JP2015046397A - Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor - Google Patents

Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor Download PDF

Info

Publication number
JP2015046397A
JP2015046397A JP2014210531A JP2014210531A JP2015046397A JP 2015046397 A JP2015046397 A JP 2015046397A JP 2014210531 A JP2014210531 A JP 2014210531A JP 2014210531 A JP2014210531 A JP 2014210531A JP 2015046397 A JP2015046397 A JP 2015046397A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
electrode active
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014210531A
Other languages
Japanese (ja)
Other versions
JP5964917B2 (en
Inventor
浩一朗 渡邊
Koichiro Watanabe
浩一朗 渡邊
正進 西峯
Masayuki Nishimine
正進 西峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014210531A priority Critical patent/JP5964917B2/en
Publication of JP2015046397A publication Critical patent/JP2015046397A/en
Application granted granted Critical
Publication of JP5964917B2 publication Critical patent/JP5964917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode active material for a nonaqueous electrolyte secondary battery which allows the continuous mass production of a negative electrode active material of a nonaqueous electrolyte secondary battery having a high capacity and a high-level cycle performance, and to provide a negative electrode active material for a nonaqueous electrolyte secondary battery, a lithium ion secondary battery, and an electrochemical capacitor.SOLUTION: In the method for manufacturing a negative electrode active material for a nonaqueous electrolyte secondary battery such that the surface of a material capable of occluding and releasing lithium ions is covered with a graphite coating, the step of covering the surface of the material with graphite coating is performed in a continuous furnace.

Description

本発明は、リチウムイオン二次電池用負極活物質として用いた際に、高い充放電容量及び良好なサイクル特性を有する非水電解質二次電池用負極活物質の製造方法に関する。   The present invention relates to a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery having high charge / discharge capacity and good cycle characteristics when used as a negative electrode active material for a lithium ion secondary battery.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。
従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1、特許文献2参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4参照)、負極材料にSiO及びGeOを用いる方法(例えば、特許文献5参照)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(例えば、特許文献6参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8参照)がある。
In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices.
Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (for example, Patent Document 1, Patent 2), a method in which a melted and quenched metal oxide is applied as a negative electrode material (for example, see Patent Document 3), a method in which silicon oxide is used as a negative electrode material (for example, see Patent Document 4), and Si 2 N as a negative electrode material. A method using 2 O and Ge 2 N 2 O (see, for example, Patent Document 5) is known. Further, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO with graphite and then carbonizing (see, for example, Patent Document 6), a method of coating a carbon layer on the surface of silicon particles by chemical vapor deposition ( For example, refer to Patent Document 7), and a method of coating a carbon layer on the surface of silicon oxide particles by chemical vapor deposition (for example, refer to Patent Document 8).

しかしながら、上記従来の方法では充放電容量が上がりエネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient or the required characteristics of the market are still insufficient, which is not always satisfactory. Further improvement in energy density has been desired.

特に特許文献4では、酸化珪素をリチウムイオン二次電池負極活物質として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては未だ初回充放電時における不可逆容量が大きく、また、サイクル性が実用レベルに達していないため、改良する余地がある。   In particular, Patent Document 4 uses silicon oxide as a negative electrode active material for a lithium ion secondary battery to obtain a high-capacity electrode, but as far as the inventors see, the irreversible capacity at the time of initial charge / discharge is still large, Moreover, since the cycle performance has not reached the practical level, there is room for improvement.

また、負極活物質に導電性を付与した技術についても、特許文献6では、固体と固体の融着であるため、均一な炭素被膜が形成されず、導電性が不十分であるといった問題がある。また、特許文献7の方法においては均一な炭素被膜の形成が可能となるものの、Siを負極活物質として用いているためリチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて結果として実用に耐えられず、サイクル性が低下するためこれを防止するべく充電量の制限を設けなくてはならない。特許文献8の方法においては、サイクル性の向上は確認されるも、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分である。特許文献9では、一般式SiOxで表される酸化珪素に炭素被膜を化学蒸着させて容量・サイクル特性の向上を図っている。   In addition, regarding the technique for imparting conductivity to the negative electrode active material, Patent Document 6 has a problem that a uniform carbon film is not formed because of solid-solid fusion, and the conductivity is insufficient. . Further, although the method of Patent Document 7 can form a uniform carbon film, since Si is used as the negative electrode active material, the expansion / contraction at the time of adsorption / desorption of lithium ions is too large, resulting in practical use. In order to prevent this, it is necessary to limit the amount of charge in order to prevent this. In the method of Patent Document 8, although the improvement in cycleability is confirmed, the number of cycles of charge and discharge is increased due to insufficient deposition of fine silicon crystals, the carbon coating structure and the base material. There is a phenomenon that the capacity gradually decreases and rapidly decreases after a certain number of times, which is still insufficient for a secondary battery. In Patent Document 9, a carbon film is chemically vapor-deposited on silicon oxide represented by the general formula SiOx to improve capacity and cycle characteristics.

以上のような炭素被膜(黒鉛被膜)を形成して導電性を付与した負極活物質は、高容量の電極を得ることができるが、十分に電池特性を向上できる良好な炭素被膜が被覆された負極活物質(負極材)を大量生産する方法は確立されていなかった。   The negative electrode active material provided with conductivity by forming the carbon film (graphite film) as described above can obtain a high-capacity electrode, but is coated with a good carbon film that can sufficiently improve battery characteristics. A method for mass-producing the negative electrode active material (negative electrode material) has not been established.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A 特許4171897号公報Japanese Patent No. 4171897

本発明は、上記問題点に鑑みてなされたものであって、高容量でサイクル性の高い非水電解質二次電池用負極活物質を、大量生産することができる製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a production method capable of mass-producing a negative electrode active material for a non-aqueous electrolyte secondary battery having a high capacity and high cycleability. And

上記目的を達成するために、本発明は、リチウムイオンを吸蔵、放出し得る材料の表面が黒鉛被膜で被覆された非水電解質二次電池用負極活物質の製造方法であって、前記材料の表面を黒鉛被膜で被覆する工程を、連続炉で行うことを特徴とする非水電解質二次電池用負極活物質の製造方法を提供する。   In order to achieve the above object, the present invention provides a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite coating, Provided is a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, wherein the step of coating the surface with a graphite film is performed in a continuous furnace.

このように、黒鉛被覆を連続炉で行うことで、材料表面に、均一で良好な黒鉛被膜を連続的に被覆することができる。このため、導電性が向上され、市場の要求する特性レベルを満たした負極活物質を大量生産することができ、コストを低減できる。   Thus, by performing graphite coating in a continuous furnace, a uniform and good graphite film can be continuously coated on the material surface. For this reason, conductivity is improved, negative electrode active materials satisfying the characteristic level required by the market can be mass-produced, and costs can be reduced.

このとき、前記材料の表面を黒鉛被膜で被覆する工程において、前記連続炉として、炉芯管が回転することにより内部の前記材料を混合、攪拌しながら表面を黒鉛被膜で被覆するロータリーキルンを用いることができる。
このようなロータリーキルンを用いて被覆することで、材料の表面に黒鉛被膜を効率的に被覆でき、特性のバラツキがほとんどない負極活物質を生産性良く製造することができる。
At this time, in the step of coating the surface of the material with a graphite coating, as the continuous furnace, a rotary kiln is used that coats the surface with a graphite coating while mixing and stirring the material inside by rotating a furnace core tube. Can do.
By coating using such a rotary kiln, the surface of the material can be efficiently coated with a graphite coating, and a negative electrode active material with little variation in characteristics can be produced with high productivity.

このとき、前記炉芯管の接粉部の材質として、カーボンを使用することが好ましい。
このように、接粉部の材質をカーボンとすれば、炉芯管の内壁への材料の付着を抑制して、長時間安定して黒鉛被膜で被覆できる。
At this time, it is preferable to use carbon as the material of the powder contact portion of the furnace core tube.
Thus, if the material of the contact part is made of carbon, the material can be prevented from adhering to the inner wall of the furnace core tube and can be stably coated with the graphite coating for a long time.

このとき、前記炉芯管を、エアノッカーで定期的に振動させることが好ましい。
このようにエアノッカーで振動させることで、炉芯管の内壁に材料が付着することを効果的に抑制できる。
At this time, it is preferable to periodically vibrate the furnace core tube with an air knocker.
Thus, it can suppress effectively that material adheres to the inner wall of a furnace core pipe by vibrating with an air knocker.

