JP2002122390A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2002122390A
JP2002122390A JP2000316808A JP2000316808A JP2002122390A JP 2002122390 A JP2002122390 A JP 2002122390A JP 2000316808 A JP2000316808 A JP 2000316808A JP 2000316808 A JP2000316808 A JP 2000316808A JP 2002122390 A JP2002122390 A JP 2002122390A
Authority
JP
Japan
Prior art keywords
refrigerant
tube
heat
heat exchanger
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000316808A
Other languages
Japanese (ja)
Inventor
Ken Yamamoto
山本  憲
Norihide Kawachi
典秀 河地
Takeshi Okinoya
剛 沖ノ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000316808A priority Critical patent/JP2002122390A/en
Publication of JP2002122390A publication Critical patent/JP2002122390A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Abstract

PROBLEM TO BE SOLVED: To improve a heat exchange efficiency of a water heat exchanger of a hot water supply unit using a supercritical heat pump. SOLUTION: A refrigerant is supplied into many fine tubes 223 to heat- exchange the refrigerant with supplied hot water. Thus, a flowing speed of the refrigerant flowing through the tubes 223 is accelerated to increase a heat transfer rate between the refrigerant and the tubes 223 and a heat transfer area (contact area) of the refrigerant with the tube 223 is increased. Accordingly, the heat transfer rate and the heat transfer area (contact area) can be remarkably increased as compared with that of a simple double cylindrical heat exchanger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体間で熱交換を
行う熱交換器に関するもので、高圧側の冷媒圧力が冷媒
の臨界圧力以上となる超臨界冷凍サイクルを用いた給湯
器に適用して有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for exchanging heat between fluids, and is applied to a water heater using a supercritical refrigeration cycle in which a refrigerant pressure on a high pressure side is higher than a critical pressure of the refrigerant. Effective.

【0002】[0002]

【従来の技術】加熱された高温の流体と低温の流体とを
熱交換する熱交換器として、例えば実用新案登録公報第
2535883号公報に記載の発明のごとく、内筒と外
筒とからなる二重管構造の熱交換器がよく知られてい
る。
2. Description of the Related Art As a heat exchanger for exchanging heat between a heated high-temperature fluid and a low-temperature fluid, a heat exchanger comprising an inner cylinder and an outer cylinder as disclosed in Japanese Utility Model Registration Publication No. 2553583, for example. Heat exchangers having a double tube structure are well known.

【0003】[0003]

【発明が解決しようとする課題】ところで、二重管構造
の熱交換器において、熱交換効率を向上させるには、内
筒及び外筒の少なくとも一方側に突起部や溝部等の凹凸
を設けて、流体とチューブとの伝熱面積及び熱伝達率を
増大させる手段が一般的である。
By the way, in a heat exchanger having a double tube structure, in order to improve the heat exchange efficiency, at least one of the inner cylinder and the outer cylinder is provided with irregularities such as projections and grooves. Means for increasing the heat transfer area and the heat transfer coefficient between the fluid and the tube are common.

【0004】しかし、上記手段による熱交換効率の向上
量は、既に技術的に飽和状態にあり、上記手段と同様な
手段では、これ以上の大幅な熱交換効率の向上を図るこ
とは難しい。
[0004] However, the amount of improvement in heat exchange efficiency by the above means is already technically saturated, and it is difficult to further improve the heat exchange efficiency by means similar to the above means.

【0005】本発明は、上記点に鑑み、従来と異なる新
たな手段にて熱交換効率の向上を図ることを目的とす
る。
In view of the above, an object of the present invention is to improve the heat exchange efficiency by a new means different from the conventional one.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、第1流体が
流通するとともに、内径相当寸法が略0.2mm以上、
1mm以下の多数本の第1チューブ(223)と、第1
流体と熱交換する第2流体が流通する第2チューブ(2
21)とを有し、両チューブ(223、221)は、互
いに熱交換可能な位置に配設されていることを特徴とす
る。
In order to achieve the above object, according to the present invention, the first fluid circulates and an inner diameter equivalent dimension is approximately 0.2 mm or more.
A large number of first tubes (223) of 1 mm or less;
A second tube (2) through which a second fluid that exchanges heat with the fluid flows
21), and the two tubes (223, 221) are arranged at positions where they can exchange heat with each other.

【0007】これにより、第1チューブ(223)内を
流通する流体の流速が上昇して、第1流体と第1チュー
ブ(223)との間の熱伝達率が増大するとともに、第
1流体と第1チューブ(223)との伝熱面積(接触面
積)が増大する。
As a result, the flow rate of the fluid flowing through the first tube (223) is increased, the heat transfer coefficient between the first fluid and the first tube (223) is increased, and the first fluid and the first fluid are separated. The heat transfer area (contact area) with the first tube (223) increases.

【0008】したがって、単純な二重円筒式の熱交換器
に比べて、熱伝達率及び伝熱面積(接触面積)を大幅に
増大させることが可能となるので、従来手段に比べて、
大幅な熱交換効率の向上を図ることが可能となる。
Accordingly, the heat transfer coefficient and the heat transfer area (contact area) can be greatly increased as compared with a simple double-cylindrical heat exchanger.
It is possible to significantly improve the heat exchange efficiency.

