can be improved.

本発明の第2の態様は、冷水から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を羽根車によって圧縮する圧縮機と、圧縮された冷媒ガスを冷却水で冷却して凝縮させる凝縮器とを備えた圧縮式冷凍機において、前記凝縮器は、請求項1乃至8のいずれか一項に記載の凝縮器であることを特徴とする圧縮式冷凍機である。
本発明によれば、伝熱管の表面の液膜の厚さが減少し、伝熱性能が向上し、冷凍機全体の冷凍効率を向上させることができる。
The second aspect of the present invention includes an evaporator that takes heat from cold water and evaporates the refrigerant to exert a refrigeration effect, a compressor that compresses the refrigerant with an impeller, and cools the compressed refrigerant gas with cooling water. A compression refrigerator having a condenser for condensing in the compressor, wherein the condenser is the condenser according to any one of claims 1 to 8.
According to the present invention, the thickness of the liquid film on the surface of the heat transfer tube is reduced, the heat transfer performance is improved, and the refrigeration efficiency of the entire refrigerator can be improved.

本発明は、以下に列挙する効果を奏する。
(1)バッフル板からなる吹き抜け防止板により、冷媒ガスは伝熱管群の内部の方へ導かれ、伝熱管群全体の交換熱量を増加させることができる。また、缶胴内壁と伝熱管群との間の冷媒ガスの吹き抜けを防止することができるため、伝熱管群の内部を流れる冷媒ガスの流速が大きくなるので、冷媒ガスの流れにより伝熱管の表面の凝縮液を吹き飛ばすことができ、伝熱管の表面の液膜の厚さが減少し、伝熱管の熱抵抗が下がる。
(2)伝熱管の熱抵抗が下がった分、凝縮伝熱が良くなり、凝縮器の性能が十分に発揮できるようになる。その結果、更に伝熱面積を減らし、よりコンパクトな凝縮器にすることが可能となる。
The present invention has the following effects.
(1) By the blow-off prevention plate made of the baffle plate, the refrigerant gas is guided toward the inside of the heat transfer tube group, and the exchange heat amount of the entire heat transfer tube group can be increased. Further, since the refrigerant gas can be prevented from being blown through between the inner wall of the can body and the heat transfer tube group, the flow velocity of the refrigerant gas flowing inside the heat transfer tube group is increased. The condensate can be blown away, the thickness of the liquid film on the surface of the heat transfer tube is reduced, and the heat resistance of the heat transfer tube is reduced.
(2) Condensation heat transfer is improved as much as the heat resistance of the heat transfer tube is lowered, and the performance of the condenser can be sufficiently exhibited. As a result, the heat transfer area can be further reduced and a more compact condenser can be obtained.

図1は、本発明に係る凝縮器を備えたターボ冷凍機を示す模式図である。FIG. 1 is a schematic view showing a turbo refrigerator equipped with a condenser according to the present invention. 図2は、図1に示す凝縮器の詳細構造を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a detailed structure of the condenser shown in FIG. 図3は、第1の実施形態に係る凝縮器を示す図であり、凝縮器の側断面図である。Drawing 3 is a figure showing the condenser concerning a 1st embodiment, and is a sectional side view of a condenser. 図4は、第1の実施形態に係る凝縮器を示す図であり、凝縮器の部分断面斜視図である。FIG. 4 is a diagram illustrating the condenser according to the first embodiment, and is a partial cross-sectional perspective view of the condenser. 図5は、第2の実施形態に係る凝縮器を示す図であり、凝縮器の側断面図である。FIG. 5 is a view showing the condenser according to the second embodiment, and is a side sectional view of the condenser. 図6は、第2の実施形態に係る凝縮器を示す図であり、凝縮器の部分断面斜視図である。FIG. 6 is a diagram showing the condenser according to the second embodiment, and is a partial cross-sectional perspective view of the condenser. 図7は、第3の実施形態に係る凝縮器を示す図であり、凝縮器の側断面図である。FIG. 7 is a view showing a condenser according to the third embodiment, and is a side sectional view of the condenser. 図8は、第4の実施形態に係る凝縮器を示す図であり、凝縮器の側断面図である。FIG. 8 is a view showing a condenser according to the fourth embodiment, and is a side sectional view of the condenser. 図9は、第5の実施形態に係る凝縮器を示す図であり、凝縮器の側断面図である。FIG. 9 is a view showing the condenser according to the fifth embodiment, and is a side sectional view of the condenser. 図10は、第6の実施形態に係る凝縮器を示す図であり、凝縮器の側断面図である。FIG. 10 is a diagram showing a condenser according to the sixth embodiment, and is a side sectional view of the condenser. 図11(a),(b)は、従来の伝熱管群における伝熱管の表面の液膜と本発明の伝熱管群における伝熱管の表面の液膜とを比較して示す模式図である。FIGS. 11A and 11B are schematic views showing a comparison between a liquid film on the surface of the heat transfer tube in the conventional heat transfer tube group and a liquid film on the surface of the heat transfer tube in the heat transfer tube group of the present invention. 図12は、従来の凝縮器を示す断面図である。FIG. 12 is a cross-sectional view showing a conventional condenser.

