JP2015059937A - Method for detecting thermostability of protein in dairy product - Google Patents

Method for detecting thermostability of protein in dairy product Download PDF

Info

Publication number
JP2015059937A
JP2015059937A JP2014189201A JP2014189201A JP2015059937A JP 2015059937 A JP2015059937 A JP 2015059937A JP 2014189201 A JP2014189201 A JP 2014189201A JP 2014189201 A JP2014189201 A JP 2014189201A JP 2015059937 A JP2015059937 A JP 2015059937A
Authority
JP
Japan
Prior art keywords
protein
thermal stability
milk
sample solution
dairy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014189201A
Other languages
Japanese (ja)
Other versions
JP5923576B2 (en
Inventor
衍明 蔡
Eng Meng Tsai
衍明 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LONGDAO (SHANGHAI) ENTERPRISE MANAGEMENT CO Ltd
LONGDAO SHANGHAI ENTPR MAN CO Ltd
I Lan Foods Industrial Co Ltd
Original Assignee
LONGDAO (SHANGHAI) ENTERPRISE MANAGEMENT CO Ltd
LONGDAO SHANGHAI ENTPR MAN CO Ltd
I Lan Foods Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LONGDAO (SHANGHAI) ENTERPRISE MANAGEMENT CO Ltd, LONGDAO SHANGHAI ENTPR MAN CO Ltd, I Lan Foods Industrial Co Ltd filed Critical LONGDAO (SHANGHAI) ENTERPRISE MANAGEMENT CO Ltd
Publication of JP2015059937A publication Critical patent/JP2015059937A/en
Application granted granted Critical
Publication of JP5923576B2 publication Critical patent/JP5923576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dairy Products (AREA)
  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for rapidly and accurately detecting thermostability of proteins in dairy products.SOLUTION: A method for detecting thermostability of proteins in a dairy product includes the steps of: obtaining a first sample solution by mixing a dairy product with water; obtaining a second sample solution by processing the first sample solution under the condition of 100°C to 135°C for 10 to 40 minutes; and subjecting the second sample solution to detection and acquiring thermostability of proteins in the second sample solution. The method for detecting thermostability of proteins in a dairy product is capable of rapidly and accurately detecting thermostability of proteins in a dairy product. Consequently, dairy products having low protein thermostability are excluded while dairy products superior in protein thermostability are used to manufacture products, and since an ultrahigh temperature sterilization facility can be operated continuously for 6 hours or longer, production capacity of a production line is increased and a number of AIC is reduced so that manufacturing costs are suppressed and corporate profits are increased.

Description

本発明は、乳製品加工技術の領域に関し、特に、乳製品中のタンパク質熱安定性検出方法に関する。   The present invention relates to the field of dairy processing technology, and more particularly to a method for detecting protein thermal stability in dairy products.

ミルクティーは、茶と乳とを混合した飲料であり、中国、インド、英国、シンガポール、マレーシア、台湾、香港、マカオなどの世界各地で愛飲されている。ミルクティーの製造方式は、各地で異なる特色を有する。例えば、インドのミルクティーは、マサラという特殊な香料を加えることで有名である。香港のミルクティーは、ストッキングミルクティーと呼ばれる。台湾のパールミルクティーは、独自の特色を有する。ミルクティーは、牛乳及び茶の栄養を兼ね備え、豊富なタンパク質、脂肪などの栄養価の高い物質を有するほか、カフェイン、タンニン酸、テオフィリン、芳香油、葉緑素、アミノ酸、糖類、各種ミネラル、各種ビタミン(V、V、ニコチン酸、葉酸など)など、300種類以上の人体に有益な化学成分を含み、油っこさの除去、消化促進、精神高揚、利尿、解毒、疲労回復などの効果を有する。人々の生活水準が高まるにつれ、ミルクティーは、消費者に益々歓迎されており、市場規模が年々拡大している。 Milk tea is a drink made by mixing tea and milk, and is loved in many parts of the world such as China, India, UK, Singapore, Malaysia, Taiwan, Hong Kong and Macau. Milk tea production methods have different characteristics in different places. For example, Indian milk tea is famous for adding a special flavor called Masala. Hong Kong milk tea is called stocking milk tea. Taiwanese pearl milk tea has its own unique characteristics. Milk tea has the nutrition of milk and tea, has abundant nutritious substances such as protein and fat, caffeine, tannic acid, theophylline, aromatic oil, chlorophyll, amino acids, sugars, various minerals, various vitamins (V C , V P , nicotinic acid, folic acid, etc.) and other chemical components that are beneficial to the human body, such as removing greasy, promoting digestion, raising the mind, diuresis, detoxification, recovery from fatigue, etc. Have. As people's standard of living increases, milk tea is increasingly welcomed by consumers and the market size is growing year by year.

一般に、ミルクティーの製造過程において採用される生乳又は乳製品は、超高温瞬間殺菌(UHT)される。生乳を生産する酪農は、地域的なものであるため、生乳の生産量も地域的な制限を受ける。また、生乳の品質保持期間は短いため、できるだけ早く関連する処理を行って製品の生産を完了する必要がある。このため、一般に、生乳の産地に工場を持たない乳製品加工業者は、全脂粉乳、脱脂粉乳、練乳、乳タンパク質濃縮物などの乳製品をミルクティーの原料としている。上述の乳製品は、それぞれ特徴的な味及び風味を有するため、様々な消費者に好まれている。   Generally, raw milk or dairy products employed in milk tea production processes are ultra-high temperature flash sterilized (UHT). Dairy farms that produce raw milk are regional, so production of raw milk is also subject to local restrictions. Moreover, since the quality retention period of raw milk is short, it is necessary to complete the production of the product by performing related processing as soon as possible. For this reason, dairy processors who generally do not have a factory in the raw milk production area use milk products such as whole milk powder, skim milk powder, condensed milk, and milk protein concentrate as raw materials for milk tea. The dairy products described above are preferred by various consumers because they each have a characteristic taste and flavor.

乳製品を原料として加工を行う過程において、UHT処理を行う際、タンパク質が変性して沈殿しやすく、滅菌設備の加熱表面に徐々に付着して垢が形成される。滅菌設備内の圧力は、加熱表面に垢が形成されるにつれて増大し、滅菌設備内の圧力が一定程度まで増大すると、滅菌過程における熱伝達が影響を受け、製品の殺菌効果が影響を受ける。こうなった場合、滅菌設備に対して内部洗浄(AIC)を行う必要がある。タンパク質熱安定性が低い乳製品を原料とする場合、一般に、滅菌設備を1.5h〜3h運転させると、AICを行う必要があるが、タンパク質熱安定性に優れた乳製品を原料とする場合、滅菌設備を少なくとも連続して6h運転させることができる。このため、乳製品中のタンパク質熱安定性は、滅菌設備の連続運転時間及び滅菌状況に直接影響を与える。また、実際に生産する際、メーカー又はロットの違いによって乳製品中のタンパク質熱安定性が異なる。このため、メーカー又はロットの異なる乳製品からタンパク質熱安定性に優れた乳製品を迅速に選別して生産を行い、AICの回数を減少させ、生産コストを減少させることは、乳製品の加工業者が切実に求めていたことである。しかし、現在、乳製品に関連する国際標準中には、タンパク質熱安定性に対して特別な規定がない上、乳製品中のタンパク質熱安定性を迅速に検出できる方法も公開されていないため、乳製品中のタンパク質熱安定性を迅速に検出できる方法を提供することは、重要な意義を有する。   In the process of processing using a dairy product as a raw material, when UHT treatment is performed, protein is easily denatured and precipitated, and gradually adheres to the heating surface of a sterilization facility to form plaque. The pressure in the sterilization facility increases as dirt is formed on the heating surface. When the pressure in the sterilization facility increases to a certain level, the heat transfer in the sterilization process is affected, and the sterilization effect of the product is affected. If this happens, it is necessary to perform internal cleaning (AIC) on the sterilization facility. When dairy products with low protein thermal stability are used as raw materials, it is generally necessary to perform AIC when the sterilization facility is operated for 1.5 to 3 hours, but when dairy products with excellent protein thermal stability are used as raw materials The sterilization facility can be operated for at least 6 hours continuously. For this reason, protein thermal stability in dairy products directly affects the continuous operation time and sterilization status of the sterilization equipment. In actual production, protein heat stability in dairy products differs depending on the manufacturer or lot. For this reason, dairy products with different protein manufacturers and lots can be quickly selected and produced, reducing the number of AICs and reducing production costs. That was urgently demanding. However, there is currently no special provision for protein thermal stability in the international standards related to dairy products, and no method has been published that can quickly detect protein thermal stability in dairy products. Providing a method that can rapidly detect protein thermal stability in dairy products has significant significance.

本発明の目的は、乳製品中のタンパク質熱安定性を迅速で正確に検出できる方法を提供することにある。   An object of the present invention is to provide a method capable of detecting protein heat stability in dairy products quickly and accurately.

上述の課題を解決するために、本発明の提供する乳製品中のタンパク質熱安定性検出方法は、乳製品と水とを混合して第1サンプル溶液を得るステップ(A)と、第1サンプル溶液を100℃〜135℃の条件下で10min〜40min処理して第2サンプル溶液を得るステップ(B)と、第2サンプル溶液に対して検出を行って第2サンプル溶液のタンパク質熱安定性を獲得するステップ(C)と、を含む。第2サンプル溶液に、積層、沈殿及び凝結が発生しない場合、タンパク質熱安定性が優れるとする。第2サンプル溶液に、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊している場合、タンパク質熱安定性が普通とする。第2サンプル溶液にやや顕著なケーキングが発生した上、凝集現象が発生した場合、タンパク質熱安定性がやや低いとする。第2サンプル溶液に顕著なケーキングが発生した上、雲状の凝結物が発生した場合、タンパク質熱安定性が低いとする。   In order to solve the above-mentioned problem, a method for detecting protein thermal stability in a dairy product provided by the present invention comprises a step (A) of mixing a dairy product and water to obtain a first sample solution, and a first sample. A step (B) of obtaining a second sample solution by treating the solution at 100 ° C. to 135 ° C. for 10 min to 40 min, and detecting the second sample solution to determine the protein thermal stability of the second sample solution Obtaining step (C). If the second sample solution does not accumulate, precipitate, or condense, the protein thermal stability is excellent. In the case where slight caking occurs in the second sample solution and fine granular aggregates which are visible with the naked eye are floating, the protein thermal stability is normal. It is assumed that the protein thermal stability is slightly low when the caking phenomenon occurs in the second sample solution and the aggregation phenomenon occurs. When remarkable caking occurs in the second sample solution and a cloud-like aggregate is generated, it is assumed that the protein thermal stability is low.

好ましくは、乳製品は、全脂粉乳、脱脂粉乳、練乳又は乳タンパク質濃縮物から選択される。   Preferably, the dairy product is selected from whole milk powder, skim milk powder, condensed milk or milk protein concentrate.

本発明の一実施例中、ステップ(A)の前に、乳製品中のタンパク質含有量を検出するステップをさらに含む。   In one embodiment of the present invention, the method further includes the step of detecting the protein content in the dairy product before step (A).

好ましくは、第1サンプル溶液中のタンパク質含有量は、4%〜7%である。   Preferably, the protein content in the first sample solution is 4% to 7%.

好ましくは、ステップ(A)とステップ(B)との間に、水和ステップをさらに含む。   Preferably, a hydration step is further included between step (A) and step (B).

好ましくは、水和は、300rpm〜700rpmの条件下で撹拌される。   Preferably, the hydration is agitated under conditions of 300 rpm to 700 rpm.

好ましくは、水和時間は、8min〜20minである。   Preferably, the hydration time is 8 min to 20 min.

本発明は、乳飲料の製造方法をさらに提供する。本発明の乳飲料の製造方法は、本発明の提供する検出方法で乳製品に対して検出を行い、タンパク質熱安定性に優れた乳製品を得るステップと、タンパク質熱安定性に優れた乳製品と材料とを混合し、殺菌するステップと、を含む。   The present invention further provides a method for producing a milk beverage. The method for producing a dairy beverage of the present invention comprises a step of detecting a dairy product by the detection method provided by the present invention to obtain a dairy product having excellent protein thermal stability, and a dairy product having excellent protein thermal stability. And sterilizing the ingredients.

好ましくは、乳製品は、全脂粉乳、脱脂粉乳、練乳又は乳タンパク質濃縮物から選択される。   Preferably, the dairy product is selected from whole milk powder, skim milk powder, condensed milk or milk protein concentrate.

本発明の一実施例中、乳飲料は、還元乳、ミルクティー又はコーヒー牛乳である。   In one embodiment of the present invention, the milk beverage is reduced milk, milk tea or coffee milk.

好ましくは、殺菌する温度は、137℃〜140℃である。   Preferably, the sterilization temperature is 137 ° C to 140 ° C.

好ましくは、殺菌する時間は、4s〜30sである。   Preferably, the time for sterilization is 4 s to 30 s.

本発明の提供する乳製品中のタンパク質熱安定性検出方法は、乳製品と水とを混合して第1サンプル溶液を得るステップと、第1サンプル溶液を100℃〜135℃の条件下で10min〜40min処理して第2サンプル溶液を得るステップと、第2サンプル溶液に対して検出を行って第2サンプル溶液のタンパク質熱安定性を獲得するステップと、を含む。第2サンプル溶液に、積層、沈殿及び凝結が発生しない場合、タンパク質熱安定性が優れるとする。第2サンプル溶液に、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した場合、タンパク質熱安定性が普通とする。第2サンプル溶液にやや顕著なケーキングが発生した上、凝集現象が発生した場合、タンパク質熱安定性がやや低いとする。第2サンプル溶液に顕著なケーキングが発生した上、雲状の凝結物が発生した場合、タンパク質熱安定性が低いとする。本発明の提供する検出方法によってタンパク質熱安定性が分かっている乳製品の標準品が示す検出結果は、事実と符合した。本発明によって検出したタンパク質熱安定性の異なる乳製品を実際の生産ラインに投入した結果、本発明の検出方法で検出したタンパク質熱安定性は、超高温滅菌設備の連続運転可能時間と関連性があることが示された。即ち、タンパク質熱安定性に優れた乳製品で生産を行った場合、超高温滅菌設備の連続運転可能時間が長かった。反対に、タンパク質熱安定性が低い乳製品で生産を行った場合、超高温滅菌設備の連続運転可能時間が短かった。本発明の検出方法は、一般の実験型滅菌釜で乳製品サンプルに恒温処理を行い、1h〜2h内に乳製品中のタンパク質の熱安定性を検出できる。このことから、本発明の提供する検出方法は、乳製品中のタンパク質熱安定性を迅速で正確に検出できることが分かった。これにより、タンパク質熱安定性が低い乳製品を排除し、タンパク質熱安定性に優れた乳製品を使用して製品の生産を行うことができ、超高温滅菌設備を連続して6h以上運転させることができるため、生産ラインの生産能力を高め、AICの回数を減少させ、生産コストを抑制し、企業収益を増加させることができる。   The method for detecting protein thermal stability in a dairy product provided by the present invention comprises a step of mixing a dairy product and water to obtain a first sample solution, and the first sample solution is treated at 100 ° C. to 135 ° C. for 10 min. Processing for ˜40 min to obtain a second sample solution and detecting the second sample solution to obtain protein thermal stability of the second sample solution. If the second sample solution does not accumulate, precipitate, or condense, the protein thermal stability is excellent. In the case where slight caking occurs in the second sample solution and fine granular aggregates which are visible with the naked eye float, the protein thermal stability is normal. It is assumed that the protein thermal stability is slightly low when the caking phenomenon occurs in the second sample solution and the aggregation phenomenon occurs. When remarkable caking occurs in the second sample solution and a cloud-like aggregate is generated, it is assumed that the protein thermal stability is low. The detection results shown by the standard dairy product whose protein thermal stability is known by the detection method provided by the present invention are consistent with the facts. As a result of introducing dairy products with different protein thermal stability detected by the present invention into an actual production line, the protein thermal stability detected by the detection method of the present invention is related to the continuous operation time of the ultra-high temperature sterilization facility. It was shown that there is. That is, when production was performed with a dairy product having excellent protein heat stability, the continuous operation time of the ultra-high temperature sterilization facility was long. On the other hand, when production was performed with dairy products having low protein heat stability, the continuous operation time of the ultra-high temperature sterilization facility was short. In the detection method of the present invention, a dairy sample is subjected to a constant temperature treatment in a general experimental sterilization kettle, and the thermal stability of proteins in the dairy product can be detected within 1 h to 2 h. From this, it was found that the detection method provided by the present invention can quickly and accurately detect protein thermal stability in dairy products. This eliminates dairy products with low protein heat stability, enables production of products using dairy products with excellent protein heat stability, and operates ultra-high temperature sterilization equipment continuously for 6 hours or more. Therefore, the production capacity of the production line can be increased, the number of AICs can be reduced, the production cost can be suppressed, and the corporate profit can be increased.

本発明は、乳製品中のタンパク質熱安定性検出方法を公開するものである。当業者は、本明細書の内容を適宜変更して実施することができる。ここで、すべての類似する置換及び変更は、当業者が容易に想到できるものであり、それらは、本発明に含まれる。本発明の方法及び応用を実施例を挙げて説明するが、当業者は、本発明の内容及び主旨を逸脱しない範囲において本発明の方法及び応用に対して変更を行うことによって本発明の技術内容を実現することができる。   The present invention discloses a method for detecting protein thermal stability in dairy products. Those skilled in the art can implement the present specification by appropriately changing the contents thereof. Here, all similar substitutions and modifications are easily conceivable by those skilled in the art and are included in the present invention. The method and application of the present invention will be described by way of examples. However, those skilled in the art will understand the technical content of the present invention by making changes to the method and application of the present invention without departing from the content and spirit of the present invention. Can be realized.

本発明の提供する乳製品中のタンパク質熱安定性検出方法は、乳製品と水とを混合して第1サンプル溶液を得るステップ(A)と、第1サンプル溶液を100℃〜135℃の条件下で10min〜40min処理して第2サンプル溶液を得るステップ(B)と、第2サンプル溶液に対して検出を行って第2サンプル溶液のタンパク質熱安定性を獲得するステップ(C)と、を含む。第2サンプル溶液に、積層、沈殿及び凝結が発生しない場合、タンパク質熱安定性が優れるとする。第2サンプル溶液に、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した場合、タンパク質熱安定性が普通とする。第2サンプル溶液にやや顕著なケーキングが発生した上、凝集現象が発生した場合、タンパク質熱安定性がやや低いとする。第2サンプル溶液に顕著なケーキングが発生した上、雲状の凝結物が発生した場合、タンパク質熱安定性が低いとする。   The method for detecting protein thermal stability in a dairy product provided by the present invention comprises a step (A) of mixing a dairy product and water to obtain a first sample solution, and a condition of the first sample solution at 100 ° C. to 135 ° C. A step (B) for obtaining a second sample solution by processing for 10 min to 40 min below, and a step (C) for detecting the second sample solution to obtain the protein thermal stability of the second sample solution. Including. If the second sample solution does not accumulate, precipitate, or condense, the protein thermal stability is excellent. In the case where slight caking occurs in the second sample solution and fine granular aggregates which are visible with the naked eye float, the protein thermal stability is normal. It is assumed that the protein thermal stability is slightly low when the caking phenomenon occurs in the second sample solution and the aggregation phenomenon occurs. When remarkable caking occurs in the second sample solution and a cloud-like aggregate is generated, it is assumed that the protein thermal stability is low.

本発明の一実施例中、乳製品は、全脂粉乳、脱脂粉乳、練乳又は乳タンパク質濃縮物から選択される。   In one embodiment of the invention, the dairy product is selected from whole milk powder, skim milk powder, condensed milk or milk protein concentrate.

乳製品中のタンパク質熱安定性を検出するために、乳製品中のタンパク質含有量に基づいて乳製品を所定濃度の乳製品溶液にする必要がある。このため、本発明の一実施例中、ステップ(A)の前に、乳製品中のタンパク質含有量を検出するステップをさらに含む。   In order to detect protein thermal stability in a dairy product, the dairy product needs to be a dairy solution of a predetermined concentration based on the protein content in the dairy product. Therefore, in one embodiment of the present invention, the method further includes the step of detecting the protein content in the dairy product before step (A).

検出結果の正確性を保証するために、本発明の一実施例中、第1サンプル溶液中のタンパク質含有量は、4%〜7%である。   In order to ensure the accuracy of the detection result, in one embodiment of the present invention, the protein content in the first sample solution is 4% to 7%.

本発明の一実施例中、乳製品中のタンパク質を生乳に還元した際の水和状態にするために、ステップ(A)とステップ(B)との間に、水和ステップをさらに含む。   In one embodiment of the present invention, a hydration step is further included between step (A) and step (B) in order to obtain a hydrated state when the protein in the dairy product is reduced to raw milk.

十分な水和を保証するために、本発明の一実施例中、水和は、300rpm〜700rpmの条件下で撹拌される。   In order to ensure sufficient hydration, in one embodiment of the invention, hydration is agitated under conditions of 300 rpm to 700 rpm.

十分な水和を保証するために、本発明の一実施例中、水和時間は、8min〜20minである。   In order to ensure sufficient hydration, in one embodiment of the present invention, the hydration time is between 8 min and 20 min.

本発明は、乳飲料の製造方法をさらに提供する。本発明の乳飲料の製造方法は、本発明の提供する検出方法で乳製品に対して検出を行い、タンパク質熱安定性に優れた乳製品を得るステップと、タンパク質熱安定性に優れた乳製品と材料とを混合し、殺菌するステップと、を含む。   The present invention further provides a method for producing a milk beverage. The method for producing a dairy beverage of the present invention comprises a step of detecting a dairy product by the detection method provided by the present invention to obtain a dairy product having excellent protein thermal stability, and a dairy product having excellent protein thermal stability. And sterilizing the ingredients.

本発明の一実施例中、乳製品は、全脂粉乳、脱脂粉乳、練乳又は乳タンパク質濃縮物から選択される。   In one embodiment of the invention, the dairy product is selected from whole milk powder, skim milk powder, condensed milk or milk protein concentrate.

本発明の一実施例中、乳飲料は、還元乳、ミルクティー又はコーヒー牛乳である。   In one embodiment of the present invention, the milk beverage is reduced milk, milk tea or coffee milk.

乳飲料中の大部分の微生物を有効に殺菌するのを保証し、製品の品質保持期間を長くするために、本発明の一実施例中、殺菌する温度は、137℃〜140℃である。   In one embodiment of the present invention, the sterilization temperature is 137 ° C. to 140 ° C. to ensure effective sterilization of most microorganisms in the milk beverage and to prolong the product quality retention period.

乳飲料中の栄養成分を最大限に保持するのを保証するために、本発明の一実施例中、殺菌する時間は、4s〜30sである。   In order to ensure the maximum retention of nutritional components in the milk beverage, in one embodiment of the present invention, the sterilization time is between 4 s and 30 s.

本発明の提供する乳製品中のタンパク質熱安定性検出方法は、乳製品と水とを混合して第1サンプル溶液を得るステップと、第1サンプル溶液を100℃〜135℃の条件下で10min〜40min処理して第2サンプル溶液を得るステップと、第2サンプル溶液に対して検出を行って第2サンプル溶液のタンパク質熱安定性を獲得するステップと、を含む。第2サンプル溶液に、積層、沈殿及び凝結が発生しない場合、タンパク質熱安定性が優れるとする。第2サンプル溶液に、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した場合、タンパク質熱安定性が普通とする。第2サンプル溶液にやや顕著なケーキングが発生した上、凝集現象が発生した場合、タンパク質熱安定性がやや低いとする。第2サンプル溶液に顕著なケーキングが発生した上、雲状の凝結物が発生した場合、タンパク質熱安定性が低いとする。本発明の提供する検出方法によってタンパク質熱安定性が分かっている乳製品の標準品が示す検出結果は、事実と符合した。本発明によって検出したタンパク質熱安定性の異なる乳製品を実際の生産ラインに投入した結果、本発明の検出方法で検出したタンパク質熱安定性は、超高温滅菌設備の連続運転可能時間と関連性があることが示された。即ち、タンパク質熱安定性に優れた乳製品で生産を行った場合、超高温滅菌設備の連続運転可能時間が長かった。反対に、タンパク質熱安定性が低い乳製品で生産を行った場合、超高温滅菌設備の連続運転可能時間が短かった。本発明の検出方法は、一般の実験型滅菌釜で乳製品サンプルに恒温処理を行い、1h〜2h内に乳製品中のタンパク質の熱安定性を検出できる。このことから、本発明の提供する検出方法は、乳製品中のタンパク質熱安定性を迅速で正確に検出できることが分かった。これにより、タンパク質熱安定性が低い乳製品を排除し、タンパク質熱安定性に優れた乳製品を使用して製品の生産を行うことができ、超高温滅菌設備を連続して6h以上運転させることができるため、生産ラインの生産能力を高め、AICの回数を減少させ、生産コストを抑制し、企業収益を増加させることができる。   The method for detecting protein thermal stability in a dairy product provided by the present invention comprises a step of mixing a dairy product and water to obtain a first sample solution, and the first sample solution is treated at 100 ° C. to 135 ° C. for 10 min. Processing for ˜40 min to obtain a second sample solution and detecting the second sample solution to obtain protein thermal stability of the second sample solution. If the second sample solution does not accumulate, precipitate, or condense, the protein thermal stability is excellent. In the case where slight caking occurs in the second sample solution and fine granular aggregates which are visible with the naked eye float, the protein thermal stability is normal. It is assumed that the protein thermal stability is slightly low when the caking phenomenon occurs in the second sample solution and the aggregation phenomenon occurs. When remarkable caking occurs in the second sample solution and a cloud-like aggregate is generated, it is assumed that the protein thermal stability is low. The detection results shown by the standard dairy product whose protein thermal stability is known by the detection method provided by the present invention are consistent with the facts. As a result of introducing dairy products with different protein thermal stability detected by the present invention into an actual production line, the protein thermal stability detected by the detection method of the present invention is related to the continuous operation time of the ultra-high temperature sterilization facility. It was shown that there is. That is, when production was performed with a dairy product having excellent protein heat stability, the continuous operation time of the ultra-high temperature sterilization facility was long. On the other hand, when production was performed with dairy products having low protein heat stability, the continuous operation time of the ultra-high temperature sterilization facility was short. In the detection method of the present invention, a dairy sample is subjected to a constant temperature treatment in a general experimental sterilization kettle, and the thermal stability of proteins in the dairy product can be detected within 1 h to 2 h. From this, it was found that the detection method provided by the present invention can quickly and accurately detect protein thermal stability in dairy products. This eliminates dairy products with low protein heat stability, enables production of products using dairy products with excellent protein heat stability, and operates ultra-high temperature sterilization equipment continuously for 6 hours or more. Therefore, the production capacity of the production line can be increased, the number of AICs can be reduced, the production cost can be suppressed, and the corporate profit can be increased.

本発明の提供する乳製品中のタンパク質熱安定性検出方法中で使用する材料又は補助材料は、市場で購入することができる。   Materials or auxiliary materials used in the method for detecting protein thermal stability in dairy products provided by the present invention can be purchased on the market.

実施例を挙げ、本発明の詳細な説明を以下に示す。   Examples are given below and a detailed description of the present invention is given below.

実施例1:全脂粉乳標準品のタンパク質熱安定性検出   Example 1: Protein thermostability detection of whole milk powder standard product

タンパク質熱安定性の分かっている4つの全脂粉乳標準品を準備した。タンパク質熱安定性は、優れる、普通、やや低い及び低いである。標準品中のタンパク質含有量を検出した結果、標準品中のタンパク質の含有用は、25%であった。   Four whole milk powder standard products with known protein heat stability were prepared. Protein thermal stability is excellent, usually low and low. As a result of detecting the protein content in the standard product, the protein content in the standard product was 25%.

各全脂粉乳標準品を全脂粉乳溶液(被検出溶液)にした。具体的な方法は、上述の各標準品を80gずつ秤量し、50℃の水を320g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した標準品を水中に徐々に加えた。標準品が完全に溶解した後、タンパク質含有量が5%の全脂粉乳溶液を得た。全脂粉乳溶液を400rpmの状況下で10min水和した。全脂粉乳溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、3つの等しい全脂粉乳溶液標準品を製造して待機した。   Each whole milk powder standard product was made into a whole milk powder solution (detected solution). Specifically, 80 g of each standard product described above was weighed, 320 g of water at 50 ° C. was weighed, and the standard product weighed under the condition of 400 rpm using an IKA stirrer was gradually added to water. After the standard product was completely dissolved, a whole milk powder solution having a protein content of 5% was obtained. The whole milk powder solution was hydrated for 10 min under the condition of 400 rpm. 100 g each of the whole milk powder solution was put into three 250 mL Erlenmeyer flasks, covered with corresponding rubber stoppers, covered with newspaper, tied with rubber bands, and three equal whole milk powder solution standard products were prepared and waited.

実験型高温高圧滅菌釜のパラメータを121℃、15minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。3つの等しい全脂粉乳溶液標準品を高温高圧滅菌釜中で121℃、15min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、標準品(サンプル)を取り出して観察し、全脂粉乳サンプルのタンパク質熱安定性を検出した。   The parameters of the experimental high-temperature high-pressure sterilization kettle were set to 121 ° C. and 15 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. Three equal whole milk powder solution standards were treated at 121 ° C. for 15 min in a high-temperature high-pressure sterilization kettle. When the high-temperature and high-pressure sterilization pot was cooled to 90 ° C. or less, a standard product (sample) was taken out and observed, and the protein heat stability of the whole milk powder sample was detected.

試験の結果、タンパク質熱安定性に優れた標準品溶液は、積層、沈殿及び凝結が発生しなかった。タンパク質熱安定性が普通の標準品溶液は、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した。タンパク質熱安定性がやや低い標準品溶液は、やや顕著なケーキングが発生した上、凝集現象が発生した。タンパク質熱安定性が低い標準品溶液は、顕著なケーキングが発生した上、雲状の凝結物が発生した。検出結果が事実と符合したため、本発明の提供する検出方法は、全脂粉乳のタンパク質熱安定性を正確に検出できることが示された。   As a result of the test, the standard solution having excellent protein thermal stability did not cause lamination, precipitation, or condensation. In the standard solution with normal protein heat stability, slight caking occurred, and fine-grained aggregates that were visible to the naked eye floated. The standard solution having a slightly low protein thermal stability caused a remarkable caking and agglomeration. The standard solution having low protein thermal stability caused remarkable caking and cloudy aggregates. Since the detection result matched with the fact, it was shown that the detection method provided by the present invention can accurately detect the protein thermal stability of whole milk powder.

実施例2:脱脂粉乳標準品のタンパク質熱安定性検出   Example 2: Protein thermal stability detection of skim milk powder standard product

タンパク質熱安定性の分かっている4つの脱脂粉乳標準品を準備した。タンパク質熱安定性は、優れる、普通、やや低い及び低いである。標準品中のタンパク質含有量を検出した結果、標準品中のタンパク質の含有用は、32%であった。   Four skim milk milk standards with known protein heat stability were prepared. Protein thermal stability is excellent, usually low and low. As a result of detecting the protein content in the standard product, the protein content in the standard product was 32%.

各脱脂粉乳標準品を脱脂粉乳溶液(被検出溶液)にした。具体的な方法は、上述の各標準品を62.5gずつ秤量し、50℃の水を337.5g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した標準品を水中に徐々に加えた。標準品が完全に溶解した後、タンパク質含有量が5%の脱脂粉乳溶液を得た。脱脂粉乳溶液を400rpmの状況下で10min水和した。脱脂粉乳溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、3つの等しい脱脂粉乳溶液標準品を製造して待機した。   Each skim milk powder standard product was made into skim milk powder solution (solution to be detected). Specifically, 62.5 g of each of the standard products described above was weighed, 337.5 g of 50 ° C. water was weighed, and the standard product weighed under the condition of 400 rpm using an IKA stirrer was gradually put into water. added. After the standard product was completely dissolved, a skimmed milk powder solution having a protein content of 5% was obtained. The skim milk solution was hydrated for 10 min under the condition of 400 rpm. 100 g each of the nonfat dry milk solution was placed in three 250 mL Erlenmeyer flasks, covered with corresponding rubber stoppers, covered with newspaper and tied with rubber bands, and three equal nonfat dry milk solution standards were prepared and waited.

実験型高温高圧滅菌釜のパラメータを121℃、15minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。3つの等しい脱脂粉乳溶液標準品を高温高圧滅菌釜中で121℃、15min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、標準品(サンプル)を取り出して観察し、脱脂粉乳サンプルのタンパク質熱安定性を検出した。   The parameters of the experimental high-temperature high-pressure sterilization kettle were set to 121 ° C. and 15 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. Three equal skim milk solution standard products were treated at 121 ° C. for 15 min in a high-temperature high-pressure sterilization kettle. When the high-temperature and high-pressure sterilization pot was cooled to 90 ° C. or lower, a standard product (sample) was taken out and observed, and the protein thermal stability of the skim milk powder sample was detected.

試験の結果、タンパク質熱安定性に優れた標準品溶液は、積層、沈殿及び凝結が発生しなかった。タンパク質熱安定性が普通の標準品溶液は、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した。タンパク質熱安定性がやや低い標準品溶液は、やや顕著なケーキングが発生した上、凝集現象が発生した。タンパク質熱安定性が低い標準品溶液は、顕著なケーキングが発生した上、雲状の凝結物が発生した。検出結果が事実と符合したため、本発明の提供する検出方法は、脱脂粉乳のタンパク質熱安定性を正確に検出できることが示された。  As a result of the test, the standard solution having excellent protein thermal stability did not cause lamination, precipitation, or condensation. In the standard solution with normal protein heat stability, slight caking occurred, and fine-grained aggregates that were visible to the naked eye floated. The standard solution having a slightly low protein thermal stability caused a remarkable caking and agglomeration. The standard solution having low protein thermal stability caused remarkable caking and cloudy aggregates. Since the detection result matched with the fact, it was shown that the detection method provided by the present invention can accurately detect the protein thermal stability of skim milk powder.

実施例3:練乳標準品のタンパク質熱安定性検出   Example 3: Detection of protein thermal stability of a standard condensed milk product

タンパク質熱安定性の分かっている4つの練乳標準品を準備した。タンパク質熱安定性は、優れる、普通、やや低い及び低いである。標準品中のタンパク質含有量を検出した結果、標準品中のタンパク質の含有用は、8%であった。   Four condensed milk standards with known protein heat stability were prepared. Protein thermal stability is excellent, usually low and low. As a result of detecting the protein content in the standard product, the protein content in the standard product was 8%.

各練乳標準品を練乳溶液(被検出溶液)にした。具体的な方法は、上述の各標準品を250gずつ秤量し、50℃の水を150g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した標準品を水中に徐々に加えた。標準品が完全に溶解した後、タンパク質含有量が5%の練乳溶液を得た。練乳溶液を400rpmの状況下で10min水和した。練乳溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、3つの等しい練乳溶液標準品を製造して待機した。   Each condensed milk standard product was used as a condensed milk solution (detected solution). Specifically, 250 g of each standard product described above was weighed, 150 g of 50 ° C. water was weighed, and the standard product weighed under the condition of 400 rpm using an IKA stirrer was gradually added to water. After the standard product was completely dissolved, a condensed milk solution having a protein content of 5% was obtained. The condensed milk solution was hydrated for 10 min under the condition of 400 rpm. 100 g each of the condensed milk solution was placed in three 250 mL Erlenmeyer flasks, covered with corresponding rubber stoppers, covered with newspaper, tied with rubber bands, and three equal condensed milk solution standards were produced and waited.

実験型高温高圧滅菌釜のパラメータを121℃、15minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。3つの等しい練乳溶液標準品を高温高圧滅菌釜中で121℃、15min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、標準品(サンプル)を取り出して観察し、練乳サンプルのタンパク質熱安定性を検出した。   The parameters of the experimental high-temperature high-pressure sterilization kettle were set to 121 ° C. and 15 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. Three equal condensed milk solution standards were treated in a high temperature and high pressure sterilization kettle at 121 ° C. for 15 min. When the high-temperature and high-pressure sterilization pot was cooled to 90 ° C. or lower, a standard product (sample) was taken out and observed, and the protein thermal stability of the condensed milk sample was detected.

試験の結果、タンパク質熱安定性に優れた標準品溶液は、積層、沈殿及び凝結が発生しなかった。タンパク質熱安定性が普通の標準品溶液は、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した。タンパク質熱安定性がやや低い標準品溶液は、やや顕著なケーキングが発生した上、凝集現象が発生した。タンパク質熱安定性が低い標準品溶液は、顕著なケーキングが発生した上、雲状の凝結物が発生した。検出結果が事実と符合したため、本発明の提供する検出方法は、練乳のタンパク質熱安定性を正確に検出できることが示された。   As a result of the test, the standard solution having excellent protein thermal stability did not cause lamination, precipitation, or condensation. In the standard solution with normal protein heat stability, slight caking occurred, and fine-grained aggregates that were visible to the naked eye floated. The standard solution having a slightly low protein thermal stability caused a remarkable caking and agglomeration. The standard solution having low protein thermal stability caused remarkable caking and cloudy aggregates. Since the detection result matched the fact, it was shown that the detection method provided by the present invention can accurately detect the protein thermal stability of condensed milk.

実施例4:乳タンパク質濃縮物標準品のタンパク質熱安定性検出   Example 4: Protein thermostability detection of milk protein concentrate standard

タンパク質熱安定性の分かっている4つの乳タンパク質濃縮物標準品を準備した。タンパク質熱安定性は、優れる、普通、やや低い及び低いである。標準品中のタンパク質含有量を検出した結果、標準品中のタンパク質の含有用は、80%であった。   Four milk protein concentrate standards with known protein thermal stability were prepared. Protein thermal stability is excellent, usually low and low. As a result of detecting the protein content in the standard product, the protein content in the standard product was 80%.

各乳タンパク質濃縮物標準品を乳タンパク質濃縮物溶液(被検出溶液)にした。具体的な方法は、上述の各標準品を25gずつ秤量し、50℃の水を375g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した標準品を水中に徐々に加えた。標準品が完全に溶解した後、タンパク質含有量が5%の乳タンパク質濃縮物溶液を得た。乳タンパク質濃縮物溶液を400rpmの状況下で10min水和した。乳タンパク質濃縮物溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、3つの等しい乳タンパク質濃縮物溶液標準品を製造して待機した。   Each milk protein concentrate standard was made into a milk protein concentrate solution (detected solution). Specifically, 25 g of each standard product described above was weighed, 375 g of water at 50 ° C. was weighed, and the standard product weighed under the condition of 400 rpm using an IKA stirrer was gradually added to water. After the standard was completely dissolved, a milk protein concentrate solution with a protein content of 5% was obtained. The milk protein concentrate solution was hydrated for 10 min under the condition of 400 rpm. Place 100g each of milk protein concentrate solution into three 250mL Erlenmeyer flasks, cover with corresponding rubber stoppers, cover with newspaper and tie with rubber bands, and prepare and wait for three equal milk protein concentrate solution standards did.

実験型高温高圧滅菌釜のパラメータを121℃、15minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。3つの等しい乳タンパク質濃縮物溶液標準品を高温高圧滅菌釜中で121℃、15min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、標準品(サンプル)を取り出して観察し、乳タンパク質濃縮物サンプルのタンパク質熱安定性を検出した。   The parameters of the experimental high-temperature high-pressure sterilization kettle were set to 121 ° C. and 15 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. Three equal milk protein concentrate solution standards were treated at 121 ° C. for 15 min in a high temperature autoclave. When the high-temperature and high-pressure sterilization pot was cooled to 90 ° C. or lower, a standard product (sample) was taken out and observed, and the protein thermal stability of the milk protein concentrate sample was detected.

試験の結果、タンパク質熱安定性に優れた標準品溶液は、積層、沈殿及び凝結が発生しなかった。タンパク質熱安定性が普通の標準品溶液は、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊した。タンパク質熱安定性がやや低い標準品溶液は、やや顕著なケーキングが発生した上、凝集現象が発生した。タンパク質熱安定性が低い標準品溶液は、顕著なケーキングが発生した上、雲状の凝結物が発生した。検出結果が事実と符合したため、本発明の提供する検出方法は、乳タンパク質濃縮物のタンパク質熱安定性を正確に検出できることが示された。   As a result of the test, the standard solution having excellent protein thermal stability did not cause lamination, precipitation, or condensation. In the standard solution with normal protein heat stability, slight caking occurred, and fine-grained aggregates that were visible to the naked eye floated. The standard solution having a slightly low protein thermal stability caused a remarkable caking and agglomeration. The standard solution having low protein thermal stability caused remarkable caking and cloudy aggregates. Since the detection results matched the fact, it was shown that the detection method provided by the present invention can accurately detect the protein thermal stability of the milk protein concentrate.

実施例5:全脂粉乳のタンパク質熱安定性検出   Example 5: Detection of protein thermal stability of whole milk powder

市販の4つの異なるブランドの全脂粉乳を準備した。各ブランドは、ブランドA、ブランドB、ブランドC及びブランドDである。ブランドA、ブランドB、ブランドC及びブランドDの全脂粉乳中のタンパク質含有量を検出した結果、それぞれ、25%、24.8%、24.5%及び24%であった。   Four different brands of whole milk powder were prepared on the market. Each brand is brand A, brand B, brand C, and brand D. As a result of detecting the protein content in the whole milk powder of Brand A, Brand B, Brand C and Brand D, they were 25%, 24.8%, 24.5% and 24%, respectively.

各ブランドの全脂粉乳を80gずつ秤量し、50℃の水をそれぞれ、320g、316.8g、312g及び304g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した全脂粉乳を水中に徐々に加えた。全脂粉乳が完全に溶解した後、4つのタンパク質含有量が5%の全脂粉乳溶液を得た。全脂粉乳溶液を400rpmの状況下で10min水和した。各全脂粉乳溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、各3つの等しい全脂粉乳溶液サンプルを製造して待機した。   Weigh 80g of each brand of whole milk powder, weigh 320g, 316.8g, 312g and 304g, respectively, and weigh the whole milk powder under water at 400rpm using IKA stirrer. Gradually added. After the whole milk powder was completely dissolved, a whole milk powder solution having 4 protein contents of 5% was obtained. The whole milk powder solution was hydrated for 10 min under the condition of 400 rpm. Place 100 g of each whole milk powder solution into three 250 mL Erlenmeyer flasks, cover with corresponding rubber stoppers, cover with newspaper and tie with rubber bands, and prepare and wait for three equal whole milk powder solution samples. .

実験型高温高圧滅菌釜のパラメータを121℃、15minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。全脂粉乳溶液サンプルを高温高圧滅菌釜中で121℃、15min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、サンプルを取り出して観察し、全脂粉乳サンプルのタンパク質熱安定性を検出した。検出基準を表1に示し、検出結果を表2に示す。   The parameters of the experimental high-temperature high-pressure sterilization kettle were set to 121 ° C. and 15 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. The whole milk powder solution sample was treated at 121 ° C. for 15 min in a high-temperature high-pressure sterilization kettle. When the high-temperature and high-pressure sterilization kettle was cooled to 90 ° C. or lower, the sample was taken out and observed, and the protein thermal stability of the whole milk powder sample was detected. The detection criteria are shown in Table 1, and the detection results are shown in Table 2.

乳製品を原料として加工を行う過程において、UHT処理を行う際、タンパク質が変性して沈殿しやすく、滅菌設備の加熱表面に徐々に付着して垢が形成される。滅菌設備内の圧力は、加熱表面に垢が形成されるにつれて増大し、滅菌設備内の圧力が一定程度まで増大した場合、滅菌設備の加熱表面に多量の垢が形成されているため、滅菌過程における熱伝達が影響を受け、製品の殺菌効果が影響を受ける。こうなった場合、滅菌設備に対して内部洗浄(AIC)を行う必要がある。このため、滅菌設備の連続運転時間は、乳製品のタンパク質熱安定性と直接関係がある。実際の生産工程中においては、滅菌設備の連続運転時間から乳製品中のタンパク質熱安定性を判断することができる。上述の4つの異なるブランドの全脂粉乳をタンパク質含有量が2.3%の還元乳の生産に投入し、超高温滅菌設備において138℃、4sの滅菌作業を行った。蒸気比例バルブが全開となり、殺菌する温度が138℃に達しなくなったとき、超高温滅菌設備の連続運転時間を記録した。結果を表3に示す。   In the process of processing using a dairy product as a raw material, when UHT treatment is performed, protein is easily denatured and precipitated, and gradually adheres to the heating surface of a sterilization facility to form plaque. The pressure in the sterilization facility increases as plaque forms on the heated surface, and if the pressure in the sterilization facility increases to a certain level, a large amount of plaque is formed on the heated surface of the sterilization facility. Heat transfer is affected, and the sterilization effect of the product is affected. If this happens, it is necessary to perform internal cleaning (AIC) on the sterilization facility. For this reason, the continuous operation time of the sterilization equipment is directly related to the protein thermal stability of the dairy product. During the actual production process, the protein heat stability in the dairy product can be determined from the continuous operation time of the sterilization facility. The above-mentioned four different brands of whole milk powder were put into production of reduced milk having a protein content of 2.3% and sterilized at 138 ° C. for 4 seconds in an ultra-high temperature sterilization facility. When the steam proportional valve was fully opened and the sterilization temperature did not reach 138 ° C, the continuous operation time of the ultra-high temperature sterilization facility was recorded. The results are shown in Table 3.

[表1]:乳製品中のタンパク質熱安定性検出基準

Figure 2015059937
[Table 1]: Criteria for detecting protein thermal stability in dairy products
Figure 2015059937

[表2]:全脂粉乳のタンパク質熱安定性検出結果

Figure 2015059937
[Table 2]: Protein thermal stability detection results of whole milk powder
Figure 2015059937

[表3]:超高温滅菌設備の連続運転時間

Figure 2015059937
[Table 3]: Continuous operation time of ultra-high temperature sterilization equipment
Figure 2015059937

上述の試験結果から分かるように、本発明の提供する方法で検出したタンパク質熱安定性に優れた全脂粉乳(ブランドA)で生産を行った場合、超高温滅菌設備は、6.88h連続運転させることができた。   As can be seen from the test results described above, when production was performed with whole milk powder (Brand A) excellent in protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility operates continuously for 6.88 hours. I was able to.

本発明の提供する方法で検出したタンパク質熱安定性が普通の全脂粉乳(ブランドB)で生産を行った場合、超高温滅菌設備は、4.72h連続運転させることができた。   When production was performed with whole milk powder (brand B) having normal protein heat stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility could be continuously operated for 4.72 hours.

本発明の提供する方法で検出したタンパク質熱安定性がやや低い全脂粉乳(ブランドC)で生産を行った場合、超高温滅菌設備は、3.13h連続運転させることができた。   When production was performed with whole milk powder (brand C) having a slightly low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility could be continuously operated for 3.13 h.

本発明の提供する方法で検出したタンパク質熱安定性が低い全脂粉乳(ブランドD)で生産を行った場合、超高温滅菌設備は、1.57h連続運転させることができた。   When production was performed with whole milk powder (brand D) having low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization equipment could be continuously operated for 1.57 h.

このことから、本発明の検出方法で検出したタンパク質熱安定性は、超高温滅菌設備の連続運転可能時間と関連性があり、タンパク質熱安定性に優れた乳製品で生産を行った場合、超高温滅菌設備の連続運転可能時間が長く、反対に、タンパク質熱安定性が低い乳製品で生産を行った場合、超高温滅菌設備の連続運転可能時間が短かったため、本発明の提供する検出方法は、全脂粉乳のタンパク質熱安定性を正確に検出できることが示された。   From this, the protein thermostability detected by the detection method of the present invention is related to the continuous operation time of the ultra-high temperature sterilization facility, and when produced with dairy products having excellent protein thermostability, On the contrary, when production is performed with a dairy product having a low protein heat stability, the continuous operation time of the high-temperature sterilization facility is short, and therefore the detection method provided by the present invention is It was shown that the protein thermal stability of whole milk powder can be accurately detected.

実施例6:脱脂粉乳のタンパク質熱安定性検出   Example 6: Detection of protein thermal stability of skim milk powder

市販の4つの異なるブランドの脱脂粉乳を準備した。各ブランドは、ブランドE、ブランドF、ブランドG及びブランドHである。ブランドE、ブランドF、ブランドG及びブランドHの脱脂粉乳中のタンパク質含有量を検出した結果、それぞれ、34%、33.8%、33%及び32%であった。   Four different brands of skim milk powder were prepared. Each brand is brand E, brand F, brand G, and brand H. As a result of detecting the protein content in the skim milk powder of brand E, brand F, brand G and brand H, they were 34%, 33.8%, 33% and 32%, respectively.

各ブランドの脱脂粉乳を60gずつ秤量し、50℃の水をそれぞれ、450g、447g、435g及び420g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した脱脂粉乳を水中に徐々に加えた。脱脂粉乳が完全に溶解した後、4つのタンパク質含有量が4%の脱脂粉乳溶液を得た。各脱脂粉乳溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、各3つの等しい脱脂粉乳溶液サンプルを製造して待機した。   Each brand of skim milk powder was weighed 60 g, 50 ° C. water was weighed 450 g, 447 g, 435 g and 420 g, respectively, and skim milk powder weighed under the condition of 400 rpm using an IKA stirrer was gradually added to the water. . After the skim milk was completely dissolved, a skim milk solution with 4 protein content of 4% was obtained. 100 g of each skim milk solution was placed in three 250 mL Erlenmeyer flasks, capped with corresponding rubber stoppers, covered with newspaper and tied with rubber bands, and three equal skim milk solution samples were prepared and waited.

実験型高温高圧滅菌釜のパラメータを100℃、40minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。脱脂粉乳溶液サンプルを高温高圧滅菌釜中で100℃、40min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、サンプルを取り出して観察し、脱脂粉乳サンプルのタンパク質熱安定性を検出した。検出基準は、表1に示す検出基準であり、検出結果を表4に示す。   The parameters of the experimental high-temperature and high-pressure sterilization kettle were set to 100 ° C. and 40 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. The skim milk solution sample was treated at 100 ° C. for 40 min in a high-temperature high-pressure sterilization kettle. When the high-temperature and high-pressure sterilization pot was cooled to 90 ° C. or less, the sample was taken out and observed, and the protein thermal stability of the skim milk powder sample was detected. The detection criteria are the detection criteria shown in Table 1, and the detection results are shown in Table 4.

乳製品を原料として加工を行う過程において、UHT処理を行う際、タンパク質が変性して沈殿しやすく、滅菌設備の加熱表面に徐々に付着して垢が形成される。滅菌設備内の圧力は、加熱表面に垢が形成されるにつれて増大し、滅菌設備内の圧力が一定程度まで増大した場合、滅菌設備の加熱表面に多量の垢が形成されているため、滅菌過程における熱伝達が影響を受け、製品の殺菌効果が影響を受ける。こうなった場合、滅菌設備に対して内部洗浄(AIC)を行う必要がある。このため、滅菌設備の連続運転時間は、乳製品のタンパク質熱安定性と直接関係がある。実際の生産工程中においては、滅菌設備の連続運転時間から乳製品中のタンパク質熱安定性を判断することができる。上述の4つの異なるブランドの脱脂粉乳をタンパク質含有量が0.8%のミルクティーの生産に投入し、超高温滅菌設備において138℃、4sの滅菌作業を行った。蒸気比例バルブが全開となり、殺菌する温度が138℃に達しなくなったとき、超高温滅菌設備の連続運転時間を記録した。結果を表5に示す。   In the process of processing using a dairy product as a raw material, when UHT treatment is performed, protein is easily denatured and precipitated, and gradually adheres to the heating surface of a sterilization facility to form plaque. The pressure in the sterilization facility increases as plaque forms on the heated surface, and if the pressure in the sterilization facility increases to a certain level, a large amount of plaque is formed on the heated surface of the sterilization facility. Heat transfer is affected, and the sterilization effect of the product is affected. If this happens, it is necessary to perform internal cleaning (AIC) on the sterilization facility. For this reason, the continuous operation time of the sterilization equipment is directly related to the protein thermal stability of the dairy product. During the actual production process, the protein heat stability in the dairy product can be determined from the continuous operation time of the sterilization facility. The above-mentioned four different brands of skim milk powder were put into production of milk tea having a protein content of 0.8%, and sterilization was performed at 138 ° C. for 4 seconds in an ultra-high temperature sterilization facility. When the steam proportional valve was fully opened and the sterilization temperature did not reach 138 ° C, the continuous operation time of the ultra-high temperature sterilization facility was recorded. The results are shown in Table 5.

[表4]:脱脂粉乳のタンパク質熱安定性検出結果

Figure 2015059937
[Table 4]: Protein thermal stability detection results of skim milk powder
Figure 2015059937

[表5]:超高温滅菌設備の連続運転時間

Figure 2015059937
[Table 5]: Continuous operation time of ultra-high temperature sterilization equipment
Figure 2015059937

上述の試験結果から分かるように、本発明の提供する方法で検出したタンパク質熱安定性に優れた脱脂粉乳(ブランドE)で生産を行った場合、超高温滅菌設備は、8.95h連続運転させることができた。   As can be seen from the above test results, when production is performed with skim milk powder (brand E) excellent in protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility is continuously operated for 8.95 hours. I was able to.

本発明の提供する方法で検出したタンパク質熱安定性が普通の脱脂粉乳(ブランドF)で生産を行った場合、超高温滅菌設備は、6.61h連続運転させることができた。   When the protein heat stability detected by the method provided by the present invention was used to produce skim milk powder (Brand F), the ultra-high temperature sterilization facility could be operated continuously for 6.61 h.

本発明の提供する方法で検出したタンパク質熱安定性がやや低い脱脂粉乳(ブランドG)で生産を行った場合、超高温滅菌設備は、5.13h連続運転させることができた。   When production was performed using skim milk powder (Brand G) having a slightly low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization equipment could be operated continuously for 5.13 hours.

本発明の提供する方法で検出したタンパク質熱安定性が低い脱脂粉乳(ブランドH)で生産を行った場合、超高温滅菌設備は、2.51h連続運転させることができた。   When production was performed with skim milk powder (brand H) having low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility could be continuously operated for 2.51 hours.

このことから、本発明の検出方法で検出したタンパク質熱安定性は、超高温滅菌設備の連続運転可能時間と関連性があり、タンパク質熱安定性に優れた脱脂粉乳で生産を行った場合、超高温滅菌設備の連続運転可能時間が長く、反対に、タンパク質熱安定性が低い脱脂粉乳で生産を行った場合、超高温滅菌設備の連続運転可能時間が短かったため、本発明の提供する検出方法は、脱脂粉乳のタンパク質熱安定性を正確に検出できることが示された。   From this, the protein thermal stability detected by the detection method of the present invention is related to the continuous operation time of the ultra-high temperature sterilization facility, and when produced with skim milk powder having excellent protein thermal stability, On the contrary, when production is performed with skim milk powder having low protein heat stability, the continuous operation time of the high-temperature sterilization facility is short, so the continuous operation time of the ultra-high temperature sterilization facility is short, so the detection method provided by the present invention is It was shown that the protein thermal stability of skim milk powder can be accurately detected.

実施例7:練乳のタンパク質熱安定性検出   Example 7: Detection of protein thermal stability of condensed milk

市販の4つの異なるブランドの練乳を準備した。各ブランドは、ブランドI、ブランドJ、ブランドK及びブランドLである。ブランドI、ブランドJ、ブランドK及びブランドLの練乳中のタンパク質含有量を検出した結果、それぞれ、8.8%、8.4%、8.2%及び8%であった。   Four different brands of condensed milk on the market were prepared. Each brand is brand I, brand J, brand K, and brand L. As a result of detecting the protein content in the condensed milk of brand I, brand J, brand K and brand L, they were 8.8%, 8.4%, 8.2% and 8%, respectively.

各ブランドの練乳を250gずつ秤量し、50℃の水をそれぞれ、64.3g、50g、43g及び36g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した練乳を水中に徐々に加えた。練乳が完全に溶解した後、4つのタンパク質含有量が7%の練乳溶液を得た。練乳溶液を300rpmの状況下で20min水和した。各練乳溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、各3つの等しい練乳溶液サンプルを製造して待機した。   250 g of each brand of condensed milk was weighed, 64.3 g, 50 g, 43 g and 36 g of water at 50 ° C. were weighed, and the weighed condensed milk was gradually added into water using an IKA stirrer at 400 rpm. . After the condensed milk was completely dissolved, a condensed milk solution having four protein contents of 7% was obtained. The condensed milk solution was hydrated for 20 min under the condition of 300 rpm. 100 g of each condensed milk solution was placed in three 250 mL Erlenmeyer flasks, capped with corresponding rubber stoppers, covered with newspaper and tied with rubber bands, and each sample was prepared and waited for three equal condensed milk solutions.

実験型高温高圧滅菌釜のパラメータを135℃、10minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。練乳溶液サンプルを高温高圧滅菌釜中で135℃、10min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、サンプルを取り出して観察し、練乳サンプルのタンパク質熱安定性を検出した。検出基準は、表1に示す検出基準であり、検出結果を表6に示す。   The parameters of the experimental high temperature and high pressure sterilization kettle were set to 135 ° C. and 10 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. The condensed milk solution sample was treated at 135 ° C. for 10 minutes in a high-temperature high-pressure sterilization kettle. When the high-temperature and high-pressure sterilization pot was cooled to 90 ° C. or lower, the sample was taken out and observed, and the protein thermal stability of the condensed milk sample was detected. The detection criteria are the detection criteria shown in Table 1, and the detection results are shown in Table 6.

乳製品を原料として加工を行う過程において、UHT処理を行う際、タンパク質が変性して沈殿しやすく、滅菌設備の加熱表面に徐々に付着して垢が形成される。滅菌設備内の圧力は、加熱表面に垢が形成されるにつれて増大し、滅菌設備内の圧力が一定程度まで増大した場合、滅菌設備の加熱表面に多量の垢が形成されているため、滅菌過程における熱伝達が影響を受け、製品の殺菌効果が影響を受ける。こうなった場合、滅菌設備に対して内部洗浄(AIC)を行う必要がある。このため、滅菌設備の連続運転時間は、乳製品のタンパク質熱安定性と直接関係がある。実際の生産工程中においては、滅菌設備の連続運転時間から乳製品中のタンパク質熱安定性を判断することができる。上述の4つの異なるブランドの練乳をタンパク質含有量が1.1%のコーヒー牛乳の生産に投入し、超高温滅菌設備において138℃、4sの滅菌作業を行った。蒸気比例バルブが全開となり、殺菌する温度が138℃に達しなくなったとき、超高温滅菌設備の連続運転時間を記録した。結果を表7に示す。   In the process of processing using a dairy product as a raw material, when UHT treatment is performed, protein is easily denatured and precipitated, and gradually adheres to the heating surface of a sterilization facility to form plaque. The pressure in the sterilization facility increases as plaque forms on the heated surface, and if the pressure in the sterilization facility increases to a certain level, a large amount of plaque is formed on the heated surface of the sterilization facility. Heat transfer is affected, and the sterilization effect of the product is affected. If this happens, it is necessary to perform internal cleaning (AIC) on the sterilization facility. For this reason, the continuous operation time of the sterilization equipment is directly related to the protein thermal stability of the dairy product. During the actual production process, the protein heat stability in the dairy product can be determined from the continuous operation time of the sterilization facility. The above four different brands of condensed milk were put into the production of coffee milk with a protein content of 1.1% and sterilized at 138 ° C. for 4 seconds in an ultra-high temperature sterilization facility. When the steam proportional valve was fully opened and the sterilization temperature did not reach 138 ° C, the continuous operation time of the ultra-high temperature sterilization facility was recorded. The results are shown in Table 7.

[表6]:練乳のタンパク質熱安定性検出結果

Figure 2015059937
[Table 6]: Protein thermal stability detection result of condensed milk
Figure 2015059937

[表7]:超高温滅菌設備の連続運転時間

Figure 2015059937
[Table 7]: Continuous operation time of ultra-high temperature sterilization equipment
Figure 2015059937

上述の試験結果から分かるように、本発明の提供する方法で検出したタンパク質熱安定性に優れた練乳(ブランドI)で生産を行った場合、超高温滅菌設備は、8.02h連続運転させることができた。   As can be seen from the above test results, when production is performed with condensed milk (brand I) having excellent protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility should be operated continuously for 8.02 hours. I was able to.

本発明の提供する方法で検出したタンパク質熱安定性が普通の練乳(ブランドJ)で生産を行った場合、超高温滅菌設備は、7.38h連続運転させることができた。   When the protein heat stability detected by the method provided by the present invention was used for production with ordinary condensed milk (brand J), the ultra-high temperature sterilization equipment could be operated continuously for 7.38 h.

本発明の提供する方法で検出したタンパク質熱安定性がやや低い練乳(ブランドK)で生産を行った場合、超高温滅菌設備は、5.07h連続運転させることができた。   When production was performed with condensed milk (brand K) having a slightly low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization equipment could be operated continuously for 5.07 h.

本発明の提供する方法で検出したタンパク質熱安定性が低い練乳(ブランドL)で生産を行った場合、超高温滅菌設備は、2.51h連続運転させることができた。   When production was performed with condensed milk (brand L) having low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility could be continuously operated for 2.51 h.

このことから、本発明の検出方法で検出したタンパク質熱安定性は、超高温滅菌設備の連続運転可能時間と関連性があり、タンパク質熱安定性に優れた練乳で生産を行った場合、超高温滅菌設備の連続運転可能時間が長く、反対に、タンパク質熱安定性が低い練乳で生産を行った場合、超高温滅菌設備の連続運転可能時間が短かったため、本発明の提供する検出方法は、練乳のタンパク質熱安定性を正確に検出できることが示された。   From this, the protein thermal stability detected by the detection method of the present invention is related to the continuous operation time of the ultra-high temperature sterilization equipment, and when produced with condensed milk having excellent protein thermal stability, On the contrary, when production is performed with condensed milk with low protein heat stability, the continuous operation time of the sterilization facility is long. It was shown that the protein thermal stability of can be accurately detected.

実施例8:乳タンパク質濃縮物のタンパク質熱安定性検出   Example 8: Protein thermal stability detection of milk protein concentrate

市販の4つの異なるブランドの乳タンパク質濃縮物を準備した。各ブランドは、ブランドM、ブランドN、ブランドO及びブランドPである。ブランドM、ブランドN、ブランドO及びブランドPの乳タンパク質濃縮物中のタンパク質含有量を検出した結果、それぞれ、82%、81.5%、81%及び80%であった。   Four different brands of milk protein concentrate on the market were prepared. Each brand is brand M, brand N, brand O, and brand P. The protein content in the milk protein concentrates of brand M, brand N, brand O and brand P was detected as 82%, 81.5%, 81% and 80%, respectively.

各ブランドの乳タンパク質濃縮物を25gずつ秤量し、50℃の水をそれぞれ、385g、382.5g、380g及び375g秤量し、IKA撹拌器を用いて400rpmの状況下で秤量した乳タンパク質濃縮物を水中に徐々に加えた。乳タンパク質濃縮物が完全に溶解した後、4つのタンパク質含有量が5%の乳タンパク質濃縮物溶液を得た。乳タンパク質濃縮物溶液を700rpmの状況下で8min水和した。各乳タンパク質濃縮物溶液100gずつを3つの250mLの三角フラスコ中に入れ、対応するゴム栓で蓋をし、新聞紙を被せて輪ゴムで縛り、各3つの等しい乳タンパク質濃縮物溶液サンプルを製造して待機した。   25 g of each brand of milk protein concentrate was weighed, 50 ° C. water was weighed 385 g, 382.5 g, 380 g and 375 g, respectively, and the milk protein concentrate was weighed under the condition of 400 rpm using an IKA stirrer. Gradually added to the water. After the milk protein concentrate was completely dissolved, a milk protein concentrate solution with 4% protein content was obtained. The milk protein concentrate solution was hydrated for 8 min at 700 rpm. Place 100 g of each milk protein concentrate solution into three 250 mL Erlenmeyer flasks, cap with corresponding rubber stoppers, cover with newspaper and tie with rubber bands to produce each three equal milk protein concentrate solution samples I waited.

実験型高温高圧滅菌釜のパラメータを130℃、12minに設定した。高温高圧滅菌釜の型番は、STURDY sa−300vlである。乳タンパク質濃縮物溶液サンプルを高温高圧滅菌釜中で130℃、12min処理した。高温高圧滅菌釜が90℃以下まで冷却されたとき、サンプルを取り出して観察し、乳タンパク質濃縮物サンプルのタンパク質熱安定性を検出した。検出基準は、表1に示す検出基準であり、検出結果を表8に示す。   The parameters of the experimental high-temperature high-pressure sterilization kettle were set to 130 ° C. and 12 min. The model number of the high-temperature and high-pressure sterilization pot is STURDY sa-300vl. The milk protein concentrate solution sample was treated in a high temperature and high pressure sterilization kettle at 130 ° C. for 12 min. When the high-temperature and high-pressure sterilization kettle was cooled to 90 ° C. or less, the sample was taken out and observed, and the protein thermal stability of the milk protein concentrate sample was detected. The detection criteria are the detection criteria shown in Table 1, and the detection results are shown in Table 8.

乳製品を原料として加工を行う過程において、UHT処理を行う際、タンパク質が変性して沈殿しやすく、滅菌設備の加熱表面に徐々に付着して垢が形成される。滅菌設備内の圧力は、加熱表面に垢が形成されるにつれて増大し、滅菌設備内の圧力が一定程度まで増大した場合、滅菌設備の加熱表面に多量の垢が形成されているため、滅菌過程における熱伝達が影響を受け、製品の殺菌効果が影響を受ける。こうなった場合、滅菌設備に対して内部洗浄(AIC)を行う必要がある。このため、滅菌設備の連続運転時間は、乳製品のタンパク質熱安定性と直接関係がある。実際の生産工程中においては、滅菌設備の連続運転時間から乳製品中のタンパク質熱安定性を判断することができる。上述の4つの異なるブランドの乳タンパク質濃縮物をタンパク質含有量が0.8%のミルクティーの生産に投入し、超高温滅菌設備において138℃、4sの滅菌作業を行った。蒸気比例バルブが全開となり、殺菌する温度が138℃に達しなくなったとき、超高温滅菌設備の連続運転時間を記録した。結果を表9に示す。   In the process of processing using a dairy product as a raw material, when UHT treatment is performed, protein is easily denatured and precipitated, and gradually adheres to the heating surface of a sterilization facility to form plaque. The pressure in the sterilization facility increases as plaque forms on the heated surface, and if the pressure in the sterilization facility increases to a certain level, a large amount of plaque is formed on the heated surface of the sterilization facility. Heat transfer is affected, and the sterilization effect of the product is affected. If this happens, it is necessary to perform internal cleaning (AIC) on the sterilization facility. For this reason, the continuous operation time of the sterilization equipment is directly related to the protein thermal stability of the dairy product. During the actual production process, the protein heat stability in the dairy product can be determined from the continuous operation time of the sterilization facility. The four different brands of milk protein concentrate described above were put into the production of milk tea with a protein content of 0.8% and sterilized at 138 ° C. for 4 s in an ultra-high temperature sterilization facility. When the steam proportional valve was fully opened and the sterilization temperature did not reach 138 ° C, the continuous operation time of the ultra-high temperature sterilization facility was recorded. The results are shown in Table 9.

[表8]:乳タンパク質濃縮物のタンパク質熱安定性検出結果

Figure 2015059937
[Table 8]: Protein thermal stability detection results of milk protein concentrate
Figure 2015059937

[表9]:超高温滅菌設備の連続運転時間

Figure 2015059937
[Table 9]: Continuous operation time of ultra-high temperature sterilization equipment
Figure 2015059937

上述の試験結果から分かるように、本発明の提供する方法で検出したタンパク質熱安定性に優れた乳タンパク質濃縮物(ブランドM)で生産を行った場合、超高温滅菌設備は、9.91h連続運転させることができた。   As can be seen from the test results described above, when production was performed with a milk protein concentrate (brand M) excellent in protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility was 9.91 h continuous. I was able to drive.

本発明の提供する方法で検出したタンパク質熱安定性が普通の乳タンパク質濃縮物(ブランドN)で生産を行った場合、超高温滅菌設備は、7.09h連続運転させることができた。   When production was performed with a milk protein concentrate (brand N) having a normal protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility could be operated continuously for 7.09 h.

本発明の提供する方法で検出したタンパク質熱安定性がやや低い乳タンパク質濃縮物(ブランドO)で生産を行った場合、超高温滅菌設備は、5.14h連続運転させることができた。   When production was performed with a milk protein concentrate (brand O) having a slightly low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization equipment could be operated continuously for 5.14 h.

本発明の提供する方法で検出したタンパク質熱安定性が低い乳タンパク質濃縮物(ブランドP)で生産を行った場合、超高温滅菌設備は、2.55h連続運転させることができた。   When production was performed with a milk protein concentrate (brand P) having low protein thermal stability detected by the method provided by the present invention, the ultra-high temperature sterilization facility could be operated continuously for 2.55 h.

このことから、本発明の検出方法で検出したタンパク質熱安定性は、超高温滅菌設備の連続運転可能時間と関連性があり、タンパク質熱安定性に優れた乳タンパク質濃縮物で生産を行った場合、超高温滅菌設備の連続運転可能時間が長く、反対に、タンパク質熱安定性が低い乳タンパク質濃縮物で生産を行った場合、超高温滅菌設備の連続運転可能時間が短かったため、本発明の提供する検出方法は、乳タンパク質濃縮物のタンパク質熱安定性を正確に検出できることが示された。   From this, the protein thermostability detected by the detection method of the present invention is related to the continuous operation time of the ultra-high temperature sterilization facility, and the production is performed with a milk protein concentrate having excellent protein thermostability. Providing the present invention, since the continuous operation time of the ultra-high temperature sterilization equipment is long, and conversely, when the production is performed with the milk protein concentrate having low protein heat stability, the continuous operation time of the ultra-high temperature sterilization equipment is short. This detection method has been shown to accurately detect the protein thermal stability of milk protein concentrates.

実施例9:還元乳の製造   Example 9: Production of reduced milk

実施例5で検出したタンパク質熱安定性に優れた全脂粉乳(ブランドA)を準備し、通常の補助材料と混合し、138℃、4sの滅菌処理を行い、タンパク質含有量が2.3%の還元乳を製造した。   Full fat milk powder (brand A) excellent in protein thermal stability detected in Example 5 is prepared, mixed with normal auxiliary materials, sterilized at 138 ° C. for 4 s, and protein content is 2.3%. Of reduced milk was produced.

実施例10:ミルクティーの製造   Example 10: Production of milk tea

実施例6で検出したタンパク質熱安定性に優れた脱脂粉乳(ブランドE)を準備し、通常の補助材料と混合し、137℃、30sの滅菌処理を行い、タンパク質含有量が0.8%のミルクティーを製造した。   A skim milk powder (brand E) excellent in protein thermal stability detected in Example 6 is prepared, mixed with normal auxiliary materials, sterilized at 137 ° C. for 30 s, and the protein content is 0.8%. Milk tea was produced.

実施例11:コーヒー牛乳の製造   Example 11: Production of coffee milk

実施例7で検出したタンパク質熱安定性に優れた練乳(ブランドI)を準備し、通常の補助材料と混合し、140℃、4sの滅菌処理を行い、タンパク質含有量が1.1%のコーヒー牛乳を製造した。   Condensed milk (Brand I) with excellent protein thermal stability detected in Example 7 was prepared, mixed with ordinary auxiliary materials, sterilized at 140 ° C. for 4 s, and coffee with a protein content of 1.1%. Milk was produced.

実施例11:ミルクティーの製造   Example 11: Production of milk tea

実施例8で検出したタンパク質熱安定性に優れた乳タンパク質濃縮物(ブランドM)を準備し、通常の補助材料と混合し、139℃、10sの滅菌処理を行い、タンパク質含有量が0.8%のミルクティーを製造した。   A milk protein concentrate (brand M) excellent in protein thermal stability detected in Example 8 was prepared, mixed with ordinary auxiliary materials, sterilized at 139 ° C. for 10 s, and a protein content of 0.8. % Milk tea was produced.

以上の実施例は、本発明を説明するためのみに用いるものであり、本発明を限定するものではない。本発明の主旨を逸脱しない範囲において、当業者は、本発明の特許請求の範囲及び明細書の簡易な変更及び修飾を行うことができ、それらは何れも本発明の特許請求の範囲に含まれる。   The above examples are used only to illustrate the present invention and are not intended to limit the present invention. Without departing from the spirit of the present invention, those skilled in the art can make simple changes and modifications to the claims and specification of the present invention, all of which are included in the claims of the present invention. .

Claims (12)

乳製品と水とを混合して第1サンプル溶液を得るステップ(A)と、
前記第1サンプル溶液を100℃〜135℃の条件下で10min〜40min処理して第2サンプル溶液を得るステップ(B)と、
前記第2サンプル溶液に対して検出を行って前記第2サンプル溶液のタンパク質熱安定性を獲得するステップ(C)と、を含み、
前記第2サンプル溶液に、積層、沈殿及び凝結が発生しない場合、タンパク質熱安定性が優れるとし、
前記第2サンプル溶液に、軽微なケーキングが発生し、肉眼で視認可能な微小粒状の凝結物が浮遊している場合、タンパク質熱安定性が普通であるとし、
前記第2サンプル溶液にやや顕著なケーキングが発生した上、凝集現象が発生した場合、タンパク質熱安定性がやや低いとし、
前記第2サンプル溶液に顕著なケーキングが発生した上、雲状の凝結物が発生した場合、タンパク質熱安定性が低いとすることを特徴とする乳製品中のタンパク質熱安定性検出方法。
Mixing the dairy product and water to obtain a first sample solution (A);
A step (B) of obtaining a second sample solution by treating the first sample solution under conditions of 100 ° C. to 135 ° C. for 10 min to 40 min;
(C) performing detection on the second sample solution to obtain protein thermal stability of the second sample solution;
When the second sample solution does not cause lamination, precipitation, and condensation, the protein thermal stability is excellent.
In the case where slight caking occurs in the second sample solution and fine granular aggregates floating with the naked eye are floating, the protein thermal stability is normal,
When the caustic phenomenon occurs in the second sample solution and the aggregation phenomenon occurs, the protein thermal stability is slightly low.
A method for detecting protein thermal stability in a dairy product, characterized in that, when significant caking occurs in the second sample solution and cloudy aggregates are generated, the protein thermal stability is low.
前記乳製品は、全脂粉乳、脱脂粉乳、練乳又は乳タンパク質濃縮物から選択されることを特徴とする請求項1に記載の乳製品中のタンパク質熱安定性検出方法。   The method for detecting protein thermal stability in a dairy product according to claim 1, wherein the dairy product is selected from whole milk powder, skim milk powder, condensed milk, or milk protein concentrate. 前記ステップ(A)の前に、前記乳製品中のタンパク質含有量を検出するステップをさらに含むことを特徴とする請求項1に記載の乳製品中のタンパク質熱安定性検出方法。   The method for detecting protein thermal stability in a dairy product according to claim 1, further comprising a step of detecting a protein content in the dairy product before the step (A). 前記第1サンプル溶液中のタンパク質含有量は、4%〜7%であることを特徴とする請求項1に記載の乳製品中のタンパク質熱安定性検出方法。   The method for detecting protein thermal stability in dairy products according to claim 1, wherein the protein content in the first sample solution is 4% to 7%. 前記ステップ(A)と前記ステップ(B)との間に、水和ステップをさらに含むことを特徴とする請求項1に記載の乳製品中のタンパク質熱安定性検出方法。   The method for detecting protein thermostability in dairy products according to claim 1, further comprising a hydration step between the step (A) and the step (B). 前記水和は、300rpm〜700rpmの条件下で撹拌されることを特徴とする請求項5に記載の乳製品中のタンパク質熱安定性検出方法。   The method for detecting protein thermal stability in dairy products according to claim 5, wherein the hydration is performed under conditions of 300 rpm to 700 rpm. 前記水和時間は、8min〜20minであることを特徴とする請求項5に記載の乳製品中のタンパク質熱安定性検出方法。   The method for detecting protein thermal stability in dairy products according to claim 5, wherein the hydration time is 8 min to 20 min. 前記請求項1乃至7の何れか一項に記載の乳製品中のタンパク質熱安定性検出方法で乳製品に対して検出を行い、タンパク質熱安定性に優れた乳製品を得るステップと、
前記タンパク質熱安定性に優れた乳製品と材料とを混合し、殺菌するステップと、を含むことを特徴とする乳飲料の製造方法。
Detecting the dairy product with the protein thermostability detection method in the dairy product according to any one of claims 1 to 7 to obtain a dairy product having excellent protein thermostability;
A method for producing a milk beverage comprising the steps of mixing and sterilizing a dairy product and a material excellent in protein thermal stability.
前記乳製品は、全脂粉乳、脱脂粉乳、練乳又は乳タンパク質濃縮物から選択されることを特徴とする請求項8に記載の乳飲料の製造方法。   The said dairy product is selected from whole milk powder, skim milk powder, condensed milk, or milk protein concentrate, The manufacturing method of the milk drink of Claim 8 characterized by the above-mentioned. 前記乳飲料は、還元乳、ミルクティー又はコーヒー牛乳であることを特徴とする請求項8に記載の乳飲料の製造方法。   The said milk drink is reduced milk, milk tea, or coffee milk, The manufacturing method of the milk drink of Claim 8 characterized by the above-mentioned. 前記殺菌する温度は、137℃〜140℃であることを特徴とする請求項8に記載の乳飲料の製造方法。   The method for producing a milk beverage according to claim 8, wherein the sterilizing temperature is 137C to 140C. 前記殺菌する時間は、4s〜30sであることを特徴とする請求項8に記載の乳飲料の製造方法。   The method for producing a milk beverage according to claim 8, wherein the time for sterilization is 4 to 30 s.
JP2014189201A 2013-09-18 2014-09-17 Method for detecting protein thermal stability in dairy products Active JP5923576B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310430664.7 2013-09-18
CN201310430664.7A CN103487456B (en) 2013-09-18 2013-09-18 The detection method of heat stability of protein in a kind of dairy products

Publications (2)

Publication Number Publication Date
JP2015059937A true JP2015059937A (en) 2015-03-30
JP5923576B2 JP5923576B2 (en) 2016-05-24

Family

ID=49827847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189201A Active JP5923576B2 (en) 2013-09-18 2014-09-17 Method for detecting protein thermal stability in dairy products

Country Status (3)

Country Link
JP (1) JP5923576B2 (en)
CN (1) CN103487456B (en)
TW (1) TWI498555B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758904A (en) * 2020-06-05 2021-12-07 内蒙古蒙牛乳业(集团)股份有限公司 Method for detecting stability of dairy product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261366A (en) * 1989-03-31 1990-10-24 Sakamoto Yakuhin Kogyo Kk Drink composition containing milk ingredient
JPH1056962A (en) * 1996-08-20 1998-03-03 Snow Brand Milk Prod Co Ltd Milk powder and its production
JPH10248495A (en) * 1997-03-12 1998-09-22 Morinaga Milk Ind Co Ltd Whole milk proteolysis product and manufacture therefor
JPH1146683A (en) * 1997-07-31 1999-02-23 Kyodo Nyugyo Kk Prevention of heat degeneration of milk and milk product
JP2000032913A (en) * 1998-07-15 2000-02-02 Meiji Milk Prod Co Ltd Production of milk-based tea beverage of good taste
JP2004033208A (en) * 2002-02-06 2004-02-05 Indopco Inc Stabilizer for acidified milk beverage
JP2005525116A (en) * 2002-05-14 2005-08-25 ヴァリオ・オサケ・ユキテュア Process for producing lactose-free dairy products
WO2008136309A1 (en) * 2007-04-26 2008-11-13 Meiji Dairies Corporation Fermented whey preparation and method for producing the same
US7887864B2 (en) * 2004-07-23 2011-02-15 Kraft Foods Global Brands Llc Heat-stable concentrated milk product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492007C (en) * 2006-01-10 2009-05-27 内蒙古伊利实业集团股份有限公司 Method for testing milk protein stability
CN100567971C (en) * 2006-08-24 2009-12-09 中国科学院山西煤炭化学研究所 The detection method of the thermal stability of mercury in coal, oil or the living beings
JP5657200B2 (en) * 2008-09-05 2015-01-21 サントリー食品インターナショナル株式会社 Milk composition and milk-containing beverage with reduced whey protein content
US8292498B2 (en) * 2010-07-16 2012-10-23 Petroleum Analyzer Company, Lp Auto priming and flushing an apparatus for determining the thermal stability of fluids
CN103211023B (en) * 2013-03-30 2015-05-27 昆明雪兰牛奶有限责任公司 Milk-containing beverage and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261366A (en) * 1989-03-31 1990-10-24 Sakamoto Yakuhin Kogyo Kk Drink composition containing milk ingredient
JPH1056962A (en) * 1996-08-20 1998-03-03 Snow Brand Milk Prod Co Ltd Milk powder and its production
JPH10248495A (en) * 1997-03-12 1998-09-22 Morinaga Milk Ind Co Ltd Whole milk proteolysis product and manufacture therefor
JPH1146683A (en) * 1997-07-31 1999-02-23 Kyodo Nyugyo Kk Prevention of heat degeneration of milk and milk product
JP2000032913A (en) * 1998-07-15 2000-02-02 Meiji Milk Prod Co Ltd Production of milk-based tea beverage of good taste
JP2004033208A (en) * 2002-02-06 2004-02-05 Indopco Inc Stabilizer for acidified milk beverage
JP2005525116A (en) * 2002-05-14 2005-08-25 ヴァリオ・オサケ・ユキテュア Process for producing lactose-free dairy products
US7887864B2 (en) * 2004-07-23 2011-02-15 Kraft Foods Global Brands Llc Heat-stable concentrated milk product
WO2008136309A1 (en) * 2007-04-26 2008-11-13 Meiji Dairies Corporation Fermented whey preparation and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758904A (en) * 2020-06-05 2021-12-07 内蒙古蒙牛乳业(集团)股份有限公司 Method for detecting stability of dairy product
CN113758904B (en) * 2020-06-05 2023-11-10 内蒙古蒙牛乳业(集团)股份有限公司 Method for detecting stability of dairy product

Also Published As

Publication number Publication date
CN103487456B (en) 2016-04-06
TW201512658A (en) 2015-04-01
JP5923576B2 (en) 2016-05-24
CN103487456A (en) 2014-01-01
TWI498555B (en) 2015-09-01

Similar Documents

Publication Publication Date Title
Chandrapala et al. Properties of acid whey as a function of pH and temperature
CN108935918B (en) Production method of soybean protein for liquid beverage
Jun et al. Effects of crab shell extract as a coagulant on the textural and sensorial properties of tofu (soybean curd)
CN105432802A (en) Seafood flavoring bean curd and preparation method thereof
JP5923576B2 (en) Method for detecting protein thermal stability in dairy products
JP2015159765A (en) Modification method of soybean milk
CN102283307A (en) Method for Separating Protein from Food
CN104304490A (en) Preparation method of low-heat dried skim milk
CN101971999A (en) Method for desalting salted egg white
CN104187790A (en) Pea protein powder and application thereof to meat product and production method of pea protein powder
CN105360343A (en) Fruity bean curds and preparation method thereof
CN105341179A (en) Bean curd with duck blood and preparation method thereof
CN101731441A (en) Preparation method of soybean protein isolate free from beany flavor
CN103250862A (en) Sugar-free rice protein milk product and its production technology
CN107183200A (en) A kind of soya-bean milk, preparation method and method for preparing tender bean curd for being used to make tender bean curd
CN110403022B (en) Liquid infant milk suitable for 0-12 months old and preparation method thereof
CN107821635A (en) A kind of sterilizing preparation method of self-heating small dish
CN105010552A (en) Pigskin coconut milk soybean milk and preparation method thereof
CN106387062A (en) Production technology of Xinghua Duotian henry steudnera tuber beverage
KR101683990B1 (en) Soybean-curd comprising rice rinse water and preparating method thereof
Revathi et al. Sensory evaluation of whey based pineapple beverage.
RU2437559C1 (en) Functional protein product production method
CN105265594A (en) Vegetable bean curd and making method thereof
CN105076426A (en) Processing method for broken walnut grains in granulated walnut milk beverage
CN105010554A (en) Soybean milk with taste of roasted coffee and preparation method of soybean milk

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5923576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250