JP2015063669A - Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same - Google Patents

Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same Download PDF

Info

Publication number
JP2015063669A
JP2015063669A JP2014171663A JP2014171663A JP2015063669A JP 2015063669 A JP2015063669 A JP 2015063669A JP 2014171663 A JP2014171663 A JP 2014171663A JP 2014171663 A JP2014171663 A JP 2014171663A JP 2015063669 A JP2015063669 A JP 2015063669A
Authority
JP
Japan
Prior art keywords
ground excavation
composition
injection material
ground
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014171663A
Other languages
Japanese (ja)
Inventor
義正 近藤
Yoshimasa Kondo
義正 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAGUMA KK
Maguma Co Ltd
Original Assignee
MAGUMA KK
Maguma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAGUMA KK, Maguma Co Ltd filed Critical MAGUMA KK
Priority to JP2014171663A priority Critical patent/JP2015063669A/en
Publication of JP2015063669A publication Critical patent/JP2015063669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition for foundation digging/pouring material, in an original position mixing/stirring process and a soil pressure shield process, imparting a function of enabling a safe and smooth operation by mixing with digging earth upon digging, and the original position mixing/stirring process and the soil pressure shield process increasing the durability of bubbles to de-bubbling when the composition for the foundation digging/pouring material is bubbled and using the same as the foundation digging/pouring material.SOLUTION: Provided is a composition for a foundation digging/pouring material mixed with water, a dispersion liquid of a high water absorbing polymer swelled by being absorbed with the water and an air bubble agent. The high water absorbing polymer is at least one kind selected from starch series, cellulose series and synthetic polymer series and has a cross-linking structure where the water is not released by pressurization, and the funnel viscosity of the composition is 19 to 60 seconds.

Description

本発明は、地盤を垂直あるいは水平方向に、溝状や円筒状に掘削する工法で使用する地盤掘削注入材用組成物及び地盤掘削注入材並びにこれを用いた施工法に関するものである。   The present invention relates to a composition for ground excavation injection material and a ground excavation injection material used in a method of excavating the ground vertically or horizontally in a groove shape or a cylindrical shape, and a construction method using the same.

ソイルセメント地中連続壁工法や深層地盤改良工法並びに土圧シールド工法においては、地盤を溝状や柱状に、また、掘削方向を垂直方向や水平方向に掘削を行う。これらの工法のうち、ソイルセメント地中連続壁工法や深層地盤改良工法は、掘削土と固化材を原位置で混合固化させることから原位置混合撹拌工法と称される。   In the soil cement underground continuous wall method, deep ground improvement method, and earth pressure shield method, the ground is excavated in the shape of a groove or a column, and the excavation direction is vertical or horizontal. Among these methods, the soil cement underground continuous wall method and the deep ground improvement method are called in-situ mixed agitation methods because the excavated soil and the solidified material are mixed and solidified in-situ.

原位置混合撹拌工法による施工では、掘削土に地盤掘削注入材を添加しつつ掘削を行い、掘削土と地盤掘削注入材の混合土を造成し、この混合土に固化材を添加し混合・混練しソイルセメント壁を構築し、ソイルセメント壁中に芯材を挿入しソイルセメント地中連続壁を構築する。   In the in-situ mixed agitation method, excavation is performed while adding ground excavation injecting material to the excavated soil, a mixed soil of excavated soil and ground excavating injecting material is created, and solidified material is added to this mixed soil to mix and knead A soil cement wall is constructed, and a core material is inserted into the soil cement wall to construct a soil cement underground continuous wall.

前記地盤掘削注入材は、掘削土に溝壁の安定性、固化材との混合性や芯材の挿入のための流動性等の、施工を円滑にするための機能を付加するために使用している。しかしながら、地盤掘削注入材を大量に使用すると、注入量に等しい排泥量が発生するため、環境負荷を少なくするためにも、地盤掘削注入材の量は少なく、かつ安価なものを用いることが求められている。   The ground excavation injection material is used to add functions for smooth construction such as the stability of the groove wall, the mixing with the solidified material and the fluidity for inserting the core material into the excavated soil. ing. However, if a large amount of ground excavation injection material is used, the amount of waste mud that is equal to the injection amount is generated. Therefore, in order to reduce the environmental burden, the amount of ground excavation injection material should be small and inexpensive. It has been demanded.

一方、土圧シールド工法においては、切羽部に地盤掘削注入材を添加し、掘削土と地盤掘削注入材を切羽及びチャンバー内で混合・混練し、スクリューコンベアーで排出する。この場合の地盤掘削注入材は、掘削土に切羽の安定性、排泥のための流動性、止水性を付与するために使用している。土圧シールド工法で使用する地盤掘削注入材も環境負荷を低減するために少ない注入量でこれらの機能を満足し、かつ安価なものが求められている。   On the other hand, in the earth pressure shield method, ground excavation injecting material is added to the face, and the excavated soil and ground excavation injecting material are mixed and kneaded in the face and chamber, and discharged by a screw conveyor. The ground excavation injecting material in this case is used for imparting stability of the face, fluidity for mud discharge, and water stoppage to the excavated soil. In order to reduce the environmental load, the ground excavation injection material used in the earth pressure shield method is required to satisfy these functions with a small injection amount and to be inexpensive.

なお、掘削土と地盤掘削注入材を混合・混練した混合土が溝壁や切羽の安定性や施工を行うに十分な流動性等の機能を持っている場合に安定液と称される。   In addition, when the mixed soil obtained by mixing and kneading the excavated soil and the ground excavation injecting material has functions such as stability of the groove wall and face and fluidity sufficient for construction, it is referred to as a stabilizing liquid.

従来、原位置混合撹拌工法においては、地盤掘削注入材としてセメントミルクを使用する事例が多かった。しかしながら、掘削土とセメントミルクの混合土を安定液として使用すると、掘削時に障害物がある場合や掘削深さが深く掘削時間が長くかかる場合等、施工が長時間にわたるとセメントミルクの固化が生じる。さらにセメントミルク混合土は、混合性を良くするためにはセメントミルクの水セメント比を200〜350%と大きくし、セメント体積の約6〜11倍の体積の水を加える必要がある。そのため排泥土量が多くなり、環境負荷が大きくかつ経済的にも問題点があった。   Conventionally, in the in-situ mixing agitation method, there are many cases in which cement milk is used as a ground excavation injection material. However, if mixed soil of excavated soil and cement milk is used as a stabilizing liquid, cement milk will solidify over a long period of time, such as when there are obstacles during excavation or when the excavation depth is deep and it takes a long excavation time. . Further, in order to improve the mixing property of the cement milk mixed soil, it is necessary to increase the water-cement ratio of the cement milk to 200 to 350% and add water having a volume of about 6 to 11 times the cement volume. As a result, the amount of mud soil increased, the environmental load was large, and there were problems with the economy.

これらの問題点を減少させる目的で、本発明者はこれまでに気泡を使用する工法を提案している(例えば、特許文献1、2を参照)。これらの提案の気泡を使用する工法によれば、掘削土の土質に応じて適切な気泡量及び水量を加え混合・混練した気泡混合土は、掘削土、気泡、水の分離が生じない縣濁状態(以下、気泡安定液と称す)となり、この気泡安定液は溝壁の安定性、流動性に優れ、かつ排泥土量も少なくなることから、原位置混合撹拌工法、シールド工法に用いられている。   In order to reduce these problems, the present inventor has so far proposed a method of using bubbles (see, for example, Patent Documents 1 and 2). According to these proposed methods using air bubbles, the air bubbles mixed soil mixed and kneaded with the appropriate amount of air bubbles and water depending on the soil quality of the excavated soil is suspended without causing separation of the excavated soil, air bubbles and water. (Hereinafter referred to as bubble stabilizer), and this bubble stabilizer is excellent in the stability and fluidity of the groove wall, and the amount of mud is reduced, so it is used in the in-situ mixing stirring method and shield method. Yes.

気泡安定液は、非固化性なので、大深度の施工においても時間の制約を受けることなく施工できる長所があり、さらに気泡は掘削土と混合するとベアリング効果により、加える水量を少なくすることができ、さらに添加した気泡は消泡剤により消泡させることができるので、排泥土量はセメントミルクを使用する場合に比較し、土質にもよるが1/2〜1/3に減少し、環境負荷も小さく、経済性も向上する。このように、優れた施工性、環境性、経済性を有することから気泡安定液の使用実績が増大している。   Since the bubble stabilizing liquid is non-solidifying, it has the advantage of being able to be constructed without being restricted by time even in deep construction, and when bubbles are mixed with excavated soil, the amount of water added can be reduced due to the bearing effect, Furthermore, since the added bubbles can be defoamed with an antifoaming agent, the amount of mud soil is reduced to 1/2 to 1/3, depending on the soil quality, compared to the case of using cement milk, and the environmental load is also reduced. Smaller and more economical. Thus, since it has the outstanding workability | operativity, environmental property, and economical efficiency, the use track record of the bubble stabilizer is increasing.