また、前記材料の表面を黒鉛被膜で被覆する工程において、前記連続炉として、前記材料を仕込んだ匣鉢を、自転するローラーに載せて搬送しながら前記材料の表面を黒鉛被膜で被覆するローラーハースキルンを用いることが好ましい。
このようなローラーハースキルンを用いて被覆することで、材料の表面に黒鉛被膜を効率的に被覆でき、特性のバラツキがほとんどない負極活物質を生産性良く製造することができる。
In addition, in the step of coating the surface of the material with a graphite film, as the continuous furnace, a roller hearth that covers the surface of the material with a graphite film while transporting the mortar charged with the material on a rotating roller It is preferable to use a kiln.
By coating using such a roller hearth kiln, the graphite surface can be efficiently coated on the surface of the material, and a negative electrode active material having almost no variation in characteristics can be produced with high productivity.

このとき、前記材料の表面を黒鉛被膜で被覆する工程において、有機物ガス及び/又は蒸気中、800〜1300℃で化学蒸着により前記材料の表面を黒鉛被膜で被覆することが好ましい。
このような化学蒸着によれば、材料の表面全体を効率的かつ均一に黒鉛被覆することができる。
At this time, in the step of coating the surface of the material with a graphite coating, it is preferable to coat the surface of the material with a graphite coating by chemical vapor deposition at 800 to 1300 ° C. in an organic gas and / or vapor.
According to such chemical vapor deposition, the entire surface of the material can be efficiently and uniformly coated with graphite.

このとき、前記リチウムイオンを吸蔵、放出し得る材料を、珪素、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x<1.6)で表される酸化珪素のいずれか、又はこれらのうち2以上の混合物とすることが好ましい。
このような材料であれば、電池の充放電容量を効果的に向上させることができる負極活物質を製造することができる。
At this time, the material capable of inserting and extracting lithium ions is represented by silicon, a particle having a composite structure in which silicon fine particles are dispersed in a silicon compound, and a general formula SiO x (0.5 ≦ x <1.6). It is preferable to use one of silicon oxides or a mixture of two or more thereof.
If it is such a material, the negative electrode active material which can improve the charging / discharging capacity of a battery effectively can be manufactured.

また、本発明の非水電解質二次電池用負極活物質の製造方法により製造したものであることを特徴とする非水電解質二次電池用負極活物質を提供する。
このように本発明の製造方法により製造されたものであれば、高い充放電容量と良好なサイクル特性を有する電池を作製可能で、安価な非水電解質二次電池用負極活物質となる。
The present invention also provides a negative electrode active material for a nonaqueous electrolyte secondary battery, which is produced by the method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery of the present invention.
Thus, if it was manufactured by the manufacturing method of this invention, the battery which has a high charging / discharging capacity | capacitance and favorable cycling characteristics can be produced, and it becomes an inexpensive negative electrode active material for nonaqueous electrolyte secondary batteries.

また、本発明の非水電解質二次電池用負極活物質を使用したものであることを特徴とするリチウムイオン二次電池又は電気化学キャパシタを提供する。
このように本発明の非水電解質二次電池用負極活物質を使用したものであれば、低コストで高品質のリチウムイオン二次電池又は電気化学キャパシタとなる。
The present invention also provides a lithium ion secondary battery or an electrochemical capacitor using the negative electrode active material for a nonaqueous electrolyte secondary battery of the present invention.
Thus, if it uses the negative electrode active material for nonaqueous electrolyte secondary batteries of this invention, it will become a low quality, high quality lithium ion secondary battery or an electrochemical capacitor.

以上のように、本発明によれば、導電性が向上され、市場の要求する特性レベルを満たした負極活物質を低コストに連続生産することができる。   As described above, according to the present invention, it is possible to continuously produce a negative electrode active material having improved conductivity and satisfying the characteristic level required by the market at a low cost.

本発明の製造方法で用いることができるローラーハースキルンの概略図である。It is the schematic of the roller hearth kiln which can be used with the manufacturing method of this invention. ローラーハースキルンのゾーン別の設定温度と実測温度を示す図である。It is a figure which shows the preset temperature and actual temperature according to zone of roller hearth kiln. 本発明の製造方法で用いることができるロータリーキルンの概略図である。It is the schematic of the rotary kiln which can be used with the manufacturing method of this invention. 本発明の製造方法で用いることができるロータリーキルンの炉芯管の断面図である。It is sectional drawing of the furnace core pipe of a rotary kiln which can be used with the manufacturing method of this invention.

本発明者らは、二次電池の容量・サイクル特性の向上という目的を達成するために種々検討を行った結果、リチウムイオンを吸蔵、放出し得る材料の表面を、例えば有機物ガス及び/又は蒸気中での化学蒸着法によって、黒鉛被膜で被覆することで、著しい電池特性の向上が見られることを確認すると同時に、従来用いられていたバッチ炉等では量産が現実的でないことを見出した。
そこで、本発明者らは連続生産の可能性について詳細検討を行った結果、連続炉を用いて、特に、材料粉末を仕込んだ匣鉢を、自転するローラーに載せて搬送する方式のローラーハースキルンや、炉芯管を回転させる方式のロータリーキルンを使用することで、市場の要求する特性レベルを満たした上で連続生産が可能となることを見出し、本発明を完成するに至った。
As a result of various studies to achieve the purpose of improving the capacity and cycle characteristics of the secondary battery, the present inventors have determined the surface of the material capable of occluding and releasing lithium ions, for example, organic gas and / or vapor. At the same time, it was confirmed that a significant improvement in battery characteristics was observed by coating with a graphite film by the chemical vapor deposition method in the inside, and at the same time, it was found that mass production was not practical in a batch furnace or the like conventionally used.
Therefore, as a result of detailed examination of the possibility of continuous production, the present inventors have used a continuous furnace, and in particular, a roller hearth kiln with a method of carrying a mortar filled with material powder on a rotating roller. In addition, by using a rotary kiln that rotates the furnace core tube, it has been found that continuous production is possible while satisfying the characteristic level required by the market, and the present invention has been completed.

ここで、バッチ炉に対して連続炉とは、原料の供給及び生成物の排出が連続的に行われる炉のことで、例えば、流動層炉、プッシャー炉、トンネル炉、ロータリーキルン、コンベア炉、ローラーハースキルンなどが挙げられる。   Here, a continuous furnace is a furnace in which supply of raw materials and discharge of products are performed continuously, for example, a fluidized bed furnace, a pusher furnace, a tunnel furnace, a rotary kiln, a conveyor furnace, a roller. For example, Herskirin.

以下、本発明について、さらに詳しく説明する。
本発明は、リチウムイオンを吸蔵、放出し得る材料の表面が黒鉛被膜で被覆された非水電解質二次電池用負極活物質を製造する方法である。
Hereinafter, the present invention will be described in more detail.
The present invention is a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film.

