JP2015048436A - 植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法 - Google Patents

植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法 Download PDF

Info

Publication number
JP2015048436A
JP2015048436A JP2013182203A JP2013182203A JP2015048436A JP 2015048436 A JP2015048436 A JP 2015048436A JP 2013182203 A JP2013182203 A JP 2013182203A JP 2013182203 A JP2013182203 A JP 2013182203A JP 2015048436 A JP2015048436 A JP 2015048436A
Authority
JP
Japan
Prior art keywords
radiation
chitin
chitinous
plant
nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013182203A
Other languages
English (en)
Inventor
久 木元
Hisashi Kimoto
久 木元
久晴 加藤
Hisaharu Kato
久晴 加藤
孝太 小倉
Kota Ogura
孝太 小倉
裕輝 森本
Hiroki Morimoto
裕輝 森本
兼司 近藤
Kenji Kondo
兼司 近藤
岳治 尾塩
Gakuji Oshio
岳治 尾塩
岳 杉野
Takeshi Sugino
岳 杉野
長澤 尚胤
Naotsugu Nagasawa
尚胤 長澤
玉田 正男
Masao Tamada
正男 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Fukui Prefectural University
Sugino Machine Ltd
Original Assignee
Japan Atomic Energy Agency
Fukui Prefectural University
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Fukui Prefectural University, Sugino Machine Ltd filed Critical Japan Atomic Energy Agency
Priority to JP2013182203A priority Critical patent/JP2015048436A/ja
Publication of JP2015048436A publication Critical patent/JP2015048436A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】植物の耐病性を向上させる生物由来キチン質含有物、並びに簡便、低コスト、及び環境負荷の低い、該キチン質含有物の製造方法の提供。【解決手段】キチン質含有生物由来材料をナノファイバー化し、その後放射線処理を行うことで、低分子化したキチン質を得る。当該方法では塩酸やアルカリなどによるキチン質の処理は行われないため、製造工程がシンプルで環境負荷も低い。このようにして製造されたキチン質含有放射線処理物は高いエリシター活性を有する。【選択図】図2