しかしながら、現在使用している気泡は、当初、軽量モルタル等のセメント製品に対し開発されたものであり、種々の物性を持った土に対して開発されたものでない経緯がある。そのため、消泡性等に関しては未だ改良の余地があった。   However, the bubbles currently used are originally developed for cement products such as lightweight mortar, and have not been developed for soils having various physical properties. For this reason, there is still room for improvement in terms of defoaming properties and the like.

通常、コンクリートと混合した気泡の消泡に対する耐久性は数時間であるが、掘削土と混合した気泡は日単位の耐久性が必要である。また、掘削土中の気泡は地下水の流速が早い場合や被圧地下水がある場合等には水に曝されるので、より高い耐消泡性が求められる。   Usually, the durability of the bubbles mixed with concrete against defoaming is several hours, but the bubbles mixed with excavated soil need durability on a daily basis. In addition, since bubbles in excavated soil are exposed to water when the flow rate of groundwater is high or when there is pressurized groundwater, higher defoaming resistance is required.

特許第3725750号公報Japanese Patent No. 3725750 特許第4970547号公報Japanese Patent No. 4970547

本発明は、上記のような背景から原位置混合撹拌工法並びに土圧シールド工法において、掘削時に掘削土と混合し安全に円滑な施工を可能とする機能を付与する地盤掘削注入材用組成物及び、この地盤掘削注入材用組成物を起泡した気泡の、消泡に対する耐久性を高め、これを地盤掘削注入材として使用する原位置混合撹拌工法並びに土圧シールド工法を提供することを課題とする。   In the in-situ mixed stirring method and earth pressure shield method from the background as described above, the present invention provides a composition for ground excavation injecting material that gives a function of mixing with excavated soil during excavation and enabling safe and safe construction, and It is an object of the present invention to provide an in-situ mixed stirring method and an earth pressure shield method for enhancing the durability against defoaming of bubbles generated by foaming the composition for ground excavation injection material, and using this as a ground excavation injection material To do.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、水と、水を吸収して膨潤した高吸水性ポリマーの分散液と、起泡剤が混合されたことを特徴とする地盤掘削注入材用組成物である。   1stly, it is the composition for ground excavation injection materials characterized by mixing water, the dispersion of the superabsorbent polymer swollen by absorbing water, and the foaming agent.

第2に、前記第1の発明の地盤掘削注入材用組成物において、前記地盤掘削注入材用組成物のファンネル粘性が19〜60秒であることが好ましい。   2ndly, in the composition for ground excavation injection material of said 1st invention, it is preferable that the funnel viscosity of the said composition for ground excavation injection material is 19 to 60 seconds.

第3に、前記第1又は第2の発明の地盤掘削注入材用組成物において、前記高吸水性ポリマーがデンプン系、セルロース系及び合成ポリマー系から選ばれる少なくとも一種であることが好ましい。   Thirdly, in the ground excavation injecting composition of the first or second invention, the superabsorbent polymer is preferably at least one selected from starch, cellulose and synthetic polymer.

第4に、前記第1から第3の発明の地盤掘削注入材用組成物において、前記水を吸水して膨潤した高吸水性ポリマーが、加圧により水を放出しない架橋構造の高吸水性ポリマーであることが好ましい。   Fourthly, in the composition for ground excavation injecting material according to the first to third aspects of the invention, the superabsorbent polymer swollen by absorbing water is a superabsorbent polymer having a crosslinked structure in which water is not released by pressurization. It is preferable that

第5に、前記第1から第4の発明の地盤掘削注入材用組成物において、前記水を吸水して膨潤した高吸水性ポリマーの膨潤後の粒径が3mm以下であることが好ましい。   Fifth, in the compositions for ground excavation injection material according to the first to fourth inventions, it is preferable that the particle diameter after swelling of the superabsorbent polymer swollen by absorbing water is 3 mm or less.

第6に、前記第1から第5の発明の地盤掘削注入材用組成物において、前記起泡剤が合成界面活性剤系、樹脂石けん系、加水分解タンパク系から選ばれる少なくとも一種であるであることが好ましい。   Sixth, in the composition for ground excavation injecting material of the first to fifth inventions, the foaming agent is at least one selected from a synthetic surfactant system, a resin soap system, and a hydrolyzed protein system. It is preferable.

第7に、前記第1から第6の発明の地盤掘削注入材用組成物において、前記地盤掘削注入材用組成物に増粘剤が添加されたことが好ましい。   Seventhly, in the composition for ground excavation injection material according to the first to sixth inventions, it is preferable that a thickener is added to the composition for ground excavation injection material.

第8に、前記第1から第7の発明の地盤掘削注入材用組成物において、前記地盤掘削注入材用組成物に安定剤が添加されたことが好ましい。   Eighth, in the composition for ground excavation injection material of the first to seventh inventions, it is preferable that a stabilizer is added to the composition for ground excavation injection material.

第9に、前記第8の発明の地盤掘削注入材用組成物において、前記安定剤が、電解質濃度を低下させることが好ましい。   Ninthly, in the composition for ground excavation injection material according to the eighth aspect of the present invention, it is preferable that the stabilizer decreases the electrolyte concentration.

第10に、前記第8又は第9の発明の地盤掘削注入材用組成物において、前記安定剤が、PH(水素イオン指数濃度)を中性化させる中和剤であることが好ましい。   Tenth, in the composition for ground excavation injection material according to the eighth or ninth invention, the stabilizer is preferably a neutralizing agent that neutralizes PH (hydrogen ion index concentration).

第11に、前記第8から第10の発明の地盤掘削注入材用組成物において、前記安定剤が、ポリアクリルアミド、希硫酸、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ポリビニルアルコール、アクリル酸ナトリウム、ポリエチレンオキシド、炭酸水素塩、炭酸塩から選ばれる少なくとも一種であることが好ましい。   Eleventh, in the composition for ground excavation injecting material according to the eighth to tenth inventions, the stabilizer is polyacrylamide, dilute sulfuric acid, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, polyvinyl alcohol, sodium acrylate , Preferably at least one selected from polyethylene oxide, bicarbonate and carbonate.

第12に、前記第1から第11の発明の地盤掘削注入材用組成物を起泡させたことを特徴とする地盤掘削用注入材である。   12thly, it is the ground excavation injection material characterized by making the composition for ground excavation injection material of the said 1st-11th invention foamed.

第13に、水と、水を吸収し膨潤した高吸水性ポリマーの分散液と、気泡が混合されたことを特徴とする地盤掘削注入材である。   13thly, it is the ground excavation injection material characterized by mixing water, the dispersion liquid of the superabsorbent polymer which absorbed water and swollen, and air bubbles.

第14に、前記第13の発明の地盤掘削注入材において、前記高吸水性ポリマーがデンプン系、セルロース系及び合成ポリマー系から選ばれる少なくとも一種であることが好ましい。   14thly, the ground excavation injection material of said 13th invention WHEREIN: It is preferable that the said super absorbent polymer is at least 1 type chosen from a starch type, a cellulose type, and a synthetic polymer type | system | group.

第15に、前記第13又は第14の発明の地盤掘削注入材において、前記水を吸水して膨潤した高吸水性ポリマーが、加圧により水を放出しない架橋構造の高吸水性ポリマーであることが好ましい。   Fifteenth, in the ground excavation / injection material of the thirteenth or fourteenth aspect, the superabsorbent polymer swollen by absorbing water is a superabsorbent polymer having a crosslinked structure that does not release water by pressurization. Is preferred.

第16に、前記第13から第15の発明の地盤掘削注入材において、前記水を吸水して膨潤した高吸水性ポリマーの膨潤後の粒径が3mm以下であることが好ましい。   Sixteenthly, in the ground excavation injection material of the thirteenth to fifteenth inventions, it is preferable that the particle diameter after swelling of the superabsorbent polymer swollen by absorbing water is 3 mm or less.

第17に、前記第12の発明の地盤掘削注入材と、前記第13から第16の発明の地盤掘削注入材を混合したことを特徴とする地盤掘削注入材である。   Seventeenth, there is provided a ground excavation injection material, wherein the ground excavation injection material of the twelfth invention and the ground excavation injection material of the thirteenth to sixteenth inventions are mixed.

第18に、前記第12から第17の発明の地盤掘削注入材を掘削土に添加・混練した混合体に、固化材又は固化材と消泡剤を添加・混練し、原位置混合撹拌工法によるソイルセメント地中連続壁又は柱状地盤改良杭を構築することを特徴とする施工法である。   Eighteenth, by adding and kneading a solidifying material or a solidifying material and an antifoaming agent to a mixture obtained by adding and kneading the ground excavating injection material according to the twelfth to seventeenth aspects of the present invention to excavated soil, an in-situ mixed stirring method It is a construction method characterized by building soil cement underground continuous walls or columnar ground improvement piles.