以下、本発明に係る圧縮式冷凍機用凝縮器の実施形態を図1乃至図11を参照して説明する。図1乃至図11において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。本実施形態においては、圧縮式冷凍機の一例としてターボ圧縮機を用いたターボ冷凍機を示すが、スクリュー式、レシプロ式、スクロール式等の圧縮機を用いたものであってもよい。
図1は、本発明に係る凝縮器を備えたターボ冷凍機を示す模式図である。図1に示すように、ターボ冷凍機は、冷媒を圧縮するターボ圧縮機1と、圧縮された冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器2と、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3と、凝縮器2と蒸発器3との間に配置される中間冷却器であるエコノマイザ4とを備え、これら各機器を冷媒が循環する冷媒配管5によって連結して構成されている。冷媒にはR134a等の高圧冷媒を用いている。
Hereinafter, an embodiment of a condenser for a compression refrigerator according to the present invention will be described with reference to FIGS. 1 to 11. In FIG. 1 to FIG. 11, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In the present embodiment, a turbo refrigerator using a turbo compressor is shown as an example of a compression refrigerator, but a screw type, a reciprocating type, a scroll type or the like may be used.
FIG. 1 is a schematic view showing a turbo refrigerator equipped with a condenser according to the present invention. As shown in FIG. 1, a turbo refrigerator includes a turbo compressor 1 that compresses refrigerant, a condenser 2 that cools and compresses the compressed refrigerant gas with cooling water (cooling fluid), and cold water (cooled fluid). ), An evaporator 3 that evaporates the refrigerant and exerts a refrigeration effect, and an economizer 4 that is an intermediate cooler disposed between the condenser 2 and the evaporator 3. Are connected by a refrigerant pipe 5 that circulates. A high-pressure refrigerant such as R134a is used as the refrigerant.

図1に示す実施形態においては、ターボ圧縮機1は、多段ターボ圧縮機から構成されている。ターボ圧縮機1は、流路8によってエコノマイザ4と接続されており、エコノマイザ4で分離された冷媒ガスは多段ターボ圧縮機の多段の圧縮段(この例では2段)の中間部分(この例では一段目と二段目の間の部分)に導入されるようになっている。   In the embodiment shown in FIG. 1, the turbo compressor 1 is composed of a multistage turbo compressor. The turbo compressor 1 is connected to the economizer 4 by a flow path 8, and the refrigerant gas separated by the economizer 4 is an intermediate portion (in this example, two stages) of the multistage turbo compressor (in this example, two stages). It is introduced in the part between the first stage and the second stage).

図1に示すように構成されたターボ冷凍機の冷凍サイクルでは、ターボ圧縮機1と凝縮器2と蒸発器3とエコノマイザ4とを冷媒が循環し、蒸発器3で得られる冷熱源で冷水が製造されて負荷に対応し、冷凍サイクル内に取り込まれた蒸発器3からの熱量および圧縮機モータから供給されるターボ圧縮機1の仕事に相当する熱量が凝縮器2に供給される冷却水に放出される。一方、エコノマイザ4にて分離された冷媒ガスはターボ圧縮機1の多段圧縮段の中間部分に導入され、一段目圧縮機からの冷媒ガスと合流して二段目圧縮機により圧縮される。2段圧縮単段エコノマイザサイクルによれば、エコノマイザ4による冷凍効果部分が付加されるので、その分だけ冷凍効果が増加し、エコノマイザ4を設置しない場合に比べて冷凍効果の高効率化を図ることができる。   In the refrigeration cycle of the turbo chiller configured as shown in FIG. 1, the refrigerant circulates through the turbo compressor 1, the condenser 2, the evaporator 3, and the economizer 4, and chilled water is generated by the cold heat source obtained by the evaporator 3. The amount of heat from the evaporator 3 that is manufactured and corresponds to the load and taken into the refrigeration cycle and the amount of heat corresponding to the work of the turbo compressor 1 supplied from the compressor motor are supplied to the cooling water supplied to the condenser 2. Released. On the other hand, the refrigerant gas separated by the economizer 4 is introduced into an intermediate portion of the multistage compression stage of the turbo compressor 1, merged with the refrigerant gas from the first stage compressor, and compressed by the second stage compressor. According to the two-stage compression single-stage economizer cycle, since the refrigeration effect portion by the economizer 4 is added, the refrigeration effect is increased by that amount, and the efficiency of the refrigeration effect is improved as compared with the case where the economizer 4 is not installed. Can do.

図2は、図1に示す凝縮器2の詳細構造を示す縦断面図である。図2に示すように、凝縮器2は、円筒形の缶胴11と缶胴11の両端部に設けられた管板12,12とにより形成された空間内に、多数の伝熱管13を千鳥状に配列した伝熱管群14を配置して構成されている。冷媒ガスは缶胴11の上部にある冷媒入口11INより流入し、伝熱管群14の中を通過し、伝熱管群14の中を通過する間に凝縮した冷媒液は缶胴11の下部にある冷媒出口11OUTより流出するようになっている。伝熱管13は、内部に冷却水が流通するようになっており、缶胴11の長手方向に延びている。管板12,12には、それぞれヘッダ部15R,15Lが接続されている。ヘッダ部15Rは仕切板16により上下に区画されており、ヘッダ部15Rには冷却水入口15INと冷却水出口15OUTが設けられている。多数の伝熱管13からなる伝熱管群14は、冷却水入口15INに連通する下段伝熱管群14Lと冷却水出口15OUTに連通する上段伝熱管群14Uとからなっている。冷却水は、ヘッダ部15Rの冷却水入口15INから流入して下段伝熱管群14Lを流れた後にヘッダ部15Lで折り返し、上段伝熱管群14Uを流れた後に冷却水出口15OUTから流出するようになっている。 FIG. 2 is a longitudinal sectional view showing a detailed structure of the condenser 2 shown in FIG. As shown in FIG. 2, the condenser 2 has a large number of heat transfer tubes 13 staggered in a space formed by a cylindrical can body 11 and tube plates 12, 12 provided at both ends of the can body 11. The heat transfer tube group 14 arranged in a shape is arranged. The refrigerant gas flows in from the refrigerant inlet 11 IN at the upper part of the can body 11, passes through the heat transfer tube group 14, and the refrigerant liquid condensed while passing through the heat transfer tube group 14 enters the lower part of the can body 11. It flows out from a certain refrigerant outlet 11 OUT . The heat transfer tube 13 is configured such that cooling water flows therein and extends in the longitudinal direction of the can body 11. Header portions 15R and 15L are connected to the tube plates 12 and 12, respectively. The header portion 15R is partitioned vertically by the partition plate 16, and the header portion 15R is provided with a cooling water inlet 15IN and a cooling water outlet 15OUT . Tube bank 14 consisting of a large number of heat transfer tubes 13 is comprised of a lower heat transfer tube group 14L communicating with the cooling water inlet 15 IN and the cooling water outlet 15 OUT upper heat transfer tube group 14U communicating with. Cooling water, to flow out from the cooling water outlet 15 OUT After flowing the lower heat transfer tube group 14L and flows from the cooling water inlet 15 IN of the header portion 15R folded in the header portion 15L, after flowing through the upper heat transfer tube group 14U It has become.