Description

本発明は、キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物の放射線処理物、該放射線処理物を使用した植物の耐病性を高める方法、及び該放射線処理物の製造方法等に関する。
N−アセチルグルコサミンを構成単位とする天然高分子多糖であるキチンは、主としてカニ・エビなどの甲殻類や昆虫の外皮、菌類の細胞壁に多く含まれている。一方、グルコサミンを構成単位とするキトサンは、接合菌類の細胞壁等に含有されている。特に、キチンは地球上での年間生産量がセルロースに次ぐ生物資源(バイオマス)であり、種々の生理活性を有することから注目されている。しかしながら、キチンは強固な結晶構造を有し不溶性であることから有効利用が難しく、そのほとんどが濃アルカリ中で脱アセチル化し、より加工しやすいキトサンに変換した後、利用されている。
キチンを豊富に含むカニ殻は古くから農業に利用されており、肥料効果、病害発病抑制、土壌改良、連作障害防止、及び植物生長促進などの効果が知られている。植物病原微生物の約8割は真菌類であり、その細胞壁の構成成分にはキチン及びキトサンが多く含まれ、植物はこれらの成分を感知し植物体内における抗菌性化合物の生産を誘導すると考えられている(非特許文献1)。即ち、キチンを豊富に含むカニ殻を農業資材として使用した場合、土壌微生物によりカニ殻の主成分であるキチンが低分子化されて可溶性のオリゴ糖となり、このキチンオリゴ糖が病原微生物の細胞壁と同様の効果を発揮し、植物体内で抗菌性化合物の生産を促進し、病害発病抑制効果が生じると考えられている。
微生物の攻撃によって、植物体内で生産される抗菌性化合物を総称してファイトアレキシンと呼び、植物種ごとに生産される抗菌性化合物は異なる。代表的なファイトアレキシンとして、フラボノイド、テルペノイド、脂肪酸誘導体などが挙げられる。植物に作用して、ファイトアレキシンの誘導等の病原菌に対する一連の抵抗反応を誘導する物質をエリシターといい、キチンやその脱アセチル化物であるキトサンもエリシターの一つである。
木元久ら、キチン・キトサン研究、Vol. 17、No.3、296-304、2011
上述のように、カニ殻は植物の耐病性を高める非常に有用な農業資材となり得るが、その使用に際して少なくとも10アール当たり数百キログラムもの量を必要とし、また植物に対する効果も安定しないという課題が指摘されている(非特許文献1)。これは、カニ殻に含まれるキチンは通常、9〜32%(w/w、乾燥重量ベース)程度であり、炭酸カルシウム含有量も高いことから、土壌中でのキチンの分解が遅いためと考えられている。従って、植物の耐病性を高めるには、予め低分子化したキチン・キトサンを用いるのが効果的である。
甲殻類の殻の主成分であるキチンを低分子化するために用いられる一般的な方法としては、濃塩酸若しくは酵素による加水分解法、又は放射線による低分子化が挙げられる。しかし、濃塩酸を用いる方法は、製造工程が煩雑で強酸を用いることによる環境負荷も高く、さらに製造工程で化学薬品を用いるため有機農法には使用できないという問題点がある。また、酵素を用いた方法では、不溶性の殻を直接分解できる高い活性を有する酵素がなく、製造コストも高くなるという問題点がある。放射線によりキチンを低分子化できることも知られているが(例えば、Min BM, et al., Polymer, 45, 7137-7142, 2004を参照)、放射線により低分子化したキチンが植物の耐病性を高める効果を示すかは明らかでない。一方で、比較的加工のしやすいキトサンに放射線を照射した、植物の耐病性を高める農業資材が販売されている(オリゴグルコサミン−L)。しかし、上述したように、キトサンを得るには濃アルカリ中でキチンを脱アセチル化する必要があるため、製造工程の煩雑さや環境負荷の高さを回避できない。
以上のように、これまでの方法により製造されたキチン・キトサンを含む農業資材は、植物の耐病性を高める効果が十分でない、製造コストが高い、及び環境負荷が高いなど、農業資材として使用する上でいくつかの問題点を有しているため、現状ではその利用は限定的である。
本発明では、上記問題点を解決し、植物の耐病性を効率的に高めることのできるキチン質含有物を簡便に低コストで製造し、該キチン質含有物を使用して植物の耐病性を高める方法を開発することを課題とする。さらに、該キチン質含有物の製造方法では塩酸やアルカリ等の溶液を用いずに、有機農法にも適用可能なものを製造することも課題とする。
本発明者らは、上記課題を解決すべく鋭意研究を行い、水溶液中でカニ殻をキチン質ナノファイバーを含有する微粒化物へ加工した後に放射線を照射することでキチンを低分子化した。さらに、こうして得られた放射線処理物が高いエリシター活性を有することを確認し、本発明を完成させた。
即ち、本発明は以下に関する。
[1]キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物の放射線処理物。
[2]キチン質含有生物が甲殻類である、[1]に記載の放射線処理物。
[3]キチン質ナノファイバー含有加工物が、キチン質含有生物由来材料の微粒化物である、[1]又は[2]記載の放射線処理物。
[4]放射線がガンマ線である、[1]〜[3]のいずれかに記載の放射線処理物。
[5]放射線量がキチン質を低分子化する十分量である、[1]〜[4]のいずれかに記載の放射線処理物。
[6][1]〜[5]のいずれかに記載の放射線処理物を含むエリシター。
[7][1]〜[5]のいずれかに記載の放射線処理物で植物を処理することを含む、植物の耐病性を高めるための方法。
[8]キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物を放射線で処理することを含む、エリシターの製造方法。
[9]キチン質含有生物が甲殻類である、[8]に記載の製造方法。
[10]キチン質ナノファイバー含有加工物が、キチン質含有生物由来材料の微粒化物である、[8]又は[9]に記載の製造方法。
[11]放射線がガンマ線である、[8]〜[10]のいずれかに記載の製造方法。
[12]放射線量がキチン質を低分子化する十分量である、[8]〜[11]のいずれかに記載の製造方法。
本発明の放射線処理物は、キチン質のナノファイバー化及び放射線照射の工程を経て製造される。これらの工程はともに既存の機器により行うことができ、当該製造方法では塩酸やアルカリ等の環境負荷の高い溶液を要しないため、工程も簡便で低コストで大量に放射線処理物を製造することを可能にする。該方法により製造された放射線処理物は、優れたエリシター活性を有する。
さらに、本発明の放射線処理物は、通常生ゴミとして廃棄されるカニ殻などの生物資源から製造され得るものであり、その製造工程において塩酸やアルカリ等の溶液を要しない。従って、本発明は、生物資源の有効利用に寄与し、環境負荷が少なく、有機農業にも適した農業資材を提供し、近年高い関心が寄せられている食の安全にも貢献するものと考えられる。