第19に、前記第12から第17の発明の地盤掘削注入材を、シールド掘進機の切羽に注入し掘削土と混練し、切羽部の安定を保ち、排泥を容易にすることを特徴とする施工法である。   Nineteenth, the ground excavation injecting material of the twelfth to seventeenth aspects of the invention is injected into the face of a shield machine and kneaded with excavated soil, maintaining the stability of the face and facilitating drainage. It is a construction method to do.

本発明によれば、原位置混合撹拌工法並びに土圧シールド工法において、掘削時に掘削土と混合し安全に円滑な施工を可能とする機能を付与する地盤掘削注入材用組成物及び、この地盤掘削注入材用組成物を起泡した気泡の、消泡に対する耐久性を高め、これを地盤掘削注入材として使用する原位置混合撹拌工法並びに土圧シールド工法を提供することができる。   According to the present invention, in the in-situ mixing agitation method and earth pressure shield method, a composition for ground excavation injecting material which gives a function of mixing with excavated soil during excavation and enabling a safe and smooth construction, and the ground excavation It is possible to provide an in-situ mixed stirring method and an earth pressure shield method in which durability against defoaming of bubbles generated from the composition for injecting material is increased, and this is used as a ground excavation injecting material.

膨潤ポリマー分散液濃度と膨潤ポリマー分散液と起泡剤の混合液のファンネル粘性の関係を示すグラフである。It is a graph which shows the relationship of the swelling polymer dispersion liquid concentration and the funnel viscosity of the liquid mixture of a swelling polymer dispersion liquid and a foaming agent. 膨潤ポリマー分散液の濃度と、ポリマー気泡の粘性(ポリマー気泡を含む混合液の粘性)の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of a swelling polymer dispersion, and the viscosity of a polymer bubble (viscosity of the liquid mixture containing a polymer bubble). ポリマー気泡の粘性に及ぼす膨潤ポリマー分散液の濃度と起泡剤の希釈倍率の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the swelling polymer dispersion which influences the viscosity of a polymer bubble, and the dilution rate of a foaming agent. 膨潤ポリマー分散液の濃度と、ポリマー気泡の消泡率の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of a swelling polymer dispersion, and the defoaming rate of a polymer bubble. 膨潤ポリマー分散液の濃度と、ベーンせん断強度の関係を示すグラフである。It is a graph which shows the density | concentration of a swelling polymer dispersion, and the relationship between vane shear strength. 気泡安定液の体積変化率に及ぼすポリマー気泡の添加量と加圧力の関係を示すグラフである。It is a graph which shows the relationship between the addition amount of a polymer bubble and the applied pressure which affect the volume change rate of a bubble stabilizer. ポリマー気泡と膨潤ポリマー分散液の重量混合比率による粘性の変化の関係を示すグラフである。It is a graph which shows the relationship of the change of the viscosity by the weight mixing ratio of a polymer bubble and a swelling polymer dispersion liquid. 時間の経過に対するポリマー気泡混合体の気泡の消泡率の関係を示すグラフである。It is a graph which shows the relationship of the defoaming rate of the bubble of a polymer bubble mixture with progress of time.

本発明の地盤掘削注入材用組成物は、水と、水を吸収して膨潤した高吸水性ポリマーの分散液(以下、膨潤ポリマー分散液という)と、起泡剤を混合してなるものである。そして、使用に際しては、これらを混合した混合液を起泡させた気泡(以下、ポリマー気泡という)を地盤掘削注入材として使用する。   The composition for ground excavation injection material according to the present invention is a mixture of water, a superabsorbent polymer dispersion (hereinafter referred to as a swollen polymer dispersion) swollen by absorbing water, and a foaming agent. is there. And in use, the bubble (henceforth a polymer bubble) which foamed the liquid mixture which mixed these is used as a ground excavation injection material.

本発明の地盤掘削注入材用組成物は、通常、地表面から大深度の間で使用するので、例えば、100m下の大深度での安定液圧下においても水の離水量が少なく変形しにくい架橋構造を持った高吸水性ポリマー粒子の選定が必要であり、かつ、逸泥の生じやすい土層の土粒子間の間隙を目詰するために、膨潤後の粒径は3mm以下の粒度分布のものが望ましい。   Since the composition for ground excavation injection material of the present invention is usually used from the ground surface to a large depth, for example, the amount of water separation is small even under a stable hydraulic pressure at a large depth of 100 m, and the bridge is not easily deformed. It is necessary to select superabsorbent polymer particles having a structure, and in order to clog the gaps between soil particles in the soil layer where mud is likely to occur, the particle size after swelling has a particle size distribution of 3 mm or less. Things are desirable.

本発明で用いる高吸水性ポリマーとしては、上記の条件を満足する高吸水性ポリマーであれば特に制限なく用いることができるが、アクリル酸ナトリウム高吸水性ポリマー粒子を好適に用いることができ、特にシェルとコアの二重構造のアクリル酸ナトリウム高吸水性ポリマー粒子を上記の条件に調整したものを好適に用いることができる。   As the superabsorbent polymer used in the present invention, any superabsorbent polymer that satisfies the above-mentioned conditions can be used without particular limitation, but sodium acrylate superabsorbent polymer particles can be suitably used. What adjusted the sodium acrylate superabsorbent polymer particle of the double structure of a shell and a core to said conditions can be used suitably.

上記の高吸水性ポリマー粒子は、架橋構造を持つ親水性の高吸水性ポリマーであって、自重の10倍以上の吸水性を有し、圧力をかけても離水しにくいものであり、吸水量はJIS K 7223で定義づけられるものである。   The above superabsorbent polymer particles are hydrophilic superabsorbent polymers having a cross-linked structure, have a water absorption of 10 times or more of their own weight, and are difficult to separate even under pressure. Is defined in JIS K 7223.

本発明で用いられる高吸水性ポリマー粒子の種類は、圧力による離水が少なく、膨潤後の粒径が3mm以下であれば特に制限なく用いることができ、例えば、デンプン系、セルロース系、合成ポリマー系の高吸収性ポリマーを挙げることができる。これらの中でも合成ポリマー系のアクリル酸ナトリウム高吸水性ポリマー粒子は性能とコストの両面で特に好適に用いることができる。   The type of superabsorbent polymer particles used in the present invention can be used without particular limitation as long as the water separation due to pressure is small and the particle size after swelling is 3 mm or less. For example, starch-based, cellulose-based, synthetic polymer-based Can be mentioned. Among these, synthetic polymer-based sodium acrylate superabsorbent polymer particles can be particularly preferably used in terms of both performance and cost.

アクリル酸ナトリウム高吸水性ポリマー粒子は、アクリル酸ナトリウム(CH=CH-COONa)に架橋剤を加えて軽度に架橋させた3次元網目構造を持ったアクリル酸重合体部分ナトリウム塩架橋物のゲルである。架橋剤の種類は種々なものがある。 Sodium acrylate superabsorbent polymer particles are a gel of acrylic acid polymer partial sodium salt cross-linked product having a three-dimensional network structure that is lightly cross-linked by adding a cross-linking agent to sodium acrylate (CH 2 = CH-COONa). It is. There are various types of crosslinking agents.

このアクリル酸ナトリウム高吸水性ポリマー粒子は、水を吸収するとカルボキシル基がゲル中にナトリウムイオンを解離し、純水ならば自重の100〜1000倍にも達する膨潤度を生み出すことが知られている。   It is known that the sodium acrylate superabsorbent polymer particles, when absorbing water, dissociate sodium ions into the gel when it absorbs water, and if pure water produces a degree of swelling that is 100 to 1000 times its own weight. .

また、アクリル酸ナトリウム高吸水性ポリマー粒子の吸水量は、アクリル酸ナトリウムに対して架橋剤を多く配合するとゲルは硬くなり吸水量は少なくなる。また、架橋剤の配合を少なくするとゲルは柔らかくなり吸水量は多くなる。   In addition, the water absorption of the sodium acrylate highly water-absorbing polymer particles is such that if a large amount of a crosslinking agent is added to sodium acrylate, the gel becomes hard and the water absorption decreases. Further, when the amount of the crosslinking agent is decreased, the gel becomes soft and the water absorption amount increases.

さらに、特殊なアクリル酸ナトリウム高吸水性ポリマー粒子として、架橋剤により重合させた高吸水性ポリマー粒子の表面をさらに架橋させた、シェルとコアの二重構造のアクリル酸ナトリウム高吸水性ポリマー粒子がある。   Furthermore, as a special sodium acrylate superabsorbent polymer particle, there is a sodium acrylate superabsorbent polymer particle having a shell-core dual structure, in which the surface of the superabsorbent polymer particle polymerized with a crosslinking agent is further crosslinked. is there.

このシェルとコアの二重構造のアクリル酸ナトリウム高吸水性ポリマー粒子の場合には、シェルが厚いほど硬いゲルとなり吸水量は少なくなり、シェルを薄くすると柔らかいゲルとなり吸水量は多くなる。   In the case of the sodium acrylate highly water-absorbing polymer particles having a dual structure of shell and core, the thicker the shell, the harder the gel and the smaller the water absorption. The thinner the shell, the softer the gel and the greater the water absorption.