図3および図4は、第1の実施形態に係る凝縮器2を示す図であり、図3は凝縮器2の側断面図、図4は凝縮器2の部分断面斜視図である。第1の実施形態においては、図3および図4に示すように、缶胴11の内壁には、上段伝熱管群14Uと下段伝熱管群14Lの中間位置に左右一対のバッフル板17,17が固定されており、また下段伝熱管群14Lの最下部の位置に左右一対のバッフル板18,18が固定されている。バッフル板17およびバッフル板18は、それぞれ細長い薄板状部材からなり、管板12,12間で缶胴11の長手方向に延びている。これらバッフル板17,18は、缶胴11の内壁と伝熱管群14との間の隙間を埋めて冷媒ガスの吹き抜けを防止する吹き抜け防止板として機能する。冷媒ガスGは缶胴11の上部にある冷媒入口11INより流入し、伝熱管群14の中を通過し、伝熱管群14の中を通過する間に凝縮した冷媒液は缶胴11の下部にある冷媒出口11OUTより流出する。 3 and 4 are diagrams showing the condenser 2 according to the first embodiment. FIG. 3 is a side sectional view of the condenser 2. FIG. 4 is a partial sectional perspective view of the condenser 2. FIG. In the first embodiment, as shown in FIGS. 3 and 4, a pair of left and right baffle plates 17, 17 are provided on the inner wall of the can body 11 at an intermediate position between the upper heat transfer tube group 14 </ b> U and the lower heat transfer tube group 14 </ b> L. A pair of left and right baffle plates 18 and 18 are fixed to the lowermost position of the lower heat transfer tube group 14L. The baffle plate 17 and the baffle plate 18 are each made of a thin and thin plate-like member, and extend in the longitudinal direction of the can body 11 between the tube plates 12 and 12. These baffle plates 17 and 18 function as blow-through prevention plates that fill the gaps between the inner wall of the can body 11 and the heat transfer tube group 14 and prevent the refrigerant gas from blowing through. The refrigerant gas G flows from the refrigerant inlet 11 IN at the upper part of the can body 11, passes through the heat transfer tube group 14, and the refrigerant liquid condensed while passing through the heat transfer tube group 14 is below the can body 11. The refrigerant flows out from the refrigerant outlet 11 OUT .

図3および図4に示すように、缶胴11の内壁に、上段伝熱管群14Uと下段伝熱管群14Lとの中間位置にバッフル板17,17を設けることにより、上段伝熱管群14Uの中を通過せずに下段伝熱管群14Lに吹き抜ける冷媒ガスの流れを抑制することができる。また、缶胴11の内壁に、下段伝熱管群14Lの最下部の位置にバッフル板18,18を設けることにより、下段伝熱管群14Lの中を通過せずに下方に吹き抜けるガス流れを抑制することができる。このように、中間段のバッフル板17,17および最下段のバッフル板18,18を設けることにより、缶胴11の内壁と上段伝熱管群14U,下段伝熱管群14Lとの間の隙間を埋めて冷媒ガスの吹き抜けを防止することにより、冷媒ガスを上段伝熱管群14Uおよび下段伝熱管群14Lの内部に導くことができ、上段伝熱管群14Uおよび下段伝熱管群14Lの中を通過する冷媒ガスの流速を大きくすることができる。   As shown in FIGS. 3 and 4, baffle plates 17 and 17 are provided on the inner wall of the can body 11 at an intermediate position between the upper heat transfer tube group 14U and the lower heat transfer tube group 14L. The flow of the refrigerant gas that blows through the lower heat transfer tube group 14L without passing through can be suppressed. Further, baffle plates 18 and 18 are provided on the inner wall of the can body 11 at the lowermost position of the lower heat transfer tube group 14L, thereby suppressing a gas flow that blows down without passing through the lower heat transfer tube group 14L. be able to. In this way, by providing the intermediate baffle plates 17 and 17 and the lowermost baffle plates 18 and 18, the gap between the inner wall of the can body 11 and the upper and lower heat transfer tube groups 14U and 14L is filled. By preventing the refrigerant gas from being blown through, the refrigerant gas can be guided into the upper heat transfer tube group 14U and the lower heat transfer tube group 14L, and the refrigerant passes through the upper heat transfer tube group 14U and the lower heat transfer tube group 14L. The gas flow rate can be increased.