カニ殻をスターバーストで処理した後、酢酸添加したもの(Chitin Nanofiber in acetic acid solution)としないもの(Chitin Nanofiber in water)について放射線処理を行い、その後該放射線処理物を凍結乾燥した。図1は、凍結乾燥後のカニ殻ナノファイバーの放射線処理物の水に対する溶解度を示す。 カニ殻ナノファイバーの放射線処理物と、その他のキチン質含有物のエリシター活性の比較。イネ品種「金南風(きんまぜ)」の培養細胞を用いて、イネの病害抵抗性に関する遺伝子の発現量を、RT−PCR法によって検出した。 カニ殻ナノファイバーの放射線処理物と、その他のキチン質含有物で金南風の培養細胞を処理した後、DAB染色により、植物生体防御反応の一つである活性酸素種の産生を検出し、その染色強度をグラフに示した。
本発明は、キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物の放射線処理物を提供する。
本明細書中、キチン質とは、キチン及びキトサンからなる群より選ばれる1以上の糖質をいう。キチン及びキトサンを構成する主要な糖単位は、それぞれ、N−アセチルグルコサミン及びグルコサミンであり、一般的に、N−アセチルグルコサミンの含有量が多く酸性水溶液に対し難溶性であるものがキチン、グルコサミンの含有量が多く酸性水溶液に対し可溶性であるものがキトサンとされる。
本明細書におけるキチン質含有生物は、本発明を実施可能な量のキチン質を含む生物であれば特に限定されないが、具体的な例として、甲殻類、キノコ(例、マンネンタケ、マイタケ、ヒメマツタケ(アガリクスともいう);例えば、Bull. Agr. Shizuoka Univ., No.38, p29-35 (1988) 参照)、昆虫(例、ハエ、バッタ)、イカ(イカの中心にみられる硬い骨のような透き通った白い組織中にキチン質が含まれる)、カビ(例、コウジカビ(Aspergillus)、ユミケカビ(Absidia))が挙げられる。本発明の実施における好ましいキチン質含有生物は甲殻類であり、例としてカニ、エビが挙げられる。カニとしては、例えば、ズワイガニ(例、越前ガニ、松葉ガニ)、タラバガニが挙げられる。キチン質は主として、甲殻類や昆虫の外骨格、キノコやカビなどの菌類の細胞壁に多く含まれるので、本発明においては、これらが、キチン質含有生物由来材料として好適に用いられる。特に、甲殻類の外骨格はキチン質を、通常、9〜32%(w/w、乾燥重量ベース)程度含み、該キチン質が実質100%に近い割合でN−アセチルグルコサミンから構成されるので、本発明において最も好ましく使用され得る。
本明細書中、ナノファイバーとは、直径が1nm〜100nmで長さが直径の100倍以上の繊維状物質をいう。本明細書中、キチン質ナノファイバーとはキチン質からなるナノファイバーのことをいう。
本発明において用いられるキチン質ナノファイバー含有加工物は、キチン質ナノファイバーを含有するものであって、放射線処理により所望の効果(エリシター効果の増強)が得られるものであれば特にその形態は限定されないが、加工物の形態の例として、粉末状、液状、エマルジョン、ゲル状、固形状、粘土状などが挙げられる。該加工物は、キチン質ナノファイバー自体であってもよく、或いはキチン質ナノファイバーと、キチン質ナノファイバー以外の成分(タンパク質、ペプチド、糖質、脂質、核酸、無機化合物、有機化合物、ミネラルなど)との混合物でもよい。該加工物は、ナノファイバーとして定義されるサイズよりも小さい、又は大きいキチン質を含んでいても良い。一態様において、本発明に用いられるキチン質ナノファイバー含有加工物には、キチン質ナノファイバー、及びキチン質ナノファイバー以外のキチン質含有生物由来材料を構成する成分(タンパク質、ペプチド、糖質、脂質、核酸、無機化合物、有機化合物、ミネラル等)が含まれる。
本発明に用いられるキチン質ナノファイバー含有加工物に含まれるキチン質において、所望の効果が得られるのであれば、全キチン質中のN−アセチルグルコサミン及びグルコサミンの比率は特に限定されないが、エリシター活性を高める観点から、N−アセチルグルコサミンの割合がグルコサミンの割合よりも高いこと(即ち、キトサンよりキチンを豊富に含むこと)が好ましい。該加工物に含まれる全キチン質中の、好ましいN−アセチルグルコサミンの割合は60%(w/w)以上、より好ましくは80%(w/w)以上、最も好ましくは100%である。
キチン質ナノファイバー含有加工物は、当業者に公知の種々の方法によって製造可能である。例えば、WO2010/073758や、特開2003-155349などにより開示された方法により、キチン質ナノファイバー含有加工物を得ることができる。或いは、キチン質ナノファイバーは、溶媒に溶解したキチン質を紡糸することでも製造することができる。ナノファイバーを紡糸する方法としては、エレクトロスピニング法(Huang ZM, et al., Compos. Sci. Technol.63, 2223-2252, 2003)、メルトブロー法(Ellison CJ, et al., Polymer, 48, 3306-3316, 2007)などが挙げられる。
一態様において、キチン質ナノファイバー含有加工物は、キチン質含有生物由来材料の微粒化物であって、キチン質ナノファイバーを含有するものである。本明細書において、微粒化物とは、メジアン径が100μm以下の破砕物をいう。キチン質含有生物由来材料の微粒化により、当該材料中のキチン質線維や、それに結合したタンパク質やミネラル(炭酸カルシウム等)のタイトな結晶構造が破壊され、キチン質ナノファイバーがむき出しになるため、放射線処理によるキチン質の低分子化の効率が向上し、優れたエリシター活性を奏することが期待される。キチン質含有生物由来材料の微粒化は、湿式微粒化、ビーズミル、ボールミル、ジェットミル等の当業者に公知の方法により、キチン質含有生物由来材料を粉砕、分散又は乳化することにより、実施することができる。湿式微粒化とは、粒子(原料)を含む液体(例、水溶液)に超高圧の圧力エネルギーを与えて流し、その流路を途中で2つに分岐させ、再度合流する部分で粒子(原料)同士を対向衝突させて、その衝突による衝撃力で、原料の破砕、分散又は乳化を行う方法である。ビーズミルとは、ベッセルの中へビーズを充填しておき、中央の回転軸を回転させることによりビーズに動きを与え、ここへ原料を送り込み、ビーズですりつぶすことにより、原料の破砕、分散を行う方法である。ボールミルとは、ポットの中にボール及び原料を入れ、ポットを回転させることにより、ボールの落下衝撃で、原料の破砕、分散を行う方法である。ジェットミルとは、原料を高圧に加圧し、微細ノズルから高速噴射させることによって、噴射の際の粒子同士または硬質部材への衝突や、ノズル通過及び対向流により生じる剪断力、又は噴流キャビテーションによる衝撃力で、原料の破砕、分散を行う方法である。キチン質含有生物由来材料の微粒化の方法は特に限定されないが、湿式微粒化が、メディアの磨耗粉の混入がなく、原料とメディアとの分離の手間が省けるため好ましい。湿式微粒化は、例えば、スターバースト(株式会社スギノマシン)等の市販の装置により実施することができる。