また、上記のシェルとコアは、通常、エステル結合により架橋したものであるが、コアの結合が耐アルカリ性、耐電解質性に優れたエーテル結合であるアクリル酸ナトリウム高吸水性ポリマー粒子もあり、本発明においてはこのエーテル結合の方がより好ましい。   The above shell and core are usually crosslinked by an ester bond, but there are also sodium acrylate superabsorbent polymer particles in which the core bond is an ether bond excellent in alkali resistance and electrolyte resistance. In the invention, this ether bond is more preferable.

上記の特性のほか、アクリル酸ナトリウム高吸水性ポリマー粒子におけるナトリウムイオンの解離は、ゲルがおかれるPHや塩濃度等の条件にも依存するため、使用条件に応じてその他の高吸水性ポリマー粒子を適宜選択して併用することができる。   In addition to the above properties, dissociation of sodium ions in sodium acrylate superabsorbent polymer particles also depends on conditions such as pH and salt concentration where the gel is placed, so other superabsorbent polymer particles depending on the use conditions Can be appropriately selected and used in combination.

本発明の地盤掘削注入材用組成物に用いられる起泡剤は、合成界面活性剤系、樹脂石けん系及び加水分解タンパク系を特に制限なく使用できる。これらのうち、気泡倍率が高く、セメントの耐アルカリ性の高いアルキルサルフェート系の合成界面活性剤を好適に使用できる。   As the foaming agent used in the composition for ground excavation injecting material of the present invention, a synthetic surfactant system, a resin soap system and a hydrolyzed protein system can be used without particular limitation. Among these, alkyl sulfate-based synthetic surfactants having a high bubble ratio and high alkali resistance of cement can be suitably used.

膨潤ポリマー分散液と起泡剤の重量配合比率は、所定の倍率に起泡できれば特に制限はないが、起泡の容易性等の観点から、膨潤ポリマー分散液と起泡剤を混合した混合液のファンネル粘性が19〜60秒となるように調整したものを特に好適に使用することができる。なお、混合液のファンネル粘性の調整は膨潤ポリマー分散液の濃度を適宜設定することにより、容易に調整することができる。   The weight blending ratio of the swelling polymer dispersion and the foaming agent is not particularly limited as long as foaming can be performed at a predetermined magnification. However, from the viewpoint of easiness of foaming, etc., a mixed liquid in which the swelling polymer dispersion and the foaming agent are mixed. Those having a funnel viscosity adjusted to 19 to 60 seconds can be particularly preferably used. The funnel viscosity of the mixed liquid can be easily adjusted by appropriately setting the concentration of the swollen polymer dispersion.

ここで、ファンネル粘性とは、500mlの漏斗形の容器に入れた試料液が500ml吐出するに要した流出時間(秒)によって粘性を測定するマーシュファンネル粘度計を用いて測定された粘性である。   Here, the funnel viscosity is a viscosity measured using a Marsh Funnel viscometer that measures the viscosity according to the outflow time (seconds) required for discharging 500 ml of the sample liquid placed in a 500 ml funnel-shaped container.

膨潤ポリマー分散液と起泡剤の混合液の地盤掘削注入材用組成物を起泡させてポリマー気泡をつくる方法は、現場の状況等に鑑みて適宜選択することができ、例えば、膨潤ポリマー分散液と起泡剤を混合した混合液と圧縮空気を起泡発生器に送り込み、ポリマー気泡を起泡させたり、ミキサーで混合撹拌することによりポリマー気泡を起泡させることもできる。   A method of creating a polymer bubble by foaming a composition for ground excavation injection material of a mixture of a swelling polymer dispersion and a foaming agent can be appropriately selected in view of the situation at the site, for example, swelling polymer dispersion It is also possible to foam a polymer bubble by feeding a mixed solution obtained by mixing a liquid and a foaming agent and compressed air to a foaming generator to foam the polymer bubbles, or by mixing and stirring with a mixer.

地盤掘削注入材としてポリマー気泡を使用する場合には、ポリマー気泡自体の消泡に対する耐久性が求められ、さらに掘削土と混合した気泡安定液状体での消泡に対する耐久性も求められる。   When polymer bubbles are used as the ground excavation injection material, durability against defoaming of the polymer bubbles per se is required, and durability against defoaming with a bubble stable liquid mixed with excavated soil is also required.

前記ポリマー気泡は、膨潤ポリマー分散液の濃度を調節することにより容易にその粘性を調整することができる。ポリマー気泡の粘性を高めることによりポリマー気泡の気泡膜からの蒸発、重力やプラトー境界により気泡膜が薄くなり内圧に耐えられなくなり消泡すること等の影響を減少させることができるので、ポリマー気泡の消泡に対する耐久性を高めることができる。   The viscosity of the polymer bubbles can be easily adjusted by adjusting the concentration of the swelling polymer dispersion. By increasing the viscosity of the polymer bubbles, it is possible to reduce the effects of evaporation of the polymer bubbles from the bubble film, gravity and plateau boundaries, and the bubble film becomes thinner and cannot withstand internal pressure. The durability against defoaming can be increased.

ポリマー気泡の気泡自体の耐久性を以下の実験により確認した。この実験では、高吸水性ポリマー(三洋化成工業社製:GEOSAP)を水と混合して十分に吸水させた膨潤ポリマー分散液と、起泡剤(フローリック社製:WTM起泡剤原液の水希釈液)を用いた。なお、起泡剤の希釈倍率は、WTM起泡剤原液の膨潤ポリマー分散液の水に対する重量比率とした。   The durability of the polymer bubbles was confirmed by the following experiment. In this experiment, a swollen polymer dispersion in which a highly water-absorbing polymer (manufactured by Sanyo Chemical Industries, Ltd .: GEOSAP) was mixed with water and sufficiently absorbed, and a foaming agent (manufactured by Floric: water of WTM foaming agent stock solution). Diluted solution) was used. The dilution ratio of the foaming agent was the weight ratio of the swollen polymer dispersion of the WTM foaming agent stock solution to water.

膨潤ポリマー分散液と起泡剤の混合液の製造は、水に所定濃度を得る量の高吸水性ポリマーを加え、次に所定の希釈倍率を得る量のWTM起泡剤原液を加え混合した。以降の実験でも同様な順序で混合を行った。   The mixture of the swollen polymer dispersion and the foaming agent was prepared by adding a superabsorbent polymer in an amount to obtain a predetermined concentration in water, and then adding and mixing a WTM foaming agent stock solution in an amount to obtain a predetermined dilution ratio. In the subsequent experiments, mixing was performed in the same order.

膨潤ポリマー分散液の濃度は0%〜0.6%とし、起泡剤はWTM起泡剤原液の80倍希釈として、これらの混合液のファンネル粘性と膨潤ポリマー分散液濃度の関係及び混合液を起泡させたポリマー気泡の粘性(ポリマー気泡を含む混合液の粘性)と膨潤ポリマー分散液濃度の関係を調べた。その結果を表1、図1、図2に示す。   The concentration of the swollen polymer dispersion is 0% to 0.6%, the foaming agent is diluted 80 times the WTM foaming agent stock solution, and the relationship between the funnel viscosity of these liquid mixtures and the concentration of the swollen polymer dispersion and the liquid mixture The relationship between the viscosity of the foamed polymer bubbles (viscosity of the mixed liquid containing polymer bubbles) and the concentration of the swollen polymer dispersion was examined. The results are shown in Table 1, FIG. 1 and FIG.

Figure 2015063669
Figure 2015063669

表1及び図1によると、膨潤ポリマー分散液と起泡剤の混合液のファンネル粘性は、膨潤ポリマー分散液濃度が増加すると急激に増加し、膨潤ポリマー分散液濃度が0%(起泡剤のみ)に比較し、0.3%では約3.2倍となる。なお、0.4〜0.6%ではマーシュファンネル粘度計では計測不能であったが、0.4〜0.5%では起泡は可能であった。このことより、混合液のファンネル粘性は、膨潤ポリマー分散液濃度を増加させることにより、容易に大きく調整できることが確認された。   According to Table 1 and FIG. 1, the funnel viscosity of the mixture of the swollen polymer dispersion and the foaming agent increases rapidly as the concentration of the swollen polymer dispersion increases and the concentration of the swollen polymer dispersion is 0% (only the foaming agent). ) Is approximately 3.2 times at 0.3%. In addition, it was impossible to measure with a Marsh funnel viscometer at 0.4 to 0.6%, but foaming was possible at 0.4 to 0.5%. From this, it was confirmed that the funnel viscosity of the mixed solution can be easily adjusted largely by increasing the concentration of the swollen polymer dispersion.