【0009】請求項2に記載の発明では、第1流体が流
通するとともに、内径相当寸法が略0.2mm以上、1
mm以下の多数本の微細チューブ(223)と、内部に
微細チューブ(223)が収納された第1チューブ(2
23)と、第1流体と熱交換する第2流体が流通すると
ともに、第1チューブ(222)に対して同軸状に配置
された第2チューブ(221)とを有することを特徴と
する。
According to the second aspect of the present invention, the first fluid flows, and the dimension corresponding to the inner diameter is about 0.2 mm or more.
mm and a first tube (2) in which the fine tube (223) is housed.
23) and a second tube (221) that is arranged coaxially with the first tube (222) while the second fluid that exchanges heat with the first fluid flows.

【0010】これにより、微細チューブ(223)内を
流通する流体の流速が上昇して、第1流体と微細チュー
ブ(223)との間の熱伝達率が増大するとともに、第
1流体と微細チューブ(223)との伝熱面積(接触面
積)が増大する。
As a result, the flow rate of the fluid flowing through the fine tube (223) is increased, the heat transfer coefficient between the first fluid and the fine tube (223) is increased, and the first fluid and the fine tube (223) are increased. The heat transfer area (contact area) with (223) increases.

【0011】したがって、単純な二重円筒式の熱交換器
に比べて、熱伝達率及び伝熱面積(接触面積)を大幅に
増大させることが可能となるので、従来手段に比べて、
大幅な熱交換効率の向上を図ることが可能となる。
Therefore, the heat transfer coefficient and the heat transfer area (contact area) can be greatly increased as compared with a simple double-cylindrical heat exchanger.
It is possible to significantly improve the heat exchange efficiency.

【0012】請求項3に記載の発明では、第1流体が流
通するとともに、内径相当寸法が略0.2mm以上、1
mm以下の多数本の微細チューブ(223)と、内部に
微細チューブ(223)が収納された第1チューブ(2
22)と、第1流体と熱交換する第2流体が流通する第
2チューブ(221)とを有し、第1、2チューブ(2
22、221)は、互いに接触した状態で螺旋状に巻か
れていることを特徴とする。
According to the third aspect of the present invention, the first fluid flows, and the dimension corresponding to the inner diameter is about 0.2 mm or more.
mm and a first tube (2) in which the fine tube (223) is housed.
22), and a second tube (221) through which a second fluid that exchanges heat with the first fluid flows.
22, 221) are characterized in that they are spirally wound in contact with each other.

【0013】これにより、微細チューブ(223)内を
流通する流体の流速が上昇して、第1流体と微細チュー
ブ(223)との間の熱伝達率が増大するとともに、第
1流体と微細チューブ(223)との伝熱面積(接触面
積)が増大する。
Accordingly, the flow velocity of the fluid flowing through the fine tube (223) is increased, the heat transfer coefficient between the first fluid and the fine tube (223) is increased, and the first fluid and the fine tube (223) are increased. The heat transfer area (contact area) with (223) increases.

【0014】したがって、単純な二重円筒式の熱交換器
に比べて、熱伝達率及び伝熱面積(接触面積)を大幅に
増大させることが可能となるので、従来手段に比べて、
大幅な熱交換効率の向上を図ることが可能となる。
Therefore, the heat transfer coefficient and the heat transfer area (contact area) can be greatly increased as compared with a simple double-cylindrical heat exchanger.
It is possible to significantly improve the heat exchange efficiency.

【0015】また、第1、2チューブ(222、22
1)を互いに接触した状態で螺旋状に巻いているので、
熱交換器の小型化を図りつつ、熱交換効率の向上を図る
ことができる。
The first and second tubes (222, 22)
Since 1) is spirally wound in contact with each other,
It is possible to improve the heat exchange efficiency while reducing the size of the heat exchanger.

【0016】請求項4に記載の発明では、第1流体が流
通するとともに、内径相当寸法が略0.2mm以上、1
mm以下の多数本の第1チューブ(223)と、第1流
体と熱交換する第2流体が流通する第2チューブ(22
1)とを有し、第1チューブ(223)が第2チューブ
(221)の外壁に巻かれていることを特徴とする。
According to the fourth aspect of the present invention, the first fluid circulates and the dimension corresponding to the inner diameter is about 0.2 mm or more.
mm and a second tube (22) through which a second fluid that exchanges heat with the first fluid flows.
1), wherein the first tube (223) is wound around the outer wall of the second tube (221).

【0017】これにより、第1チューブ(223)内を
流通する流体の流速が上昇して、第1流体と第1チュー
ブ(223)との間の熱伝達率が増大するとともに、第
1流体と第1チューブ(223)との伝熱面積(接触面
積)が増大する。
As a result, the flow rate of the fluid flowing through the first tube (223) is increased, the heat transfer coefficient between the first fluid and the first tube (223) is increased, and the first fluid and the first fluid are separated. The heat transfer area (contact area) with the first tube (223) increases.

【0018】したがって、単純な二重円筒式の熱交換器
に比べて、熱伝達率及び伝熱面積(接触面積)を大幅に
増大させることが可能となるので、従来手段に比べて、
大幅な熱交換効率の向上を図ることが可能となる。
Therefore, the heat transfer coefficient and the heat transfer area (contact area) can be greatly increased as compared with a simple double-cylindrical heat exchanger.
It is possible to significantly improve the heat exchange efficiency.

【0019】また、第1流体と第2流体とが直交対向流
れとなるので、熱交換効率の向上を図ることができる。
Further, since the first fluid and the second fluid are orthogonally opposed flows, the heat exchange efficiency can be improved.

