JP2014156733A - Construction method of permeable foundation - Google Patents

Construction method of permeable foundation Download PDF

Info

Publication number
JP2014156733A
JP2014156733A JP2013028379A JP2013028379A JP2014156733A JP 2014156733 A JP2014156733 A JP 2014156733A JP 2013028379 A JP2013028379 A JP 2013028379A JP 2013028379 A JP2013028379 A JP 2013028379A JP 2014156733 A JP2014156733 A JP 2014156733A
Authority
JP
Japan
Prior art keywords
water
permeable
constructing
excavation
foundation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013028379A
Other languages
Japanese (ja)
Other versions
JP6066757B2 (en
Inventor
Kanichi Akagi
寛一 赤木
Yoshimasa Kondo
義正 近藤
Seiji Uehara
精治 上原
Hitoshi Asano
均 浅野
Makoto Ukekawa
誠 請川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAGUMA KK
Waseda University
Maguma Co Ltd
Toda Corp
Original Assignee
MAGUMA KK
Waseda University
Maguma Co Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAGUMA KK, Waseda University, Maguma Co Ltd, Toda Corp filed Critical MAGUMA KK
Priority to JP2013028379A priority Critical patent/JP6066757B2/en
Publication of JP2014156733A publication Critical patent/JP2014156733A/en
Application granted granted Critical
Publication of JP6066757B2 publication Critical patent/JP6066757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method of a permeable foundation which can be executed at a low cost without using a casing in foundation work including a permeability improvement measure to prevent liquefaction even for the ground subject to the liquefaction.SOLUTION: A construction method of a permeable foundation secures pore wall stability of a borehole with an impermeable membrane constructed by a stabilizer and then secures permeability by undoing the impermeable membrane constructed by the stabilizer when filling a permeable material 2 to construct a permeable layer.

Description

本発明は、液状化対策等のためにおこなう地盤改良工事や液状化地盤における杭工事において、透水性材料を地盤中に埋設する透水性基礎の構築方法に関するものである。   The present invention relates to a method for constructing a water permeable foundation in which a water permeable material is buried in the ground in ground improvement work to be performed for liquefaction measures or pile work in liquefied ground.

地震により液状化の生じる可能性のある締りの悪い砂質地盤に対して、何らの対策も施さずに土地利用すると、地盤安定性の低下により甚大な被害が生じる場合がある。また杭基礎を構築した場合、地震力により液状化した地盤内の杭基礎の水平地盤反力が低下するために、既設構造物からの水平力の大部分を杭が負担することになり、杭に大きなモーメントが生じ杭基礎の破壊が生じる場合がある。   If the land is used without taking any countermeasures against poorly tightened sandy ground that may cause liquefaction due to an earthquake, serious damage may occur due to a decrease in ground stability. In addition, when the pile foundation is constructed, the horizontal ground reaction force of the pile foundation in the ground liquefied by the seismic force is reduced, so the pile bears most of the horizontal force from the existing structure. A large moment may be generated in the pile and the pile foundation may be destroyed.

このような問題に対して、液状化対策工事等のために行う地盤改良工事の代表的な工法として、砕石等の高い透水性を有する材料からなるドレーンを砂質地盤中に柱状又は壁状に打設し、地震時に発生する過剰間隙水圧の上昇を抑えるとともに、消散を早めて地盤の液状化を防止することを目的としたグラベルドレーン工法がある。   For such problems, as a typical method of ground improvement work for liquefaction countermeasure work, etc., drains made of materials with high water permeability such as crushed stone are columnar or wall-like in sandy ground There is a gravel drain construction method that aims to prevent excessive liquefaction by speeding up dissipation while suppressing the increase in excess pore water pressure that occurs during an earthquake.

このグラベルドレーン工法は、図5及び図6に示すような、施工機及び施工手順によるケーシングオーガー方式が一般的である。施工機は、アースオーガー92、スクリュー付きケーシングパイプ91、砕石投入用ホッパー93等で構成される三点式クローラー杭打ち機9が用いられ、大型重機による施工を前提としている。   As for this gravel drain construction method, a casing auger system using construction machines and construction procedures as shown in FIGS. 5 and 6 is generally used. As a construction machine, a three-point crawler pile driving machine 9 including an earth auger 92, a casing pipe 91 with a screw, a crushed stone hopper 93, and the like is used.

そのため、グラベルドレーン工法は狭隘な場所での施工が難しく、振動・騒音による周辺環境影響も大きくなるという問題に加え、大型重機の使用によりコストも割高となるという問題がある。   For this reason, the gravel drain construction method has a problem that construction in a narrow place is difficult, the influence of the surrounding environment due to vibration and noise is increased, and the use of large heavy machinery increases the cost.

また、杭基礎の破壊を防ぐために液状化を防止するための方法についてはこれまでに種々提案さている。   Various methods for preventing liquefaction have been proposed so far in order to prevent destruction of the pile foundation.

具体的には、杭の周囲を砕石層で囲み、砕石層中に過剰間隙水圧を逃がす杭構造(以下、排水複合杭と称す)に関するものがあり、例えば、ケーシング管を圧入しながらその内部を掘削し、支持地盤まで到達したところでケーシング管の内部にそれより小径の鋼管杭を設置し、ケーシング管と鋼管杭の間を砕石で充填する工法が提案されている(例えば、特許文献1を参照)。   Specifically, there is a pile structure that surrounds the pile with a crushed stone layer and releases excess pore water pressure in the crushed stone layer (hereinafter referred to as a drainage composite pile). For example, while pressing a casing pipe, A method has been proposed in which a steel pipe pile having a smaller diameter is installed inside the casing pipe when it is excavated and reaches the support ground, and the space between the casing pipe and the steel pipe pile is filled with crushed stone (for example, see Patent Document 1). ).

この工法ではケーシング管の挿入、抜き去りのコストが高く、掘削深さが深くなるほどさらにこれらのコストが急激に高くなるという問題がある。   In this construction method, there is a problem that the cost for inserting and removing the casing pipe is high, and that the cost increases rapidly as the excavation depth increases.

また他の工法として、既成杭の周面に、砂利等のドレーン材を充填した袋体をドレーン材とする工法が提案されている(例えば、特許文献2を参照)。   As another construction method, a construction method has been proposed in which a bag body in which a drain material such as gravel is filled on a peripheral surface of an existing pile is used as a drain material (see, for example, Patent Document 2).

この提案によれば、この杭体を設置するためにアースオーガー等で削孔をし、そこに杭を挿入しているが、液状化を生じる緩い滞水した砂質地盤を、安定液を使用することなくアースオーガーで掘削した場合、孔壁の崩壊が生じるため実質的にこの工法では施工ができない。   According to this proposal, in order to install this pile body, a hole is drilled with an earth auger, etc., and a pile is inserted there, but a stable liquid is used for loosely stagnant sandy ground that causes liquefaction. When excavating with an earth auger without doing so, the hole wall collapses, so this method cannot be used in practice.

また、他の工法として、支持杭を埋設するために外周部にスクリューを備えたオーガーを地中に貫入させ、オーガーの中に杭を設置し、かつ杭とオーガーの中に砂礫層を形成する工法が提案されている(例えば、特許文献3を参照)。   As another construction method, in order to embed the supporting pile, an auger with a screw on the outer periphery is inserted into the ground, the pile is installed in the auger, and a gravel layer is formed in the pile and the auger. A construction method has been proposed (see, for example, Patent Document 3).