キチン質含有生物由来材料の微粒化の促進や防腐効果が認められるため、上記キチン質含有生物由来材料の微粒化物を放射線処理前に、酸に懸濁することができる。
キチン質含有生物由来材料を微粒化した後、キチン質ナノファイバーを含む当該微粒化物を酸に懸濁することで、部分的にキチン質のアセチル基が脱落した領域においてアミノ基の露出による静電気的な反発が生じ、その結果、該微粒化物中に含まれるキチン質の微粒化が促進すると考えられる。一方、例えば、キチン質含有生物由来材料としてカニ殻を使用した場合、酸の濃度を高くすると、カニ殻に含まれる炭酸カルシウムの溶解に伴う炭酸ガスにより溶液が泡立ってしまい、その後の放射線処理等に影響を与える可能性がある。従って、好適に使用できる酸の濃度は、使用する酸の種類、キチン質含有生物由来材料の種類及び量などにより適宜設定するのが好ましい。例えば、カニ殻を微粒化した後に酢酸に懸濁する場合、好適に用いられる酢酸の濃度としては、1〜5%(V/V)などが挙げられる。本発明のために使用し得る酸としては、所望の効果が得られるものであれば特に限定されないが、酢酸、塩酸、硫酸、リン酸、クエン酸、リンゴ酸等を使用し得る。後述する、有機農業での使用が望まれる場合、酢酸、リン酸、クエン酸、リンゴ酸等の有機酸の使用が好ましい。
また、酸の使用によりpHを下げることで、細菌等の繁殖が抑制されるため、防腐効果も期待できる。
本発明の放射線処理物を有機農業に使用する場合、本発明の放射線処理物の製造過程においては、塩酸や硫酸等による化学的処理を行わないことが好ましい。本明細書において、化学的処理とは、有機農産物の日本農林規格(平成24年3月28日改訂)において、有機農産物の生産において使用する肥料等の農業資材の製造過程で使用を禁じられた化学的処理を意味し、生物による生産が可能な酢酸、リン酸、クエン酸、リンゴ酸等の有機酸の使用は当該化学的処理には含まれない。当該化学的処理としては、酸(前記有機酸を除く)やキレートによる脱灰、アルカリによる除タンパク、酵素処理によるタンパク質やキチン質の分解等を挙げることができるが、これらに限定されない。
本発明の放射線処理物は、キチン質含有生物由来材料から調製されたキチン質ナノファイバー含有加工物を放射線で処理することにより得ることができる。本発明で使用され得る放射線は、キチン質ナノファイバー含有加工物中に含まれるキチン質を低分子化できるものであれば特に限定されないが、例として、アルファ線、ベータ線、ガンマ線、中性子線、及びX線が挙げられる。好ましい放射線はガンマ線又はX線であり、特にガンマ線が好ましい。放射線照射装置は滅菌処理、非破壊検査などの目的で広く一般に使用されており、その使用法も当業者に公知である。本明細書において、放射線処理物とは、放射線を照射した物質を意味する。本発明において使用する線量は、キチン質ナノファイバー含有加工物中に含まれるキチン質を低分子化する十分量であることが好ましい。このような量の放射線を照射することにより、照射前と比較して、照射後のキチン質ナノファイバー含有加工物のエリシター活性が上昇する。本発明において使用し得る線量としては、例えば、1kGy〜10MGy、10kGy〜5MGy、50kGy〜2000kGy、500kGy〜2000kGy、500kGy〜1500kGyなどが挙げられる。好ましい線量は、500kGy〜2000kGy、及び500kGy〜1500kGyである。キチン質の低分子化とは、キチン質を構成する糖単位間の結合を断ち、より少ない数の糖単位からなるキチン質を生成することをいう。
本発明は、上記本発明の放射線処理物を含むエリシターをも提供する。本発明のエリシターは、キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物を放射線で処理することにより製造することが出来る。本発明は、このようなエリシターの製造方法をも提供する。各用語の定義は上述の通りである。
エリシターとは、植物の防御反応及びそれに関連する反応を誘導する物質又は組成物をいう。エリシターが植物に作用すると、ファイトアレキシンの蓄積、活性酸素生成、活性窒素生成、過敏感反応性細胞死、遺伝子発現変化などの防御反応が誘導され、これらの反応により植物は病原菌から身を守り耐病性を高める。
本発明のエリシターは、上記本発明の放射線処理物を有効成分として含み、さらに、その他の多糖、オリゴ糖、糖タンパク質、ペプチド、タンパク質、核酸、脂質、無機化合物、有機化合物、及びミネラルなどの成分も含有し得る。本発明のエリシターは、該有効成分のエリシター効果を損なわないものであれば、希釈剤、賦形剤、安定化剤、保存剤などの生理学的に許容される担体を更に含んでいてもよい。
ファイトアレキシンは、エリシターの作用によって植物体内で合成、蓄積される抗菌性化合物のことをいい、植物種ごとに生産される抗菌性化合物は異なる。代表的なファイトアレキシンとして、フラボノイド、テルペノイド、脂肪酸誘導体などが挙げられる。
また、エリシターは植物体内で活性酸素及び活性窒素の生成を誘導し得る。活性酸素は病原微生物を殺す作用をもち、さらに、活性酸素及び活性窒素は単独で又は協調して様々な防御反応を発動するシグナルとして機能する。
エリシター活性を有するか、又は高いエリシター活性を有するかは、評価対象の化合物で処理した植物細胞又は植物体と、評価対象の化合物で処理していない植物細胞又は植物体とを比較した場合に、評価対象の化合物で処理した植物細胞又は植物体において防御反応及び/又はそれに関連する反応の有意な向上が認められるかにより判断する。具体的には、ファイトアレキシンの生成量、活性酸素生成量、過敏感反応性細胞死、活性窒素生成量のいずれか一以上において有意に高い量を示すこと、又は植物の生体防御関連遺伝子の有意に早い又は強い発現誘導を示すことなどにより判断する。このような防御反応又は防御関連遺伝子発現の確認のための試験は、公知の方法により行うことができる。例えば、ファイトアレキシンの一種カマレキシン生成の測定は、Beetsらの方法(Beets C and Dubery I, Anal Biochem, 419, 260-265, 2011);細胞死の測定は、エバンスブルー染色法(Baker CJ and Mock NM, Plant Cell, Tissue and Organ Culture, 39, 7-12, 1994)、ニュートラルレッド染色法(Borenfreund E and Puerner JA, Toxicology Letters, 24, 119-124, 1985);活性酸素生成の測定は、DAB染色法(過酸化水素検出;Love AJ, et al., Plant Physiol, 139, 935-948, 2005)、ルミノール発光法(過酸化水素検出;Schwacke R and Hager A, Planta, 187, 136-141, 1992)、ジヒドロエチジウム(DHE)染色法(スーパーオキシド検出;Yamamoto Y et al., Plant Physiol, 128, 63-72, 2002);活性窒素生成の測定は、DAF-2DA法(一酸化窒素検出;Yamamoto A et al., J General Plant Pathology, 70, 85-92, 2004)、APF(アミノフェニルフルオレセイン)法(過酸化亜硝酸イオン検出;Saito S et al., Plant Cell Physiol, 47, 689-697, 2006);遺伝子発現の測定は、RT-PCR法、マイクロアレイ法等によって行うことができる。