図5および図6は、第2の実施形態に係る凝縮器2を示す図であり、図5は凝縮器2の側断面図、図6は凝縮器2の部分断面斜視図である。第2の実施形態においては、図5および図6に示すように、缶胴11の内壁には、中間段のバッフル板17,17および最下段のバッフル板18,18に加えて、上段伝熱管群14Uの最上部の位置に左右一対のバッフル板19,19が固定されている。バッフル板19は、細長い薄板状部材からなり、管板12,12間で缶胴11の長手方向に延びている。バッフル板19は、缶胴11の内壁と上段伝熱管群14Uとの間の隙間を埋めて冷媒ガスの吹き抜けを防止する吹き抜け防止板として機能する。   5 and 6 are views showing the condenser 2 according to the second embodiment. FIG. 5 is a side sectional view of the condenser 2. FIG. 6 is a partial sectional perspective view of the condenser 2. FIG. In the second embodiment, as shown in FIGS. 5 and 6, the inner wall of the can body 11 has an upper stage heat transfer tube in addition to the intermediate stage baffle plates 17 and 17 and the lowermost stage baffle plates 18 and 18. A pair of left and right baffle plates 19, 19 are fixed to the uppermost position of the group 14U. The baffle plate 19 is made of an elongated thin plate member and extends in the longitudinal direction of the can body 11 between the tube plates 12 and 12. The baffle plate 19 functions as a blow-off prevention plate that fills the gap between the inner wall of the can body 11 and the upper heat transfer tube group 14U and prevents the refrigerant gas from blowing through.

図5および図6に示すように、缶胴11の内壁に、上段伝熱管群14Uの最上部の位置にバッフル板19,19を設けることにより、凝縮液が中央に集まる傾向があるため、より伝熱管群中央を冷媒ガスGが抜けるようにすることができる。これにより、伝熱管群中央に集まっている凝縮液を効果的に吹き飛ばすことができる。中間段のバッフル板17,17および最下段のバッフル板18は、図3および図4に示す実施形態と同様の構成および作用である。   As shown in FIGS. 5 and 6, by providing baffle plates 19 and 19 at the uppermost position of the upper stage heat transfer tube group 14U on the inner wall of the can body 11, the condensate tends to collect in the center. The refrigerant gas G can escape from the center of the heat transfer tube group. Thereby, the condensate collected at the center of the heat transfer tube group can be effectively blown off. The intermediate baffle plates 17 and 17 and the lowermost baffle plate 18 have the same configuration and operation as the embodiment shown in FIGS.

図7は、第3の実施形態に係る凝縮器2を示す図であり、凝縮器2の側断面図である。第3の実施形態においては、図7に示すように、中間段のバッフル板17,17および最上段のバッフル板19,19に加えて、下段伝熱管群14Lの下部の伝熱管配列に沿うように左右一対のバッフル板20,20を設けている。バッフル板20は、細長い薄板状部材からなり、管板12,12間で缶胴11の長手方向に延びている。   FIG. 7 is a diagram showing the condenser 2 according to the third embodiment, and is a side sectional view of the condenser 2. In the third embodiment, as shown in FIG. 7, in addition to the baffle plates 17 and 17 at the intermediate stage and the baffle plates 19 and 19 at the uppermost stage, the heat transfer tube array along the lower part of the lower heat transfer tube group 14L is provided. A pair of left and right baffle plates 20 and 20 are provided on the left side. The baffle plate 20 is formed of an elongated thin plate member and extends in the longitudinal direction of the can body 11 between the tube plates 12 and 12.

図7に示すように、バッフル板20,20は、缶胴11の内壁に接触した上端部から伝熱管群の最外側の伝熱管配列に沿って斜め下方に傾斜している傾斜板からなり、冷媒ガスが未凝縮のまま伝熱管群を抜け出さないようにする下部吹き抜け防止板を構成している。中間段のバッフル板17,17および最上段のバッフル板19,19は、図5および図6に示す実施形態と同様の構成および作用である。   As shown in FIG. 7, the baffle plates 20, 20 are composed of inclined plates that are inclined obliquely downward along the outermost heat transfer tube array of the heat transfer tube group from the upper end portion in contact with the inner wall of the can body 11. The lower blow-off preventing plate is configured to prevent the refrigerant gas from being condensed through the heat transfer tube group. The intermediate baffle plates 17 and 17 and the uppermost baffle plates 19 and 19 have the same configuration and operation as the embodiment shown in FIGS.

図8は、第4の実施形態に係る凝縮器2を示す図であり、凝縮器2の側断面図である。第4の実施形態においては、図8に示すように、最上段のバッフル板19,19に加えて、下段伝熱管群14Lの伝熱管配列に沿うように左右一対のバッフル板21,21を設けている。バッフル板21は、細長い薄板状部材からなり、管板12,12間で缶胴11の長手方向に延びている。バッフル板21は、下段伝熱管群14Lの上部の最外側の伝熱管配列に沿うように略垂直方向に延びる上部バッフル板21aと、下段伝熱管群14Lの下部の最外側の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板21bとから構成されている。上部バッフル板21aの上端部は缶胴11の内壁に向かって折曲された折曲部21cを有しており、この折曲部21cが缶胴11の内壁に接触することによって、冷媒ガスが缶胴11の内壁に沿って吹き抜けることを防止している。   FIG. 8 is a view showing the condenser 2 according to the fourth embodiment, and is a side sectional view of the condenser 2. In the fourth embodiment, as shown in FIG. 8, in addition to the uppermost baffle plates 19 and 19, a pair of left and right baffle plates 21 and 21 are provided so as to follow the heat transfer tube arrangement of the lower heat transfer tube group 14L. ing. The baffle plate 21 is made of a thin and thin plate-like member and extends in the longitudinal direction of the can body 11 between the tube plates 12 and 12. The baffle plate 21 extends along the upper baffle plate 21a extending in a substantially vertical direction so as to follow the outermost heat transfer tube array on the upper portion of the lower heat transfer tube group 14L, and the outermost heat transfer tube array on the lower portion of the lower heat transfer tube group 14L. The lower baffle plate 21b inclined obliquely downward as described above. The upper end portion of the upper baffle plate 21 a has a bent portion 21 c that is bent toward the inner wall of the can barrel 11, and the bent portion 21 c comes into contact with the inner wall of the can barrel 11, so that the refrigerant gas flows. Blowing along the inner wall of the can body 11 is prevented.