この工法によると、オーガーの径が大きくなるほどオーガーの押し込みに非常に大きなトルクが発生するため、施工機械が非常に大きくなるとともに施工径の限界がある。   According to this method, the larger the auger diameter, the greater the torque generated in pushing the auger. Therefore, the construction machine becomes very large and the construction diameter is limited.

さらに、他の工法として、軟弱化地盤まで土砂を排出しながらケーシングを建込、その後にケーシングより小さい内径の杭基礎を建込み、ケーシングと杭基礎の間隙に砕石を充填させた後に、ケーシングを引き抜く工法が提案されている(例えば、特許文献4を参照)。   Furthermore, as another construction method, the casing is built while discharging the earth and sand to the softened ground, and then a pile foundation with an inner diameter smaller than the casing is built, and after filling the gap between the casing and the pile foundation with crushed stone, A drawing method has been proposed (see, for example, Patent Document 4).

この工法についても、前記の工法(特許文献1)と同様に、ケーシングの建込みのコストやケーシングの抜き去りのコストが高くなり、また、掘削深さが深くなるほど、これらのコストが高くなるといった問題がある。   Regarding this construction method, as in the construction method (Patent Document 1), the cost of erection of the casing and the cost of removal of the casing are increased, and these costs are increased as the excavation depth is increased. There's a problem.

特開平6-49840号公報Japanese Patent Laid-Open No. 6-49840 特開平6-235215号公報JP-A-6-235215 特許第3576259号公報Japanese Patent No. 3576259 特開平10-25732号公報Japanese Patent Laid-Open No. 10-25732

本発明は、上記のような背景から従来の問題点を解消し、液状化を生じやすい地盤においても液状化を生じさせないための透水性改善対策を含んだ杭基礎工事において、ケーシングを用いることなく、安価に施工が可能な透水性基礎の構築方法を提供することを課題としている。   The present invention eliminates the conventional problems from the background as described above, and does not use a casing in pile foundation work including measures for improving water permeability so as not to cause liquefaction even in the ground that is liable to cause liquefaction. An object is to provide a method for constructing a water-permeable foundation that can be constructed at low cost.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、透水性基礎の構築方法であって、安定液によって形成された遮水膜により掘削孔の孔壁安定性を確保した後、透水層を設けるための透水材料の充填時に、安定液によって形成された遮水膜を解消して透水性を確保することを特徴とする。   1stly, it is the construction method of a water permeable foundation, after ensuring the hole wall stability of an excavation hole with the water-impervious film formed with the stabilizing liquid, at the time of filling with the water-permeable material for providing a water permeable layer, The water-permeable film formed by the method is eliminated to ensure water permeability.

第2に、上記第1の発明の透水性基礎の構築方法において、安定液が、少なくとも、水と、吸水して膨潤した高吸水性ポリマー粒子を含む地盤掘削用膨潤高吸水性ポリマー安定液であることが好ましい。   Secondly, in the method for constructing a water permeable foundation according to the first aspect of the present invention, the stabilizing liquid is a swollen highly water-absorbing polymer stabilizing liquid for ground excavation including at least water and highly water-absorbing polymer particles swollen by absorbing water. Preferably there is.

第3に、上記第2の発明の透水性基礎の構築方法において、吸水して膨潤した高吸水性ポリマー粒子が、加圧により水を放出しない架橋構造の高吸水性ポリマー粒子であることが好ましい。   Third, in the method for constructing a water-permeable foundation according to the second aspect of the invention, the highly water-absorbing polymer particles swollen by absorbing water are preferably highly water-absorbing polymer particles having a crosslinked structure that does not release water by pressurization. .

第4に、上記第2又は第3の発明の透水性基礎の構築方法において、地盤掘削用膨潤高吸水性ポリマー安定液が、コンクリートや塩分等の電解物質や、酸性、アルカリ性物質が混入した際に、地盤掘削用膨潤高吸水性ポリマー安定液の性状及び品質の劣化の抑制や回復を可能とする安定剤を添加した地盤掘削用膨潤高吸水性ポリマー安定液であることが好ましい。   Fourth, in the method for constructing a water-permeable foundation according to the second or third invention, when the swelling superabsorbent polymer stabilizing liquid for ground excavation is mixed with an electrolytic substance such as concrete or salt, or an acidic or alkaline substance. In addition, it is preferable to be a swelled superabsorbent polymer stabilizing liquid for ground excavation to which a stabilizer capable of suppressing and recovering deterioration and quality of the swollen superabsorbent polymer stabilizing liquid for ground excavation is added.

第5に、上記第4の発明の透水性基礎の構築方法において、安定剤が、電解物質濃度を低下させる安定剤であることが好ましい。   Fifth, in the method for constructing a water permeable foundation according to the fourth aspect of the present invention, it is preferable that the stabilizer is a stabilizer that lowers the electrolyte concentration.

第6に、上記第4又は第5の発明の透水性基礎の構築方法において、安定剤が、PH(水素イオン指数濃度)を中性化させる中和剤であることが好ましい。   Sixth, in the method for constructing a water-permeable foundation according to the fourth or fifth invention, the stabilizer is preferably a neutralizing agent that neutralizes PH (hydrogen ion index concentration).

第7に、上記第4から第6の発明の透水性基礎の構築方法において、安定剤が、希硫酸、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリエチレンオキシド、炭酸水素塩、炭酸塩から選ばれる少なくとも一種であることが好ましい。   Seventh, in the method for constructing a water-permeable foundation according to the fourth to sixth inventions, the stabilizer is dilute sulfuric acid, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, polyacrylamide, polyvinyl alcohol, sodium polyacrylate, It is preferably at least one selected from polyethylene oxide, hydrogen carbonate and carbonate.

第8に、上記第2から第7の発明の透水性基礎の構築方法において、地盤掘削用膨潤高吸水性ポリマー安定液のファンネル粘性(500ml/500ml)が19〜120秒の範囲であることが好ましい。   Eighth, in the method for constructing a water permeable foundation according to the second to seventh inventions, the funnel viscosity (500 ml / 500 ml) of the swelling superabsorbent polymer stabilizing liquid for ground excavation is in the range of 19 to 120 seconds. preferable.

第9に、上記第4から第8の発明の透水性基礎の構築方法において、地盤掘削用膨潤高吸水性ポリマー安定液の電気伝導率が10mS/cm以下であることが好ましい。   Ninth, in the method for constructing a water-permeable foundation according to the fourth to eighth inventions, it is preferable that the electrical conductivity of the swelling superabsorbent polymer stabilizing liquid for ground excavation is 10 mS / cm or less.

第10に、上記第1から第9の発明の透水性基礎の構築方法において、掘削孔の径より小径のさや管を入れ、さや管の中に現場打杭を構築し、掘削孔とさや管の間に透水層を設けることが好ましい。   Tenth, in the construction method of a water-permeable foundation according to the first to ninth inventions, a sheath pipe having a diameter smaller than the diameter of the excavation hole is inserted, an in-situ pile is constructed in the sheath pipe, and the excavation hole and the sheath pipe are formed. It is preferable to provide a water-permeable layer between them.

第11に、上記第1から第9の発明の透水性基礎の構築方法において、掘削孔の径より小径のコンクリート杭を建込み、掘削孔とコンクリート杭との間に透水層を設けることが好ましい。   11thly, in the construction method of the water-permeable foundation of the said 1st-9th invention, it is preferable to build a concrete pile smaller than the diameter of a digging hole, and to provide a permeable layer between a digging hole and a concrete pile. .

第12に、上記第1から第9の発明の透水性基礎の構築方法において、掘削孔の径より小径の鋼管杭を建込み、掘削孔と鋼管杭との間に透水層を設けることが好ましい。   12thly, in the construction method of the water-permeable foundation of the said 1st-9th invention, it is preferable to build a steel pipe pile smaller than the diameter of a drilling hole, and to provide a water permeable layer between a drilling hole and a steel pipe pile. .