上記「有意な」違いは、公知の統計解析法を適宜選択して使用することで判断でき、好ましい統計解析法としては、例えば、Studentのt検定やMann−Whitney U検定等が挙げられる。評価対象の化合物で処理した植物細胞又は植物体と、評価対象の化合物で処理していない植物細胞又は植物体とを比較した場合に、p値が0.05未満であった場合に有意差があると判断し、p値が0.05以上であった場合には有意差がないと判断することができる。
本発明は、上記本発明の放射線処理物又はエリシターで植物を処理することにより、植物の耐病性を高めるための方法を提供する。
本発明において用いられる植物としては、キチンエリシター応答性を有する植物、具体的にはキチンエリシター受容体を発現する植物であれば、特に限定されない。極めて多様な植物がキチンエリシター応答性を有することが知られている。このような植物としては、イネ、コムギ等の単子葉植物、タバコ、ジャガイモ、ブドウ等の双子葉植物が例示されるが、これらに限定されない。
好ましい実施形態において、放射線処理物又はエリシターの土壌散布、葉面散布、又はこれらの組み合わせにより植物を処理する。したがって、本発明の放射線処理物又はエリシターは、植物の耐病性を高めるための剤(農薬、肥料等の農業資材)として有用である。本発明の放射線処理物及びエリシターは、それぞれ単独で、又は有機肥料、無機肥料、化学肥料、活力剤、殺菌剤、殺虫剤、除草剤、植物成長調整剤等の他の農業資材の任意の組み合わせと共に使用することもできる。さらに、本発明の放射線処理物及びエリシターは、植物の生育を促進する目的で使用されるのみならず、植物の保存中に細菌等から保護する目的にも使用され得る。
以下の実施例は、単に本発明をより具体的に例示するためのものであって、本発明の範囲を制限するものではない。
実施例1:キチン質ナノファイバー含有加工物の放射線処理物の製造方法
0.3kgのカニ殻を微粉砕処理した後、スターバースト(株式会社スギノマシン)に供し、処理圧力100〜245MPa、処理回数1〜30回処理の条件で処理することで、カニ殻の微粒化物を製造した。該微粒化物にはナノファイバー化されたカニ殻が含まれることを電子顕微鏡で確認した。また、比表面積の測定の結果、該微粒化物はスターバースト未処理のものと比較し、10倍以上の表面積を有することが明らかとなった。スターバースト処理前は水に不溶性で沈殿していたカニ殻が、スターバースト処理後には溶媒中に分散して沈殿を生じない。これはスターバースト処理による微粒化により表面積が増し、溶媒と結合する官能基が増えたことに起因する。当該溶媒中に分散した状態は、以下の放射線による低分子化を効率的に実施する上で重要な意味をもつ。
次に、該加工物を10%(w/v)含むように水又は5%酢酸溶液に懸濁して得られた、カニ殻ナノファイバー懸濁液に、線源としてコバルト60を使用してガンマ線を照射し(日本原子力研究開発機構、高崎量子応用研究所、コバルト照射棟第6照射室にて照射)、放射線処理物を得た。放射線照射は、放射線照射装置の使用マニュアルに沿って実施した。
様々な放射線量で処理したカニ殻ナノファイバーの放射線処理物の、水に対する溶解度を測定した(図1)。測定の結果、線量の増加に伴って、カニ殻ナノファイバー放射線処理物の溶解度が増すことが示された。溶解度の増加は、放射線処理によってカニ殻ナノファイバーが低分子化したことを意味する。
実施例2:キチン質ナノファイバー含有加工物の放射線処理物のエリシター活性と、その他のキチン質含有物のエリシター活性との比較
イネ品種「金南風(きんまぜ)」の培養細胞を用いて、イネの病害抵抗性に関する遺伝子の発現量を、RT−PCR法によって検出した(図2)。金南風は、30℃、暗下にて振盪培養(80 rpm/min)した。(1)カニ殻ナノファイバー(レーン1)、(2)カニ殻ナノファイバー放射線処理物(1000kGy)(レーン2)、(3)オリゴグルコサミン−L(レーン3)、(4)キトサンオリゴ糖(ヤヱガキ醗酵技研株式会社)(レーン4)、又は(5)滅菌水(レーン5)を培養液に添加し((1)〜(4)は最終濃度10μg/mLで添加)、24時間培養後、RT−PCR法によりPBZ1(イネの病害抵抗性が誘導されていることの指標となる遺伝子の1つ)、PR17(イネの病害抵抗性に関与することが示唆されている遺伝子)、及びOsDTC1(イネのファイトアレキシン生合成に関与するジテルペン環化酵素遺伝子)の発現量を検出した。Actin遺伝子の発現量をコントロールとした。カニ殻ナノファイバー放射線処理物(1000kGy)で処理した金南風において、PBZ1、PR17、及びOsDTC1遺伝子全てが高発現し、植物防御反応が亢進した。
また、DAB染色により、植物防御反応の一つである活性酸素種の産生を検出し、その染色強度をグラフに示した(図3)。上記(1)〜(5)と同様に処理した金南風の培養細胞を、処理後0、6、12、又は24時間にDAB染色し、活性酸素種の産生を判定した。カニ殻ナノファイバー放射線処理物(1000kGy)で処理した金南風において、最も強い活性酸素種の産生が誘導された。DAB染色の方法に関しては、Hans Thordal-Christensen, et al., The Plant Journal (1997) 11(6), 1187-1194を参照した。また、染色強度の解析はMulti Gauge(富士フィルム株式会社)ソフトウェアを使用して行った。
同様の実験を、イネ品種「日本晴」の培養細胞についても行い、カニ殻ナノファイバー放射線処理物(1000kGy)が、その他のキチン質含有物よりも顕著なエリシター活性を有することが確認できた。
本発明の、放射線処理物は、優れたエリシター活性を有するので、植物の耐病性を高める農業資材として有用である。本発明の放射線処理物は、化学的処理を要することなく製造可能なため、有機農業に使用可能である。本発明を実施することで、これまでそのほとんどが生ゴミとして廃棄されていた、カニ殻等の生物資源を有効利用することができる。