まず、本発明の製造方法で製造する負極活物質の原料となるリチウムイオンを吸蔵、放出し得る材料としては、Si(金属珪素)、珪素(Si)と二酸化珪素(SiO)との複合分散体、SiO(0.5≦x<1.6、特に1.0≦x<1.3、黒鉛被膜の被覆工程で連続炉としてロータリーキルンを用いる場合には0.8≦x<1.3が特に好ましい)といった酸化珪素、珪素の微粒子が珪素系化合物に分散した微細な構造(複合構造)を有する粒子、珪素低級酸化物(いわゆる酸化珪素)等の珪素系物質の他に、下記式MO(式中、MはGe,Sn,Pb,Bi,Sb,Zn,In,Mgから選ばれる少なくとも1種であり、a=0.1〜4の正数である。)で表される珪素を含まない金属酸化物、もしくは、下記式LiM(式中、MはGe,Sn,Pb,Bi,Sb,Zn,In,Mg,Siから選ばれる少なくとも1種であり、b=0.1〜4の正数、c=0.1〜8の正数である。)で表される(珪素を含んだものであってもよい)リチウム複合酸化物であり、具体的には、GeO,GeO,SnO,SnO,Sn,Bi,Bi,Sb,Sb,Sb,ZnO,InO,InO,In,MgO,LiSiO,LiSiO,LiSi,LiSi,LiSiO,LiSi,LiGe,LiGe,LiGe19,LiGe12,LiGe,LiGeO,LiGe15,LiGeO,LiGe,LiSnO,LiSnO,LiPbO,LiSbO,LiSbO,LiSbO,LiBiO,LiBiO,LiBiO,LiBi11,LiZnO,LiZnO,LiZnO,LiInO,LiInO、又はこれらの非量論的化合物等が挙げられる。
特に、理論充放電容量の大きなSi、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、酸化珪素のいずれか、又はこれらのうち2以上の混合物を用いた場合に、充放電容量をより向上でき、さらには本発明の製造方法がより効果的である。
First, as a material that can occlude and release lithium ions as a raw material of a negative electrode active material produced by the production method of the present invention, Si (metal silicon), composite dispersion of silicon (Si) and silicon dioxide (SiO 2 ) Body, SiO x (0.5 ≦ x <1.6, especially 1.0 ≦ x <1.3, 0.8 ≦ x <1.3 when a rotary kiln is used as a continuous furnace in the coating process of the graphite film. In addition to silicon oxide such as silicon oxide, particles having a fine structure (composite structure) in which silicon fine particles are dispersed in a silicon compound, silicon lower oxide (so-called silicon oxide), etc. a (wherein, M is at least one selected from Ge, Sn, Pb, Bi, Sb, Zn, In, and Mg, and is a positive number of a = 0.1 to 4). Or a metal oxide not containing LiM b O c (wherein M is at least one selected from Ge, Sn, Pb, Bi, Sb, Zn, In, Mg, Si, b = a positive number of 0.1 to 4, c = 0.1 8 which is a positive number.) represented by (may be one containing silicon) and lithium composite oxides, specifically, GeO, GeO 2, SnO, SnO 2, Sn 2 O 3 , Bi 2 O 3 , Bi 2 O 5 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , ZnO, In 2 O, InO, In 2 O 3 , MgO, Li 2 SiO 3 , Li 4 SiO 4 , Li 2 Si 3 O 7 , Li 2 Si 2 O 5 , Li 8 SiO 6 , Li 6 Si 2 O 7 , Li 4 Ge 9 O 7 , Li 4 Ge 9 O 2 , Li 5 Ge 8 O 19 , Li 4 Ge 5 O 12 , Li 5 Ge 2 O 7 , Li 4 GeO 4 , Li 2 Ge 7 O 15, Li 2 GeO 3, Li 2 Ge 4 O 9, Li 2 SnO 3, Li 8 SnO 6, Li 2 PbO 3, Li 7 SbO 5, LiSbO 3, Li 3 SbO 4, Li 3 BiO 5 , Li 6 BiO 6 , LiBiO 2 , Li 4 Bi 6 O 11 , Li 6 ZnO 4 , Li 4 ZnO 3 , Li 2 ZnO 2 , LiInO 2 , Li 3 InO 3 , or non-stoichiometric compounds thereof Is mentioned.
In particular, when using either Si having a large theoretical charge / discharge capacity, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide, or a mixture of two or more of these, the charge / discharge capacity is reduced. The production method of the present invention is more effective.

この場合、Siの粒子や、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子の物性については、特に限定されるものではないが、平均粒子径は0.01〜50μmとすることができ、0.1〜20μmが好ましく、さらに好ましくは0.5〜15μmである。
平均粒子径が0.01μmより小さいと表面酸化の影響で純度が低下し、リチウムイオン二次電池の負極活物質として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下する場合がある。逆に50μmより大きいと、電極作製時にスラリーをうまく塗布できないおそれがある。
なお、平均粒子径は、レーザー光回折法による粒度分布測定における体積平均粒子径で表すことができる。
In this case, the physical properties of Si particles or particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound are not particularly limited, but the average particle diameter may be 0.01 to 50 μm. 0.1 to 20 μm is preferable, and 0.5 to 15 μm is more preferable.
When the average particle size is smaller than 0.01 μm, the purity decreases due to the effect of surface oxidation, and when used as a negative electrode active material of a lithium ion secondary battery, the charge / discharge capacity decreases, the bulk density decreases, and the unit volume The charge / discharge capacity per unit may decrease. Conversely, if it is larger than 50 μm, there is a possibility that the slurry cannot be applied well at the time of electrode preparation.
In addition, an average particle diameter can be represented by the volume average particle diameter in the particle size distribution measurement by a laser beam diffraction method.

また、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子において、珪素系化合物については、不活性なものが好ましく、製造しやすさの点において二酸化珪素が好ましい。また、この粒子は下記性状を有していることが好ましい。   In addition, in particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, the silicon-based compound is preferably inactive, and silicon dioxide is preferable in terms of ease of manufacture. Moreover, it is preferable that this particle | grain has the following property.

i. 銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の微粒子(結晶)の粒子径が、好ましくは1〜500nm、より好ましくは2〜200nm、更に好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することもできる。 i. In X-ray diffraction (Cu-Kα) using copper as the counter-cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and based on the broadening of the diffraction line The particle size of silicon fine particles (crystals) determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. Conversely, if the silicon fine particle is larger than 500 nm, the expansion / contraction during charge / discharge increases, and the cycle performance may decrease. The size of the silicon fine particles can also be measured by a transmission electron micrograph.

ii. 固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに、−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiO:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
この珪素/二酸化珪素分散体(Si/SiO)中における珪素微粒子(Si)の分散量は、2〜36質量%、特に10〜30質量%であることが好ましい。この分散珪素量が2質量%未満では、充放電容量が小さくなる場合があり、逆に36質量%を超えるとサイクル性が低下する場合がある。
ii. In solid state NMR ( 29 Si-DDMAS) measurement, there is a broad silicon dioxide peak whose spectrum is centered around −110 ppm, and a peak characteristic of Si diamond crystal is present near −84 ppm. This spectrum is completely different from ordinary silicon oxide (SiO x : x = 1.0 + α), and the structure itself is clearly different. Further, it is confirmed by transmission electron microscope that silicon crystals are dispersed in amorphous silicon dioxide.
The amount of silicon fine particles (Si) dispersed in the silicon / silicon dioxide dispersion (Si / SiO 2 ) is preferably 2 to 36% by mass, more preferably 10 to 30% by mass. If the amount of dispersed silicon is less than 2% by mass, the charge / discharge capacity may be reduced, and conversely if it exceeds 36% by mass, the cycle performance may be reduced.

なお、上記珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子(珪素複合体粉末)は、珪素の微結晶が珪素系化合物に分散した構造を有する粒子であり、上記した好ましい平均粒子径0.01〜50μmを有するものであれば、その製造方法は特に限定されるものではないが、下記の方法を好適に採用することができる。
例えば、一般式SiO(0.5≦x<1.6)で表される酸化珪素粉末を、不活性ガス雰囲気下、900〜1400℃の温度域で熱処理を施して不均化する方法を好適に採用できる。
The particles having a composite structure in which the silicon fine particles are dispersed in a silicon-based compound (silicon composite powder) are particles having a structure in which silicon microcrystals are dispersed in the silicon-based compound. If it has 0.01-50 micrometers, the manufacturing method will not be specifically limited, The following method can be employ | adopted suitably.
For example, a method of disproportionating a silicon oxide powder represented by the general formula SiO x (0.5 ≦ x <1.6) by subjecting it to a heat treatment in a temperature range of 900 to 1400 ° C. in an inert gas atmosphere. It can be suitably employed.

なお、この場合の酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称である。酸化珪素粉末は一般式SiOで表され、平均粒子径は0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上で、上限として20μm以下、より好ましくは15μm以下である。BET比表面積は0.1m/g以上、より好ましくは0.2m/g以上で、上限として30m/g以下、より好ましくは20m/g以下である。xの範囲は0.5≦x<1.6、より好ましくは0.8≦x<1.3、更に好ましくは0.8≦x≦1.0であることが望ましい。
酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では、所望の平均粒子径及びBET比表面積を有する珪素複合体粉末を得ることが困難である。また、xの値が0.5より小さいSiO粉末の製造はサイクル特性に難があり、xの値が1.6以上のものは、熱処理を行い不均化反応を行なった際に、不活性なSiOの割合が大きく、リチウムイオン二次電池に使用した場合、充放電容量が低下するおそれがある。
In this case, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. . The silicon oxide powder is represented by the general formula SiO x , and the average particle size is 0.01 μm or more, more preferably 0.1 μm or more, still more preferably 0.5 μm or more, and the upper limit is 20 μm or less, more preferably 15 μm or less. . The BET specific surface area is 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, and the upper limit is 30 m 2 / g or less, more preferably 20 m 2 / g or less. The range of x is desirably 0.5 ≦ x <1.6, more preferably 0.8 ≦ x <1.3, and still more preferably 0.8 ≦ x ≦ 1.0.
When the average particle diameter and BET specific surface area of the silicon oxide powder are outside the above ranges, it is difficult to obtain a silicon composite powder having a desired average particle diameter and BET specific surface area. In addition, the production of SiO x powder having a value of x smaller than 0.5 is difficult in cycle characteristics, and those having a value of x of 1.6 or more are not suitable when heat treatment is performed and a disproportionation reaction is performed. When the proportion of active SiO 2 is large and the lithium ion secondary battery is used, the charge / discharge capacity may be reduced.