膨潤ポリマー分散液濃度と、混合液を25倍に起泡させたポリマー気泡の粘性(ポリマー気泡を含む混合液の粘性)の関係を示す図2において、膨潤ポリマー分散液濃度が0%(起泡剤のみ)と0.5%を比較すると、粘性は約1.7倍となっている。このことより膨潤ポリマー分散液の濃度を増加させることにより容易にポリマー気泡の粘性(ポリマー気泡を含む混合液の粘性)を大きく調整できることが確認された。   In FIG. 2 showing the relationship between the concentration of the swollen polymer dispersion and the viscosity of the polymer bubbles obtained by foaming the mixed liquid 25 times (the viscosity of the mixed liquid containing the polymer bubbles), the swollen polymer dispersion concentration is 0% (foaming). Viscosity is about 1.7 times that of 0.5%. From this, it was confirmed that the viscosity of the polymer bubbles (viscosity of the mixed solution containing polymer bubbles) can be easily adjusted by increasing the concentration of the swollen polymer dispersion.

次に、膨潤ポリマー分散液の濃度と起泡剤の希釈倍率とを変化させたときのポリマー気泡の粘性を調べた。膨潤ポリマー分散液の濃度は0%、0.2%、0.4%とし、起泡剤の希釈倍率は20%〜100%として、これらを各々混合した混合液を25倍に起泡させた。この気泡の粘性を図3に示す。   Next, the viscosity of the polymer bubbles was examined when the concentration of the swelling polymer dispersion and the dilution ratio of the foaming agent were changed. The concentration of the swelling polymer dispersion was 0%, 0.2%, and 0.4%, and the dilution ratio of the foaming agent was 20% to 100%. . The viscosity of the bubbles is shown in FIG.

図3によると、希釈倍率が大きくなると気泡の粘性は徐々に低下する傾向がある。しかしながら、希釈倍率に拘わらず膨潤ポリマー分散液の濃度を上げると、気泡の粘性は大きくなり、膨潤ポリマー分散液濃度がポリマー気泡の粘性に与える影響が大きいことが確認された。   According to FIG. 3, the viscosity of the bubbles tends to gradually decrease as the dilution factor increases. However, it was confirmed that when the concentration of the swollen polymer dispersion was increased regardless of the dilution ratio, the viscosity of the bubbles increased, and the influence of the swollen polymer dispersion concentration on the viscosity of the polymer bubbles was large.

次に、膨潤ポリマー分散液の添加の有無による気泡の消泡性を調べた。膨潤ポリマー分散液の濃度を0%(無添加)と0.2%とし、起泡剤の希釈倍率を60倍とし、膨潤ポリマー分散液と起泡剤の混合液を各々25倍に起泡した気泡を使用した。消泡率は分離起泡剤重量(消泡し分離した起泡剤重量)と起泡剤重量の百分率とした。実験結果を図4に示す。   Next, the defoaming property of the bubble by the presence or absence of addition of the swelling polymer dispersion was examined. The concentration of the swelling polymer dispersion was 0% (no addition) and 0.2%, the dilution ratio of the foaming agent was 60 times, and the mixture of the swelling polymer dispersion and the foaming agent was foamed 25 times each. Air bubbles were used. The defoaming rate was the percentage of the separated foaming agent weight (the defoamed and separated foaming agent weight) and the foaming agent weight. The experimental results are shown in FIG.

図4によると、消泡率は膨潤ポリマー分散液0.2%濃度を添加したポリマー気泡の方が明らかに小さいことがわかる。   According to FIG. 4, it can be seen that the defoaming rate is clearly smaller in the polymer bubbles to which the 0.2% concentration of the swollen polymer dispersion was added.

このことより、気泡自体の消泡に対する耐久性を上げるためには膨潤ポリマー分散液濃度の効果が大きいことが確認された。   From this, it was confirmed that the effect of the concentration of the swollen polymer dispersion was large in order to increase the durability of the bubbles themselves against defoaming.

次に掘削土とポリマー気泡と水を混合した気泡安定液の耐久性について以下の実験を行った。掘削土として硅砂5号を使用し、掘削土と混合する気泡は起泡剤原液を40倍に希釈して25倍に起泡させた気泡と、0.2%濃度の膨潤ポリマー分散液に起泡剤原液を希釈倍率80倍になるように加えた混合液を作り、これを25倍に起泡させたポリマー気泡を使用した。これらの二種類の気泡を含水比8.0%の珪砂5号に各々体積比で42%混合し、気泡安定液を作成した。   Next, the following experiment was carried out on the durability of the bubble stabilizing liquid in which excavated soil, polymer bubbles and water were mixed. As the excavated soil, dredged sand No. 5 was used, and the bubbles mixed with the excavated soil were generated in the foam produced by diluting the foaming agent stock solution 40 times and foamed 25 times, and the 0.2% concentration swelling polymer dispersion. A liquid mixture was prepared by adding the foaming agent stock solution at a dilution ratio of 80 times, and polymer bubbles were used which were foamed 25 times. These two types of bubbles were mixed with silica sand No. 5 having a water content of 8.0% in a volume ratio of 42% to prepare a bubble stabilizing solution.

土中の状態を想定し、これらの気泡安定液を内径63mm、高さ432mmのメスシリンダーの1000mlまで充填し、口元をゴムキャップで覆い外気を遮断し、20度の恒温室で保存した。測定は気泡安定液の上面の沈下量を目視によりメスシリンダーの目盛により計測し、さらに気泡安定液内の気泡の状態を推測するためにベーン試験機を用いて上面より300mmの位置のベーンせん断強度を計測した。   Assuming the state in the soil, these bubble stabilizers were filled up to 1000 ml of a graduated cylinder with an inner diameter of 63 mm and a height of 432 mm, the mouth was covered with a rubber cap, the outside air was shut off, and stored in a constant temperature room at 20 degrees. In the measurement, the amount of settlement on the top surface of the bubble stabilizing liquid is visually measured with a graduated cylinder, and the vane shear strength at a position 300 mm from the top surface is estimated using a vane tester in order to estimate the state of bubbles in the bubble stabilizing liquid. Was measured.

試料作成後、14日経過後においても、この2種の気泡安定液はともに表面の沈下は見られず、気泡安定液の分離は見られなかった。   Even after 14 days from the preparation of the sample, neither of these two types of bubble stabilizers showed surface subsidence, and no separation of the bubble stabilizers.

さらに時間の経過と気泡安定液中のベーンせん断強度の関係を図5に示す。図5によると14日経過後においても、ベーンせん断強度は両者ともに0.2〜0.3kN/m程度と高い流動性を保持していた。 Furthermore, the relationship between the passage of time and the vane shear strength in the bubble stabilizing liquid is shown in FIG. According to FIG. 5, even after 14 days had elapsed, both vane shear strengths maintained high fluidity of about 0.2 to 0.3 kN / m 2 .

試験で用いた40倍希釈の気泡は、現在、施工で通常に使用している気泡であることを考え合わせると、膨潤ポリマー分散液の濃度0.2%と80倍希釈の起泡剤の混合液を25倍に起泡させたポリマー気泡は、現状の気泡と同様な使用方法ができることがわかった。   Considering that the 40-fold diluted air bubbles used in the test are currently used in construction, mixing the 0.2% concentration of the swelling polymer dispersion and the 80-fold diluted foaming agent It was found that the polymer bubbles obtained by foaming the liquid 25 times can be used in the same manner as the current bubbles.

さらに、実際の掘削作業は数時間から2日程度で完了するものであるが、ポリマー気泡を使用すれば少なくとも14日は高流動性を維持するので、不慮の事故等により掘進作業中に施工ができない状態となっても、工事再開までの時間的な余裕が得られることがわかった。   Furthermore, the actual excavation work can be completed within a few hours to 2 days. However, if polymer bubbles are used, high fluidity will be maintained for at least 14 days. Even if it was impossible, it was found that there was enough time to resume construction.

次に、気泡安定液を深度が浅いところから大深度まで使用することを考慮して、気泡安定液中の気泡の破泡について実験を行った。   Next, in consideration of the use of the bubble stabilizing liquid from a shallow depth to a large depth, an experiment was conducted on bubble breakage in the bubble stabilizing liquid.

掘削土として硅砂5号を使用し、0.2%濃度の膨潤ポリマー分散液に起泡剤原液を希釈倍率80倍になるように加えた混合液を作り、これを25倍に起泡させてポリマー気泡とした。このポリマー気泡を含水比8.0%の珪砂5号に各々体積比で28%、44%、54%の割合で混合し、気泡安定液を作成した。   Using dredged sand No. 5 as excavated soil, make a mixed solution by adding the foaming agent stock solution to the 0.2% concentration swelling polymer dispersion so that the dilution factor is 80 times, and foam this 25 times Polymer bubbles were used. The polymer bubbles were mixed with silica sand No. 5 having a water content of 8.0% at a volume ratio of 28%, 44%, and 54%, respectively, to prepare a bubble stabilizing solution.