【0020】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0021】[0021]

【発明の実施の形態】(第1実施形態)本実施形態は、
本発明に係る熱交換器を家庭用給湯器に適用したもので
あって、図1は給湯器100の外観図であり、図2は給
湯器100の模式図である。図2中、200(2点鎖線
で囲まれたもの)は、給湯水を加熱し高温(本実施形態
では約85℃)の温水を生成する超臨界ヒートポンプサ
イクル(以下、ヒートポンプと略す。)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment)
FIG. 1 is an external view of a water heater 100 and FIG. 2 is a schematic diagram of the water heater 100 in which the heat exchanger according to the present invention is applied to a household water heater. In FIG. 2, reference numeral 200 (enclosed by a two-dot chain line) denotes a supercritical heat pump cycle (hereinafter, abbreviated as a heat pump) that heats hot water and generates hot water having a high temperature (about 85 ° C. in the present embodiment). is there.

【0022】なお、超臨界ヒートポンプサイクルとは、
高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポ
ンプサイクルを言い、例えば二酸化炭素、エチレン、エ
タン、酸化窒素等を冷媒とするヒートポンプサイクルで
ある。
The supercritical heat pump cycle is
A heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant, for example, a heat pump cycle using carbon dioxide, ethylene, ethane, nitrogen oxide, or the like as a refrigerant.

【0023】また、300はヒートポンプ200にて加
熱された温水を保温貯蔵する複数個の保温タンクであ
り、各保温タンク300は、温水(給湯水)流れに対し
て並列となるように配設されている。
Reference numeral 300 denotes a plurality of heat retention tanks for keeping the hot water heated by the heat pump 200 warm and stored. Each of the heat retention tanks 300 is arranged in parallel with the flow of the hot water (hot water). ing.

【0024】図2中、210は冷媒(本実施形態では、
二酸化炭素)を吸入圧縮する圧縮機であり、この圧縮機
210は、冷媒を吸入圧縮する圧縮機構(図示せず)及
び圧縮機構を駆動する電動モータ(図示せず)が一体と
なった電動圧縮機である。
In FIG. 2, reference numeral 210 denotes a refrigerant (in this embodiment,
The compressor 210 is a compressor that sucks and compresses carbon dioxide). The compressor 210 is an electric compressor in which a compression mechanism (not shown) that sucks and compresses refrigerant and an electric motor (not shown) that drives the compression mechanism are integrated. Machine.

【0025】220は本実施形態に係る熱交換器を適用
したもので、圧縮機210から吐出する冷媒と給湯水と
を熱交換する水熱交換器(放熱器)であり、水熱交換器
220内では、給湯水流れと冷媒流れとが対向流れとな
っている。なお、水熱交換器220の詳細構造は、後述
する。
Reference numeral 220 denotes a water heat exchanger (radiator) which applies the heat exchanger according to the present embodiment and exchanges heat between the refrigerant discharged from the compressor 210 and hot water. Inside, the flow of hot water and the flow of refrigerant are opposed to each other. The detailed structure of the water heat exchanger 220 will be described later.

【0026】230は水熱交換器220から流出する冷
媒を減圧する電気式膨張弁(減圧器)であり、240
は、電気式膨張弁230(以下、膨張弁230と略
す。)から流出する冷媒を蒸発させて大気中の熱を冷媒
に吸収させるとともに、後述するアキュムレータ250
(圧縮機210の吸入側)に向けて冷媒を流出する蒸発
器である。
Reference numeral 230 denotes an electric expansion valve (decompressor) for reducing the pressure of the refrigerant flowing out of the water heat exchanger 220.
Evaporates refrigerant flowing out of an electric expansion valve 230 (hereinafter, abbreviated as expansion valve 230) to absorb heat in the atmosphere into the refrigerant, and to accumulate the accumulator 250 described later.
This is an evaporator that discharges the refrigerant toward (the suction side of the compressor 210).

【0027】250は、蒸発器240から流出する冷媒
を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機2
10の吸入側に流出するとともに、ヒートポンプ200
中の余剰冷媒を蓄えるアキュムレータである。
The reference numeral 250 designates a compressor which separates the refrigerant flowing out of the evaporator 240 into a gas-phase refrigerant and a liquid-phase refrigerant and
10 and the heat pump 200
It is an accumulator that stores excess refrigerant inside.

【0028】260は蒸発器240に空気(外気)を送
風するとともにその送風量を調節することができる送風
機(送風量調節手段)であり、この送風機260、圧縮
機210及び膨張弁230は、後述する各センサの検出
信号に基づいて電子制御装置(ECU)270により制
御されている。
Reference numeral 260 denotes a blower (blowing air amount adjusting means) which blows air (outside air) to the evaporator 240 and can adjust the blowing amount. The blower 260, the compressor 210 and the expansion valve 230 are described later. Is controlled by an electronic control unit (ECU) 270 based on the detection signals of the respective sensors.

【0029】そして、271は水熱交換器220から流
出する冷媒の温度を検出する冷媒温度センサ(冷媒温度
検出手段)であり、272は水熱交換器に流入する給湯
水の温度を検出する第1温水温度センサ(第1温水温度
検出手段)である。
Reference numeral 271 denotes a refrigerant temperature sensor (refrigerant temperature detecting means) for detecting the temperature of the refrigerant flowing out of the water heat exchanger 220. Reference numeral 272 denotes a refrigerant temperature sensor for detecting the temperature of hot water flowing into the water heat exchanger. It is a first hot water temperature sensor (first hot water temperature detecting means).