図8に示すように、バッフル板21,21により下段伝熱管群14Lを覆うことにより、伝熱管群中央を吹き抜ける冷媒ガス量が増し、凝縮液を伝熱管表面から吹き飛ばす機能を向上させることができる。最上段のバッフル板19,19は、図5および図6に示す実施形態と同様の構成および作用である。   As shown in FIG. 8, by covering the lower heat transfer tube group 14L with the baffle plates 21, 21, the amount of refrigerant gas blown through the center of the heat transfer tube group is increased, and the function of blowing the condensate from the heat transfer tube surface can be improved. . The uppermost baffle plates 19 and 19 have the same configuration and operation as the embodiment shown in FIGS.

図9は、第5の実施形態に係る凝縮器2を示す図であり、凝縮器2の側断面図である。第5の実施形態においては、図9に示すように、上段伝熱管群14Uの下部の伝熱管配列および下段伝熱管群14Lの伝熱管配列に沿うように左右一対のバッフル板22,22を設けている。バッフル板22は、細長い薄板状部材からなり、管板12,12間で缶胴11の長手方向に延びている。バッフル板22は、上段伝熱管群14Uの下部の最外側の伝熱管配列および下段伝熱管群14Lの上部の最外側の伝熱管配列に沿うように略垂直方向に延びる上部バッフル板22aと、下段伝熱管群14Lの下部の最外側の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板22bとから構成されている。上部バッフル板22aの上端は缶胴11の内壁に接触しており、この接触部によって、冷媒ガスが缶胴11の内壁に沿って吹き抜けることを防止している。   FIG. 9 is a view showing the condenser 2 according to the fifth embodiment, and is a side sectional view of the condenser 2. In the fifth embodiment, as shown in FIG. 9, a pair of left and right baffle plates 22 and 22 are provided so as to follow the lower heat transfer tube array of the upper heat transfer tube group 14U and the heat transfer tube array of the lower heat transfer tube group 14L. ing. The baffle plate 22 is formed of an elongated thin plate member and extends in the longitudinal direction of the can body 11 between the tube plates 12 and 12. The baffle plate 22 includes an upper baffle plate 22a extending in a substantially vertical direction so as to follow the outermost heat transfer tube array at the lower part of the upper heat transfer tube group 14U and the outermost heat transfer tube array at the upper part of the lower heat transfer tube group 14L. The lower baffle plate 22b is inclined obliquely downward so as to follow the outermost heat transfer tube array at the lower part of the heat transfer tube group 14L. The upper end of the upper baffle plate 22 a is in contact with the inner wall of the can body 11, and this contact portion prevents the refrigerant gas from blowing along the inner wall of the can body 11.

図9に示すように、上段伝熱管群14Uの上部の伝熱管13は、バッフル板に覆われることなく開放されることにより、上段伝熱管群14Uの上部全体から冷媒ガスが流れ込むことが可能となる。すなわち、冷媒ガスが上段伝熱管群14U内に流れ込む間口を広げ、冷媒ガスが上段伝熱管群14Uに入り易くしている。この方式は、高圧冷媒ガスの中でもやや比容積が大きいガスを使用する場合に有効である。そして、バッフル板22,22により上段伝熱管群14Uの下部と下段伝熱管群14Lを覆うことにより、伝熱管群中央を吹き抜ける冷媒ガス量が増し、凝縮液を伝熱管表面から吹き飛ばす機能を向上させることができる。   As shown in FIG. 9, the upper heat transfer tube group 14U upper heat transfer tube 13 is opened without being covered by the baffle plate, so that the refrigerant gas can flow from the entire upper heat transfer tube group 14U. Become. In other words, the opening through which the refrigerant gas flows into the upper heat transfer tube group 14U is widened to make it easier for the refrigerant gas to enter the upper heat transfer tube group 14U. This method is effective when a gas having a relatively large specific volume is used among the high-pressure refrigerant gases. Then, by covering the lower part of the upper heat transfer tube group 14U and the lower heat transfer tube group 14L with the baffle plates 22 and 22, the amount of refrigerant gas blown through the center of the heat transfer tube group is increased, and the function of blowing the condensate from the heat transfer tube surface is improved. be able to.

図10は、第6の実施形態に係る凝縮器2を示す図であり、凝縮器2の側断面図である。第6の実施形態においては、図10に示すように、上段伝熱管群14Uの伝熱管配列および下段伝熱管群14Lの伝熱管配列に沿うように左右一対のバッフル板23を設けている。バッフル板23は、細長い薄板状部材からなり、管板12,12間で缶胴11の長手方向に延びている。バッフル板23は、上段伝熱管群14Uの上部の最外側の伝熱管配列に沿うように斜め上方に傾斜した上部バッフル板23aと、上段伝熱管群14Uの下部の最外側の伝熱管配列および下段伝熱管群14Lの上部の最外側の伝熱管配列に沿うように略垂直方向に延びる中間部バッフル板23bと、下段伝熱管群14Lの下部の最外側の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板23cとから構成されている。上部バッフル板23aと中間部バッフル板23bとの間の角部および中間部バッフル板23bと下部バッフル板23cとの間の角部は、ともに缶胴11の内壁に接触しており、これら接触部によって、冷媒ガスが缶胴11の内壁に沿って吹き抜けることを防止している。   FIG. 10 is a view showing the condenser 2 according to the sixth embodiment, and is a side sectional view of the condenser 2. In the sixth embodiment, as shown in FIG. 10, a pair of left and right baffle plates 23 are provided along the heat transfer tube array of the upper heat transfer tube group 14U and the heat transfer tube array of the lower heat transfer tube group 14L. The baffle plate 23 is made of an elongated thin plate-like member and extends in the longitudinal direction of the can body 11 between the tube plates 12 and 12. The baffle plate 23 includes an upper baffle plate 23a inclined obliquely upward so as to follow the outermost heat transfer tube array at the upper part of the upper heat transfer tube group 14U, and the outermost heat transfer tube array and the lower step at the lower part of the upper heat transfer tube group 14U. An intermediate baffle plate 23b extending in a substantially vertical direction so as to follow the outermost heat transfer tube array at the top of the heat transfer tube group 14L, and obliquely downward so as to follow the outermost heat transfer tube array at the bottom of the lower heat transfer tube group 14L. The lower baffle plate 23c is inclined. The corner between the upper baffle plate 23a and the intermediate baffle plate 23b and the corner between the intermediate baffle plate 23b and the lower baffle plate 23c are both in contact with the inner wall of the can body 11, and these contact portions Thus, the refrigerant gas is prevented from blowing along the inner wall of the can body 11.