この気泡安定液を内径106mm、高さ400mmのアクリル製シリンダーに高さ250mmに詰め、上部から鋼製のピストンで加圧と減圧をし、高さの変化により圧縮量を計測した。気泡安定液の体積変化率を(気泡安定液のもとの高さ―圧縮高さ)/気泡安定液のもとの高さ×100で表すと、加圧力と体積変化率の関係は図6のとおりとなった。   This bubble stabilizing solution was packed in an acrylic cylinder having an inner diameter of 106 mm and a height of 400 mm to a height of 250 mm, pressurized and depressurized with a steel piston from above, and the amount of compression was measured by the change in height. When the volume change rate of the bubble stabilizing liquid is expressed by (original height of the bubble stabilizing liquid−compressed height) / original height of the bubble stabilizing liquid × 100, the relationship between the applied pressure and the volume change rate is shown in FIG. It became as follows.

この結果から、ポリマー気泡の混合量が多くなるほど体積変化率は大きくなるが、気泡量に拘わらず減圧をすると体積変化率はほぼ0%となり、ポリマー気泡は実用的な添加量範囲では圧力変動により破泡しないことがわかった。   From this result, the volume change rate increases as the mixing amount of polymer bubbles increases. However, the volume change rate becomes almost 0% when the pressure is reduced regardless of the bubble amount. It turns out that it doesn't break.

以上の結果から、掘削土にポリマー気泡を混合して作成した気泡安定液は少なくとも14日の間、掘削に必要な物性を維持できることが確認された。また、載荷圧力の変動に対しても気泡は破泡することなく、圧力変動にも十分な対応性があることが確認された。なお、ポリマー気泡に使用した起泡剤の希釈倍率は80倍であり、これは通常の希釈倍率20倍あるいは40倍をさらに2〜4倍に希釈したものであるので、経済的にも非常に優れていることが確認された。   From the above results, it was confirmed that the bubble stabilizer prepared by mixing polymer bubbles in excavated soil can maintain the physical properties necessary for excavation for at least 14 days. In addition, it was confirmed that the bubbles did not break even when the loading pressure varied, and that the pressure variation was sufficiently compatible. Note that the foaming agent used for the polymer bubbles has a dilution ratio of 80 times, which is obtained by further diluting the normal dilution ratio of 20 times or 40 times to 2 to 4 times. It was confirmed to be excellent.

一方、本発明の地盤掘削注入材用組成物を起泡したポリマー気泡を用いる掘削施工において、地下水の流れが速い粗い砂礫層等や被圧地下水層を掘削する場合には、気泡膜は地下水に曝されるので消泡し易くなる。このような場合には、気泡あるいはポリマー気泡と膨潤ポリマー分散液を混合し、いわば気泡の周囲を膨潤高吸水性ポリマーで囲うことにより気泡膜の水による希釈の程度を低下させて消泡を防ぎ、より安定した施工を行えるようにした地盤掘削注入材を用いることができる。   On the other hand, in excavation work using polymer bubbles in which the composition for ground excavation injecting material of the present invention is foamed, when excavating a rough gravel layer or a pressurized groundwater layer in which the flow of groundwater is fast, the bubble film is converted into groundwater. It becomes easy to defoam because it is exposed. In such a case, bubbles or polymer bubbles are mixed with the swollen polymer dispersion, so that the bubbles are surrounded by a swollen superabsorbent polymer to reduce the degree of dilution of the bubble membrane with water, thereby preventing defoaming. Therefore, a ground excavation injection material that enables more stable construction can be used.

具体的には、気泡あるいはポリマー気泡と膨潤ポリマー分散液をミキサー等の混合機で混合した地盤掘削注入材を用いる。気泡と膨潤ポリマー分散液との体積混合比率はこれらが混合できる範囲であれば特に制限なく使用できるが、膨潤ポリマー分散液のファンネル粘性が60秒以下とすることが好ましい。   Specifically, a ground excavation injection material in which bubbles or polymer bubbles and a swelling polymer dispersion are mixed with a mixer such as a mixer is used. The volume mixing ratio of the bubbles and the swollen polymer dispersion can be used without particular limitation as long as they can be mixed, but the funnel viscosity of the swollen polymer dispersion is preferably 60 seconds or less.

このことを確認するために以下の実験を行った。膨潤ポリマー分散液0.2%と80倍希釈の起泡剤との混合液を25倍に起泡させたポリマー気泡に、0.3%及び0.4%濃度の膨潤ポリマー分散液を、体積混合率(ポリマー気泡体積に対する膨潤ポリマー分散液体積の百分率)0〜100%で混合し、ポリマー気泡の粘性を計測した。その結果を図7に示す。   In order to confirm this, the following experiment was conducted. Into the polymer bubbles in which 0.2% of the swollen polymer dispersion and a foaming agent diluted 80 times were foamed 25 times, the swollen polymer dispersions having a concentration of 0.3% and 0.4% were added in volume. Mixing was performed at a mixing rate (percentage of swelling polymer dispersion volume to polymer bubble volume) of 0 to 100%, and the viscosity of the polymer bubbles was measured. The result is shown in FIG.

図7によるとポリマー気泡の粘性は体積混合率よりも膨潤ポリマー分散液の濃度に比例することが確認できた。   According to FIG. 7, it was confirmed that the viscosity of the polymer bubbles was proportional to the concentration of the swollen polymer dispersion rather than the volume mixing ratio.

次に、気泡安定液が流動する地下水に接触した状態を想定し、気泡安定液中の気泡の消泡率を以下のようにして求めた。   Next, assuming a state where the bubble stabilizing liquid is in contact with the flowing groundwater, the defoaming rate of the bubbles in the bubble stabilizing liquid was determined as follows.

掘削を行う状態の掘削土として飽和状態の硅砂5号を想定した。地盤掘削注入材として膨潤ポリマー分散液0.2%と60倍希釈の起泡剤との混合液を25倍に起泡させたポリマー気泡に0.2%濃度の膨潤ポリマー分散液を体積比で等量混合したポリマー気泡混合体を使用した。飽和状態の珪砂5号とポリマー気泡混合体の混合比は、気泡安定液の理論より分離しない混合比率を参考にして、体積比1:0.3で混合し、これを気泡安定液とした。   Saturated dredged sand No. 5 was assumed as excavated soil for excavation. As a ground excavation injecting material, a 0.2% swelled polymer dispersion in a volume ratio of 0.2% swollen polymer dispersion mixed with a foaming agent diluted 60 times is foamed 25 times. An equal volume mixed polymer foam mixture was used. The mixing ratio of the silica sand No. 5 in the saturated state and the polymer bubble mixture was mixed at a volume ratio of 1: 0.3 with reference to the mixing ratio not separated from the theory of the bubble stabilizer, and this was used as the bubble stabilizer.

この気泡安定液を口径63mmのアクリル円筒に1000mlを詰め、この気泡安定液の上に口元まで水を張り、気泡安定液の高さの減少量を計測した。そして、気泡安定液の高さの減少量を気泡の消泡量と考え気泡の消泡率を求めた。   1000 ml of this bubble stabilizer was filled in an acrylic cylinder having a diameter of 63 mm, and water was sprinkled over the bubble stabilizer to the mouth, and the amount of decrease in the height of the bubble stabilizer was measured. Then, the amount of reduction in the height of the bubble stabilizing liquid was considered as the amount of bubbles removed, and the bubble removal rate was determined.

経過時間と気泡の消泡率の関係を図8に示す。図8によると、膨潤ポリマー分散液の無使用の気泡を使用した安定液は上面の水により気泡が消泡あるいは分離し、48時間後には気泡は約87%が消泡したが、膨潤ポリマー分散液を添加した気泡は約22%が消泡したのみであり、ほぼ同じ気泡の粘性でありながら、消泡率は格段に小さくなる。   The relationship between the elapsed time and the bubble defoaming rate is shown in FIG. According to FIG. 8, in the stabilizing solution using unused bubbles of the swelling polymer dispersion, the bubbles disappeared or separated by the water on the upper surface, and after about 48%, the bubbles disappeared about 48%. Only about 22% of the bubbles to which the liquid was added were defoamed, and the viscosity of the bubbles was almost the same, but the defoaming rate was significantly reduced.

このことより、ポリマー気泡に膨潤ポリマー分散液を添加した混合体を地盤掘削注入材とすると被圧地下水による消泡率は少なくなることが確認された。   From this, it was confirmed that the defoaming rate due to the pressured groundwater decreases when the mixture obtained by adding the swelling polymer dispersion to the polymer bubbles is used as the ground excavation injection material.

また、本発明の地盤掘削注入材用組成物には、ポリマー気泡をより安定させることを目的として増粘剤を添加することができる。具体的にはポリビルアルコール(PVA)を好適に用いることができる。   Moreover, a thickener can be added to the composition for ground excavation injection material of this invention in order to make a polymer bubble more stable. Specifically, polyville alcohol (PVA) can be suitably used.