【0030】273は水熱交換器220から流出する冷
媒の圧力(高圧側の冷媒圧力)を検出する冷媒圧力セン
サ(冷媒圧力検出手段)であり、274は水熱交換器2
20から流出する給湯水の温度を検出する第2温水温度
センサ(第2温水温度検出手段)である。そして、各セ
ンサ271〜274の検出信号は、ECU270に入力
されている。
Reference numeral 273 denotes a refrigerant pressure sensor (refrigerant pressure detecting means) for detecting the pressure of the refrigerant flowing out of the water heat exchanger 220 (the refrigerant pressure on the high pressure side).
It is a second hot water temperature sensor (second hot water temperature detecting means) for detecting the temperature of hot water flowing out of the water heater 20. The detection signals of the sensors 271 to 274 are input to the ECU 270.

【0031】ここで、高圧側の冷媒圧力とは、圧縮機2
10の吐出側から膨張弁230の流入側に至る冷媒通路
に存在する冷媒の圧力を言い、その圧力は、圧縮機21
0の吐出圧(水熱交換器220の内圧)に略等しい。一
方、低圧側の冷媒圧力とは、膨張弁230の流出側から
圧縮機210の吸入側に至る冷媒通路に存在する冷媒の
圧力を言い、その圧力は、圧縮機210の吸入圧(蒸発
器240の内圧)に略等しい。
Here, the refrigerant pressure on the high pressure side refers to the compressor 2
10 means the pressure of the refrigerant present in the refrigerant passage from the discharge side of the expansion valve 230 to the inflow side of the expansion valve 230.
It is substantially equal to 0 discharge pressure (the internal pressure of the water heat exchanger 220). On the other hand, the refrigerant pressure on the low pressure side refers to the pressure of the refrigerant existing in the refrigerant passage from the outlet side of the expansion valve 230 to the suction side of the compressor 210, and the pressure is the suction pressure of the compressor 210 (evaporator 240 Internal pressure).

【0032】また、400は、水熱交換器220に給湯
水を供給する(循環させる)と共に、その給湯水量を調
節する電動ウォータポンプ(以下、ポンプと略す。)で
あり、410は水道管(図示せず)から給水される水道
水が水熱交換器220に流入することを防止する閉止弁
である。そして、ポンプ400及び閉止弁410もEC
U270により制御されている。
Reference numeral 400 denotes an electric water pump (hereinafter abbreviated as a pump) for supplying (circulating) hot water to the water heat exchanger 220 and adjusting the amount of hot water. This is a shut-off valve for preventing tap water supplied from a not-shown) from flowing into the water heat exchanger 220. The pump 400 and the shut-off valve 410 are also EC
It is controlled by U270.

【0033】次に、水熱交換器220について述べる。Next, the water heat exchanger 220 will be described.

【0034】水熱交換器220は、図3に示すように、
給湯水(水)が流通する銅製の水チューブ(第2チュー
ブ)221と、給湯水と熱交換する(給湯水を加熱す
る)冷媒が流通する冷媒チューブ(第1チューブ)22
2とからなるもので、水チューブ221は、図4に示す
ように、冷媒チューブ222と同軸状に冷媒チューブ2
22の外側に配置されている。
The water heat exchanger 220 is, as shown in FIG.
Copper water tube (second tube) 221 through which hot water (water) flows, and refrigerant tube (first tube) 22 through which a refrigerant that exchanges heat with hot water (heats hot water) flows
The water tube 221 is formed coaxially with the refrigerant tube 222 as shown in FIG.
22 is arranged outside.

【0035】ところで、冷媒チューブ222内を流通す
る冷媒は、冷媒チューブ222内を直接に流通するので
はなく、冷媒チューブ222内に収納された多数本の微
細チューブ223内を流通することにより間接的に冷媒
チューブ222内を流通する。なお、冷媒チューブ22
2及び微細チューブ223は、互いに密着した(熱的に
接触した)状態で配置されている。
By the way, the refrigerant flowing through the refrigerant tube 222 does not flow directly through the refrigerant tube 222, but flows indirectly through the many fine tubes 223 housed in the refrigerant tube 222. Flows through the refrigerant tube 222. The refrigerant tube 22
2 and the fine tube 223 are arranged in a state where they are in close contact with each other (thermally contact).

【0036】ここで、微細チューブ223とは、水チュ
ーブ221及び冷媒チューブ222に比べて十分に断面
積が小さいもので、具体的には、内径相当寸法が0.2
mm以上、1mm以下(本実施形態では、0.5mm)
のチューブを言う。なお、内径相当直径とは、通路面積
を円に換算したときの直径寸法を言い、本実施形態のご
とく、円形断面を有するチューブにおいては、その内径
直径が内径相当直径と一致する。
Here, the fine tube 223 has a sufficiently small cross-sectional area as compared with the water tube 221 and the refrigerant tube 222, and more specifically, has a size equivalent to an inner diameter of 0.2.
mm or more and 1 mm or less (0.5 mm in this embodiment)
Say tube. The equivalent inner diameter refers to a diameter when the passage area is converted into a circle. As in the present embodiment, in a tube having a circular cross section, the inner diameter is equal to the equivalent inner diameter.