第13に、上記第1から第9の発明の透水性基礎の構築方法において、掘削孔の径より小径の集水ストレーナー管を建込み、掘削孔と集水ストレーナー管の間に透水層を設けてウェルとすることが好ましい。   13thly, in the construction method of the water permeable foundation of the first to ninth inventions, a water collection strainer pipe having a diameter smaller than the diameter of the excavation hole is built, and a water permeable layer is provided between the excavation hole and the water collection strainer pipe. It is preferable to use a well.

第14に、上記第1から第13の発明の透水性基礎の構築方法において、地上部に水平方向の排水層を設け、構築した透水層と接続し、その過剰間隙水を水平方向に排水することが好ましい。   14thly, in the construction method of the water permeable foundation according to the first to 13th aspects of the present invention, a horizontal drainage layer is provided on the ground part, connected to the constructed permeable layer, and the excess pore water is drained in the horizontal direction. It is preferable.

第15に、上記第1から第14の発明の透水性基礎の構築方法において、掘削孔の内部に透水層を設けるために、透水材料と共に電解物質を充填することにより、安定液によって形成された遮水膜の遮水性を解消し、透水層を構築することが好ましい。   Fifteenth, in the method for constructing a water permeable foundation according to the first to fourteenth aspects of the present invention, in order to provide a water permeable layer inside the excavation hole, the water permeable material is filled with an electrolytic substance together with a water permeable material. It is preferable to eliminate the water barrier property of the water barrier film and construct a water permeable layer.

第16に、上記第15の発明の透水性基礎の構築方法において、電解物質が塩化カルシウム、クエン酸、水酸化ナトリウム及び塩化ナトリウムから選ばれる少なくとも1種であることが好ましい。   Sixteenthly, in the water permeable foundation construction method of the fifteenth aspect of the invention, the electrolytic substance is preferably at least one selected from calcium chloride, citric acid, sodium hydroxide and sodium chloride.

本発明の基礎構築工法によれば、液状化を生じやすい地盤においても液状化を生じさせないための透水性改善対策を含んだ杭基礎工事において、ケーシングを用いることなく、安価に施工が可能な透水性基礎の構築方法を提供することができる。   According to the foundation construction method of the present invention, in pile foundation work including measures for improving water permeability so as not to cause liquefaction even in ground that is liable to be liquefied, water permeability that can be constructed at low cost without using a casing. A method for constructing a sex foundation can be provided.

本発明の透水性基礎の構築方法の工程を示した概略図である。It is the schematic which showed the process of the construction method of the water-permeable foundation of this invention. 杭を構築する場合の透水性基礎の構築方法の工程を示した概略図である。It is the schematic which showed the process of the construction method of the water-permeable foundation in the case of constructing a pile. 拡底杭を構築する場合の透水性基礎の構築方法の工程を示した概略図である。It is the schematic which showed the process of the construction method of the water-permeable foundation in the case of constructing an expanded pile. 電解物質濃度と吸水量の関係を示したグラフである。It is the graph which showed the relationship between electrolytic substance concentration and the amount of water absorption. 一般的なグラベルドレーンの施工機を示した概略図である。It is the schematic which showed the construction machine of the general gravel drain. 一般的なグラベルドレーンの施工工程を示した概略図である。It is the schematic which showed the construction process of the general gravel drain.

本発明は、液状化を生じやすい地盤に対して行われる、グラベルドレーン工法等の液状化を生じさせないための排水層を持った基礎工事で用いられる透水性基礎の構築方法であって、水と、吸水して膨潤した高吸水性ポリマー粒子を含む地盤掘削用膨潤高吸水性ポリマー安定液(以下、単にポリマー安定液と略称する)によって形成された遮水膜により掘削孔の孔壁安定性を確保した後、透水層を設けるための透水材料の充填時に、前記遮水膜の遮水性を、電解物質を用いて解消して透水性を確保することを特徴とする透水性基礎の構築方法である。   The present invention is a method for constructing a water permeable foundation used in foundation work having a drainage layer for preventing liquefaction such as gravel drain method, which is performed on a ground which is liable to be liquefied. The hole wall stability of the excavation hole is improved by a water-impervious film formed by a swollen highly water-absorbing polymer stabilizing liquid for ground excavation (hereinafter simply referred to as a polymer stabilizing liquid) containing superabsorbent polymer particles swollen by water absorption. After securing, when filling with a water permeable material for providing a water permeable layer, the water imperviousness of the water impervious film is eliminated by using an electrolytic substance to ensure water permeability. is there.

以下、本発明の透水性基礎の構築方法について図を用いて詳細に説明する。図1は、グラベルドレーン工法に本発明の透水性基礎の構築方法を適用した場合の一実施形態を示した概略図である。   Hereinafter, the construction method of the water-permeable foundation of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an embodiment in which the water permeable foundation construction method of the present invention is applied to the gravel drain construction method.

図1(1)では、まず、液状化の可能性のある砂地盤等に対して、アースドリル掘削機3により所定の深さまで掘削を行う。そして、所定の深さまで掘削が完了した段階で図1(2)に示すようにバケット4を引き上げる。   In FIG. 1 (1), first, excavation is performed to a predetermined depth by an earth drill excavator 3 on sand ground or the like that may be liquefied. Then, when excavation is completed to a predetermined depth, the bucket 4 is pulled up as shown in FIG.

本発明では、この掘削の際に少なくとも、水と、吸水して膨潤した高吸水性ポリマー粒子を含むポリマー安定液1を用いて掘削を行う。   In the present invention, at the time of excavation, excavation is performed using at least water and the polymer stabilizing liquid 1 containing the highly water-absorbing polymer particles swollen by absorbing water.

掘削用の安定液としては、通常、ベントナイト系安定液や気泡安定液等が用いられるが、ベントナイト系安定液を用いた場合には、掘削孔の周辺に難透水膜が形成され、さらにベントナイト系安定液中に透水材料を投入するとベントナイト系安定液と透水材料が混ざり合い透水層として機能しない。そのため、透水性基礎の構築にベントナイト系安定液を使用することはできない。   As the stabilizing liquid for excavation, a bentonite-based stabilizing liquid, a bubble stabilizing liquid, or the like is usually used. However, when a bentonite-based stabilizing liquid is used, a poorly permeable film is formed around the drilling hole. When a water-permeable material is introduced into the stabilizing liquid, the bentonite-based stabilizing liquid and the water-permeable material are mixed and do not function as a water-permeable layer. For this reason, bentonite-based stabilizers cannot be used to construct a water-permeable foundation.

また、気泡安定液を使用した場合には、気泡安定液が掘削土と気泡と水の混合体であり、比重が1.3以上あるため、透水材料との置換が困難となる。そのため透水性基礎の構築に気泡安定液を使用することはできない。   Further, when the bubble stabilizing liquid is used, the bubble stabilizing liquid is a mixture of excavated soil, bubbles, and water, and has a specific gravity of 1.3 or more, so that it is difficult to replace it with a water-permeable material. Therefore, it is not possible to use a bubble stabilizer for the construction of a water-permeable foundation.