また、酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でない。逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。より好ましい熱処理温度は1000〜1300℃、特に1000〜1200℃である。
なお、処理時間(不均化時間)は、不均化処理温度に応じて10分〜20時間、特に30分〜12時間の範囲で適宜選定することができるが、例えば1100℃の処理温度においては5時間程度で所望の物性を有する珪素複合体粉末(不均化物)が得られる。
Also, in disproportionation of silicon oxide, if the heat treatment temperature is lower than 900 ° C., disproportionation does not proceed at all or it takes an extremely long time to form fine silicon cells (silicon microcrystals), which is efficient. Not. On the other hand, when the temperature is higher than 1400 ° C., the structure of the silicon dioxide portion is advanced and the traffic of lithium ions is hindered, so that the function as a lithium ion secondary battery may be deteriorated. A more preferable heat treatment temperature is 1000 to 1300 ° C, particularly 1000 to 1200 ° C.
The treatment time (disproportionation time) can be appropriately selected in the range of 10 minutes to 20 hours, particularly 30 minutes to 12 hours, depending on the disproportionation treatment temperature. For example, at a treatment temperature of 1100 ° C. Can obtain a silicon composite powder (disproportionate) having desired physical properties in about 5 hours.

上記不均化処理は、加熱機構を有する反応装置を用いて不活性ガス雰囲気で行うことができ、反応装置としては特に限定されず、連続法、回分法での処理が可能な炉で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じて適宜選択することができる。この場合、(処理)ガスとしては、Ar、He、H、N等の上記処理温度にて不活性なガス単独もしくはそれらの混合ガスを用いることができる。 The above disproportionation treatment can be performed in an inert gas atmosphere using a reaction apparatus having a heating mechanism. The reaction apparatus is not particularly limited, and is a furnace capable of processing by a continuous process or a batch process. Specifically, a fluidized bed reaction furnace, a rotary furnace, a vertical moving bed reaction furnace, a tunnel furnace, a batch furnace, a rotary kiln and the like can be appropriately selected according to the purpose. In this case, as the (treatment) gas, an inert gas alone or a mixed gas thereof such as Ar, He, H 2 , and N 2 can be used.

そして、本発明における非水電解質二次電池用負極活物質の製造方法では、連続炉で、上記したリチウムイオンを吸蔵、放出し得る材料の表面を黒鉛被膜で被覆するものであり、被覆方法としては化学蒸着法(CVD法)等が好適に用いられる。
このような連続炉であれば、従来用いられていたバッチ炉等と同程度に、所望の被覆量で均一な黒鉛被膜を形成できるとともに、高品質の負極活物質を連続的に製造して、大量生産することが可能である。従って、電池特性を向上させることができる負極活物質を低コストに製造することができる。
And in the manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries in this invention, the surface of the material which can occlude and discharge | release said lithium ion is coat | covered with a graphite film in a continuous furnace, The chemical vapor deposition method (CVD method) or the like is preferably used.
If it is such a continuous furnace, a uniform graphite film can be formed with a desired coating amount to the same extent as a conventionally used batch furnace, etc., and a high-quality negative electrode active material is continuously produced, Mass production is possible. Therefore, a negative electrode active material that can improve battery characteristics can be manufactured at low cost.

本発明において使用できる連続炉としては、特に限定されないが、原料粉末(材料)を仕込んだ匣鉢を、自転するローラーに載せて搬送する方式のローラーハースキルンを使用することが好ましい。
ローラーハースキルンであれば、特に化学蒸着によって、リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛被膜で被覆するのに好適であり、電池の容量・サイクル特性の向上を達成できる負極活物質を確実にバラツキなく製造することができる。
Although it does not specifically limit as a continuous furnace which can be used in this invention, It is preferable to use the roller hearth kiln of the system which mounts and conveys the mortar filled with raw material powder (material) on the roller which rotates.
If it is a roller hearth kiln, it is suitable for coating the surface of a material that can occlude and release lithium ions, especially by chemical vapor deposition, with a graphite coating, and an anode active material that can achieve improved battery capacity and cycle characteristics. It can be manufactured without variation.

図1はローラーハースキルンの概略断面図である。本発明で用いるローラーハースキルン10は、例えば材料を加熱するヒーター11と、材料を仕込む匣鉢14と、自転するセラミックのローラー15と、炉内にガスを供給するガス入り口13と、供給されたガスを炉外に排出するガス出口12とを有する。炉本体部は例えば8室で構成され、材料が仕込まれた匣鉢14がローラー15により搬送されて行く際に、各室の温度を所定の設定温度となるようにヒーター11の出力をそれぞれ制御して、黒鉛被膜の原料となるガスをガス入り口13から供給しながら、材料表面に黒鉛被膜を被覆することができる。   FIG. 1 is a schematic sectional view of a roller hearth kiln. The roller hearth kiln 10 used in the present invention was supplied with, for example, a heater 11 for heating the material, a mortar 14 for charging the material, a rotating ceramic roller 15, and a gas inlet 13 for supplying gas into the furnace. And a gas outlet 12 for discharging the gas out of the furnace. The furnace main body is composed of, for example, eight chambers, and controls the output of the heater 11 so that the temperature of each chamber becomes a predetermined set temperature when the pot 14 loaded with materials is conveyed by the rollers 15. Thus, the surface of the material can be coated with the graphite film while supplying a gas as a raw material for the graphite film from the gas inlet 13.

また、本発明において使用できる連続炉としては、炉芯管が回転することにより内部の材料を混合、攪拌しながら表面を黒鉛被膜で被覆するロータリーキルンを使用することも好ましい。
ロータリーキルンについても、特に化学蒸着によって材料の表面を黒鉛被膜で被覆するのに好適で、電池の容量・サイクル特性の向上を達成できる負極活物質を確実にバラツキなく製造することができる。
Moreover, as a continuous furnace which can be used in the present invention, it is also preferable to use a rotary kiln whose surface is covered with a graphite film while mixing and stirring the internal materials by rotating the furnace core tube.
The rotary kiln is also particularly suitable for coating the surface of a material with a graphite coating by chemical vapor deposition, and a negative electrode active material capable of achieving improvement in battery capacity and cycle characteristics can be reliably produced without variation.

図3はロータリーキルンの概略図である。本発明で用いるロータリーキルン6は、炉芯管1と、炉芯管1を外部から加熱するヒーター2と、材料を連続的に供給するフィーダー3と、処理された製品(黒鉛被膜で被覆された材料)を回収する容器4と、炉芯管1の外壁に設けられたエアノッカー5を有する。本発明では、このようなロータリーキルン6を用いて、温度を所定の設定温度となるようにヒーター2の出力を制御し、黒鉛被膜の原料となるガスをガス入り口から供給しながら、材料表面に黒鉛被膜を被覆することができる。
図4はロータリーキルン6の炉芯管1の断面図である。本発明で用いる炉芯管1は外側が金属で、内側の接粉部がカーボンの2重構造であることが好ましい。黒鉛被膜を蒸着する際に粒子の凝集が起こり、炉芯管の内壁にも付着する恐れがあり、これを抑制するには内壁(接粉部)の材質がカーボンであることが好ましい。ここでカーボンとは、CIP材、押出材、モールド材、カーボンコンポジットと呼ばれる炭素繊維(CF)と樹脂(主にエポキシ等の熱硬化性樹脂)の複合素材、またC/Cコンポジットと呼ばれる炭素繊維と炭素または黒鉛マトリックスの先進複合材料などを用いることができ、特に限定されるものではない。また、更に付着を少なくするには、炉芯管1の外壁にエアノッカー5などを設置して炉芯管1を定期的に振動させることが有効であり、この点で外壁が金属であることが好ましい。この材質は特に限定されるものではなく、温度など使用条件によって、ステンレス、インコネル、ハステロイ、耐熱鋳鋼など適宜選択すればよい。また、外壁がアルミナ、SiCなどのセラミック製であると衝撃で割れる恐れがある。上記のような特定の材質、構造のロータリーキルンを用いることで、黒鉛被膜の被覆を長時間安定して実施できる。
FIG. 3 is a schematic view of a rotary kiln. The rotary kiln 6 used in the present invention includes a furnace core tube 1, a heater 2 that heats the furnace core tube 1 from the outside, a feeder 3 that continuously supplies the material, and a processed product (a material coated with a graphite coating). ) And an air knocker 5 provided on the outer wall of the furnace core tube 1. In the present invention, using such a rotary kiln 6, the output of the heater 2 is controlled so that the temperature becomes a predetermined set temperature, and a gas as a raw material for the graphite coating is supplied from the gas inlet, while the graphite is applied to the material surface. A coating can be applied.
FIG. 4 is a cross-sectional view of the furnace core tube 1 of the rotary kiln 6. It is preferable that the furnace core tube 1 used in the present invention has a double structure in which the outer side is a metal and the inner powder contact part is carbon. When the graphite coating is deposited, the particles may aggregate and adhere to the inner wall of the furnace core tube. To suppress this, it is preferable that the material of the inner wall (the powder contact portion) is carbon. Carbon is a CIP material, extruded material, molding material, a composite material of carbon fiber (CF) and resin (mainly thermosetting resin such as epoxy) called carbon composite, and carbon fiber called C / C composite. An advanced composite material of carbon and graphite matrix can be used, and is not particularly limited. In order to further reduce the adhesion, it is effective to install an air knocker 5 or the like on the outer wall of the furnace core tube 1 to periodically vibrate the furnace core tube 1. In this respect, the outer wall should be made of metal. preferable. This material is not particularly limited, and may be appropriately selected from stainless steel, Inconel, Hastelloy, heat-resistant cast steel, etc., depending on use conditions such as temperature. Further, if the outer wall is made of a ceramic such as alumina or SiC, there is a risk of cracking due to impact. By using the rotary kiln having the specific material and structure as described above, the graphite film can be stably coated for a long time.