【0037】因みに、本実施形態に係る冷媒チューブ2
22は、給湯水に接触する銅製の第1冷媒チューブ22
2a、及び微細チューブ223と接触する銅製の第2冷
媒チューブ222bからなる二重構造を有しており、第
1冷媒チューブ222aの内壁に長手方向に延びる溝部
を形成することにより第1、第2冷媒チューブ222
a、222b間に微細チューブ223から漏れ出した冷
媒を水熱交換器220外に導く漏れ検知用通路222c
が設けられている。
Incidentally, the refrigerant tube 2 according to the present embodiment
22 is a first refrigerant tube 22 made of copper which comes into contact with hot water
2a and a second refrigerant tube 222b made of copper in contact with the fine tube 223. The first and second refrigerant tubes 222a are formed by forming a groove extending in the longitudinal direction on the inner wall thereof. Refrigerant tube 222
a, a leakage detection passage 222c that guides the refrigerant leaked from the fine tube 223 between the a and 222b to the outside of the water heat exchanger 220.
Is provided.

【0038】この漏れ検知用通路222cは、微細チュ
ーブ223から漏れ出した冷媒に含まれる冷凍機油(圧
縮機210の潤滑油)が給湯水に混合してしまうことを
防止するもので、漏れ検知用通路222cの下流側(下
端側)には、漏れ出した冷媒(潤滑油)を検出する漏れ
センサ(図示せず。)が配設されている。
The leak detecting passage 222c prevents the refrigerating machine oil (lubricating oil of the compressor 210) contained in the refrigerant leaked from the fine tube 223 from mixing with the hot water. A leak sensor (not shown) for detecting the leaked refrigerant (lubricating oil) is provided downstream (lower end) of the passage 222c.

【0039】そして、漏れセンサにより冷媒(潤滑油)
を検出したときには、冷媒側の回路を大気開放状態にし
て冷媒を安全に放出させる。
Then, the refrigerant (lubricating oil) is detected by the leak sensor.
Is detected, the refrigerant side circuit is opened to the atmosphere to release the refrigerant safely.

【0040】次に、本実施形態の特徴を述べる。Next, the features of this embodiment will be described.

【0041】本実施形態によれば、多数本の微細チュー
ブ223内に冷媒を流通させることにより、冷媒と給湯
水とを熱交換しているので、微細チューブ223内を流
通する冷媒の流速が上昇して、冷媒と微細チューブ22
3との間の熱伝達率が増大するとともに、冷媒と微細チ
ューブ223との伝熱面積(接触面積)が増大する。
According to this embodiment, since the refrigerant and the hot water are heat-exchanged by circulating the refrigerant through the many fine tubes 223, the flow velocity of the refrigerant flowing through the fine tubes 223 increases. Then, the refrigerant and the fine tube 22
3 and the heat transfer area (contact area) between the refrigerant and the fine tube 223 increases.

【0042】したがって、単純な二重円筒式の熱交換器
に比べて、熱伝達率及び伝熱面積(接触面積)を大幅に
増大させることが可能となるので、従来手段に比べて、
大幅な熱交換効率の向上を図ることが可能となる。
Therefore, the heat transfer coefficient and the heat transfer area (contact area) can be greatly increased as compared with a simple double-cylindrical heat exchanger.
It is possible to significantly improve the heat exchange efficiency.

【0043】ところで、図5は熱交換性能と微細チュー
ブ223の直径との関係を示す試験結果である。そし
て、図5から明らかなように、直径0.2mmにて熱交
換性能が最大となり、0.2mmを頂点として熱交換性
能が低下する。そこで、本実施形態では、微細チューブ
223内に異物が詰まってしまうことを考慮して、相当
直径を0.2mm(望ましくは、0.5mm)以上とし
ている。
FIG. 5 is a test result showing the relationship between the heat exchange performance and the diameter of the fine tube 223. Then, as is clear from FIG. 5, the heat exchange performance is maximized when the diameter is 0.2 mm, and the heat exchange performance decreases at the peak of 0.2 mm. Therefore, in the present embodiment, the equivalent diameter is set to 0.2 mm (preferably, 0.5 mm) or more in consideration of foreign matter clogging the fine tube 223.

【0044】ところで、微細チューブ223内には超臨
界状態の冷媒が流通しており、超臨界状態では、冷媒の
密度が高く冷媒の流動性が低いので、臨界圧力未満状態
に比べて、冷媒と微細チューブ223との間の熱伝達率
が小さくなってしまう。
By the way, a refrigerant in a supercritical state is circulating in the fine tube 223. In the supercritical state, the density of the refrigerant is high and the fluidity of the refrigerant is low. The heat transfer coefficient with the fine tube 223 is reduced.

【0045】これに対して、本実施形態では、前述のご
とく、超臨界状態の冷媒を微細チューブ223に流通さ
せることにより、熱伝達率及び伝熱面積(接触面積)の
増大を図っているので、超臨界ヒートポンプサイクルの
高圧側の熱交換器(本実施形態では、水熱交換器22
0)に用いて有効である。
On the other hand, in the present embodiment, as described above, the heat transfer coefficient and the heat transfer area (contact area) are increased by flowing the supercritical refrigerant through the fine tube 223. , The heat exchanger on the high pressure side of the supercritical heat pump cycle (in this embodiment, the water heat exchanger 22
0) is effective.