これに対して、水と、吸水して膨潤した高吸水性ポリマー粒子を含むポリマー安定液1は、掘削時においては遮水膜を形成して掘削孔の孔壁安定性を確保する機能を有し、透水層の構築時においては電解物質との反応により高吸水性ポリマー粒子の体積を減少させるとともに、その粘性を減少させることで透水性を確保することができるため、透水性基礎の構築に対して好適に用いることができる。   In contrast, the polymer stabilizing liquid 1 including water and highly water-absorbing polymer particles swollen by absorbing water has a function of forming a water-impervious film during excavation and ensuring the wall stability of the excavation hole. However, at the time of construction of the water permeable layer, the volume of the superabsorbent polymer particles is reduced by reaction with the electrolytic substance, and the water permeability can be ensured by reducing the viscosity thereof. It can use suitably.

本発明で用いる高吸水性ポリマー粒子は、架橋構造を持つ親水性のポリマーであって、自重の10倍以上の吸水性を有し、圧力をかけても離水しにくいものであり、吸水量はJIS K 7223で定義づけられるものである。   The highly water-absorbing polymer particles used in the present invention are hydrophilic polymers having a cross-linked structure, have a water absorption of 10 times or more of their own weight, and are difficult to separate even under pressure. It is defined in JIS K 7223.

また、高吸水性ポリマー粒子の種類は、上記の条件を満足するものであれば特に制限なく用いることができ、例えば、デンプン系、セルロース系、合成ポリマー系の高吸収性ポリマーを挙げることができる。これらの中でもポリアクリル酸ナトリウム高吸水性ポリマー粒子は性能とコストの両面で特に好適に用いることができる。   The type of superabsorbent polymer particles can be used without particular limitation as long as the above conditions are satisfied, and examples thereof include starch-based, cellulose-based, and synthetic polymer-based superabsorbent polymers. . Among these, sodium polyacrylate highly water-absorbing polymer particles can be particularly preferably used in terms of both performance and cost.

ポリアクリル酸ナトリウム高吸水性ポリマー粒子は、アクリル酸ナトリウム(CH2=CH-COONa)に架橋剤を加えて軽度に架橋させた3次元網目構造を持ったアクリル酸重合体部分ナトリウム塩架橋物のゲルである。架橋剤の種類は種々なものがある。 Polyacrylic acid sodium superabsorbent polymer particles are a cross-linked product of sodium salt of acrylic acid polymer with a three-dimensional network structure that is lightly crosslinked by adding a crosslinking agent to sodium acrylate (CH 2 = CH-COONa). It is a gel. There are various types of crosslinking agents.

このポリアクリル酸ナトリウム高吸水性ポリマー粒子は、水を吸収するとカルボキシル基がゲル中にナトリウムイオンを解離し、純水ならば自重の100〜1000倍にも達する膨潤度を生み出すことが知られている。   This sodium polyacrylate superabsorbent polymer particle is known to absorb sodium and dissociate sodium ions in the gel, and if pure water produces a degree of swelling that is 100 to 1000 times its own weight. Yes.

また、ポリアクリル酸ナトリウム高吸水性ポリマー粒子の吸水量は、アクリル酸ナトリウムに対して架橋剤を多く配合するとゲルは硬くなり吸水量は少なくなる。また、架橋剤の配合を少なくするとゲルは柔らかくなり吸水量は多くなる。   Moreover, the water absorption of the sodium polyacrylate highly water-absorbing polymer particles is such that if a large amount of a crosslinking agent is added to sodium acrylate, the gel becomes hard and the water absorption decreases. Further, when the amount of the crosslinking agent is decreased, the gel becomes soft and the water absorption amount increases.

さらに、特殊なポリアクリル酸ナトリウム高吸水性ポリマー粒子として、架橋剤により重合させた高吸水性ポリマー粒子の表面をさらに架橋させた、シェルとコアの二重構造のポリアクリル酸ナトリウム高吸水性ポリマー粒子がある。   Furthermore, as a special sodium polyacrylate superabsorbent polymer particle, the surface of the superabsorbent polymer particle polymerized with a crosslinking agent is further cross-linked, and the sodium polyacrylate superabsorbent polymer of shell and core double structure There are particles.

この、シェルとコアの二重構造のポリアクリル酸ナトリウム高吸水性ポリマー粒子の場合には、シェルが厚いほど硬いゲルとなり吸水量は少なくなり、シェルを薄くすると柔らかいゲルとなり吸水量は多くなる。   In the case of the sodium polyacrylate highly water-absorbing polymer particles having a dual structure of shell and core, the thicker the shell, the harder the gel and the smaller the water absorption. The thinner the shell, the softer the gel and the greater the water absorption.

また、上記のシェルとコアは、通常、エステル結合により架橋したものであるが、コアの結合が耐アルカリ性、耐電解物質性に優れたエーテル結合であるポリアクリル酸ナトリウム高吸水性ポリマー粒子もあり、本発明においてはこのエーテル結合の方がより好ましい。   In addition, the above shell and core are usually crosslinked by an ester bond, but there are also sodium polyacrylate superabsorbent polymer particles in which the core bond is an ether bond excellent in alkali resistance and electrolytic substance resistance. In the present invention, this ether bond is more preferable.

上記の特性のほか、ポリアクリル酸ナトリウム高吸水性ポリマー粒子におけるナトリウムイオンの解離は、ゲルがおかれるPHや塩濃度等の条件にも依存するため、使用条件に応じてその他の高吸水性ポリマー粒子を適宜選択して併用することができる。   In addition to the above characteristics, dissociation of sodium ions in the polyacrylic acid sodium superabsorbent polymer particles also depends on conditions such as pH and salt concentration where the gel is placed, so other superabsorbent polymers depending on the use conditions Particles can be appropriately selected and used in combination.

通常、ポリマー安定液は大深度で使用することもあるので、加圧力に応じて水の保持力の低下が少なく変形しにくい架橋構造を持った高吸水性ポリマー粒子の選定が必要であり、かつ、液状化の生じる可能性のある締りの悪い砂質地盤等の粒子間の間隙を目詰するために、膨潤後の粒径は3mm以下で粒度分布が良いことが望ましい。   Usually, since the polymer stabilizer may be used at a deep depth, it is necessary to select highly water-absorbing polymer particles having a crosslinked structure that is less likely to be deformed with little decrease in water holding power depending on the applied pressure, and In order to clog gaps between particles such as sandy ground with poor tightening that may cause liquefaction, it is desirable that the particle size after swelling is 3 mm or less and the particle size distribution is good.

本発明でポリアクリル酸ナトリウム高吸水性ポリマー粒子を用いる場合は、上記の条件を満足するものであれば特に制限なく用いることができるが、特にシェルとコアの二重構造のポリアクリル酸ナトリウム高吸水性ポリマー粒子を上記の条件に調整したものを好適に用いることができる。   In the present invention, when sodium polyacrylate highly water-absorbing polymer particles are used, any polymer can be used without particular limitation as long as the above conditions are satisfied. What adjusted the water absorbing polymer particle to said conditions can be used suitably.

また、本発明で用いるポリマー安定液1には、加重材として無機材を添加することができる。   Moreover, an inorganic material can be added to the polymer stabilizer 1 used in the present invention as a weighting material.

本発明で用いられる加重材としての無機材としては、微砂、微粒な重晶石や陶磁器の破砕物を用いることができる。   As the inorganic material as the weighting material used in the present invention, fine sand, fine barite or ceramic crushed material can be used.

また、加重材の添加は、ポリマー安定液1に予め前記無機材を添加しておくほか、前記無機材と共に、又は前記無機材なしに、掘削時に砂質地盤等から混入した地盤の細粒分を加重材として用いることもできる。   In addition to the addition of the inorganic material to the polymer stabilizing liquid 1 in advance, the addition of the weighting material is performed in addition to the inorganic material or without the inorganic material. Can also be used as a weighting material.