Claims (12)

  1. キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物の放射線処理物。
  2. キチン質含有生物が甲殻類である、請求項1記載の放射線処理物。
  3. キチン質ナノファイバー含有加工物が、キチン質含有生物由来材料の微粒化物である、請求項1又は2記載の放射線処理物。
  4. 放射線がガンマ線である、請求項1〜3いずれか1項に記載の放射線処理物。
  5. 放射線量がキチン質を低分子化する十分量である、請求項1〜4いずれか1項に記載の放射線処理物。
  6. 請求項1〜5いずれか1項に記載の放射線処理物を含むエリシター。
  7. 請求項1〜5いずれか1項に記載の放射線処理物で植物を処理することを含む、植物の耐病性を高めるための方法。
  8. キチン質含有生物由来材料から調製された、キチン質ナノファイバー含有加工物を放射線で処理することを含む、エリシターの製造方法。
  9. キチン質含有生物が甲殻類である、請求項8記載の製造方法。
  10. キチン質ナノファイバー含有加工物が、キチン質含有生物由来材料の微粒化物である、請求項8又は9記載の製造方法。
  11. 放射線がガンマ線である、請求項8〜10いずれか1項に記載の製造方法。
  12. 放射線量がキチン質を低分子化する十分量である、請求項8〜11いずれか1項に記載の製造方法。
JP2013182203A 2013-09-03 2013-09-03 植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法 Pending JP2015048436A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182203A JP2015048436A (ja) 2013-09-03 2013-09-03 植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182203A JP2015048436A (ja) 2013-09-03 2013-09-03 植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法