図10に示すように、上部バッフル板23a,23aにより、上段伝熱管群14Uの一部を覆うことにより冷媒ガスが上段伝熱管群14U内に流れ込む間口を狭め、凝縮液が集まり易い伝熱管群の中央部にガスを集めるようにしている。この方式は、高圧冷媒ガスの中でもやや比容積が小さいガスを使用する場合に有効である。そして、バッフル板23,23により下段伝熱管群14Lを覆うことにより、伝熱管群中央を吹き抜ける冷媒ガス量が増し、凝縮液を伝熱管表面から吹き飛ばす機能を向上させることができる。   As shown in FIG. 10, the upper baffle plates 23a, 23a cover a part of the upper stage heat transfer tube group 14U, thereby narrowing the entrance through which the refrigerant gas flows into the upper stage heat transfer tube group 14U, and condensate is easily collected. The gas is collected in the central part. This method is effective when using a gas having a small specific volume among the high-pressure refrigerant gases. By covering the lower heat transfer tube group 14L with the baffle plates 23, 23, the amount of refrigerant gas blown through the center of the heat transfer tube group is increased, and the function of blowing the condensate from the heat transfer tube surface can be improved.

図11(a),(b)は、従来の伝熱管群103における伝熱管102の表面の液膜と本発明の伝熱管群14における伝熱管13の表面の液膜とを比較して示す模式図である。
図11(a)に示すように、従来の伝熱管群103においては、伝熱管群103の中を流れる冷媒ガスの体積流量が少ないため、伝熱管群103の中を流れる冷媒ガスの流速が小さいので、伝熱管102の表面に凝縮液が滞留し、伝熱管102の表面の液膜LFの厚さが増加し、熱抵抗となる。
図11(b)に示すように、本発明の伝熱管群14においては、バッフル板からなる吹き抜け防止板により、缶胴内壁と伝熱管群との間の冷媒ガスの吹き抜けを防止することができるため、冷媒ガスは伝熱管群14の内部の方へ導かれ、冷媒ガスの流速が大きくなるので、冷媒ガスの流れにより伝熱管13の表面の凝縮液を吹き飛ばすことができる。したがって、伝熱管13の表面の液膜LFの厚さが減少し、伝熱性能が向上する。
FIGS. 11A and 11B are schematic views showing a comparison between a liquid film on the surface of the heat transfer tube 102 in the conventional heat transfer tube group 103 and a liquid film on the surface of the heat transfer tube 13 in the heat transfer tube group 14 of the present invention. FIG.
As shown in FIG. 11A, in the conventional heat transfer tube group 103, since the volume flow rate of the refrigerant gas flowing through the heat transfer tube group 103 is small, the flow rate of the refrigerant gas flowing through the heat transfer tube group 103 is small. Therefore, the condensate stays on the surface of the heat transfer tube 102, the thickness of the liquid film LF on the surface of the heat transfer tube 102 increases, and thermal resistance is obtained.
As shown in FIG. 11B, in the heat transfer tube group 14 of the present invention, the blowout prevention plate made of a baffle plate can prevent the refrigerant gas from blowing through between the inner wall of the can body and the heat transfer tube group. Therefore, the refrigerant gas is guided toward the inside of the heat transfer tube group 14, and the flow rate of the refrigerant gas increases, so that the condensate on the surface of the heat transfer tube 13 can be blown off by the flow of the refrigerant gas. Therefore, the thickness of the liquid film LF on the surface of the heat transfer tube 13 is reduced, and the heat transfer performance is improved.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 ターボ圧縮機
2 凝縮器
3 蒸発器
4 エコノマイザ
5 冷媒配管
8 流路
11 缶胴
11IN 冷媒入口
11OUT 冷媒出口
12 管板
13 伝熱管
14 伝熱管群
14L 下段伝熱管群
14U 上段伝熱管群
15L ヘッダ部
15R ヘッダ部
15IN 冷却水出口
15OUT 冷却水出口
16 仕切板
17 バッフル板
18 バッフル板
19 バッフル板
20 バッフル板
21 バッフル板
21a 上部バッフル板
21b 下部バッフル板
22 バッフル板
22a 上部バッフル板
22b 下部バッフル板
21c 折曲部
22 バッフル板
23 バッフル板
23a 上部バッフル板
23b 中間部バッフル板
23c 下部バッフル板
100 凝縮器
101 缶胴
102 伝熱管
103 伝熱管群
103L 下段伝熱管群
103U 上段伝熱管群
C 隙間
L 液膜
G 冷媒ガス
DESCRIPTION OF SYMBOLS 1 Turbo compressor 2 Condenser 3 Evaporator 4 Economizer 5 Refrigerant piping 8 Flow path 11 Can trunk 11 IN Refrigerant inlet 11 OUT Refrigerant outlet 12 Tube plate 13 Heat transfer tube 14 Heat transfer tube group 14L Lower heat transfer tube group 14U Upper heat transfer tube group 15L Header portion 15R Header portion 15 IN cooling water outlet 15 OUT cooling water outlet 16 Partition plate 17 Baffle plate 18 Baffle plate 19 Baffle plate 20 Baffle plate 21 Baffle plate 21a Upper baffle plate 21b Lower baffle plate 22 Baffle plate 22a Upper baffle plate 22b Lower portion Baffle plate 21c Bent portion 22 Baffle plate 23 Baffle plate 23a Upper baffle plate 23b Middle baffle plate 23c Lower baffle plate 100 Condenser 101 Can body 102 Heat transfer tube 103 Heat transfer tube group 103L Lower heat transfer tube group 103U Upper heat transfer tube group C Gap L liquid film G Refrigerant gas