このときの処理温度は800〜1300℃が好ましく、さらに900〜1200℃がより好ましい。また、ロータリーキルンを用いる場合には、処理温度900〜1000℃が特に好ましい。
処理温度が800℃以上であれば、効率的に黒鉛被覆が行われ、処理時間も短時間にできるため生産性が良い。また、1300℃より高いと、化学蒸着処理により粒子同士が融着、凝集を起こす可能性があり、凝集面で導電性被膜が形成されず、リチウムイオン二次電池の負極活物質として用いた場合、サイクル性能が低下するおそれがある。また、材料が珪素複合体粉末の場合には、複合体粉末中の珪素微粒子の結晶化が進み、リチウムイオン二次電池の負極活物質として用いた場合に充電時の膨張が大きくなるおそれもある。ここで、処理温度とは装置内における最高設定温度のことで、連続式のローラーハースキルンやロータリーキルンの場合、炉の中央部の温度が該当することが多い。
The treatment temperature at this time is preferably 800 to 1300 ° C, more preferably 900 to 1200 ° C. Moreover, when using a rotary kiln, the process temperature of 900-1000 degreeC is especially preferable.
When the processing temperature is 800 ° C. or higher, the graphite coating is efficiently performed and the processing time can be shortened, so that productivity is good. Further, when the temperature is higher than 1300 ° C., particles may be fused and aggregated by chemical vapor deposition, and when the conductive film is not formed on the aggregated surface, it is used as a negative electrode active material of a lithium ion secondary battery. , There is a risk that the cycle performance is reduced. In addition, when the material is a silicon composite powder, crystallization of silicon fine particles in the composite powder proceeds, and when used as a negative electrode active material of a lithium ion secondary battery, there is a possibility that expansion during charging may increase. . Here, the processing temperature is the maximum set temperature in the apparatus. In the case of a continuous roller hearth kiln or rotary kiln, the temperature at the center of the furnace often corresponds.

なお、処理時間は目的とする黒鉛被覆量、処理温度、ガス(有機物ガス)の濃度(流速)や導入量等によって適宜選定されるが、通常、最高温度域での滞留時間として1〜10時間、特に2〜7時間が経済的にも効率的である。また、ロータリーキルンを用いる場合には1〜4時間が経済的に特に好ましい。   The treatment time is appropriately selected depending on the target graphite coating amount, treatment temperature, gas (organic gas) concentration (flow rate), introduction amount, and the like. Usually, the residence time in the maximum temperature range is 1 to 10 hours. In particular, 2 to 7 hours are economically efficient. Moreover, when using a rotary kiln, 1-4 hours are especially preferable economically.

本発明において炉内へ供給する有機物ガスを発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択される。
例えば、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
As the organic material used as a raw material for generating the organic gas supplied to the furnace in the present invention, a material that can be pyrolyzed at the above heat treatment temperature to generate carbon (graphite) is selected particularly in a non-acidic atmosphere.
For example, hydrocarbons such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, etc., alone or as a mixture, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, And monocyclic to tricyclic aromatic hydrocarbons such as chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, or a mixture thereof. Further, gas light oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.

次に本発明の製造方法において連続炉で黒鉛被覆を施した導電性粉末(負極活物質)の物性について説明する。
黒鉛被覆量は特に限定されるものではないが、0.3〜40質量%、好ましくは0.5〜30質量%、更に好ましくは2〜20質量%である。黒鉛被覆量が0.3質量%未満では十分な導電性を維持できなく、結果として非水電解質二次電池に用いた場合にサイクル性が低下することがある。逆に黒鉛被覆量が40質量%を超えても効果の向上が見られないばかりか、負極材料に占める黒鉛の割合が多くなり、非水電解質二次電池に用いた場合、充放電容量が低下することがある。
Next, physical properties of the conductive powder (negative electrode active material) coated with graphite in a continuous furnace in the production method of the present invention will be described.
The graphite coating amount is not particularly limited, but is 0.3 to 40% by mass, preferably 0.5 to 30% by mass, and more preferably 2 to 20% by mass. When the graphite coating amount is less than 0.3% by mass, sufficient conductivity cannot be maintained, and as a result, the cycle performance may be lowered when used in a non-aqueous electrolyte secondary battery. On the contrary, not only the improvement of the effect is not seen even if the graphite coating amount exceeds 40% by mass, but the proportion of graphite in the negative electrode material increases, and the charge / discharge capacity decreases when used in a non-aqueous electrolyte secondary battery. There are things to do.

本発明で得られた非水電解質二次電池負極活物質を用いて、高品質で低コストのリチウムイオン二次電池や電気化学キャパシタを製造することができる。
例えばリチウムイオン二次電池は、上記負極活物質を用いる点に特徴を有し、負極に用いるその他の材料や、正極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoSなどの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどの単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
Using the negative electrode active material of the non-aqueous electrolyte secondary battery obtained in the present invention, a high-quality and low-cost lithium ion secondary battery or electrochemical capacitor can be produced.
For example, a lithium ion secondary battery is characterized in that the negative electrode active material is used, and other materials used for the negative electrode, materials such as a positive electrode, an electrolyte, a separator, and a battery shape are not limited. For example, as the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , and MoS 2 , chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used, and as the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like alone or in two types The above is used in combination. Various other non-aqueous electrolytes and solid electrolytes can also be used.

なお、本発明で製造した非水電解質二次電池用負極活物質を用いて負極を作製する場合、負極活物質に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。   In addition, when producing a negative electrode using the negative electrode active material for nonaqueous electrolyte secondary batteries manufactured by this invention, electrically conductive agents, such as graphite, can be added to a negative electrode active material. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal powder such as Zn, Ag, Sn, Si, metal fiber or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch carbon fiber, PAN carbon fiber, various resin fired bodies Such graphite can be used.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
平均粒子径8μmの一般式SiO(x=1.02)で表される酸化珪素粉末40gを、内寸100mm×100mm、高さ20mmのアルミナ製匣鉢に仕込んだ。仕込んだ粉体層の厚みは約5mmであった。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example 1)
40 g of silicon oxide powder represented by the general formula SiO x (x = 1.02) having an average particle diameter of 8 μm was charged into an alumina sagger having an inner dimension of 100 mm × 100 mm and a height of 20 mm. The thickness of the charged powder layer was about 5 mm.

これを、図1に示すような炉内長1.8mのローラーハースキルン(ノリタケカンパニーリミテド(株)製)に横2列、縦1列に2個の匣鉢を並べて炉内を通した。8ゾーン(室)あるうちの4ゾーン(3−6室)を最高の1100℃、その手前の1ゾーン(2室)を850℃に設定し、材料が1100℃で5時間保持されるように3mm/分で搬送した。図2に炉内のゾーン別の設定温度と実測温度を示す。
ガスは、メタンを窒素で2体積%に希釈したものを、140L/minで炉下部のガス入り口から流入させた。炉出口から匣鉢を回収し、匣鉢1個につき約43gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量6.8質量%の導電性粉末であった。
This was passed through the furnace with two bowls arranged in two rows and one row in a roller hearth kiln (manufactured by Noritake Company Limited) having a furnace length of 1.8 m as shown in FIG. Of the 8 zones (rooms), 4 zones (3-6 rooms) are set to the highest 1100 ° C, and the previous zone (2 rooms) is set to 850 ° C so that the material is held at 1100 ° C for 5 hours. It was conveyed at 3 mm / min. FIG. 2 shows the set temperature and actual temperature for each zone in the furnace.
As the gas, methane diluted to 2% by volume with nitrogen was introduced at 140 L / min from the gas inlet at the bottom of the furnace. The mortar was collected from the furnace outlet to obtain about 43 g of black powder per mortar. The obtained black powder was a conductive powder having an average particle size = 8.2 μm and a graphite coating amount of 6.8% by mass.