Publications (1)

Publication Number Publication Date
JP2015048436A true JP2015048436A (ja) 2015-03-16

Family

ID=52698718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182203A Pending JP2015048436A (ja) 2013-09-03 2013-09-03 植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法

Country Status (1)

Country Link
JP (1) JP2015048436A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015064660A1 (ja) * 2013-10-31 2017-03-09 国立大学法人鳥取大学 キチンナノファイバーおよび/またはキトサンナノファイバーを用いる植物の病害抵抗性誘導
WO2020255933A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 セロオリゴ糖を含む植物活力剤及びその使用
WO2020255932A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 外生エリシター及び内生エリシターを含む植物活力剤ならびにその使用
WO2020255934A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 アミノ酸又はその塩とオリゴ糖を含む植物活力剤ならびにその使用
WO2021002181A1 (ja) 2019-07-02 2021-01-07 日本エイアンドエル株式会社 接着剤用共重合体ラテックスおよび接着剤組成物
KR20230005373A (ko) 2020-06-29 2023-01-09 쇼와 덴코 가부시키가이샤 식물 재배 방법 및 식물활력제

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333310A (ja) * 1986-07-29 1988-02-13 Ihara Chem Ind Co Ltd 植物生長促進剤
JPH0725772A (ja) * 1993-07-09 1995-01-27 Japan Atom Energy Res Inst 放射線処理による多糖類からの抗菌活性物質及びその製造方法
JPH09143013A (ja) * 1995-11-20 1997-06-03 Yaizu Suisan Kagaku Kogyo Kk 植物活力剤
JPH10101704A (ja) * 1996-10-01 1998-04-21 Japan Atom Energy Res Inst 放射線照射を利用した植物に対する生物活性を有する多糖類の分解物を製造する方法
US20030078394A1 (en) * 2001-10-24 2003-04-24 Matsumoto Dental University Method of producing low molecular weight chitin/chitosan and method of producing an osteoconduction substance
JP2003160602A (ja) * 2001-11-28 2003-06-03 Japan Atom Energy Res Inst 橋かけ構造を有するキチン誘導体及び/又はキトサン誘導体の製造方法
JP2004049164A (ja) * 2002-07-23 2004-02-19 Japan Atom Energy Res Inst 放射線処理多糖類を利用した植物組織培養方法
JP2007332110A (ja) * 2006-06-19 2007-12-27 National Agriculture & Food Research Organization 根こぶ病害防除剤及び根こぶ病害防除方法
JP2008212026A (ja) * 2007-03-01 2008-09-18 Fit In:Kk 免疫蛋白質の製造方法
JP2012075995A (ja) * 2010-09-30 2012-04-19 Jnc Corp ナノファイバー強化タンパク質多孔膜
US20130079504A1 (en) * 2011-09-26 2013-03-28 Japan Atomic Energy Agency Polysaccharide gel and process for producing same
JP2013523898A (ja) * 2010-04-15 2013-06-17 マリン ポリマー テクノロジーズ,インコーポレーテッド ポリ−n−アセチルグルコサミンナノファイバーの抗菌性の適用
JP2016514150A (ja) * 2013-03-14 2016-05-19 マリン ポリマー テクノロジーズ,インコーポレーテッド ポリ−n−アセチルグルコサミンナノファイバーを有する疾患の処置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333310A (ja) * 1986-07-29 1988-02-13 Ihara Chem Ind Co Ltd 植物生長促進剤
JPH0725772A (ja) * 1993-07-09 1995-01-27 Japan Atom Energy Res Inst 放射線処理による多糖類からの抗菌活性物質及びその製造方法
JPH09143013A (ja) * 1995-11-20 1997-06-03 Yaizu Suisan Kagaku Kogyo Kk 植物活力剤
JPH10101704A (ja) * 1996-10-01 1998-04-21 Japan Atom Energy Res Inst 放射線照射を利用した植物に対する生物活性を有する多糖類の分解物を製造する方法
US20030078394A1 (en) * 2001-10-24 2003-04-24 Matsumoto Dental University Method of producing low molecular weight chitin/chitosan and method of producing an osteoconduction substance
JP2003128704A (ja) * 2001-10-24 2003-05-08 Matsumoto Shika Univ キチン・キトサンの低分子化方法及び骨伝導物の製造方法
JP2003160602A (ja) * 2001-11-28 2003-06-03 Japan Atom Energy Res Inst 橋かけ構造を有するキチン誘導体及び/又はキトサン誘導体の製造方法
JP2004049164A (ja) * 2002-07-23 2004-02-19 Japan Atom Energy Res Inst 放射線処理多糖類を利用した植物組織培養方法
JP2007332110A (ja) * 2006-06-19 2007-12-27 National Agriculture & Food Research Organization 根こぶ病害防除剤及び根こぶ病害防除方法
JP2008212026A (ja) * 2007-03-01 2008-09-18 Fit In:Kk 免疫蛋白質の製造方法
JP2013523898A (ja) * 2010-04-15 2013-06-17 マリン ポリマー テクノロジーズ,インコーポレーテッド ポリ−n−アセチルグルコサミンナノファイバーの抗菌性の適用
JP2012075995A (ja) * 2010-09-30 2012-04-19 Jnc Corp ナノファイバー強化タンパク質多孔膜
US20130079504A1 (en) * 2011-09-26 2013-03-28 Japan Atomic Energy Agency Polysaccharide gel and process for producing same
JP2013071942A (ja) * 2011-09-26 2013-04-22 Japan Atomic Energy Agency 多糖類ゲルとその製造方法
JP2016514150A (ja) * 2013-03-14 2016-05-19 マリン ポリマー テクノロジーズ,インコーポレーテッド ポリ−n−アセチルグルコサミンナノファイバーを有する疾患の処置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
江草真由美, 他: "「新規素材キチン・キトサンナノファイバーの植物病原菌に対する抗菌活性」", 平成25年度日本植物病理学会 プログラム・講演要旨予稿集, JPN6014050008, 21 March 2013 (2013-03-21), JP, pages 143, ISSN: 0003740520 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015064660A1 (ja) * 2013-10-31 2017-03-09 国立大学法人鳥取大学 キチンナノファイバーおよび/またはキトサンナノファイバーを用いる植物の病害抵抗性誘導
WO2020255933A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 セロオリゴ糖を含む植物活力剤及びその使用
WO2020255932A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 外生エリシター及び内生エリシターを含む植物活力剤ならびにその使用
WO2020255934A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 アミノ酸又はその塩とオリゴ糖を含む植物活力剤ならびにその使用
KR20210151190A (ko) 2019-06-17 2021-12-13 쇼와 덴코 가부시키가이샤 아미노산 또는 그 염과 올리고당을 포함하는 식물 활력제 및 그 사용
KR20210151932A (ko) 2019-06-17 2021-12-14 쇼와 덴코 가부시키가이샤 셀로올리고당을 포함하는 식물 활력제 및 그 사용
KR20220009448A (ko) 2019-06-17 2022-01-24 쇼와 덴코 가부시키가이샤 외생 엘리시터 및 내생 엘리시터를 포함하는 식물 활력제 및 그 사용
WO2021002181A1 (ja) 2019-07-02 2021-01-07 日本エイアンドエル株式会社 接着剤用共重合体ラテックスおよび接着剤組成物
KR20230005373A (ko) 2020-06-29 2023-01-09 쇼와 덴코 가부시키가이샤 식물 재배 방법 및 식물활력제