加重材の粒径としては、最大粒径2.0mm以下、好ましくは1.0mm以下のものを好適に用いることができる。   As the particle size of the weighting material, those having a maximum particle size of 2.0 mm or less, preferably 1.0 mm or less can be suitably used.

この粒径範囲とすることにより、安定した遮水層を形成することができる。   By setting it as this particle size range, a stable water shielding layer can be formed.

本発明で用いるポリマー安定液1は、上記の高吸水性ポリマー粒子に水と加重材を加えた状態で、比重を1.20以下、好ましくは0.95〜1.20の範囲に調整したものである。また、予め加重材としての無機材を添加せず、掘削時に砂質地盤等から混入した地盤の細粒分を加重材とする場合のポリマー安定液1においては、比重を1.00〜1.20の範囲に調整したものを用いることができる。この比重の調整は、下記式(1)により行うことができる。   The polymer stabilizing solution 1 used in the present invention is prepared by adjusting the specific gravity to 1.20 or less, preferably 0.95 to 1.20, with water and a weighting material added to the superabsorbent polymer particles. It is. In addition, in the polymer stabilizing liquid 1 in which the inorganic material as the weighting material is not added in advance and the fine particles of the ground mixed from the sandy ground during excavation are used as the weighting material, the specific gravity is 1.00 to 1.. What was adjusted to the range of 20 can be used. This specific gravity can be adjusted by the following formula (1).

吸水前の高吸水性ポリマー粒子に水を加えて膨張させた高吸水性ポリマー粒子の質量をWP4、体積をVP4、比重をρP4とし、ポリマー安定液1の加重材の添加質量をW、体積をV、比重をρとすると、ポリマー安定液1の比重ρは下記式(1)の通りとなる。 The mass of the superabsorbent polymer particles expanded by adding water to the superabsorbent polymer particles before water absorption is W P4 , the volume is V P4 , the specific gravity is ρ P4, and the added mass of the weighting material of the polymer stabilizer 1 is W When S 1 , the volume is V S , and the specific gravity is ρ S , the specific gravity ρ C of the polymer stabilizer 1 is expressed by the following formula (1).

なお、加重材を加えない場合の比重調整に関しては、加重材の添加質量W、体積V、比重ρを0として算出すればよい。 In addition, regarding the specific gravity adjustment in the case where the weight material is not added, the weight added material W S , the volume V S , and the specific gravity ρ S may be calculated as zero.

また、本発明で用いるポリマー安定液1の粘性は、高吸水性ポリマー粒子の添加量によりファンネル粘性(500ml/500ml)が19〜120秒、好ましくは22〜30秒の範囲内となるように調整したものである。ここで、ファンネル粘性とは、500mlの漏斗形の容器に入れた試料液が500ml吐出するに要した流出時間(秒)によって粘性を測定するマーシュファンネル粘度計を用いて測定された粘性である。   The viscosity of the polymer stabilizing solution 1 used in the present invention is adjusted so that the funnel viscosity (500 ml / 500 ml) is within a range of 19 to 120 seconds, preferably 22 to 30 seconds, depending on the amount of the superabsorbent polymer particles added. It is a thing. Here, the funnel viscosity is a viscosity measured using a Marsh Funnel viscometer that measures the viscosity according to the outflow time (seconds) required to discharge 500 ml of the sample liquid placed in a 500 ml funnel-shaped container.

また、本発明で用いるポリマー安定液1には、孔壁安定性の向上、また、前記ポリマー安定液1の粘性調整を目的として助剤を添加することができる。   In addition, an auxiliary can be added to the polymer stabilizing solution 1 used in the present invention for the purpose of improving the pore wall stability and adjusting the viscosity of the polymer stabilizing solution 1.

さらに、本発明で用いるポリマー安定液1には、コンクリートや塩分等の電解物質や、酸性、アルカリ性物質が混入した際に、ポリマー安定液1の性状及び品質の劣化の抑制や回復を可能とするための安定剤を添加することができる。   Furthermore, the polymer stabilizer 1 used in the present invention can suppress or recover the deterioration of the property and quality of the polymer stabilizer 1 when an electrolytic substance such as concrete or salt, or an acidic or alkaline substance is mixed. Stabilizers can be added.

安定剤としては、希硫酸、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリエチレンオキシド、また、炭酸水素ナトリウム、炭酸水素カルシウム、炭酸水素カリウム、炭酸水素アンモニウム等の炭酸水素塩、また、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸アンモニウム等の炭酸塩から選ばれる少なくとも一種を用いることができる。   Stabilizers include dilute sulfuric acid, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, polyacrylamide, polyvinyl alcohol, sodium polyacrylate, polyethylene oxide, sodium hydrogen carbonate, calcium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate Or at least one selected from carbonates such as sodium carbonate, calcium carbonate, potassium carbonate, and ammonium carbonate.

掘削工程において、コンクリートや塩分等の電解物質がポリマー安定液1に混入し、電解物質濃度が高くなると、ポリマー安定液1中の高吸水性ポリマー粒子の吸水倍率が低下し、吸水していた水分を放出することでポリマー安定液1のファンネル粘性やろ水量等の性状、品質が急激に劣化することになる。   In the excavation process, when electrolytic substances such as concrete and salt are mixed in the polymer stabilizing liquid 1 and the concentration of the electrolytic substance increases, the water absorption ratio of the superabsorbent polymer particles in the polymer stabilizing liquid 1 decreases, and the water that has been absorbed The properties and quality of the polymer stabilizer 1 such as the funnel viscosity and the amount of drainage are rapidly deteriorated.

このような状況に対し、安定剤を予め添加しておくことで、電解物質濃度の上昇を抑制し、ポリマー安定液1の性状、品質の劣化を防止することができる。   In such a situation, by adding a stabilizer in advance, an increase in the concentration of the electrolytic substance can be suppressed, and deterioration of the properties and quality of the polymer stabilizer 1 can be prevented.

また、電解物質の混入により劣化したポリマー安定液1に安定剤を添加することにより、電解物質濃度を低下させ、放出していた水分を再吸収し、ポリマー安定液1の性状、品質を回復させることもできる。   Moreover, by adding a stabilizer to the polymer stabilizer 1 that has deteriorated due to the mixing of the electrolyte, the concentration of the electrolyte is lowered, the released water is reabsorbed, and the properties and quality of the polymer stabilizer 1 are restored. You can also

さらに、コンクリートが混入し、アルカリ性になると、ポリマー安定液1の性状、品質が劣化するため、安定剤を中和剤として添加して、PH(水素イオン指数濃度)を中性化させることで、性状、品質を回復させることができる。   Furthermore, when the concrete is mixed and becomes alkaline, the properties and quality of the polymer stabilizer 1 are deteriorated. Therefore, by adding a stabilizer as a neutralizing agent and neutralizing PH (hydrogen ion index concentration), Properties and quality can be recovered.

上記の本発明で用いるポリマー安定液1においては、その電気伝導率が10mS/cm以下とするのが望ましい。   In the above-mentioned polymer stabilizer 1 used in the present invention, the electric conductivity is desirably 10 mS / cm or less.

上記に示すような特性のポリマー安定液1を用いて掘削することにより、ケーシングを用いることなく掘削孔の孔壁安定性を確保することが可能となる。   By excavating using the polymer stabilizing solution 1 having the characteristics as described above, it is possible to ensure the hole wall stability of the excavation hole without using a casing.