【0046】また、微細チューブ223の相当直径は、
0.2mm以上、1mm以下の小さいので、超臨界状態
の高圧冷媒を微細チューブ223に流通させても、微細
チューブ223に発生する応力を小さくすることができ
る。したがって、水熱交換器220の耐圧性を向上させ
ることができるので、水熱交換器220(給湯器10
0)の耐久性を向上させることができる。
The equivalent diameter of the fine tube 223 is
Since the pressure is 0.2 mm or more and 1 mm or less, the stress generated in the fine tube 223 can be reduced even when the supercritical high-pressure refrigerant flows through the fine tube 223. Therefore, since the pressure resistance of the water heat exchanger 220 can be improved, the water heat exchanger 220 (water heater 10
0) The durability can be improved.

【0047】(第2実施形態)第1実施形態では、冷媒
の流通路の外側に給湯水を流通させたが、本実施形態
は、図6に示すように、冷媒の流通路の内側に給湯水を
流通させたものである。
(Second Embodiment) In the first embodiment, hot water is circulated outside the refrigerant flow passage. However, in this embodiment, as shown in FIG. 6, hot water is supplied inside the refrigerant flow passage. It is made by circulating water.

【0048】(第3実施形態)上述の実施形態では、冷
媒が流通する部位と給湯水が流通する部位とを2つの部
位に区分したが、本実施形態は、図7、8に示すよう
に、3つ以上の部位に区分して冷媒及び給湯水を流通さ
せるようにしたものである。
(Third Embodiment) In the above-described embodiment, the part through which the refrigerant flows and the part through which the hot water flows are divided into two parts. In this embodiment, as shown in FIGS. The refrigerant and the hot water are circulated in three or more parts.

【0049】なお、本実施形態においても、微細チュー
ブ223内に冷媒が流通し、それ以外の区分(図7、8
の白抜きの部分)には、給湯水が流通する。
In this embodiment, the refrigerant circulates through the fine tube 223 and the other sections (FIGS. 7 and 8).
The hot water flows in the white part of ().

【0050】(第4実施形態)上述の実施形態では、第
1、2チューブ221、222及び微細チューブ223
を軸方向が平行となるように略直線状に配置したが、本
実施形態は、図9に示すように、第1、2チューブ22
1、222を互いに重ねるように接触させた状態とし、
その互いに重ねるように接触させたもの224を1本の
チューブと見立てて、図10に示すように、第1、2チ
ューブ221、222を螺旋状に巻いたものである。
(Fourth Embodiment) In the above embodiment, the first and second tubes 221 and 222 and the fine tube 223 are used.
Are arranged in a substantially straight line so that the axial directions are parallel to each other. However, in the present embodiment, as shown in FIG.
1, 222 are brought into contact with each other so as to overlap each other,
The first and second tubes 221 and 222 are spirally wound as shown in FIG. 10 by regarding the one 224 contacted so as to overlap with each other as one tube.

【0051】これにより、水熱交換器220を小型にし
つつ、水熱交換器220の熱交換能力を増大させること
ができる。
Accordingly, the heat exchange capacity of the water heat exchanger 220 can be increased while the water heat exchanger 220 is downsized.

【0052】(第6実施形態)本実施形態は、図11に
示すように、第1チューブ221の外壁周りに微細チュ
ーブ223を巻き付けたものである。
(Sixth Embodiment) In this embodiment, as shown in FIG. 11, a fine tube 223 is wound around the outer wall of a first tube 221.

【0053】なお、225a、225bは微細チューブ
223の長手方向端部に連結されて各微細チューブ22
3と連通するヘッダタンクであり、ヘッダタンク225
aは冷媒を各微細チューブ223に分配供給するもので
あり、ヘッダタンク225bは熱交換を終えた冷媒を集
合回収するものである。
Each of the micro tubes 225a and 225b is connected to an end of the micro tube 223 in the longitudinal direction.
3 and a header tank 225.
“a” distributes and supplies the refrigerant to each fine tube 223, and the header tank 225b collects and collects the refrigerant that has finished heat exchange.

【0054】そして、ヘッダタンク225a、225b
はセパレータ(図示せず。)により複数個の空間に仕切
られており、給湯水を図11のaの向きから第1チュー
ブ221に流入させ、冷媒を図11のbの向きからヘッ
ダタンク225aに流入させることにより、給湯水流れ
と冷媒流れとを直交対向流として熱交換効率の向上を図
っている。
Then, the header tanks 225a and 225b
Are separated into a plurality of spaces by a separator (not shown), hot water flows into the first tube 221 from the direction of FIG. 11A, and refrigerant flows into the header tank 225a from the direction of FIG. 11B. By flowing the hot water flow and the refrigerant flow, the heat exchange efficiency is improved by making the flow of the hot water flow orthogonal to the flow of the refrigerant.

【0055】因みに、本実施形態では、微細チューブ2
23は、1本づつ独立したものであったが、本実施形態
はこれに限定されるものではなく、車両用空調装置のコ
ンデンサに用いられる多穴チューブのごとく、多数穴の
押し出しチューブとして多数本の微細チューブ223を
一体化しもよい。
Incidentally, in this embodiment, the fine tube 2
23 are independent one by one, but the present embodiment is not limited to this, and a large number of extruded tubes such as a multi-hole tube used for a condenser of a vehicle air conditioner are used. May be integrated.

【0056】(その他の実施形態)上述の実施形態で
は、微細チューブ223内を冷媒が流通していたが、こ
れとは逆に、微細チューブ223内に給湯水を流しても
よい。
(Other Embodiments) In the above-described embodiment, the refrigerant flows through the fine tube 223. On the contrary, hot water may flow through the fine tube 223.