Claims (9)

円筒状の缶胴と、該缶胴の両端を閉塞する管板と、前記缶胴内に配置された伝熱管群とを備え、前記缶胴内に導入された冷媒ガスと前記伝熱管群を流通する冷却水との間で熱交換を行って冷媒ガスを凝縮させる圧縮式冷凍機用凝縮器において、
前記缶胴の内壁と前記伝熱管群との間の隙間に、該隙間を通って冷媒ガスが下流側に吹き抜けることを防止するバッフル板を設けたことを特徴とする圧縮式冷凍機用凝縮器。
A cylindrical can body, a tube plate that closes both ends of the can body, and a heat transfer tube group disposed in the can body, the refrigerant gas introduced into the can body and the heat transfer tube group In a condenser for a compression refrigeration machine that condenses refrigerant gas by performing heat exchange with circulating cooling water,
A condenser for a compression refrigeration machine, wherein a baffle plate is provided in a gap between an inner wall of the can body and the heat transfer tube group to prevent refrigerant gas from blowing through the gap downstream. .
前記伝熱管群は、前記缶胴の中心より上側の上段伝熱管群と下側の下段伝熱管群とを備えたことを特徴とする請求項1に記載の圧縮式冷凍機用凝縮器。   The condenser for a compression refrigeration machine according to claim 1, wherein the heat transfer tube group includes an upper heat transfer tube group above and a lower heat transfer tube group above the center of the can body. 前記バッフル板は、前記上段伝熱管群と前記下段伝熱管群の中間位置に設けられていることを特徴とする請求項2に記載の圧縮式冷凍機用凝縮器。   The condenser for a compression refrigeration machine according to claim 2, wherein the baffle plate is provided at an intermediate position between the upper heat transfer tube group and the lower heat transfer tube group. 前記バッフル板は、前記上段伝熱管群の最上部の位置に設けられていることを特徴とする請求項2に記載の圧縮式冷凍機用凝縮器。   The condenser for a compression refrigeration machine according to claim 2, wherein the baffle plate is provided at an uppermost position of the upper heat transfer tube group. 前記バッフル板は、前記下段伝熱管群の下部の伝熱管配列に沿うように設けられていることを特徴とする請求項2に記載の圧縮式冷凍機用凝縮器。   The condenser for a compression refrigeration machine according to claim 2, wherein the baffle plate is provided along a heat transfer tube array at a lower portion of the lower heat transfer tube group. 前記バッフル板は、前記下段伝熱管群の伝熱管配列に沿うように設けられていることを特徴とする請求項2に記載の圧縮式冷凍機用凝縮器。   The condenser for a compression refrigeration machine according to claim 2, wherein the baffle plate is provided along a heat transfer tube arrangement of the lower heat transfer tube group. 前記バッフル板は、前記上段伝熱管群の下部の伝熱管配列および前記下段伝熱管群の上部の伝熱管配列に沿うように略垂直方向に延びる上部バッフル板と、前記下段伝熱管群の下部の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板とから構成されていることを特徴とする請求項2に記載の圧縮式冷凍機用凝縮器。   The baffle plate includes an upper baffle plate extending in a substantially vertical direction so as to follow a lower heat transfer tube array of the upper heat transfer tube group and an upper heat transfer tube array of the lower heat transfer tube group, and a lower portion of the lower heat transfer tube group. The condenser for a compression refrigeration machine according to claim 2, comprising a lower baffle plate inclined obliquely downward so as to follow the heat transfer tube array. 前記バッフル板は、前記上段伝熱管群の上部の伝熱管配列に沿うように斜め上方に傾斜した上部バッフル板と、前記上段伝熱管群の下部の伝熱管配列および前記下段伝熱管群の上部の伝熱管配列に沿うように略垂直方向に延びる中間部バッフル板と、前記下段伝熱管群の下部の伝熱管配列に沿うように斜め下方に傾斜した下部バッフル板とから構成されていることを特徴とする請求項2に記載の圧縮式冷凍機用凝縮器。   The baffle plate includes an upper baffle plate inclined obliquely upward so as to follow an upper heat transfer tube array of the upper heat transfer tube group, a lower heat transfer tube array of the upper heat transfer tube group, and an upper portion of the lower heat transfer tube group. An intermediate baffle plate extending in a substantially vertical direction along the heat transfer tube array, and a lower baffle plate inclined obliquely downward along the lower heat transfer tube array of the lower heat transfer tube group, The condenser for a compression type refrigerator according to claim 2. 冷水から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を羽根車によって圧縮する圧縮機と、圧縮された冷媒ガスを冷却水で冷却して凝縮させる凝縮器とを備えた圧縮式冷凍機において、
前記凝縮器は、請求項1乃至8のいずれか一項に記載の凝縮器であることを特徴とする圧縮式冷凍機。
An evaporator that takes heat from cold water and evaporates the refrigerant to exert a refrigeration effect, a compressor that compresses the refrigerant with an impeller, and a condenser that cools and compresses the compressed refrigerant gas with cooling water In the compression refrigerator,
The compression refrigerator according to any one of claims 1 to 8, wherein the condenser is the condenser according to any one of claims 1 to 8.
JP2013199323A 2013-09-26 2013-09-26 Condenser for compression refrigerator Expired - Fee Related JP6295051B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013199323A JP6295051B2 (en) 2013-09-26 2013-09-26 Condenser for compression refrigerator
CN201410490492.7A CN104515328A (en) 2013-09-26 2014-09-23 Condenser for compression refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199323A JP6295051B2 (en) 2013-09-26 2013-09-26 Condenser for compression refrigerator