次に、図1(3)に示すように掘削孔内のポリマー安定液1に対して、トレミー管3を用いて透水材料2の充填を行う。透水材料2としては地震時に生じる液状化に伴う間隔水圧の上昇を抑える透水性を有する透水材料2であれば特に制限なく用いることができ、これらの透水材料2としては、砕石、砂等を挙げることができる。   Next, as shown in FIG. 1 (3), the polymer stabilizing liquid 1 in the excavation hole is filled with the water-permeable material 2 using the treme tube 3. The water-permeable material 2 can be used without particular limitation as long as it is a water-permeable material 2 having water permeability that suppresses an increase in the interval water pressure accompanying liquefaction that occurs during an earthquake. Examples of the water-permeable material 2 include crushed stone and sand. be able to.

また、透水材料2の充填は、図1(1)、(2)の掘削工程で用いたポリマー安定液1を置換して行うが、充填後においては、掘削孔壁にポリマー安定液1による遮水膜が形成されている。   In addition, filling of the water permeable material 2 is performed by replacing the polymer stabilizing liquid 1 used in the excavation process of FIGS. 1 (1) and 1 (2). A water film is formed.

そこで本発明では、透水材料2の充填後に遮水膜の遮水性を解消するために、透水材料2と共に電解物質を充填する。   Therefore, in the present invention, the electrolytic substance is filled together with the water permeable material 2 in order to eliminate the water shielding property of the water shielding film after the water permeable material 2 is filled.

ポリマー安定液1に電解物質を加えると、図3のグラフに示すように、電解物質の種類及びそれぞれの電解物質の電解物質濃度に応じて、高吸収性ポリマー粒子は取り込んでいる水を放出して体積を減少させて透水材料2に隙間を形成させるとともに、高吸収性ポリマー粒子の粘性を減少させることができるため、遮水膜の遮水性を解消させることができる。   When an electrolytic substance is added to the polymer stabilizer 1, the superabsorbent polymer particles release the water taken in depending on the type of electrolytic substance and the electrolytic substance concentration of each electrolytic substance, as shown in the graph of FIG. Thus, the volume can be reduced to form a gap in the water permeable material 2, and the viscosity of the superabsorbent polymer particles can be reduced, so that the water barrier property of the water barrier film can be eliminated.

本発明で用いられる電解物質としては、ポリマー安定液1に加えることにより水を放出させる電解物質であれば特に制限なく用いることができ、例えば、酸性物質として塩酸、硫酸、硝酸、クエン酸等、塩基性物質として水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等、塩類として塩化カルシウム、塩化ナトリウム、塩化カリウム等を挙げることができる。この中でも、水の放出後の環境の負荷や経済性の面を考慮して、塩化カルシウムを好適に用いることができる。   The electrolytic substance used in the present invention can be used without particular limitation as long as it is an electrolytic substance that releases water by being added to the polymer stabilizing solution 1, and examples of the acidic substance include hydrochloric acid, sulfuric acid, nitric acid, citric acid, and the like. Examples of basic substances include sodium hydroxide, potassium hydroxide, and calcium hydroxide, and examples of salts include calcium chloride, sodium chloride, and potassium chloride. Among these, calcium chloride can be preferably used in consideration of the environmental load and economical aspects after the release of water.

電解物質の充填の具体例では、例えば、ポリマー安定液1の構成として、高吸水性ポリマー粒子0.2%、加重材4.8%、水95.0%の場合、塩化カルシウムを加えることにより、安定液は95%の塩化カルシウム水溶液と5%の加重材と高吸水性ポリマー粒子の固形物に分離することが確認されている。   In the specific example of the filling of the electrolytic substance, for example, when the composition of the polymer stabilizer 1 is 0.2% superabsorbent polymer particles, 4.8% weighting material, and 95.0% water, by adding calcium chloride It has been confirmed that the stable liquid is separated into a solid of 95% calcium chloride aqueous solution, 5% weighting material and superabsorbent polymer particles.

なお、上記のように透水材料2と電解物質を充填して、回収したポリマー安定液1は、固形物と液体に分離して廃棄することにより、廃棄が容易になるとともに、処理コストを非常に安価に抑えることができる。また、回収したポリマー安定液1から高吸収性ポリマー粒子を分離回収して、水を再吸収させることにより再生使用することもできる。   The polymer stabilizing liquid 1 filled with the water-permeable material 2 and the electrolytic substance as described above and separated into a solid and a liquid is discarded, so that the disposal becomes easy and the processing cost is very high. It can be kept inexpensive. Alternatively, the superabsorbent polymer particles can be separated and recovered from the recovered polymer stabilizing solution 1 and re-absorbed by reabsorbing water.

このようにして、透水材料2の充填と共に遮水膜の遮水性が解消され、図1(4)に示すように透水材料2からなる透水層が形成され、本発明の透水性基礎を構築することができる。   Thus, the water-imperviousness of the water-impervious film is eliminated together with the filling of the water-permeable material 2, and a water-permeable layer made of the water-permeable material 2 is formed as shown in FIG. 1 (4), thereby constructing the water-permeable foundation of the present invention. be able to.

以上に詳述した本発明の工程によれば、ポリマー安定液1を使用したケーシングのないプレボーリング工法により掘削時の孔壁安定性を確保した後、透水材料2の充填時にはポリマー安定液1によって形成された遮水膜を電解物質により解消することで透水性を確保することができる。   According to the process of the present invention described in detail above, after ensuring the hole wall stability during excavation by the pre-boring method using the polymer stabilizing liquid 1 without the casing, the polymer stabilizing liquid 1 is used when the water-permeable material 2 is filled. Water permeability can be ensured by eliminating the formed water shielding film with an electrolytic substance.

そして、液状化地盤の改良工事や液状化地盤における排水複合杭工事において、従来の施工方法の前提となっていたケーシングを不要とすることで、優れた施工性と、安価なコストを実現することができる。   And in the improvement work of the liquefied ground and the drainage combined pile work in the liquefied ground, by eliminating the casing that was the premise of the conventional construction method, to realize excellent workability and low cost Can do.

以上、実施形態に基づき本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。   While the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

例えば、図2に示すように、図2(1)、(2)の工程で、ポリマー安定液1を用いて掘削をした後、掘削孔の径より小径の杭6を打設した後(図2(3))、掘削孔と杭6の間に透水材料2と電解物質を充填し(図2(4))、杭6の周囲に透水材料2からなる透水層を構築させることもできる(図2(5))。   For example, as shown in FIG. 2, after excavation using the polymer stabilizing liquid 1 in the steps of FIGS. 2 (1) and 2 (2), a pile 6 having a diameter smaller than the diameter of the excavation hole is placed (FIG. 2). 2 (3)), the water-permeable material 2 and the electrolytic substance are filled between the excavation hole and the pile 6 (FIG. 2 (4)), and a water-permeable layer made of the water-permeable material 2 can be constructed around the pile 6 ( FIG. 2 (5)).

また、図3に示すように、液状化の可能性のある砂地盤等よりも深い硬い地盤の支持層8に至るまで、拡底7となるようにポリマー安定液1を用いて掘削を行い(図3(1))、支持層8まで杭6を打設して(図3(2))、杭6の周囲に透水材料2からなる透水層を構築させることもできる(図3(3))。   Further, as shown in FIG. 3, excavation is performed using the polymer stabilizing liquid 1 so as to become the expanded bottom 7 until reaching the support layer 8 of the hard ground deeper than the sand ground or the like which may be liquefied (see FIG. 3). 3 (1)), the pile 6 can be driven to the support layer 8 (FIG. 3 (2)), and a water-permeable layer made of the water-permeable material 2 can be constructed around the pile 6 (FIG. 3 (3)). .