【0057】また、図12に示すように、第1チューブ
221内にも微細チューブ223を配置して、この微細
チューブ223内に給湯水等を流してもよい。
As shown in FIG. 12, a fine tube 223 may be disposed in the first tube 221 and hot water or the like may be flowed into the fine tube 223.

【0058】上述の実施形態では、ヒートポンプ式給湯
器の水熱交換器に本発明を適用したが、本発明はこれに
限定されるものではなく、その他の用途にも適用するこ
とができる。因みに、図12に示すようなタイプの熱交
換器は、高圧側の冷媒(減圧される前の冷媒)と圧縮機
に吸入される吸入冷媒とを熱交換する、いわゆる内部熱
交換器に適用して有効である。
In the above-described embodiment, the present invention is applied to the water heat exchanger of the heat pump water heater, but the present invention is not limited to this, and can be applied to other uses. Incidentally, a heat exchanger of the type shown in FIG. 12 is applied to a so-called internal heat exchanger that exchanges heat between a high-pressure side refrigerant (a refrigerant before being decompressed) and a refrigerant sucked into a compressor. Effective.

【0059】また、上述の実施形態では、銅にて第1、
2チューブ221、222及び微細チューブ223を構
成したが、本発明はこれに限定されるものではなく、ア
ルミニウム合金、鉄、ステンレス等のその他の材質にて
構成してもよい。
Further, in the above embodiment, the first,
Although the two tubes 221 and 222 and the fine tube 223 are configured, the present invention is not limited to this, and may be formed of other materials such as an aluminum alloy, iron, and stainless steel.

【0060】また、上述の実施形態では、冷媒チューブ
222を二重構造として漏れ検知用通路222cを設け
たが、本発明はこれに限定されるものではなく、冷媒チ
ューブ222を単構造として、冷媒チューブ222内の
空間ののものを漏れ検知用通路222cとしてもよい。
また、漏れ検知用通路222cを廃止してもよい。
Further, in the above-described embodiment, the refrigerant tube 222 has a double structure and the leak detection passage 222c is provided. However, the present invention is not limited to this. The space inside the tube 222 may be used as the leak detection passage 222c.
Further, the leakage detection passage 222c may be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る給湯器の外観図で
ある。
FIG. 1 is an external view of a water heater according to a first embodiment of the present invention.

【図2】本発明の第1実施形態に係る給湯器の模式図で
ある。
FIG. 2 is a schematic diagram of a water heater according to the first embodiment of the present invention.

【図3】本発明の第1実施形態に係る水熱交換器の外観
図である。
FIG. 3 is an external view of the water heat exchanger according to the first embodiment of the present invention.

【図4】図3のA−A断面図である。FIG. 4 is a sectional view taken along line AA of FIG. 3;

【図5】本発明の第1実施形態に係る水熱交換器におけ
る微細チューブの直径と熱交換性能との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a diameter of a fine tube and heat exchange performance in the water heat exchanger according to the first embodiment of the present invention.

【図6】本発明の第2実施形態に係る水熱交換器の断面
図である。
FIG. 6 is a sectional view of a water heat exchanger according to a second embodiment of the present invention.

【図7】本発明の第3実施形態に係る水熱交換器の断面
図である。
FIG. 7 is a sectional view of a water heat exchanger according to a third embodiment of the present invention.

【図8】本発明の第3実施形態に係る水熱交換器の断面
図である。
FIG. 8 is a sectional view of a water heat exchanger according to a third embodiment of the present invention.

【図9】本発明の第4実施形態に係る水熱交換器の断面
図である。
FIG. 9 is a sectional view of a water heat exchanger according to a fourth embodiment of the present invention.

【図10】本発明の第4実施形態に係る水熱交換器の外
観図である。
FIG. 10 is an external view of a water heat exchanger according to a fourth embodiment of the present invention.

【図11】本発明の第4実施形態に係る水熱交換器の斜
視図である。
FIG. 11 is a perspective view of a water heat exchanger according to a fourth embodiment of the present invention.

【図12】本発明のその他の実施形態に係る水熱交換器
の断面図である。
FIG. 12 is a cross-sectional view of a water heat exchanger according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

221…水チューブ(第2チューブ)、222…冷媒チ
ューブ(第1チューブ)、223…微細チューブ。
221: water tube (second tube), 222: refrigerant tube (first tube), 223: fine tube.

フロントページの続き (72)発明者 沖ノ谷 剛 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3L103 AA36 BB43 CC02 CC40 DD05 DD09 DD38 Continued on the front page (72) Inventor Takeshi Okinoya 1-1-1 Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (Reference) 3L103 AA36 BB43 CC02 CC40 DD05 DD09 DD38