○電池評価
次に、得られた導電性粉末を負極活物質として用いた電池評価を、以下の方法で行った。
まず、得られた導電性粉末にポリイミドを10質量%加え、更にN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cmに打ち抜き、負極とした。
Battery Evaluation Next, battery evaluation using the obtained conductive powder as a negative electrode active material was performed by the following method.
First, 10% by mass of polyimide is added to the obtained conductive powder, and further N-methylpyrrolidone is added to form a slurry. The electrode was pressure-molded by the following, and this electrode was vacuum-dried at 350 ° C. for 1 hour, and then punched out to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cmの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cmを下回った時点で充電を終了した。放電は0.5mA/cmの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。 The prepared lithium ion secondary battery was allowed to stand overnight at room temperature, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.

以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量2036mAh/g、初回放電容量1649mAh/g、初回充放電効率81.0%、50サイクル目の放電容量1517mAh/g、50サイクル後のサイクル保持率92%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity is 2036 mAh / g, the initial discharge capacity is 1649 mAh / g, the initial charge and discharge efficiency is 81.0%, the 50th cycle discharge capacity is 1517 mAh / g, and the cycle retention rate after 50 cycles is 92%. And it was confirmed that it is a lithium ion secondary battery excellent in first-time charge / discharge efficiency and cycle property.

(実施例2)
実施例1と同様の酸化珪素粉末40gを、実施例1と同様のアルミナ製匣鉢に仕込んだ。これを50個準備して、実施例1と同じローラーハースキルンに横2列で連続的に通した。ゾーンの温度設定や搬送速度、ガス条件も実施例1と同じに設定し、最初に炉に入った匣鉢が出口から出てきた時点で条件成立とした。この時、炉内に同時に存在する匣鉢は横2列、縦15行の計30個となる。条件成立後に炉入り口から入った最初の匣鉢を炉出口から回収し、その後10行分(×2列=20個)の匣鉢から粉末を取り出して質量を測定したところ、全て42.1〜42.4gの範囲内であった。得られた黒色粉末の黒鉛被覆量を表1に示す。表1に示すように匣鉢間でのばらつきが少ない導電性粉末であった。
(Example 2)
40 g of silicon oxide powder similar to that in Example 1 was charged in the same alumina sagger as in Example 1. Fifty of these were prepared and passed through the same roller hearth kiln as in Example 1 in two rows. The temperature setting of the zone, the conveyance speed, and the gas conditions were also set in the same manner as in Example 1, and the conditions were satisfied when the sagger that first entered the furnace came out of the outlet. At this time, the total number of mortars simultaneously present in the furnace is 30 in 2 rows and 15 rows. After the conditions were established, the first mortar entered from the furnace inlet was recovered from the furnace outlet, and then the powder was taken out from the mortar of 10 rows (× 2 rows = 20 pieces) and the mass was measured. It was within the range of 42.4 g. Table 1 shows the graphite coverage of the obtained black powder. As shown in Table 1, the conductive powder had little variation between the mortars.

Figure 2015046397
Figure 2015046397

この導電性粉末を匣鉢2個分抽出して、実施例1と同じ方法で試験用電池を作製し、同様な電池評価を行った。
この結果、2行―1列目(実施例2−1)が初回充電容量2040mAh/g、初回放電容量1651mAh/g、初回充放電効率80.9%、50サイクル目の放電容量1486mAh/g、50サイクル後のサイクル保持率90%であり、もう1つの8行―2列目(実施例2−2)が初回充電容量2039mAh/g、初回放電容量1652mAh/g、初回充放電効率81.0%、50サイクル目の放電容量1487mAh/g、50サイクル後のサイクル保持率90%であった。
This conductive powder was extracted for two mortars, a test battery was produced in the same manner as in Example 1, and the same battery evaluation was performed.
As a result, the 2nd row-1st column (Example 2-1) is the initial charge capacity 2040 mAh / g, the initial discharge capacity 1651 mAh / g, the initial charge / discharge efficiency 80.9%, the 50th cycle discharge capacity 1486 mAh / g, The cycle retention after 50 cycles is 90%, and the other 8th row-2nd column (Example 2-2) is the initial charge capacity 2039 mAh / g, the initial discharge capacity 1652 mAh / g, and the initial charge / discharge efficiency 81.0. %, The discharge capacity at the 50th cycle was 1487 mAh / g, and the cycle retention after 50 cycles was 90%.

(比較例1)
実施例1と同様の酸化珪素粉末40gを同様の匣鉢に入れ、バッチ式加熱炉内に仕込んだ。その後、油回転式真空ポンプで100Pa以下まで減圧しつつ、300℃/hrの昇温速度で1100℃まで昇温、保持した。次に、CHガスを0.1NL/minで流入し、5時間の黒鉛被覆処理を行った。なお、この時の減圧度1000Paであった。処理後は降温し、42.3gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量5.3質量%の導電性粉末であった。
(Comparative Example 1)
40 g of silicon oxide powder similar to that in Example 1 was placed in the same mortar and charged into a batch type heating furnace. Then, it heated up and hold | maintained to 1100 degreeC with the temperature increase rate of 300 degrees C / hr, reducing pressure to 100 Pa or less with an oil rotary vacuum pump. Next, CH 4 gas was introduced at 0.1 NL / min, and a graphite coating treatment was performed for 5 hours. The degree of vacuum at this time was 1000 Pa. After the treatment, the temperature was lowered to obtain 42.3 g of black powder. The obtained black powder was a conductive powder having an average particle size = 8.2 μm and a graphite coating amount of 5.3 mass%.

この導電性粉末を用いて実施例1と同じ方法で試験用電池を作製し、同様な電池評価を行った結果、初回充放電容量2037mAh/g、初回放電容量1645mAh/g、初回充放電効率80.8%、50サイクル目の放電容量1481mAh/g、50サイクル後のサイクル保持率90%であった。   Using this conductive powder, a test battery was prepared in the same manner as in Example 1, and the same battery evaluation was performed. As a result, the initial charge / discharge capacity was 2037 mAh / g, the initial discharge capacity was 1645 mAh / g, and the initial charge / discharge efficiency was 80. The discharge capacity at the 50th cycle was 1481 mAh / g, and the cycle retention after the 50th cycle was 90%.

実施例1、2及び比較例1の電池評価結果を表2に示す。実施例1、2で得られた導電性粉末は、比較例1のバッチ式炉で製造した導電性粉末と電池評価上同等の性能であった。以上より、リチウムイオンを吸蔵、放出し得る材料の表面を連続的に黒鉛被膜で被覆する方法に、連続炉(ローラーハースキルン)が使用可能であることが確認できた。また、連続炉であるため、連続的に処理でき、バッチ炉に比べて生産性は大幅に良くなる。   Table 2 shows the battery evaluation results of Examples 1 and 2 and Comparative Example 1. The conductive powder obtained in Examples 1 and 2 was equivalent in performance to the conductive powder produced in the batch type furnace of Comparative Example 1 in terms of battery evaluation. From the above, it was confirmed that a continuous furnace (roller hearth kiln) can be used as a method of continuously covering the surface of a material capable of inserting and extracting lithium ions with a graphite film. Moreover, since it is a continuous furnace, it can process continuously and productivity improves significantly compared with a batch furnace.