上記、図2及び図3に示す打設する杭6については、砂地盤等の特性や上部に建築する構造物等に応じて適宜設定することができ、例えば、さや管を入れてさや管の中に現場杭を構築させたり、コンクリート杭や鋼管杭を建込むことができる。   The piles 6 to be placed shown in FIGS. 2 and 3 can be appropriately set according to the characteristics of the sand ground or the structure to be built on the upper part. In-situ piles can be built inside, concrete piles and steel pipe piles can be built.

また、図2における杭6を集水ストレーナー管に変更して構築し、集水ストレーナー管の周囲に透水材料2からなる透水層を設けたウェルを施工することもできる。   Moreover, the pile 6 in FIG. 2 can be constructed by changing to a water collection strainer pipe, and a well provided with a water permeable layer made of the water permeable material 2 around the water collection strainer pipe can be constructed.

さらに、本発明の透水性基礎の構築方法では、地上部に水平方向の排水層を設け、構築した透水層と接続し、その過剰間隙水を水平方向に排水することができる。   Furthermore, in the construction method of the water permeable foundation of the present invention, a horizontal drainage layer is provided on the ground part, and connected to the constructed water permeable layer, and the excess pore water can be drained in the horizontal direction.

これにより地震発生時に透水層を上昇した地下水は、面積の広い排水層でさらに分散され、形状化による被害を確実に防止することが可能となる。   As a result, the groundwater that has risen up the permeable layer at the time of the earthquake is further dispersed in the drainage layer having a large area, and damage due to shaping can be surely prevented.

1 地盤掘削用膨潤高吸水性ポリマー安定液
2 透水材料
3 アースドリル掘削機
4 バケット
5 トレミー管
6 杭
7 拡底
8 支持層
9 三点式クローラー杭打ち機
91 ケーシングパイプ
92 アースオーガー
93 砕石投入用ホッパー
DESCRIPTION OF SYMBOLS 1 Swelling superabsorbent polymer stabilization liquid for ground excavation 2 Water-permeable material 3 Earth drill excavator 4 Bucket 5 Tremy pipe 6 Pile 7 Bottom expansion 8 Support layer 9 Three-point crawler pile driver 91 Casing pipe 92 Earth auger 93 Hopper for crushed stone

Claims (16)

透水性基礎の構築方法であって、安定液によって形成された遮水膜により掘削孔の孔壁安定性を確保した後、透水層を設けるための透水材料の充填時に、安定液によって形成された遮水膜を解消して透水性を確保することを特徴とする透水性基礎の構築方法。   A method for constructing a water-permeable foundation, which is formed by a stabilizing liquid when filling a water-permeable material for providing a water-permeable layer after securing the hole wall stability of a drilling hole by a water-shielding film formed by the stabilizing liquid. A method for constructing a water-permeable foundation characterized in that the water-permeable film is eliminated to ensure water permeability. 安定液が、少なくとも、水と、吸水して膨潤した高吸水性ポリマー粒子を含む地盤掘削用膨潤高吸水性ポリマー安定液であることを特徴とする請求項1に記載の透水性基礎の構築方法。   2. The method for constructing a water-permeable foundation according to claim 1, wherein the stabilizing liquid is at least water and a swollen highly water-absorbing polymer stabilizing liquid for ground excavation containing water-absorbing polymer particles swollen by water absorption. . 吸水して膨潤した高吸水性ポリマー粒子が、加圧により水を放出しない架橋構造の高吸水性ポリマー粒子であることを特徴とする請求項2に記載の透水性基礎の構築方法。   The method for constructing a water-permeable foundation according to claim 2, wherein the water-absorbing polymer particles swollen by water absorption are water-absorbing polymer particles having a crosslinked structure that does not release water by pressurization. 地盤掘削用膨潤高吸水性ポリマー安定液が、コンクリートや塩分等の電解物質や、酸性、アルカリ性物質が混入した際に、地盤掘削用膨潤高吸水性ポリマー安定液の性状及び品質の劣化の抑制や回復を可能とする安定剤を添加した地盤掘削用膨潤高吸水性ポリマー安定液であることを特徴とする請求項2又は3に記載の透水性基礎の構築方法。   Swelling superabsorbent polymer stabilization liquid for ground excavation is mixed with electrolytic substances such as concrete and salt, and acidic and alkaline substances. The method for constructing a water-permeable foundation according to claim 2 or 3, wherein the stabilizing liquid is a swelling superabsorbent polymer for ground excavation to which a stabilizer capable of recovery is added. 安定剤が、電解物質濃度を低下させる安定剤であることを特徴とする請求項4に記載の透水性基礎の構築方法。   The method for constructing a water-permeable foundation according to claim 4, wherein the stabilizer is a stabilizer for reducing the electrolyte concentration. 安定剤が、PH(水素イオン指数濃度)を中性化させる中和剤であることを特徴とする請求項4又は5に記載の透水性基礎の構築方法。   The method for constructing a water-permeable foundation according to claim 4 or 5, wherein the stabilizer is a neutralizing agent that neutralizes PH (hydrogen ion exponential concentration). 安定剤が、希硫酸、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリエチレンオキシド、炭酸水素塩、炭酸塩から選ばれる少なくとも一種であることを特徴とする請求項4から6のいずれか一項に記載の透水性基礎の構築方法。   The stabilizer is at least one selected from dilute sulfuric acid, aluminum sulfate, aluminum hydroxide, magnesium hydroxide, polyacrylamide, polyvinyl alcohol, sodium polyacrylate, polyethylene oxide, bicarbonate, carbonate. The construction method of the water-permeable foundation as described in any one of Claims 4-6. 地盤掘削用膨潤高吸水性ポリマー安定液のファンネル粘性(500ml/500ml)が19〜120秒の範囲であることを特徴とする請求項2から7のいずれか一項に記載の透水性基礎の構築方法。   The construction of a water-permeable foundation according to any one of claims 2 to 7, wherein the funnel viscosity (500 ml / 500 ml) of the swelling superabsorbent polymer for ground excavation is in the range of 19 to 120 seconds. Method. 地盤掘削用膨潤高吸水性ポリマー安定液の電気伝導率が10mS/cm以下であることを特徴とする請求項4から8のいずれか一項に記載の透水性基礎の構築方法。   The method of constructing a water-permeable foundation according to any one of claims 4 to 8, wherein the electrical conductivity of the swelling superabsorbent polymer stabilizing liquid for ground excavation is 10 mS / cm or less. 掘削孔の径より小径のさや管を入れ、さや管の中に現場打杭を構築し、掘削孔とさや管の間に透水層を設けることを特徴とする請求項1から9のいずれか一項に記載の透水性基礎の構築方法。   The sheath pipe having a diameter smaller than the diameter of the excavation hole is inserted, an in-situ pile is constructed in the sheath pipe, and a water permeable layer is provided between the excavation hole and the sheath pipe. The construction method of the water-permeable foundation as described in claim | item. 掘削孔の径より小径のコンクリート杭を建込み、掘削孔とコンクリート杭との間に透水層を設けることを特徴とする請求項1から9のいずれか一項に記載の透水性基礎の構築方法。   The method for constructing a permeable foundation according to any one of claims 1 to 9, wherein a concrete pile having a diameter smaller than the diameter of the excavation hole is built, and a permeable layer is provided between the excavation hole and the concrete pile. . 掘削孔の径より小径の鋼管杭を建込み、掘削孔と鋼管杭との間に透水層を設けることを特徴とする請求項1から9のいずれか一項に記載の透水性基礎の構築方法。   The method for constructing a permeable foundation according to any one of claims 1 to 9, wherein a steel pipe pile having a diameter smaller than the diameter of the excavation hole is installed, and a water permeable layer is provided between the excavation hole and the steel pipe pile. . 掘削孔の径より小径の集水ストレーナー管を建込み、掘削孔と集水ストレーナー管の間に透水層を設けてウェルとすることを特徴とする請求項1から9のいずれか一項に記載の透水性基礎の構築方法。   10. A water collection strainer pipe having a diameter smaller than the diameter of the excavation hole is built, and a water permeable layer is provided between the excavation hole and the water collection strainer pipe to form a well. Construction method for water permeable foundation. 地上部に水平方向の排水層を設け、構築した透水層と接続し、その過剰間隙水を水平方向に排水することを特徴とする請求項1から13のいずれか一項に記載の透水性基礎の構築方法。   The water-permeable foundation according to any one of claims 1 to 13, wherein a horizontal drainage layer is provided on the ground part, connected to the constructed water-permeable layer, and excess pore water is drained in the horizontal direction. How to build. 掘削孔の内部に透水層を設けるために、透水材料と共に電解物質を充填することにより、安定液によって形成された遮水膜の遮水性を解消し、透水層を構築することを特徴とする請求項1から14のいずれか一項に記載の透水性基礎の構築方法。   In order to provide a water-permeable layer inside the excavation hole, the water-imperviousness of the water-impervious film formed by the stabilizing liquid is eliminated by filling the electrolytic material together with the water-permeable material, and the water-permeable layer is constructed. Item 15. A method for constructing a water-permeable foundation according to any one of Items 1 to 14. 電解物質が塩化カルシウム、クエン酸、水酸化ナトリウム及び塩化ナトリウムから選ばれる少なくとも1種であることを特徴とする請求項15に記載の透水性基礎の構築方法。
The method for constructing a water-permeable foundation according to claim 15, wherein the electrolytic substance is at least one selected from calcium chloride, citric acid, sodium hydroxide, and sodium chloride.
JP2013028379A 2013-02-15 2013-02-15 Construction method of permeable foundation Active JP6066757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028379A JP6066757B2 (en) 2013-02-15 2013-02-15 Construction method of permeable foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028379A JP6066757B2 (en) 2013-02-15 2013-02-15 Construction method of permeable foundation