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1流体が流通するとともに、内径相当
寸法が略0.2mm以上、1mm以下の多数本の第1チ
ューブ(223)と、 前記第1流体と熱交換する第2流体が流通する第2チュ
ーブ(221)とを有し、 前記両チューブ(223、221)は、互いに熱交換可
能な位置に配設されていることを特徴とする熱交換器。
1. A first fluid circulates, and a large number of first tubes (223) having an inner diameter equivalent size of approximately 0.2 mm or more and 1 mm or less, and a second fluid that exchanges heat with the first fluid circulates. A heat exchanger, comprising: a second tube (221) that performs heat exchange between the two tubes (223, 221).
【請求項2】 第1流体が流通するとともに、内径相当
寸法が略0.2mm以上、1mm以下の多数本の微細チ
ューブ(223)と、 内部に前記微細チューブ(223)が収納された第1チ
ューブ(223)と、 前記第1流体と熱交換する第2流体が流通するととも
に、前記第1チューブ(222)に対して同軸状に配置
された第2チューブ(221)とを有することを特徴と
する熱交換器。
2. A plurality of fine tubes (223) having an inner diameter equivalent size of about 0.2 mm or more and 1 mm or less while a first fluid circulates, and a first tube containing the fine tubes (223) therein. It has a tube (223) and a second tube (221) that is arranged coaxially with the first tube (222) while a second fluid that exchanges heat with the first fluid flows. And heat exchanger.
【請求項3】 第1流体が流通するとともに、内径相当
寸法が略0.2mm以上、1mm以下の多数本の微細チ
ューブ(223)と、 内部に前記微細チューブ(223)が収納された第1チ
ューブ(222)と、 前記第1流体と熱交換する第2流体が流通する第2チュ
ーブ(221)とを有し、 前記第1、2チューブ(222、221)は、互いに接
触した状態で螺旋状に巻かれていることを特徴とする熱
交換器。
3. A plurality of fine tubes (223) having an inner diameter equivalent dimension of about 0.2 mm or more and 1 mm or less while a first fluid flows therein, and a first tube containing the fine tubes (223) therein. A tube (222), and a second tube (221) through which a second fluid that exchanges heat with the first fluid flows, wherein the first and second tubes (222, 221) spiral while contacting each other. A heat exchanger characterized by being wound in a shape.
【請求項4】 第1流体が流通するとともに、内径相当
寸法が略0.2mm以上、1mm以下の多数本の第1チ
ューブ(223)と、 前記第1流体と熱交換する第2流体が流通する第2チュ
ーブ(221)とを有し、 前記第1チューブ(223)が前記第2チューブ(22
1)の外壁に巻かれていることを特徴とする熱交換器。
4. The first fluid flows, and a large number of first tubes (223) having an inner diameter equivalent dimension of about 0.2 mm or more and 1 mm or less, and a second fluid that exchanges heat with the first fluid flows. And a second tube (221) that performs the second tube (22).
A heat exchanger wound around the outer wall of 1).
JP2000316808A 2000-10-17 2000-10-17 Heat exchanger Withdrawn JP2002122390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316808A JP2002122390A (en) 2000-10-17 2000-10-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316808A JP2002122390A (en) 2000-10-17 2000-10-17 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2002122390A true JP2002122390A (en) 2002-04-26

Family

ID=18795703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316808A Withdrawn JP2002122390A (en) 2000-10-17 2000-10-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2002122390A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2007183062A (en) * 2006-01-10 2007-07-19 Sanden Corp Heat exchanger
WO2008061726A2 (en) * 2006-11-21 2008-05-29 Eugster/Frismag Ag Heat exchanger for cooling or heating a fluid, coolant circuit and method for cooling or heating a working fluid or a heat exchanger
CN104515328A (en) * 2013-09-26 2015-04-15 荏原冷热系统株式会社 Condenser for compression refrigerating machine
WO2019076144A1 (en) * 2017-10-20 2019-04-25 韦春东 Sleeve-type heat pump capable of changing direction of working medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2007183062A (en) * 2006-01-10 2007-07-19 Sanden Corp Heat exchanger
WO2008061726A2 (en) * 2006-11-21 2008-05-29 Eugster/Frismag Ag Heat exchanger for cooling or heating a fluid, coolant circuit and method for cooling or heating a working fluid or a heat exchanger
WO2008061726A3 (en) * 2006-11-21 2009-01-15 Eugster Frismag Ag Heat exchanger for cooling or heating a fluid, coolant circuit and method for cooling or heating a working fluid or a heat exchanger
CN104515328A (en) * 2013-09-26 2015-04-15 荏原冷热系统株式会社 Condenser for compression refrigerating machine
WO2019076144A1 (en) * 2017-10-20 2019-04-25 韦春东 Sleeve-type heat pump capable of changing direction of working medium

Similar Documents

Publication Publication Date Title
KR101091063B1 (en) Internal heat exchanger assembly
JP4055449B2 (en) Heat exchanger and air conditioner using the same
JP4311115B2 (en) Air conditioner
US6932153B2 (en) Heat exchanger
JP6639729B2 (en) Internal heat exchanger double tube structure of air conditioning system using alternative refrigerant
JP6639697B2 (en) Heat exchanger with water chamber
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
CN101655295A (en) Refrigerant heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP5812997B2 (en) Condenser with refrigeration cycle and supercooling section
JP2003028582A (en) Heat exchanger
JP2007255785A (en) Heat exchanger with fin and air conditioner
KR100704015B1 (en) Water cooling type refrigeration system
JP2005049049A (en) Heat exchanger
JP2007071426A (en) Heat pump type water heater and heat exchanger used in the same
JP2002122390A (en) Heat exchanger
JP2001099522A (en) Radiator for supercritical vapor compressing type freezing cycle
JP2003042597A (en) Integrated heat exchanger
JPH064221Y2 (en) Heat exchanger
CN207842599U (en) A kind of automotive air-conditioning system and its coaxial heat exchanger
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
KR101797177B1 (en) Double pipe heat exchanger method of maufacturing and the double pipe
JP4702411B2 (en) Evaporator
JP2005009808A (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108