Publications (2)

Publication Number Publication Date
JP2015064157A true JP2015064157A (en) 2015-04-09
JP6295051B2 JP6295051B2 (en) 2018-03-14

Family

ID=52791007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199323A Expired - Fee Related JP6295051B2 (en) 2013-09-26 2013-09-26 Condenser for compression refrigerator

Country Status (2)

Country Link
JP (1) JP6295051B2 (en)
CN (1) CN104515328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500410A (en) * 2016-10-25 2017-03-15 珠海格力电器股份有限公司 Air conditioning unit, shell-and-tube heat exchanger and heat exchange method of shell-and-tube heat exchanger
KR101783412B1 (en) * 2015-12-21 2017-09-29 주식회사 포스코 Apparatus for recovering waste heat
CN107806723A (en) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 Shell and tube condenser
WO2018144215A1 (en) * 2017-02-03 2018-08-09 Daikin Applied Americas Inc. Condenser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670197B2 (en) * 2016-07-25 2020-03-18 荏原冷熱システム株式会社 Condenser for compression refrigerator
JP6817124B2 (en) * 2017-03-22 2021-01-20 荏原冷熱システム株式会社 Condenser for compression refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388860U (en) * 1976-12-22 1978-07-21
JPS53141549U (en) * 1977-04-15 1978-11-08
JPS56140073U (en) * 1980-03-24 1981-10-22
JPS59103081U (en) * 1982-12-24 1984-07-11 株式会社日立製作所 Heat exchanger
WO1996030712A1 (en) * 1995-03-31 1996-10-03 Bloksma B.V. Heat exchanger of the plate fin-type, comprising a removable core with jacket
JP2002130867A (en) * 2000-10-24 2002-05-09 Mitsubishi Heavy Ind Ltd Condenser for refrigerating machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925306B2 (en) * 1977-05-17 1984-06-16 富士通株式会社 magnetic bubble device
JP2002122390A (en) * 2000-10-17 2002-04-26 Denso Corp Heat exchanger
KR20110104667A (en) * 2010-03-17 2011-09-23 엘지전자 주식회사 Distributor, evaporator and refrigerating machine with the same
CN202973674U (en) * 2012-12-04 2013-06-05 重庆美的通用制冷设备有限公司 Heat recycling type shell tube type condenser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388860U (en) * 1976-12-22 1978-07-21
JPS53141549U (en) * 1977-04-15 1978-11-08
JPS56140073U (en) * 1980-03-24 1981-10-22
JPS59103081U (en) * 1982-12-24 1984-07-11 株式会社日立製作所 Heat exchanger
WO1996030712A1 (en) * 1995-03-31 1996-10-03 Bloksma B.V. Heat exchanger of the plate fin-type, comprising a removable core with jacket
JP2002130867A (en) * 2000-10-24 2002-05-09 Mitsubishi Heavy Ind Ltd Condenser for refrigerating machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783412B1 (en) * 2015-12-21 2017-09-29 주식회사 포스코 Apparatus for recovering waste heat
CN107806723A (en) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 Shell and tube condenser
CN107806723B (en) * 2016-09-09 2020-11-24 青岛海尔智能技术研发有限公司 Shell-tube condenser
CN106500410A (en) * 2016-10-25 2017-03-15 珠海格力电器股份有限公司 Air conditioning unit, shell-and-tube heat exchanger and heat exchange method of shell-and-tube heat exchanger
WO2018144215A1 (en) * 2017-02-03 2018-08-09 Daikin Applied Americas Inc. Condenser
US10612823B2 (en) 2017-02-03 2020-04-07 Daikin Applied Americas Inc. Condenser

Also Published As

Publication number Publication date
JP6295051B2 (en) 2018-03-14
CN104515328A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP6295051B2 (en) Condenser for compression refrigerator
JP2008534894A (en) Refrigeration system with saving cycle
CN106196755B (en) Shell and tube condenser and air-conditioning system
US20160223231A1 (en) Heat exchanger and air conditioner
US20160265814A1 (en) Water Cooled Microchannel Condenser
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
KR100817027B1 (en) Apparatus and method for discharging vapour and liquid
TW201738517A (en) Refrigerator
CN112944770B (en) Refrigerator and refrigerating system thereof
JP6313090B2 (en) Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
JP6670197B2 (en) Condenser for compression refrigerator
TW202043684A (en) Dehumidifier
JP6817124B2 (en) Condenser for compression refrigerator
JP4423321B2 (en) Refrigerator built-in showcase
KR20090045473A (en) A condenser
KR200420568Y1 (en) outlet structure of low prssure of internal heat exchanger
KR20040075717A (en) Heat exchanger
JP2016023913A (en) Condenser for freezer
JP2017036900A (en) Radiator and super-critical pressure refrigerating-cycle using the radiator
JP6630613B2 (en) Condenser
US20120137723A1 (en) Air conditioner
JP2004232986A (en) Refrigerator
KR102111312B1 (en) Cooling system of air conditioner for vehicle
KR102342956B1 (en) High efficiency evaporative condenser
KR100229188B1 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6295051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees