JP2015057033A - New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force - Google Patents

New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force Download PDF

Info

Publication number
JP2015057033A
JP2015057033A JP2013205274A JP2013205274A JP2015057033A JP 2015057033 A JP2015057033 A JP 2015057033A JP 2013205274 A JP2013205274 A JP 2013205274A JP 2013205274 A JP2013205274 A JP 2013205274A JP 2015057033 A JP2015057033 A JP 2015057033A
Authority
JP
Japan
Prior art keywords
electric field
electrostatic force
asymmetric
conductor
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013205274A
Other languages
Japanese (ja)
Inventor
酒井 捷夫
Toshio Sakai
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013205274A priority Critical patent/JP2015057033A/en
Publication of JP2015057033A publication Critical patent/JP2015057033A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a charge carrier electrostatic force of which changes significantly.SOLUTION: When attaching a cylinder 32 to a disc 30 perpendicular to an electric field via an insulation layer 33, the electrostatic force after electric field inversion acting on an asymmetric charged conductor is reduced to about 1/4 compared with that before inversion. Furthermore, when attaching the cylinder directly to a surface of the asymmetric conductor where the cylinder is not attached, without interposing the insulation layer, the electrostatic force after electric field inversion acting on the charged conductor is reduced to 1/50 compared with that before inversion.

Description

本発明は、新たに確認された、静電気力、すなわち、非対称静電気力を使用する静電気応用機器の非対称型導体の構造に関するものである。  The present invention relates to a newly confirmed structure of an asymmetric conductor of an electrostatic application device that uses an electrostatic force, that is, an asymmetric electrostatic force.

本出願人は先に、本出願人により新たに見い出された静電気力(非対称静電気力)を使用する新方式の静電気応用機器の出願(特許文献[1][2][3][4][5])を行った。
非対称静電力とは、非対称形状の帯電導体に作用する静電力の強さが、電界の方向が反転した時大きく変わる現象である。
また、静電気応用機器としては、代表的に、発電機、モータ、加速器があるが、ここでは、発電機に限定して説明する。しかし、本発明は、すべての静電気応用機器に適応できるものである。
非対称静電力を使う新方式の静電発電機と言っても、その基本原理は従来の静電発電機(例えば、バンデグラーフ型)と同じで、低電位(0V)で電荷(例えば、マイナス電荷を有する電子)を電荷搬送体に乗せ、それに作用する静電気力に逆らって、該電荷搬送体を高電位(例えば−1000V)まで搬送し、そこで搬送してきた電荷を下ろすだけである。両者の違いは、その搬送力にあり、従来型は、機械力を使用するのに対して、新方式では、非対称静電力を利用する。(以下、新方式静電発電機を電界駆動型静電発電機と呼ぶ。)
The present applicant has previously filed an application for a new-type electrostatic application device using the electrostatic force (asymmetric electrostatic force) newly found by the applicant (Patent Documents [1] [2] [3] [4] [ 5]).
The asymmetric electrostatic force is a phenomenon in which the strength of the electrostatic force acting on the asymmetrical charged conductor changes greatly when the direction of the electric field is reversed.
Moreover, representative examples of the static electricity application device include a generator, a motor, and an accelerator. Here, the description is limited to the generator. However, the present invention can be applied to all static electricity application devices.
The basic principle of a new type electrostatic generator that uses asymmetric electrostatic force is the same as that of a conventional electrostatic generator (for example, a van de Graaf type), and charges (for example, negative charges) at a low potential (0V). The electron having the electron) is placed on the charge transport body, and the charge transport body is transported to a high potential (for example, −1000 V) against the electrostatic force acting thereon, and the transported charge is simply lowered. The difference between the two is in the conveying force. The conventional type uses mechanical force, whereas the new method uses asymmetric electrostatic force. (Hereinafter, the new electrostatic generator will be referred to as an electric field driven electrostatic generator.)

以下、特許文献[4]の図17、図18により、非対称静電力の効果、電界駆動型静電発電機の原理とその構造を説明する。なお、特許文献[2],[3]にも同一の図と同様の説明が記載されている。
特許文献[1]特開2008−005690
特許特許[2]特開2009−232667
特許文献[3]特開2010−098925
特許文献[4]特開2012−039842
特許文献[5]特開2012−070607
Hereinafter, the effect of the asymmetric electrostatic force, the principle of the electric field drive type electrostatic generator and the structure thereof will be described with reference to FIGS. 17 and 18 of Patent Document [4]. Patent documents [2] and [3] also contain descriptions similar to those in the same figure.
Patent Document [1] JP 2008-005690 A
Patent [2] JP2009-232667A
Patent Document [3] JP 2010-098925
Patent Document [4] JP2012-039842A
Patent Document [5] JP2012-070607

図17において、記号11はエレクトレットを、記号12は電荷注入電極を、記号13は電荷搬送体を、記号14は電荷回収電極を、記号20は電極12,14及びエレクトレット11の絶縁性支持体を示している。エレクトレット11の幅は、100μmで、注入電極12の幅も100μmで、、回収電極14の幅は160μmである。注入電極12とエレクトレット11、及びエレクトレット11と回収電極14の間隔はそれぞれ320μmである。上下の支持体の間隔は200μmである。
エレクトレット11の電位は、+320Vで、注入電極12は接地されていて、回収電極14の電位は、例えば−35Vである。この結果、エレクトレット11と注入電極12の間には左向きの電界が形成される。その強度は約1.0E+6[V/m]である。以下、順電界と呼ぶ。一方、エレクトレット11と回収電界14の間には右向きの電界が形成される。その強度も約1.0E+6[V/m]である。以下、逆電界と呼ぶ。
In FIG. 17, symbol 11 is an electret, symbol 12 is a charge injection electrode, symbol 13 is a charge carrier, symbol 14 is a charge recovery electrode, symbol 20 is an insulating support for the electrodes 12, 14 and electret 11. Show. The electret 11 has a width of 100 μm, the injection electrode 12 has a width of 100 μm, and the recovery electrode 14 has a width of 160 μm. The intervals between the injection electrode 12 and the electret 11 and between the electret 11 and the collection electrode 14 are 320 μm. The distance between the upper and lower supports is 200 μm.
The potential of the electret 11 is + 320V, the injection electrode 12 is grounded, and the potential of the recovery electrode 14 is -35V, for example. As a result, a leftward electric field is formed between the electret 11 and the injection electrode 12. Its strength is about 1.0E + 6 [V / m]. Hereinafter, it is called a forward electric field. On the other hand, a rightward electric field is formed between the electret 11 and the recovery electric field 14. Its strength is also about 1.0E + 6 [V / m]. Hereinafter, it is called a reverse electric field.

電荷搬送体13は、図の様に左側が開い円筒型で、電界の方向に対して左右非対称形である。軽い導体、例えばアルミで形成されていて、図示しない支持体に支持されている。その幅は80μmで、直径は160μm、板厚は20μmである。そして、電気的にフロートである。該電荷搬送体13は、次に述べる非対称静電力で駆動されて、左から右に、注入電極対12、エレクトレット対11、回収電極対14を通り抜ける。  As shown in the figure, the charge carrier 13 has an open cylindrical shape on the left side and is asymmetrical with respect to the direction of the electric field. It is made of a light conductor, such as aluminum, and is supported by a support (not shown). The width is 80 μm, the diameter is 160 μm, and the plate thickness is 20 μm. And it is electrically floating. The charge carrier 13 is driven by an asymmetric electrostatic force described below, and passes from the left to the right through the injection electrode pair 12, the electret pair 11, and the recovery electrode pair 14.

電荷搬送体13が、注入電極対12を抜ける時、図示しない接地導線が接触して、静電誘導で、約−0.3pCの電荷が注入される。この結果は、軸対象2次元差分法でシミュレーションして求めた。該非対称形帯電導体(電荷搬送体13)が注入電極対12からエレクトレット対11を通り回収電極対14に至る間に、電界から受ける静電力を同様にシミュレーションで求めた。なお、回収電協の電位は0Vとした。その結果を図18に示す。  When the charge carrier 13 passes through the injection electrode pair 12, a ground conductor (not shown) comes into contact, and a charge of about −0.3 pC is injected by electrostatic induction. This result was obtained by simulating with a two-dimensional difference method based on the axis. The electrostatic force received from the electric field while the asymmetrical charged conductor (charge carrier 13) passed from the injection electrode pair 12 through the electret pair 11 to the recovery electrode pair 14 was similarly determined by simulation. The potential of the recovery electric cooperative was 0V. The result is shown in FIG.

図18より、該電荷搬送体13が受ける静電力の強さは、順電界(注入電極12とエレクトレット11間)では、最大で10.0E−8[N]と大きく、逆電界(エレクトレット11と回収電極14)では、最大で5.0E−8[N]と半分になることが分かる。このように、電界の方向が反転したとき、作用する静電力の強さが大きく変わる現象を、特に、非対称静電力(現象)と呼ぶ。この現象は、帯電した導体の形状が、電界の方向で非対称の場合にのみ見られる特異な現象である。  As shown in FIG. 18, the electrostatic force received by the charge carrier 13 is 10.0E-8 [N] at the maximum in the forward electric field (between the injection electrode 12 and the electret 11), and the reverse electric field (electret 11 and It can be seen that the recovery electrode 14) is halved to 5.0E-8 [N] at the maximum. A phenomenon in which the strength of the acting electrostatic force changes greatly when the direction of the electric field is reversed is called an asymmetric electrostatic force (phenomenon). This phenomenon is a unique phenomenon that can be seen only when the shape of the charged conductor is asymmetric in the direction of the electric field.

電界駆動型静電発電機では、この順電界と逆電界の静電力の差を、電荷搬送体13の駆動力として使用する。すなわち、順電界中で、強い静電力で、電荷搬送体13を加速運動させ、逆電界に入り減速運動になっても、弱い静電力なので、十分な速度を残して、回収電極14に到達させるのである。この速度は、電荷搬送体13が、注入電極を抜けた時の速度よりかなり速い。しかしながら、加速器ではないので、速度を速める必要はない。そこで、この速度差に基づく運動エネルギーの差を使って(分配して)、電荷搬送体13を搬送すると同時に、その帯電電荷を電気的により高い電位まで搬送する。これが、電界駆動型静電発電機の原理である。  In the electric field driven electrostatic generator, the difference in electrostatic force between the forward electric field and the reverse electric field is used as the driving force for the charge carrier 13. That is, the charge carrier 13 is accelerated by a strong electrostatic force in a forward electric field, and even when entering the reverse electric field and decelerating, the electrostatic force is weak. It is. This speed is much faster than the speed at which the charge carrier 13 exits the injection electrode. However, since it is not an accelerator, there is no need to increase the speed. Therefore, by using (distributing) the difference in kinetic energy based on the speed difference, the charge carrier 13 is conveyed, and at the same time, the charged charge is electrically conveyed to a higher potential. This is the principle of the electric field drive type electrostatic generator.

なお、電荷搬送体13によって、接地電位V2の注入電極2より、高電位V4の回収電極14に搬送された電荷Qの大部分(例えば、その97%)は、電荷搬送体13が、回収電極14と電気的に接続されることで、回収電極に移行する。すなわち、回収される。この時の発電量Wは、
W=0.97Qx(V4−V2) (1)
となる。
搬送した電荷の大部分を、回収電極14に放出した電荷搬送体13は、回収電極14を抜けてさらに右方向に移動し、次の注入電極12に入る。そして、同様に非対称静電力により電界駆動型発電を行う。
Note that most (for example, 97%) of the charge Q transferred from the injection electrode 2 having the ground potential V2 to the recovery electrode 14 having the high potential V4 by the charge transport body 13 is transferred to the recovery electrode by the charge transport body 13. 14 is electrically connected to the recovery electrode. That is, it is collected. The power generation amount W at this time is
W = 0.97Qx (V4-V2) (1)
It becomes.
The charge transport body 13 that has released most of the transported charge to the recovery electrode 14 passes through the recovery electrode 14, moves further to the right, and enters the next injection electrode 12. Similarly, electric field drive type power generation is performed by asymmetric electrostatic force.

比較例Comparative example

下記に示す実施例と直接比較するため、上記形状(円筒型)を少し変えて、またサイズを大きくして、非対称型帯電導体に働く静電力を、軸対象二次元差分法で、新たにシミュレーションした。形状を変えたのは、上記特許文献出願後、変更後の形状の方がコストを下げて同一の効果が得られることが分かったからである。また、サイズを大きくしたのは、実際に作製し、そこに働く静電力を実測するためである。  For direct comparison with the examples shown below, the shape (cylindrical type) is slightly changed and the size is increased, and the electrostatic force acting on the asymmetrical charged conductor is newly simulated by the axial two-dimensional difference method. did. The reason for changing the shape is that, after filing the above-mentioned patent document, it was found that the changed shape can lower the cost and obtain the same effect. The reason why the size is increased is that the electrostatic force actually produced and actually measured is actually measured.

図1に、実際に作製して実験に使用した、また新たなシミュレーションの対称とした非対称型導体の正面図と側面図を示す。直径35mm、厚さ0.2mmのアルミ円板上に、直径18mm、高さ10mm、厚さ0.4mmの円筒を導電剤で貼り付けた。
図2に、実験とシミュレーションで使用した、左右電極とその間に、軸を揃えて置かれた円筒円板型非対称導体を模式的に示す。左右の電極間間隔は、95.6mmで、左右の電極半径は、53.7mmである。電圧は、片方の電極を接地して、他方の電極に、+13kV,+11kV,+9kV,+7kV,+5kVを加えた。なお、図中、記号1は、左側電極を、記号2は右側電極を、記号3は非対称導体を、記号30はそれを構成する円板を、記号31はそれを構成する円筒を、記号4は高圧電源を示している。
図3に、軸対象二次元差分法のシミュレーションで使用した格子図(主要部)を示す。
図4に、シミュレーションの結果を示す。非対称形型導体の帯電量は、実測値に基づいて、−5.0nCとした。結果は、電界により異なるが、左電極1に高圧を印加した逆電界(電界反転後)の静電力は、右電極2に高圧を印加した順電界(電界反転前)の約半分であることが分かる。なお、実測の結果は、これより少し悪かった。シミュレーション及び実験の詳細は、現在、静電気の専門誌、Journal of Electrostaticsに投稿中なので、掲載後そちらをご参照下さい。
FIG. 1 shows a front view and a side view of an asymmetric conductor that is actually manufactured and used in an experiment, and that is a new simulation symmetrical. A cylinder having a diameter of 18 mm, a height of 10 mm, and a thickness of 0.4 mm was pasted with a conductive agent on an aluminum disc having a diameter of 35 mm and a thickness of 0.2 mm.
FIG. 2 schematically shows the left and right electrodes used in the experiments and simulations and the cylindrical disk type asymmetric conductor placed between the left and right electrodes. The distance between the left and right electrodes is 95.6 mm, and the left and right electrode radii are 53.7 mm. As for the voltage, one electrode was grounded, and +13 kV, +11 kV, +9 kV, +7 kV, +5 kV was applied to the other electrode. In the figure, symbol 1 is the left electrode, symbol 2 is the right electrode, symbol 3 is the asymmetric conductor, symbol 30 is the disk constituting it, symbol 31 is the cylinder constituting it, symbol 4 Indicates a high-voltage power supply.
FIG. 3 shows a lattice diagram (main part) used in the simulation of the axis target two-dimensional difference method.
FIG. 4 shows the result of the simulation. The charge amount of the asymmetric type conductor was set to −5.0 nC based on the actually measured value. Although the result varies depending on the electric field, the electrostatic force of the reverse electric field (after electric field reversal) in which a high voltage is applied to the left electrode 1 is about half of the forward electric field (before electric field reversal) in which a high voltage is applied to the right electrode 2. I understand. In addition, the result of actual measurement was a little worse than this. The details of the simulation and experiment are currently being posted to Journal of Electrostatics, a journal specializing in static electricity, so please refer to it after posting.

電界反転後、すなわち、逆電界で、帯電した非対称型(円筒円板型)導体3に作用する静電気力が小さくなるのは、その表面の電界が弱くなったためと考えられる。そこで、円筒31の有無で、円板30表面の電界を比較した。その結果を図5に示す。但し、円筒31で覆われた部分は、円板30表面に代えて、円筒31先端の電界を表示した。図5より、円筒31があると、円筒31及び円板30のエッジ部を除く大部分で、電界が、約1/10程度に大幅に弱くなっているのが分かる。しかしながら、円筒31の先端部分では、逆に、約5倍と強くなり、エッジ部では、ほとんど同じであるため、その差し引きで、作用する静電力が約半分になった訳である。  The reason why the electrostatic force acting on the charged asymmetric type (cylindrical disk type) conductor 3 after the electric field reversal, that is, by the reverse electric field is considered to be that the electric field on the surface is weakened. Therefore, the electric fields on the surface of the disk 30 were compared with and without the cylinder 31. The result is shown in FIG. However, the portion covered with the cylinder 31 displayed the electric field at the tip of the cylinder 31 instead of the surface of the disk 30. From FIG. 5, it can be seen that when the cylinder 31 is present, the electric field is greatly weakened to about 1/10 in most of the cylinder 31 and the disc 30 except for the edge portion. However, on the contrary, the tip portion of the cylinder 31 is about 5 times stronger and the edge portion is almost the same, so that the subtracted electrostatic force is reduced to about half.

円板30上の大部分の領域で電界が約1/10にも弱くなったのは、図6に摸式的に示す様に、円筒31がなければ、左電極1(正電圧印加)から円板30の表面に、垂直に入った(円板30エッジ部を除く)電気力線(電界)が、円筒31があると、途中で曲がって、円筒31の先端と、円筒31の壁の上部に入り、円板30表面にはほとんど到達しなかったからである。見方を変えれば、円筒31は、円板30に対する電気的なシールド部材である。しかしながら、現象をより明確にするために、以降、これを電界集中部材と呼ぶ。電界集中部材の形状としては、円筒に限らず、平板や棒等、先端の面積が小さく、ある程度の長さを有する形状はすべて使える。また、それを、複数個使用もできる。但し、その先端への電界集中を考慮すると、複数個の方が有利とは限らない。  As shown schematically in FIG. 6, the electric field is weakened by about 1/10 in most regions on the disc 30, as shown schematically in FIG. 6, from the left electrode 1 (positive voltage application) without the cylinder 31. If the electric field lines (electric field) vertically entering the surface of the disk 30 (excluding the edge part of the disk 30) are in the cylinder 31, they are bent in the middle, and the tip of the cylinder 31 and the wall of the cylinder 31 This is because it entered the upper part and hardly reached the surface of the disk 30. In other words, the cylinder 31 is an electrical shield member for the disk 30. However, in order to clarify the phenomenon, it is hereinafter referred to as an electric field concentration member. The shape of the electric field concentrating member is not limited to a cylinder, and all shapes having a certain length such as a flat plate or a bar with a small tip area can be used. A plurality of them can be used. However, considering the concentration of the electric field at the tip, a plurality is not always advantageous.

ここで、電界反転による静電気力の変化を定量的に示す指標として、非対称率ASRを次の様に定義する。
ここで、Fbは電界反転前の静電力の絶対値、Faは電界反転後の静電力の絶対値を示す。
この式により、電界反転後、静電力の大きさが変わらなければ、非対称率ASRは、0%に、反転後、静電力がゼロになれば、非対称率ASRは、100%になる。図7に、比較例の非対称率ASRを示す。電界により異なるが、35〜55%である。
Here, the asymmetry ASR is defined as follows as an index that quantitatively shows the change in electrostatic force due to the electric field reversal.
Here, Fb represents the absolute value of the electrostatic force before the electric field inversion, and Fa represents the absolute value of the electrostatic force after the electric field inversion.
According to this equation, if the magnitude of the electrostatic force does not change after the electric field inversion, the asymmetry ASR becomes 0%. If the electrostatic force becomes zero after the inversion, the asymmetry ASR becomes 100%. FIG. 7 shows the asymmetry ASR of the comparative example. Although it varies depending on the electric field, it is 35 to 55%.

従来、さまざまな非対称型の導体を使用し、シミュレーションと実験を行なったが、非対称率ASRは、良くて、軸対象二次元差分法シミュレーションで、60%、実験で40%程度であった。
なお、出願人の作成した、特許・文献中には、シミュレーションの結果として、もっと良い数字も記載されているが、これらは、XY二次元差分法の結果で、実際の三次元空間の形状には適応できないことが今は判明している。但し、軸対象二次元差分法は、数学的には、二次元であるが、物理的には三次元を扱っているので、その結果は信用できる。
Conventionally, various asymmetrical conductors were used and simulations and experiments were performed. The asymmetry ratio ASR was good, about 60% in the axial two-dimensional difference method simulation and about 40% in the experiment.
In patents and documents created by the applicant, better numbers are also listed as simulation results, but these are the results of the XY two-dimensional difference method, and the actual shape of the three-dimensional space. Is now known to be unable to adapt. However, the two-dimensional difference method for the axis object is mathematically two-dimensional, but physically handles three dimensions, so the result is reliable.

同一電界の場合、静電発電機の発電量は、電界反転前後の、静電力の差、すなわち、非対称率ASRに、密接に関係している。そのため、発電効率を上げるためには、非対称率ASRの改善が必須である。そこで、本発明の目的は、非対称型導体の形状を改良して、非対称率ASRを改善することである。  In the case of the same electric field, the power generation amount of the electrostatic generator is closely related to the difference in electrostatic force before and after the electric field inversion, that is, the asymmetry ASR. Therefore, in order to increase the power generation efficiency, improvement of the asymmetry rate ASR is essential. Accordingly, an object of the present invention is to improve the asymmetry ratio ASR by improving the shape of the asymmetric conductor.

上記目的は、電界に垂直に置かれる導電性平板に対して、絶縁層を介して、円筒を垂直に取り付けた新型非対称型導体で、容易に達成される。  The above object is easily achieved by a new asymmetrical conductor in which a cylinder is vertically attached to an electrically conductive flat plate placed perpendicular to an electric field via an insulating layer.

下記に示す実施例1の非対称率ASRと、比較例の非対称率ASRを並べて示す図10より、本発明の新型非対称導体の効果は、明らかである。  The effect of the new asymmetric conductor of the present invention is clear from FIG. 10 in which the asymmetry ASR of Example 1 shown below and the asymmetry ASR of the comparative example are shown side by side.

図8に示すように、直径35mm、厚さ0.2mmの導電性円板30(部分Aとする)上に、直径18mm、高さ9.9mm、厚さ0.4mmの導電性円筒32(部分Bとする)を、厚さ0.1mmの絶縁層33を介して貼り付けて非対称型導体3、円板+円筒型(直接貼り付けた比較例の円筒円板型と区別するためこのように記載する)を作製した。該円板+円筒型非対称導体3に働く静電力を、比較例と同様に、軸対象二次元差分法でシミュレーションした。なお、帯電量は、部分Aが、−5.0nC、部分Bが、0.0nCとした。  As shown in FIG. 8, a conductive cylinder 32 (diameter 18 mm, height 9.9 mm, thickness 0.4 mm) on a conductive disk 30 (part A) having a diameter of 35 mm and a thickness of 0.2 mm. In order to distinguish the portion B) from the asymmetrical conductor 3, disc + cylindrical type (directly affixed cylindrical disc type) by pasting through an insulating layer 33 having a thickness of 0.1 mm. Described in the above). The electrostatic force acting on the circular plate + cylindrical asymmetric conductor 3 was simulated by the axial object two-dimensional difference method as in the comparative example. The charge amount was set to -5.0 nC for part A and 0.0 nC for part B.

シミュレーションで求められた各電界に対する順静電力および逆静電力を、比較例と並べて、図9に示す。また、その値から計算した、非対称率ASRを図10に、比較例と並べて示す。なお、比較例の場合は、図2の配置において、すなわち、円筒円板型導体3の円筒31を円板30の左側して、該負帯電非対称導体3に対し、左電極1を接地し、右電極2に高電圧を印加した場合を順電界、そのとき働く静電力を順静電力としたが、実施例1では、図10に示すように、この電圧印加状態で、逆に、円筒32が円板30の右側になる配置を、順電界、順静電力とした。なぜならば、この方が、作用する静電力が大きかったからである。  The forward electrostatic force and the reverse electrostatic force for each electric field obtained by the simulation are shown in FIG. 9 along with the comparative example. Also, the asymmetry ASR calculated from the value is shown side by side with the comparative example in FIG. In the case of the comparative example, in the arrangement of FIG. 2, that is, the cylinder 31 of the cylindrical disk-shaped conductor 3 is on the left side of the disk 30, and the left electrode 1 is grounded to the negatively charged asymmetric conductor 3. The case where a high voltage is applied to the right electrode 2 is a forward electric field, and the electrostatic force acting at that time is a forward electrostatic force. However, in the first embodiment, as shown in FIG. Is the forward electric field and the forward electrostatic force. This is because the electrostatic force acting in this direction was larger.

図10から、同一電界に対して、実施例1では、比較例と比較して、より高い非対称率ASRが得られたことが分かる。  From FIG. 10, it can be seen that the higher asymmetry ratio ASR was obtained in Example 1 than in the comparative example for the same electric field.

比較例と実施例1の非対称型導体の違いは、円筒31 or 32を円板30に直接貼り付けたか、厚さ0.1mmの絶縁層33を介して貼り付けたか、それだけである。その結果が、このように、まったく逆の結果になったのは大変不思議である。そこで、先ほどと同様に、該円筒の有無で、円板表面の電界を比較してみる。その結果を、図11に示す。  The only difference between the comparative example and the asymmetrical conductor of Example 1 is whether the cylinder 31 or 32 is directly attached to the disk 30 or is attached via an insulating layer 33 having a thickness of 0.1 mm. It is very strange that the result was completely the opposite result. Therefore, as in the previous case, the electric field on the disk surface is compared with or without the cylinder. The result is shown in FIG.

図11より、この場合でも、比較例と同様に、円板30表面の大部分では、円筒32があることにより電界は弱まることが分かる。また、エッジ部では、比較例と同様にほとんど同じであることが分かる。また、円筒32の、先端部に、比較例と同じ強い電界ができていることも分かる。
実施例1と、比較例の、大きな違いは、円筒32下部周辺の円板30表面の電界にある。比較例では、この領域は、完全にシールドされて、その電界は実質ゼロであったが、実施例1の場合はここに強い電界ができている。
From FIG. 11, it can be seen that even in this case, the electric field is weakened by the presence of the cylinder 32 in the majority of the surface of the disk 30 as in the comparative example. It can also be seen that the edge portion is almost the same as in the comparative example. It can also be seen that the same strong electric field as in the comparative example is formed at the tip of the cylinder 32.
The major difference between Example 1 and the comparative example is the electric field on the surface of the disk 30 around the lower part of the cylinder 32. In the comparative example, this region was completely shielded and the electric field was substantially zero, but in the case of Example 1, a strong electric field is formed here.

この理由は、次のように考えられる。すなわち、図12に示すように、円筒32がなければ、円板30表面に、右電極2(正電圧印加)から垂直に下りた電気力線が、途中で曲がって、円筒32先端部と円筒32の壁の上部に入る。ここまでは、比較例と同じである。その結果、電気力線の終点には、負電荷が集まる。比較例では、円板30部分から帯電された負電荷(電子)が移動してきたのだが、実施例1では、円板30と円筒32は絶縁層33で分離されているので、円板30からの電子の移動はなく、円筒32の静電分極で電子が発生する。このとき、円筒32の下部には、電子と等量の正孔が発生する。その結果、該正孔と、円板30の電子の間に強い電界が生じる。
これが、この不思議な現象の生じた理由である。
The reason is considered as follows. That is, as shown in FIG. 12, if the cylinder 32 is not provided, the electric lines of force descending perpendicularly from the right electrode 2 (positive voltage application) on the surface of the disk 30 bend in the middle, and the tip of the cylinder 32 and the cylinder Enter the top of 32 walls. So far, it is the same as the comparative example. As a result, negative charges are collected at the end point of the electric lines of force. In the comparative example, the negative charge (electrons) charged from the disk 30 portion has moved. However, in the first embodiment, the disk 30 and the cylinder 32 are separated by the insulating layer 33. There is no movement of electrons, and electrons are generated by electrostatic polarization of the cylinder 32. At this time, holes equivalent to electrons are generated in the lower portion of the cylinder 32. As a result, a strong electric field is generated between the holes and the electrons of the disk 30.
This is the reason why this strange phenomenon has occurred.

しかしながら、よく考えて見ると、別に不思議な現象ではない。よくある高校物理の問題に、電極間に、電気的に、フロートの状態で、電極と同面積の導電性板を挿入したら、電界はどうなるか、という問題がある。その答えは、電界は強くなるであり、板厚が分かっていれば、その電界も簡単に計算できる。実施例1の、円筒32下部周囲の円板30表面の電界は、基本的には。これと同じ現象で、強くなっている。但し、高校物理の問題の様に数値計算はできない。  However, if you look carefully, it is not a strange phenomenon. A common high school physics problem is what happens to the electric field if a conductive plate of the same area as the electrodes is inserted between the electrodes in an electrically floating state. The answer is that the electric field is strong, and if the plate thickness is known, the electric field can be calculated easily. The electric field on the surface of the disk 30 around the lower portion of the cylinder 32 in Example 1 is basically. This same phenomenon is getting stronger. However, numerical calculations are not possible as in high school physics.

比較例では、円板30裏面に直接円筒31を貼り付けて、円板30裏面の電界を弱めることで、非対称静電力を生じさせた。一方、実施例1では、円板30表面に絶縁層33を介して円筒32を貼り付け、円板30表面の電界を強めることで、非対称静電力を生じさせた。
それでは、円板30裏面に直接円筒31を貼り付け、円板30表面に絶縁層33を介して円筒32を貼り付けたらどうなるであろうか。両方の効果が足し合わされて、より大きな非対称静電力が生じると期待される。
In the comparative example, the asymmetric electrostatic force was generated by attaching the cylinder 31 directly to the back surface of the disk 30 and weakening the electric field on the back surface of the disk 30. On the other hand, in Example 1, the asymmetric electrostatic force was generated by sticking the cylinder 32 to the surface of the disk 30 via the insulating layer 33 and strengthening the electric field on the surface of the disk 30.
What happens if the cylinder 31 is directly attached to the back surface of the disk 30 and the cylinder 32 is attached to the surface of the disk 30 via the insulating layer 33? Both effects are expected to add to produce a larger asymmetric electrostatic force.

そこで、実施例1の、非対称型(円板+円筒型)導体の裏面に、比較例1と同じ円筒31を直接貼り付けて、円筒円板+円筒型非対称導体を作製した。該導体に働く、順逆静電力を上記と同様に、軸対象二次元差分法でシミュレーションした。図13、14にその結果を、比較例、実施例1と並べて示す。また、その値から、計算で求めた、非対称率ASRを、比較例、実施例1と並べて、図15に示す。
図15より、実施例2では、実施例1よりも、非対称率ASRは、さらに改善されたことが分かる。但し、図15では、非対称率の比較では、その程度が、比較例と実施例1を足し合わせたものに等しいか否かは明らかでない。そこで、その点を直接比較するために、順静電力と逆静電力の絶対値の差、順逆静電力差を計算し、その結果を図16に示した。図16より、実施例2の、順逆静電力差は、実施例1の順逆静電力差と、比較例の順逆静電力差を足し合わせたものにほぼ等しいことが分かる。
Therefore, the same cylinder 31 as in Comparative Example 1 was directly attached to the back surface of the asymmetric type (disk + cylindrical) conductor of Example 1 to produce a cylindrical disk + cylindrical asymmetric conductor. The forward / reverse electrostatic force acting on the conductor was simulated by the axial object two-dimensional difference method as described above. The results are shown side by side with Comparative Example and Example 1 in FIGS. Further, the asymmetry ASR calculated from the value is shown in FIG. 15 together with the comparative example and the example 1.
15 that the asymmetry rate ASR is further improved in the second embodiment than in the first embodiment. However, in FIG. 15, it is not clear whether the degree of asymmetry comparison is equal to the sum of the comparative example and Example 1. Therefore, in order to directly compare this point, the difference between the absolute values of the forward and reverse electrostatic forces and the forward and reverse electrostatic force difference were calculated, and the results are shown in FIG. From FIG. 16, it can be seen that the forward / reverse electrostatic force difference in Example 2 is substantially equal to the sum of the forward / reverse electrostatic force difference in Example 1 and the forward / reverse electrostatic force difference in Comparative Example.

非対称型導体(電荷搬送体)の正面図及び側面図。The front view and side view of an asymmetrical conductor (charge carrier). シミュレーション及び実験に使用した左右電極と非対称型導体の配置略図。Schematic layout of left and right electrodes and asymmetrical conductors used for simulation and experiment. シミュレーションに使用した非対称型導体主要部の格子図。The lattice diagram of the main part of the asymmetrical conductor used for the simulation. 比較例の非対称型導体(円筒円板型)に作用する静電気力を示すグラフ。The graph which shows the electrostatic force which acts on the asymmetrical conductor (cylindrical disc type) of a comparative example. 比較例の非対称型導体(円筒円板型)の円板表面の電界を示すグラフ。The graph which shows the electric field of the disc surface of the asymmetrical conductor (cylindrical disc type) of a comparative example. 比較例の非対称型導体(円筒円板型)に、逆電界中で入る電気力線の分布図。FIG. 6 is a distribution diagram of electric lines of force that enter an asymmetric conductor (cylindrical disk type) of a comparative example in a reverse electric field. 比較例の非対称型導体(円筒円板型)の電界に対する非対称率を示すグラフ。The graph which shows the asymmetry rate with respect to the electric field of the asymmetric type conductor (cylindrical disc type) of a comparative example. 順電界における実施例1の非対称型導体(円板+円筒型)の配置図。FIG. 3 is a layout diagram of an asymmetric conductor (disk + cylindrical type) of Example 1 in a forward electric field. 比較例の非対称型導体(円筒円板型)と実施例1の非対称型導体(円板+円筒型)に作用する静電気力を示すグラフ。The graph which shows the electrostatic force which acts on the asymmetrical conductor (cylindrical disk type) of a comparative example, and the asymmetrical conductor (disk + cylindrical type) of Example 1. FIG. 比較例の非対称型導体(円筒円板型)と実施例1の非対称型導体(円板+円筒型)の電界に対する非対称率を示すグラフ。The graph which shows the asymmetry rate with respect to the electric field of the asymmetrical conductor (cylindrical disk type) of a comparative example, and the asymmetrical conductor (disk + cylindrical type) of Example 1. FIG. 実施例1の非対称型導体(円板+円筒型)の円板表面の電界を示すグラフ。The graph which shows the electric field of the disk surface of the asymmetrical conductor (disk + cylinder type) of Example 1. FIG. 実施例1の非対称型導体(円板+円筒型)に、順電界中で入出する電気力線の分布図。FIG. 6 is a distribution diagram of electric lines of force entering and exiting the asymmetric conductor (disk + cylindrical type) of Example 1 in a forward electric field. 比較例の非対称型導体(円筒円板型)と実施例2の非対称型導体(円筒円板+円筒型)に作用する静電気力を示すグラフ。The graph which shows the electrostatic force which acts on the asymmetric type conductor (cylindrical disc type) of a comparative example, and the asymmetric type conductor (cylindrical disc + cylindrical type) of Example 2. FIG. 実施例1の非対称型導体(円板+円筒型)と実施例2の非対称型導体(円筒円板+円筒型)に作用する静電気力を示すグラフ。The graph which shows the electrostatic force which acts on the asymmetrical conductor (disk + cylinder type) of Example 1, and the asymmetrical conductor (cylindrical disk + cylinder type) of Example 2. 比較例、実施例1、実施例2の非対称型導体の電界に対する非対称率を示すグラフ。The graph which shows the asymmetry rate with respect to the electric field of the asymmetric type conductor of a comparative example, Example 1, and Example 2. FIG. 比較例、実施例1、実施例2の、順、逆電界の静電力の絶対値の差と、比較例と実施例1のその値を合計した値を示すグラフ。The graph which shows the value which totaled the difference of the absolute value of the electrostatic force of a forward and reverse electric field of a comparative example, Example 1, and Example 2, and the value of a comparative example and Example 1. FIG. 特許文献[4]に記載された静電発電機の正面図。The front view of the electrostatic generator described in patent document [4]. 特許文献[4]に記載された静電発電機の電荷搬送体に働く静電力を示すグラフ。The graph which shows the electrostatic force which acts on the electric charge carrier of the electrostatic generator described in patent document [4].

1: 非対称型導体(電荷搬送体)に電界を加えるための左側電極
2: 非対称型導体(電荷搬送体)に電界を加えるための右側電極
3: 非対称型導体(電荷搬送体)
30: 非対称型導体(電荷搬送体)を構成する円板
31: 比較例及び実施例2の非対称型導体(電荷搬送体)を構成する円筒(裏側)
32: 実施例1及び実施例2の非対称型導体(電荷搬送体)を構成する円筒(表側)
33: 実施例1及び実施例2で円筒(表側)を円板に固定する絶縁層
4: 高圧電源
11: エレクトレット(電界形成電極)
12: 電荷注入電極(接地電極)
13: 電荷搬送体
14: 電荷回収電極
20: 電極12,14及びエレクトレット11の絶縁性支持体。
1: Left electrode 2 for applying an electric field to an asymmetric conductor (charge carrier) 2: Right electrode 3 for applying an electric field to an asymmetric conductor (charge carrier) 3: Asymmetric conductor (charge carrier)
30: Disc constituting the asymmetric conductor (charge carrier) 31: Cylinder (back side) constituting the asymmetric conductor (charge carrier) of the comparative example and Example 2
32: Cylinder (front side) constituting the asymmetric conductor (charge carrier) of Example 1 and Example 2
33: Insulating layer 4 for fixing the cylinder (front side) to the disk in Example 1 and Example 2: High voltage power supply 11: Electret (electric field forming electrode)
12: Charge injection electrode (ground electrode)
13: Charge carrier 14: Charge recovery electrode 20: Insulating support for electrodes 12, 14 and electret 11.

Claims (3)

非対称形状の帯電導体に作用する静電力の大きさ(絶対値)が、電界の向きで大きく変わる現象、すなわち、非対称静電力を使用する、各種、静電気応用機器に使用される、非対称型導体が、電界と垂直に置かれる平板と、この上に、絶縁層を介して垂直に取り付けられる平板、円筒、棒等の電界集中部材で構成されることを特徴とする非対称静電力を使用する静電気応用機器の非対称型導体。  A phenomenon in which the magnitude (absolute value) of electrostatic force acting on an asymmetrically charged conductor varies greatly depending on the direction of the electric field, that is, an asymmetric type conductor that uses asymmetrical electrostatic force and is used in various electrostatic application equipment. Static electricity application using asymmetrical electrostatic force, characterized by comprising a flat plate placed perpendicular to the electric field, and a flat plate, cylinder, rod, etc., which are mounted vertically via an insulating layer on the flat plate Asymmetric conductor of equipment. 請求項1において、該非対称型導体の裏面に、絶縁層を介さず、直接、平板、円筒、棒等の電界集中部材を垂直に取り付けること。  2. The electric field concentrating member such as a flat plate, a cylinder, or a bar is directly attached to the back surface of the asymmetric conductor directly without interposing an insulating layer. 請求項1、2において、電界集中部材を複数使用すること。  The use of a plurality of electric field concentration members according to claim 1 or 2.
JP2013205274A 2013-09-10 2013-09-10 New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force Pending JP2015057033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205274A JP2015057033A (en) 2013-09-10 2013-09-10 New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205274A JP2015057033A (en) 2013-09-10 2013-09-10 New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force

Publications (1)

Publication Number Publication Date
JP2015057033A true JP2015057033A (en) 2015-03-23

Family

ID=52821009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205274A Pending JP2015057033A (en) 2013-09-10 2013-09-10 New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force

Country Status (1)

Country Link
JP (1) JP2015057033A (en)

Similar Documents

Publication Publication Date Title
Mori et al. Dominant factors inducing electro-conjugate fluid flow
US11496068B2 (en) Energy harvesting apparatus using triboelectrification
JP6210159B2 (en) Particle charging device
US20160218644A1 (en) Interacting Complex Electric Fields and Static Electric Fields To Effect Motion
Li et al. Transformer oil breakdown dynamics stressed by fast impulse voltages: Experimental and modeling investigation
CN103954789B (en) Ion velocity distribution transient measurement device and method
Einat et al. High efficiency Lifter based on the Biefeld-Brown effect
JP2015057033A (en) New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force
US10084395B2 (en) Complex electric fields and static electric fields to effect motion with conduction currents
US20090243429A1 (en) Operation apparatus
US10855210B2 (en) Complex electric fields and static electric fields to effect motion with conduction currents and magnetic materials
Moronis et al. A model for determining the unipolar ionic saturation current in parallel wire-cylinder electrodes during corona discharge
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier
Ishiyama et al. Electronic structures of carbon nanotubes with monovacancy under an electric field
Primas et al. Force on high voltage capacitor with asymmetrical electrodes
Zhang et al. Influence of shape effect on dynamic surface charge transport mechanism of cellular electret after corona discharge
JP2006325394A (en) Static electricity applied equipment using image force
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
KR101908115B1 (en) Electromagnetic pump
Kiousis et al. Finite element analysis method for detection of the corona discharge inception voltage in a wire-cylinder arrangement
JP2012070607A (en) Shape of moving piece of electric field vertical movement type electrostatic motor and method of manufacturing same
Veske et al. Atomistic modeling of metal surfaces under high electric fields: Direct coupling of electric fields to the atomistic simulations
US20190006928A1 (en) Distributed electromagnetic apparatus
JP2016082856A (en) Electrode of electrostatic application apparatus using asymmetrical electrostatic power, and structure of potential generation source