Publications (2)

Publication Number Publication Date
JP2014156733A true JP2014156733A (en) 2014-08-28
JP6066757B2 JP6066757B2 (en) 2017-01-25

Family

ID=51577772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028379A Active JP6066757B2 (en) 2013-02-15 2013-02-15 Construction method of permeable foundation

Country Status (1)

Country Link
JP (1) JP6066757B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132957A (en) * 2015-01-22 2016-07-25 戸田建設株式会社 Earth retaining structure with flood control function and underground structure using the same and construction method of the same
CN106638552A (en) * 2016-11-08 2017-05-10 广西大学 Permeable pipe pile system capable of accelerating consolidation and construction method thereof
JP2021067115A (en) * 2019-10-25 2021-04-30 株式会社シーマコンサルタント Ground improvement method and ground improvement structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641775A (en) * 1969-08-25 1972-02-15 Raymond Int Inc Installation of sand drains
JPS58191811A (en) * 1982-04-30 1983-11-09 Kajima Corp Prevention of leak of water from ground
JPH0517932A (en) * 1991-07-15 1993-01-26 Konoike Constr Ltd Water permeable construction method for hole wall surface dug by using stabilizing liquid
JPH05132930A (en) * 1991-11-07 1993-05-28 Jiototsupu:Kk Developing method of foundation pile with drain layer
JPH0649840A (en) * 1991-07-05 1994-02-22 Nippon Steel Corp Construction method of steel pipe foundation pile for preventing liquefaction
JPH08269938A (en) * 1995-04-03 1996-10-15 Toda Constr Co Ltd Slit position variable strainer
JPH11236557A (en) * 1998-02-24 1999-08-31 Hakuto Co Ltd Modifier for excavation slurry and excavation slurry composition containing same
JP2002363980A (en) * 2001-06-07 2002-12-18 Geotop Corp Steel pipe pile and pile construction method with drain layer using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641775A (en) * 1969-08-25 1972-02-15 Raymond Int Inc Installation of sand drains
JPS58191811A (en) * 1982-04-30 1983-11-09 Kajima Corp Prevention of leak of water from ground
JPH0649840A (en) * 1991-07-05 1994-02-22 Nippon Steel Corp Construction method of steel pipe foundation pile for preventing liquefaction
JPH0517932A (en) * 1991-07-15 1993-01-26 Konoike Constr Ltd Water permeable construction method for hole wall surface dug by using stabilizing liquid
JPH05132930A (en) * 1991-11-07 1993-05-28 Jiototsupu:Kk Developing method of foundation pile with drain layer
JPH08269938A (en) * 1995-04-03 1996-10-15 Toda Constr Co Ltd Slit position variable strainer
JPH11236557A (en) * 1998-02-24 1999-08-31 Hakuto Co Ltd Modifier for excavation slurry and excavation slurry composition containing same
JP2002363980A (en) * 2001-06-07 2002-12-18 Geotop Corp Steel pipe pile and pile construction method with drain layer using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132957A (en) * 2015-01-22 2016-07-25 戸田建設株式会社 Earth retaining structure with flood control function and underground structure using the same and construction method of the same
CN106638552A (en) * 2016-11-08 2017-05-10 广西大学 Permeable pipe pile system capable of accelerating consolidation and construction method thereof
JP2021067115A (en) * 2019-10-25 2021-04-30 株式会社シーマコンサルタント Ground improvement method and ground improvement structure

Also Published As

Publication number Publication date
JP6066757B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6113433B2 (en) Swelling superabsorbent polymer stable liquid composition for ground excavation and construction method using the same
CN103225306B (en) Method of preventing foundation pit leakage during excavation of foundation pit close to water source
JP6066757B2 (en) Construction method of permeable foundation
CN102787606B (en) Guard method to surrounding environment in a kind of excavation of foundation pit Precipitation Process
JP2018162632A (en) Ground freezing method
JP6225429B2 (en) Liquefaction prevention method
KR102028182B1 (en) Construction method of pillar type underground structure using excavation system for structural casing burial
JP2010101090A (en) Water-stop structure, construction method therefor, and method of performing water stop of anchor penetration part of seepage control member
JP2015055147A (en) Underground base isolation wall structure and construction method for the same
JP4342558B2 (en) Construction method of impermeable wall
JP6277755B2 (en) Ground improvement method and ground improvement system
JP2011231457A (en) Water barrier method for water collecting borehole and water barrier device for the method
CN102787611A (en) Precipitation method for excavation of foundation pit at collapsible loess region
JP2012237186A (en) Liquefaction prevention method
KR101666204B1 (en) water cutoff apparatus for ground well
JP2014156546A (en) Swellable high-water-absorption polymer stabilizing liquid composition for shielding method and execution method using the same
JP2016204959A (en) Construction method of underground base-isolation wall
CN113062744B (en) Method for improving water-rich sandy pebble stratum shield construction residue soil and shield construction method
CN109206094A (en) Backfill mud and its preparation method and application
JP7112242B2 (en) Impermeability and Permeability Restoration Method in the Ground
JP7098250B2 (en) Ground displacement suppression method
Jefferis et al. Polymer systems for fluid supported excavations
JP5637376B2 (en) Method of burying radioactive waste
JP4329076B2 (en) Radioactive waste disposal facility and its construction method
CN106013238B (en) A kind of big earthing open trench tunnel subsidence control method of soft stratum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250