また、本発明の地盤掘削注入材用組成物には、地盤中の塩分等の電解質や、酸性、アルカリ性物質が混入した際に、地盤掘削注入材用組成物の性状及び品質の劣化の抑制や回復を可能とするための安定剤を添加することができる。具体的には、PH(水素イオン指数濃度)を中性化させる中和剤としての機能を有するものである。   In addition, in the composition for ground excavation injection material of the present invention, when an electrolyte such as salt in the ground or an acidic or alkaline substance is mixed, the property and quality of the composition for ground excavation injection material can be suppressed. Stabilizers can be added to allow recovery. Specifically, it has a function as a neutralizing agent that neutralizes PH (hydrogen ion exponential concentration).

本発明で用いられる安定剤としては、ポリアクリルアミド、希硫酸、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ポリビニルアルコール、アクリル酸ナトリウム、ポリエチレンオキシド、また、炭酸水素ナトリウム、炭酸水素カルシウム、炭酸水素カリウム、炭酸水素アンモニウム等の炭酸水素塩、また、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸アンモニウム等の炭酸塩から選ばれる少なくとも一種を用いることができる。   Examples of the stabilizer used in the present invention include polyacrylamide, dilute sulfuric acid, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, polyvinyl alcohol, sodium acrylate, polyethylene oxide, sodium hydrogen carbonate, calcium hydrogen carbonate, potassium hydrogen carbonate. Further, at least one selected from hydrogen carbonates such as ammonium hydrogen carbonate and carbonates such as sodium carbonate, calcium carbonate, potassium carbonate, and ammonium carbonate can be used.

施工過程において、塩分等の電解質が地盤掘削注入材用組成物に混入し、電解質濃度が高くなると、地盤掘削注入材用組成物の高吸水性ポリマー粒子の吸水倍率が低下し、吸水していた水分を放出することで地盤掘削用添加材組成物のファンネル粘性が劣化することになる。   In the construction process, electrolytes such as salinity were mixed in the ground excavation injection composition, and when the electrolyte concentration increased, the water absorption ratio of the superabsorbent polymer particles of the ground excavation injection composition decreased and absorbed water. By releasing moisture, the funnel viscosity of the ground excavation additive composition deteriorates.

このような状況に対し、安定剤を予め添加しておくことで、電解質濃度の上昇を抑制し、地盤掘削注入材用組成物の劣化を防止することができる。   In such a situation, by adding a stabilizer in advance, an increase in the electrolyte concentration can be suppressed and deterioration of the composition for ground excavation injection material can be prevented.

本発明の地盤掘削注入材は、原位置混合撹拌工法、土圧シールド工法に特に好適に用いることができる。   The ground excavation injection material of the present invention can be particularly suitably used for the in-situ mixing stirring method and the earth pressure shield method.

原位置混合撹拌工法によりソイルセメント地中連続壁や柱状地盤改良杭等を施工する場合、各々の施工機械の掘削部に本発明の地盤掘削注入材を吐出しつつ掘削を行い、掘削土と地盤掘削注入材を混合・撹拌し、この混合土に固化材あるいは固化材と消泡剤を添加し混合・混練し、ソイルセメント壁や柱状地盤改良杭を構築することができる。   When constructing soil cement underground continuous walls and columnar soil improvement piles by in-situ mixed agitation method, excavation is performed by discharging the ground excavation injection material of the present invention to the excavation part of each construction machine, and excavation soil and ground Mixing and stirring the excavation injection material, adding the solidification material or solidification material and antifoaming agent to this mixed soil, mixing and kneading, it is possible to construct a soil cement wall and a columnar ground improved pile.

施工機械は、等厚式(カッターチェーン撹拌方式)、柱列式(オーガー撹拌方式)あるいは水平多軸式等、施工機械に拘わらず使用できる。さらに掘削時に本地盤掘削注入材に水やセメントミルクを混合したものを使用することもできる。   The construction machine can be used regardless of the construction machine, such as a constant-thickness type (cutter chain stirring method), a columnar row type (auger stirring method), or a horizontal multi-axis type. Furthermore, what mixed water and cement milk with this ground excavation injection material can also be used at the time of excavation.

また、土圧シールド工法を施工する場合、切羽面に本発明の地盤掘削注入材を注入しつつ掘削を行い、掘削土と地盤掘削注入材を混合・撹拌し、この混合土に流動性と止水性を付与することができる。特に、切羽の崩壊を防ぐために、切羽とチャンバー内の混合土に崩壊圧以上の圧力を加え、かつスクリューコンベアから排土する施工において、好適に使用することができる。なお、切羽とチャンバー内の圧力やスクリューコンベアからの廃土量は、掘進速度、スクリューコンベアの回転数、地盤掘削注入材の添加量等で調整することが可能である。   In addition, when constructing the earth pressure shield method, excavation is carried out while injecting the ground excavation injection material of the present invention into the face, and the excavation soil and ground excavation injection material are mixed and agitated. Aqueous properties can be imparted. In particular, in order to prevent the face from collapsing, it can be suitably used in a construction in which a pressure higher than the collapse pressure is applied to the mixed soil in the face and the chamber and the soil is discharged from the screw conveyor. The pressure in the face and the chamber and the amount of waste soil from the screw conveyor can be adjusted by the excavation speed, the rotational speed of the screw conveyor, the amount of ground excavation injection material added, and the like.

Claims (19)

水と、水を吸収して膨潤した高吸水性ポリマーの分散液と、起泡剤が混合されたことを特徴とする地盤掘削注入材用組成物。   A composition for ground excavation injection material, wherein water, a dispersion of a superabsorbent polymer swollen by absorbing water, and a foaming agent are mixed. 前記地盤掘削注入材用組成物のファンネル粘性が19〜60秒であることを特徴とする請求項1に記載の地盤掘削注入材用組成物。   The funnel viscosity of the composition for ground excavation injection material is 19 to 60 seconds, The composition for ground excavation injection material of Claim 1 characterized by the above-mentioned. 前記高吸水性ポリマーがデンプン系、セルロース系及び合成ポリマー系から選ばれる少なくとも一種であることを特徴とする請求項1又は2に記載の地盤掘削注入材用組成物。   The composition for ground excavation injection material according to claim 1 or 2, wherein the superabsorbent polymer is at least one selected from starch, cellulose and synthetic polymer. 前記水を吸水して膨潤した高吸水性ポリマーが、加圧により水を放出しない架橋構造の高吸水性ポリマーであることを特徴とする請求項1から3のいずれか一項に記載の地盤掘削注入材用組成物。   The ground excavation according to any one of claims 1 to 3, wherein the superabsorbent polymer swollen by absorbing water is a superabsorbent polymer having a crosslinked structure that does not release water by pressurization. Composition for injection material. 前記水を吸水して膨潤した高吸水性ポリマーの膨潤後の粒径が3mm以下であることを特徴とする請求項1から4のいずれか一項に記載の地盤掘削注入材用組成物。   The composition for ground excavation injection material according to any one of claims 1 to 4, wherein a particle size after swelling of the superabsorbent polymer swollen by absorbing water is 3 mm or less. 前記起泡剤が合成界面活性剤系、樹脂石けん系、加水分解タンパク系から選ばれる少なくとも一種であるであることを特徴とする請求項1から5のいずれか一項に記載の地盤掘削注入材用組成物。   The ground foaming injection material according to any one of claims 1 to 5, wherein the foaming agent is at least one selected from a synthetic surfactant system, a resin soap system, and a hydrolyzed protein system. Composition. 前記地盤掘削注入材用組成物に増粘剤が添加されたことを特徴とする請求項1から6のいずれか一項に記載の地盤掘削注入材用組成物。   The composition for ground excavation injection materials according to any one of claims 1 to 6, wherein a thickener is added to the composition for ground excavation injection materials. 前記地盤掘削注入材用組成物に安定剤が添加されたことを特徴とする請求項1から7のいずれか一項に記載の地盤掘削注入材用組成物。   The composition for ground excavation injection material according to any one of claims 1 to 7, wherein a stabilizer is added to the composition for ground excavation injection material. 前記安定剤が、電解質濃度を低下させる安定剤であることを特徴とする請求項8に記載の地盤掘削注入材用組成物。   The composition for ground excavation injection material according to claim 8, wherein the stabilizer is a stabilizer that lowers an electrolyte concentration. 前記安定剤が、PH(水素イオン指数濃度)を中性化させる中和剤であることを特徴とする請求項8又は9に記載の地盤掘削注入材用組成物。   The composition for ground excavation injection material according to claim 8 or 9, wherein the stabilizer is a neutralizing agent for neutralizing PH (hydrogen ion index concentration). 前記安定剤が、ポリアクリルアミド、希硫酸、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ポリビニルアルコール、アクリル酸ナトリウム、ポリエチレンオキシド、炭酸水素塩、炭酸塩から選ばれる少なくとも一種であることを特徴とする請求項8から10のいずれか一項に記載の地盤掘削注入材用組成物。   The stabilizer is at least one selected from polyacrylamide, dilute sulfuric acid, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, polyvinyl alcohol, sodium acrylate, polyethylene oxide, bicarbonate, carbonate. The composition for ground excavation injection material as described in any one of Claims 8 to 10. 前記請求項1から11のいずれか一項に記載の地盤掘削注入材用組成物を起泡させたことを特徴とする地盤掘削用注入材。   An injecting material for ground excavation, wherein the composition for injecting ground excavation according to any one of claims 1 to 11 is foamed. 水と、水を吸収し膨潤した高吸水性ポリマーの分散液と、気泡が混合されたことを特徴とする地盤掘削注入材。   A ground excavation injection material comprising water, a dispersion of a superabsorbent polymer that has absorbed water and swollen, and bubbles. 前記高吸水性ポリマーがデンプン系、セルロース系及び合成ポリマー系から選ばれる少なくとも一種であることを特徴とする請求項13に記載の地盤掘削注入材。   The ground excavation injection material according to claim 13, wherein the superabsorbent polymer is at least one selected from starch, cellulose and synthetic polymer. 前記水を吸水して膨潤した高吸水性ポリマーが、加圧により水を放出しない架橋構造の高吸水性ポリマーであることを特徴とする請求項13又は14に記載の地盤掘削注入材。   The ground excavation injection material according to claim 13 or 14, wherein the superabsorbent polymer swollen by absorbing water is a superabsorbent polymer having a crosslinked structure that does not release water by pressurization. 前記水を吸水して膨潤した高吸水性ポリマーの膨潤後の粒径が3mm以下であることを特徴とする請求項13から15のいずれか一項に記載の地盤掘削注入材。   The ground excavation injection material according to any one of claims 13 to 15, wherein a particle diameter after swelling of the superabsorbent polymer swollen by absorbing water is 3 mm or less. 前記請求項12に記載の地盤掘削注入材と、前記13から16のいずれか一項に記載の地盤掘削注入材を混合したことを特徴とする地盤掘削注入材。   A ground excavation injection material according to claim 12, wherein the ground excavation injection material according to any one of claims 13 to 16 is mixed. 前記請求項12から17のいずれか一項に記載の地盤掘削用注入材を掘削土に添加・混練した混合体に、固化材又は固化材と消泡剤を添加・混練し、原位置混合撹拌工法によるソイルセメント地中連続壁又は柱状地盤改良杭を構築することを特徴とする施工法。   A solidified material or a solidified material and an antifoaming agent are added and kneaded to a mixture obtained by adding and kneading the ground excavating material according to any one of claims 12 to 17 to excavated soil, and in-situ mixed stirring Construction method characterized by constructing soil cement underground continuous wall or columnar ground improved pile by construction method. 前記請求項12から17のいずれか一項に記載の地盤掘削用注入材をシールド掘進機の切羽に注入し掘削土と混練し、切羽部の安定を保ち、排泥を容易にすることを特徴とする施工法。   The ground excavation material according to any one of claims 12 to 17 is injected into a face of a shield machine and kneaded with excavated soil to maintain stability of the face and facilitate drainage. The construction method.
JP2014171663A 2013-08-27 2014-08-26 Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same Pending JP2015063669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014171663A JP2015063669A (en) 2013-08-27 2014-08-26 Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013176084 2013-08-27
JP2013176084 2013-08-27
JP2014171663A JP2015063669A (en) 2013-08-27 2014-08-26 Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same