Similar Documents

Publication Publication Date Title
JP2015048436A (ja) 植物の耐病性を向上させる、生物由来キチン質含有物、その使用方法、及びその製造方法
CA2906614C (en) Unbranched beta -(1,3)-glucan compositions and uses thereof to modulate the immune function in plants
Singh et al. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity
Shahbaz et al. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease
Xing et al. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata
Bhaskara Reddy et al. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality
Xiang et al. Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability
Hu et al. Chitosan nanoparticles as edible surface coating agent to preserve the fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt)
CN106620753A (zh) 太赫兹杀菌消毒水及其制备方法
Zhou et al. Synergistic effects of nanochitin on inhibition of tobacco root rot disease
US20190350208A1 (en) Activators of Plant Metabolic Changes
Guo et al. Antifungal activity and possible mechanisms of submicron chitosan dispersions against Alteraria alternata
JP2017095352A (ja) キチン及び/若しくはキトサン又はキチン及び/若しくはキトサン含有物、並びにキチン及び/若しくはキトサン分解能を有する微生物の培養物を含む肥料、並びにその製造方法等
CN103283725A (zh) 含氨基寡糖素和井冈霉素的杀菌组合物及其应用
Kertmen et al. Patentology of chitinous biomaterials. Part I: Chitin
Korbecka-Glinka et al. The use of carbohydrate biopolymers in plant protection against pathogenic fungi
Kaziem et al. Efficiency of mesoporous silica/carboxymethyl β-glucan as a fungicide nano-delivery system for improving chlorothalonil bioactivity and reduce biotoxicity
Morganti et al. Chitin and lignin. Natural ingredients from waste materials to make innovative and healthy products for humans and plant
Boamah et al. Application of depolymerized chitosan in crop production: A review
Suryadi et al. Control of anthracnose disease (Colletotrichum gloeosporioides) using nano chitosan hydrolyzed by chitinase derived from Burkholderia cepacia Isolate E76
Wu et al. Chitosan-based nanopesticides enhanced anti-fungal activity against strawberry anthracnose as “sugar-coated bombs”
El-Ganainy et al. Lignin-Loaded Carbon Nanoparticles as a Promising Control Agent against Fusarium verticillioides in Maize: Physiological and Biochemical Analyses
Polyakov et al. Nanoparticles-Based delivery systems for salicylic acid as plant growth stimulator and stress alleviation
CN109880750A (zh) 一种提高干巴菌菌丝体和多糖产量的方法及干巴菌多糖的应用
Anum et al. Management of Botrytis Grey mold of tomato using bio-fabricated silver nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904