Figure 2015046397
Figure 2015046397

(実施例3)
平均粒子径8μmの一般式SiO(x=0.96)で表される酸化珪素粉末を、図3に示すような、炉芯管内径200mm、炉芯管長3mのロータリーキルンに、スクリュー式フィーダーを使用して1kg/時間で供給した。炉芯管の材質は図4に示すような外側:耐熱鋳鋼、内側:カーボンの2重管構造とした。ヒーターは1020℃に設定した。このとき、炉芯管中央部は1000℃であった。炉芯管は、原料供給部側が高くなるように1°の傾きに調整した。炉芯管の回転数は、0.4回転/分に設定した。
また、図3に示すようにエアノッカー5を3基設置し、それぞれ1回/30秒の間隔で、10秒づつずれて作動させるよう設定した。
ガスは、メタンを窒素で15体積%に希釈したものを、30L/minでガス入り口から流入させた。原料の供給開始から5時間経過すると時間当たりの排出量が安定したため、その時点から2時間分の生成物を回収した。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量5.8質量%の導電性粉末であった。
Example 3
The silicon oxide powder represented by the general formula SiO x (x = 0.96) having an average particle diameter of 8 μm is placed in a rotary kiln having a furnace core tube inner diameter of 200 mm and a furnace core tube length of 3 m as shown in FIG. Used and supplied at 1 kg / hour. The material of the furnace core tube was a double tube structure of outside: heat-resistant cast steel and inside: carbon as shown in FIG. The heater was set at 1020 ° C. At this time, the center part of the furnace core tube was 1000 ° C. The furnace core tube was adjusted to an inclination of 1 ° so that the raw material supply unit side was higher. The rotation speed of the furnace core tube was set to 0.4 rotation / min.
In addition, as shown in FIG. 3, three air knockers 5 were installed and set to operate at intervals of once / 30 seconds, with a shift of 10 seconds.
As the gas, methane diluted to 15% by volume with nitrogen was introduced from the gas inlet at 30 L / min. Since the discharge amount per hour became stable after 5 hours from the start of the supply of raw materials, the product for 2 hours was recovered from that point. The resulting black powder was a conductive powder having an average particle size = 8.2 μm and a graphite coverage of 5.8% by mass.

○電池評価
次に、得られた導電性粉末を負極活物質として用いた電池評価を、以下の方法で行った。
まず、得られた導電性粉末にポリイミドを10質量%加え、更にN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cmに打ち抜き、負極とした。
Battery Evaluation Next, battery evaluation using the obtained conductive powder as a negative electrode active material was performed by the following method.
First, 10% by mass of polyimide is added to the obtained conductive powder, and further N-methylpyrrolidone is added to form a slurry. The electrode was pressure-molded by the following, and this electrode was vacuum-dried at 350 ° C. for 1 hour, and then punched out to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cmの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cmを下回った時点で充電を終了した。放電は0.5mA/cmの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。 The prepared lithium ion secondary battery was allowed to stand overnight at room temperature, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.

以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量2036mAh/g、初回放電容量1649mAh/g、初回充放電効率81.0%、50サイクル後の容量保持率92%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity is 2036 mAh / g, the initial discharge capacity is 1649 mAh / g, the initial charge / discharge efficiency is 81.0%, the capacity retention is 50% after 50 cycles, and the initial charge / discharge efficiency and cycle performance are high. It was confirmed that this was an excellent lithium ion secondary battery.

(実施例4)
実施例3と同じ原料を使用し、実施例3と同じロータリーキルンにスクリュー式フィーダーを使用して2kg/時間で供給した。ガスは、メタンを窒素で30体積%に希釈したものを、30L/minでガス入り口から流入させた。その他の条件は実施例3と同様とした。原料の供給開始から5時間経過すると時間当たりの排出量が安定したため、その時点から2時間分の生成物を回収した。得られた黒色粉末は、平均粒子径=8.1μm、黒鉛被覆量5.3質量%の導電性粉末であった。
Example 4
The same raw material as in Example 3 was used, and the same rotary kiln as in Example 3 was supplied at 2 kg / hour using a screw feeder. As the gas, methane diluted to 30% by volume with nitrogen was introduced from the gas inlet at 30 L / min. Other conditions were the same as in Example 3. Since the discharge amount per hour became stable after 5 hours from the start of the supply of raw materials, the product for 2 hours was recovered from that point. The obtained black powder was a conductive powder having an average particle size = 8.1 μm and a graphite coating amount of 5.3 mass%.

(実施例5)
原料、装置共に実施例3のものを使用し、運転条件も実施例3と同様であるが、エアノッカーを作動させずに運転を行った。
炉芯管内壁に固着が発生して原料供給開始から5時間経過して排出量が安定したが、約8時間経過したあたりから時間当たり排出量が減少し始め、最終的には閉塞により排出されなくなったので運転を中断せざるを得なくなった。
排出が安定していた時点で回収したサンプルは黒色粉末で、平均粒子径=8.1μm、黒鉛被覆量5.7質量%の導電性粉末であった。
(Example 5)
The raw material and the apparatus were the same as in Example 3, and the operating conditions were the same as in Example 3. However, the operation was performed without operating the air knocker.
The discharge became stable after 5 hours from the start of raw material supply due to sticking to the inner wall of the furnace core tube, but the discharge per hour started to decrease after about 8 hours, and finally it was discharged due to clogging I had to stop driving because it was gone.
The sample collected when the discharge was stable was a black powder, which was a conductive powder having an average particle diameter = 8.1 μm and a graphite coating amount of 5.7% by mass.

(比較例2)
実施例3と同様の酸化珪素粉末40gをカーボン製トレイに10mmの層厚みとなるように入れ、バッチ式加熱炉内に仕込んだ。その後、油回転式真空ポンプで100Pa以下まで減圧しつつ、300℃/hrの昇温速度で1000℃まで昇温、保持した。次に、メタンガスを0.1NL/minで流入し、15時間の黒鉛被覆処理を行った。なお、この時の減圧度は1000Paであった。処理後は降温し、42gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.2μm、黒鉛被覆量5.1質量%の導電性粉末であった。
(Comparative Example 2)
40 g of silicon oxide powder similar to that in Example 3 was placed in a carbon tray so as to have a layer thickness of 10 mm, and charged in a batch type heating furnace. Then, it heated up and hold | maintained to 1000 degreeC with the temperature increase rate of 300 degrees C / hr, reducing pressure to 100 Pa or less with an oil rotary vacuum pump. Next, methane gas was introduced at a rate of 0.1 NL / min, and a graphite coating treatment was performed for 15 hours. In addition, the pressure reduction degree at this time was 1000 Pa. After the treatment, the temperature was lowered to obtain 42 g of black powder. The obtained black powder was a conductive powder having an average particle size = 8.2 μm and a graphite coating amount of 5.1% by mass.

この導電性粉末を用いて実施例3と同じ方法で試験用電池を作製し、同様な電池評価を行った結果、初回充電容量2037mAh/g、初回放電容量1645mAh/g、初回充放電効率80.8%、50サイクル後の容量保持率90%であった。   Using this conductive powder, a test battery was prepared in the same manner as in Example 3, and the same battery evaluation was performed. As a result, the initial charge capacity was 2037 mAh / g, the initial discharge capacity was 1645 mAh / g, and the initial charge / discharge efficiency was 80. The capacity retention after 8% and 50 cycles was 90%.

(比較例3)
実施例3と同様の酸化珪素粉末40gをカーボン製トレイに10mmの層厚みとなるように入れ、バッチ式加熱炉内に仕込んだ。常圧のまま300℃/hrの昇温速度で1000℃まで昇温、保持した。次に、メタンを窒素で20体積%に希釈したものを、1NL/minで流入し、5時間の黒鉛被覆処理を行った。処理後は降温し、42.1gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=8.3μm、黒鉛被覆量5.0質量%の導電性粉末であった。
(Comparative Example 3)
40 g of silicon oxide powder similar to that in Example 3 was placed in a carbon tray so as to have a layer thickness of 10 mm, and charged in a batch type heating furnace. The temperature was raised to 1000 ° C. and held at a temperature raising rate of 300 ° C./hr with normal pressure. Next, what diluted methane to 20 volume% with nitrogen was flowed in at 1 NL / min, and the graphite coating process was performed for 5 hours. After the treatment, the temperature was lowered to obtain 42.1 g of black powder. The obtained black powder was a conductive powder having an average particle size = 8.3 μm and a graphite coating amount of 5.0% by mass.

この導電性粉末を用いて実施例3と同じ方法で試験用電池を作製し、同様な電池評価を行った結果、初回充電容量1854mAh/g、初回放電容量1481mAh/g、初回充放電効率79.9%、50サイクル後の容量保持率85%と、実施例3−5と比較して容量が低く、サイクル特性も悪かった。   Using this conductive powder, a test battery was prepared in the same manner as in Example 3, and the same battery evaluation was performed. As a result, the initial charge capacity 1854 mAh / g, the initial discharge capacity 1481 mAh / g, and the initial charge / discharge efficiency 79. The capacity retention was 85% after 9% and 50 cycles, the capacity was lower than in Example 3-5, and the cycle characteristics were also poor.