Publications (1)

Publication Number Publication Date
JP2015063669A true JP2015063669A (en) 2015-04-09

Family

ID=52831829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171663A Pending JP2015063669A (en) 2013-08-27 2014-08-26 Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same

Country Status (1)

Country Link
JP (1) JP2015063669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194408A (en) * 2018-05-02 2019-11-07 学校法人早稲田大学 Impermeable and permeation recovery method in ground
EP4159974A1 (en) * 2021-10-01 2023-04-05 Eiffage GC Infra Linéaires Polymer for processing materials of marine origin from an earth pressure tunnel-boring machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151713A (en) * 1986-12-15 1988-06-24 Penta Ocean Constr Co Ltd Compressive injection of water absorptive resin
JPS63255495A (en) * 1987-04-10 1988-10-21 佐田建設株式会社 Method of shield propulsion construction using excavation additive
JPH01163393A (en) * 1987-12-18 1989-06-27 Ohbayashi Corp Method of sealed type pressure shield construction
JPH01270911A (en) * 1988-04-22 1989-10-30 Ohbayashi Corp Defoaming gel-breaking agent of dug out muck
JPH02153191A (en) * 1988-12-02 1990-06-12 Ohbayashi Corp Ground excavation method
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JPH093451A (en) * 1995-06-14 1997-01-07 Wolff Walsrode Ag Use of cellulose mixed ether as additive for shielding earthpressure
JPH1088130A (en) * 1996-09-09 1998-04-07 Shimizu Corp Production of muddy water
JPH11247200A (en) * 1998-02-27 1999-09-14 Taiyo Kiso Kogyo Kk Caisson settlement method
US20040182577A1 (en) * 2003-03-21 2004-09-23 Jiten Chatterji Well completion spacer fluids containing fibers and methods
JP2011202355A (en) * 2010-03-24 2011-10-13 Waseda Univ Method for creating underground structure with standard bubble stabilizing liquid
JP2013057061A (en) * 2011-08-17 2013-03-28 Waseda Univ Stable liquid composition of swollen superabsorbent polymer for ground excavation and construction method using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151713A (en) * 1986-12-15 1988-06-24 Penta Ocean Constr Co Ltd Compressive injection of water absorptive resin
JPS63255495A (en) * 1987-04-10 1988-10-21 佐田建設株式会社 Method of shield propulsion construction using excavation additive
JPH01163393A (en) * 1987-12-18 1989-06-27 Ohbayashi Corp Method of sealed type pressure shield construction
JPH01270911A (en) * 1988-04-22 1989-10-30 Ohbayashi Corp Defoaming gel-breaking agent of dug out muck
JPH02153191A (en) * 1988-12-02 1990-06-12 Ohbayashi Corp Ground excavation method
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JPH093451A (en) * 1995-06-14 1997-01-07 Wolff Walsrode Ag Use of cellulose mixed ether as additive for shielding earthpressure
JPH1088130A (en) * 1996-09-09 1998-04-07 Shimizu Corp Production of muddy water
JPH11247200A (en) * 1998-02-27 1999-09-14 Taiyo Kiso Kogyo Kk Caisson settlement method
US20040182577A1 (en) * 2003-03-21 2004-09-23 Jiten Chatterji Well completion spacer fluids containing fibers and methods
JP2011202355A (en) * 2010-03-24 2011-10-13 Waseda Univ Method for creating underground structure with standard bubble stabilizing liquid
JP2013057061A (en) * 2011-08-17 2013-03-28 Waseda Univ Stable liquid composition of swollen superabsorbent polymer for ground excavation and construction method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194408A (en) * 2018-05-02 2019-11-07 学校法人早稲田大学 Impermeable and permeation recovery method in ground
JP7112242B2 (en) 2018-05-02 2022-08-03 学校法人早稲田大学 Impermeability and Permeability Restoration Method in the Ground
EP4159974A1 (en) * 2021-10-01 2023-04-05 Eiffage GC Infra Linéaires Polymer for processing materials of marine origin from an earth pressure tunnel-boring machine

Similar Documents

Publication Publication Date Title
JP6113433B2 (en) Swelling superabsorbent polymer stable liquid composition for ground excavation and construction method using the same
CN105154055B (en) A kind of ultralow interfacial tension foam flooding system and its application method
CN104403058A (en) Latex plugging agent for drilling fluid and preparation method thereof
JP2015063669A (en) Composition for foundation digging/pouring material, foundation digging/pouring material, and operation method using the same
JP2013035701A (en) Foam mortar kneaded product and infilling method
JP5389615B2 (en) Compacted sand pile construction method
JP5780714B2 (en) Filling the underground cavity
JP2012012878A (en) Improving method of ground having underground cavity
JP2013136938A (en) Underground continuous cut-off wall method
JP2008223475A (en) Grouting method
KR101066587B1 (en) Construction method of inner filling structure using liquid ultrahigh viscosity and flowable grout material
JP2000054794A (en) Filling method for cavity part and grout used therefor
KR101671126B1 (en) Deep soil mixing method using polymer coagulant
JP3514614B2 (en) Grout material and grouting method
CN101654355B (en) Chemical soluble glass slurry for reinforcing and preventing leakage
JP2014156546A (en) Swellable high-water-absorption polymer stabilizing liquid composition for shielding method and execution method using the same
JP4970547B2 (en) Preparation method of bubble stabilizer and bubble drilling method
JP2004211382A (en) Soil improving method
JP2014156733A (en) Construction method of permeable foundation
JP4074570B2 (en) Vibration isolation wall and its construction method
JP7112242B2 (en) Impermeability and Permeability Restoration Method in the Ground
JP7307650B2 (en) Cutting composition and high-pressure injection stirring method using the same
JP2020023624A (en) Mud loss inhibitor
JP2020193562A (en) Seal agent, and seal agent article
JP2001207436A (en) Slurry composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703