実施例3−5及び比較例2,3の電池評価結果を表3に示す。実施例3−5で得られた導電性粉末は、いずれも比較例2のバッチ式炉で減圧下にて製造した導電性粉末と電池評価上同等の性能であった。比較例3のように、バッチ式炉でも常圧で製造すると性能が低下することが確認されたが、実施例3では常圧でもバッチ式の減圧処理と同等の性能が得られた。
また、表3中の「C使用率」とは、通気したガスに含有されるC(炭素)分のうち何%が被覆に使用されたかを計算した数値である。トレイに粉末を静置させるバッチ式と比較して、攪拌されながら処理ガスと接触するロータリーキルンでは非常に使用率が高く、経済的であることも確認できた。
The battery evaluation results of Example 3-5 and Comparative Examples 2 and 3 are shown in Table 3. The conductive powder obtained in Example 3-5 all had the same performance in terms of battery evaluation as that of the conductive powder produced in the batch furnace of Comparative Example 2 under reduced pressure. As in Comparative Example 3, it was confirmed that the performance deteriorated even when produced in a batch furnace at normal pressure, but in Example 3, performance equivalent to that of the batch-type decompression treatment was obtained even at normal pressure.
Further, “C usage rate” in Table 3 is a numerical value obtained by calculating how much of the C (carbon) content contained in the aerated gas was used for coating. Compared with the batch type in which the powder is allowed to stand on the tray, the rotary kiln that is in contact with the processing gas while being stirred has a very high usage rate and can be confirmed to be economical.

以上より、リチウムイオンを吸蔵、放出し得る材料の表面を連続的に黒鉛被膜で被覆する方法に、連続炉(ロータリーキルン)が使用可能であることが確認できた。連続炉であるため連続的に処理でき、バッチ炉に比べて生産性は大幅に良くなり、攪拌しつつ効率良く処理ガスと接触するため、処理ガス中のC転換率も高まる。また、炉芯管の接粉部の材質をカーボンとし、さらにエアノッカーで定期的に炉芯管を振動させることで、炉芯管内壁への粉末付着成長を防止し、長時間の安定操業が可能となる。   From the above, it has been confirmed that a continuous furnace (rotary kiln) can be used as a method of continuously covering the surface of a material capable of inserting and extracting lithium ions with a graphite coating. Since it is a continuous furnace, it can be continuously processed, and the productivity is significantly improved as compared with a batch furnace. The C conversion rate in the processing gas is also increased because it efficiently contacts the processing gas while stirring. In addition, the material of the powder contact part of the furnace core tube is made of carbon, and the furnace core tube is vibrated periodically with an air knocker to prevent powder from growing on the inner wall of the furnace core tube, enabling stable operation for a long time. It becomes.

Figure 2015046397
Figure 2015046397

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…炉芯管、 2…ヒーター、 3…フィーダー、 4…回収容器、
5…エアノッカー、 6…ロータリーキルン、
10…ローラーハースキルン、 11…ヒーター、 12…ガス出口、
13…ガス入り口、 14…匣鉢、 15…ローラー。
1 ... Furnace core tube, 2 ... Heater, 3 ... Feeder, 4 ... Recovery container,
5 ... Air knocker, 6 ... Rotary kiln,
10 ... roller hearth kiln, 11 ... heater, 12 ... gas outlet,
13 ... gas inlet, 14 ... basket, 15 ... roller.

Claims (8)

リチウムイオンを吸蔵、放出し得る材料の表面が黒鉛被膜で被覆された非水電解質二次電池用負極活物質の製造方法であって、
前記材料の表面を黒鉛被膜で被覆する工程を、連続炉で行い、前記連続炉として、炉芯管が回転することにより内部の前記材料を混合・攪拌しながら表面を黒鉛被膜で被覆するロータリーキルンを用い、前記炉芯管を、定期的に振動させることを特徴とする非水電解質二次電池用負極活物質の製造方法。
A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery in which the surface of a material capable of inserting and extracting lithium ions is coated with a graphite film,
The step of coating the surface of the material with a graphite film is performed in a continuous furnace, and as the continuous furnace, a rotary kiln that coats the surface with a graphite film while mixing and stirring the material inside by rotating a furnace core tube A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, wherein the furnace core tube is vibrated periodically.
前記炉芯管の接粉部の材質として、カーボンを使用することを特徴とする請求項1に記載の非水電解質二次電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein carbon is used as a material of the powder contact portion of the furnace core tube. 前記炉芯管の定期的な振動を、エアノッカーで行うことを特徴とする請求項1に記載の非水電解質二次電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the furnace core tube is periodically vibrated by an air knocker. 前記材料の表面を黒鉛被膜で被覆する工程において、有機物ガス及び/又は蒸気中、800〜1300℃で化学蒸着により前記材料の表面を黒鉛被膜で被覆することを特徴とする請求項1乃至請求項3のいずれか一項に記載の非水電解質二次電池用負極活物質の製造方法。   2. The process of coating the surface of the material with a graphite film, wherein the surface of the material is coated with a graphite film by chemical vapor deposition at 800 to 1300 ° C. in an organic gas and / or vapor. 4. The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 3. 前記リチウムイオンを吸蔵、放出し得る材料を、珪素、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(0.5≦x<1.6)で表される酸化珪素のいずれか、又はこれらのうち2以上の混合物とすることを特徴とする請求項1乃至請求項4のいずれか一項に記載の非水電解質二次電池用負極活物質の製造方法。 The material capable of occluding and releasing lithium ions is composed of silicon, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, and an oxidation represented by the general formula SiO x (0.5 ≦ x <1.6). The method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein any one of silicon or a mixture of two or more thereof is used. 請求項1乃至請求項5のいずれか一項に記載の非水電解質二次電池用負極活物質の製造方法により製造したものであることを特徴とする非水電解質二次電池用負極活物質。   A negative electrode active material for a nonaqueous electrolyte secondary battery, which is produced by the method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5. 請求項6に記載の非水電解質二次電池用負極活物質を使用したものであることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 6. 請求項6に記載の非水電解質二次電池用負極活物質を使用したものであることを特徴とする電気化学キャパシタ。   An electrochemical capacitor using the negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 6.
JP2014210531A 2011-05-26 2014-10-15 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery Active JP5964917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210531A JP5964917B2 (en) 2011-05-26 2014-10-15 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011117962 2011-05-26
JP2011117962 2011-05-26
JP2014210531A JP5964917B2 (en) 2011-05-26 2014-10-15 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011221262A Division JP5698102B2 (en) 2011-05-26 2011-10-05 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015152219A Division JP5965040B2 (en) 2011-05-26 2015-07-31 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015046397A true JP2015046397A (en) 2015-03-12
JP5964917B2 JP5964917B2 (en) 2016-08-03

Family

ID=47675818

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2011221262A Active JP5698102B2 (en) 2011-05-26 2011-10-05 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2014210647A Active JP5964919B2 (en) 2011-05-26 2014-10-15 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2014210531A Active JP5964917B2 (en) 2011-05-26 2014-10-15 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2015152219A Active JP5965040B2 (en) 2011-05-26 2015-07-31 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2011221262A Active JP5698102B2 (en) 2011-05-26 2011-10-05 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2014210647A Active JP5964919B2 (en) 2011-05-26 2014-10-15 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015152219A Active JP5965040B2 (en) 2011-05-26 2015-07-31 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (4) JP5698102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192349A (en) * 2015-03-31 2016-11-10 株式会社豊田自動織機 Method of manufacturing carbon-coated silicon-based negative active material particle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100047A (en) * 2014-11-18 2016-05-30 信越化学工業株式会社 Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
JP6312212B2 (en) 2014-11-18 2018-04-18 信越化学工業株式会社 Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6312213B2 (en) * 2014-11-18 2018-04-18 信越化学工業株式会社 Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6339924B2 (en) * 2014-11-26 2018-06-06 信越化学工業株式会社 CVD device for silicon-based negative electrode active material, method for manufacturing silicon-based negative electrode active material, method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing lithium ion secondary battery
JP6280515B2 (en) * 2015-03-31 2018-02-14 信越化学工業株式会社 Carbon film forming apparatus, carbon film forming method, method for producing negative electrode material for lithium ion battery, and method for producing lithium ion battery
JP6451598B2 (en) * 2015-11-09 2019-01-16 信越化学工業株式会社 Method of manufacturing negative electrode active material for rotary cylindrical furnace and non-aqueous electrolyte secondary battery
JP6477456B2 (en) * 2015-12-22 2019-03-06 信越化学工業株式会社 Method of manufacturing negative electrode active material for rotary cylindrical furnace and non-aqueous electrolyte secondary battery
JP6686652B2 (en) * 2016-04-13 2020-04-22 株式会社豊田自動織機 Method for producing carbon-coated Si-containing negative electrode active material
US20180316004A1 (en) * 2016-06-09 2018-11-01 Hitachi Metals, Ltd. Method for producing cathode active material used for lithium secondary battery
DE102016221782A1 (en) 2016-11-07 2018-05-09 Wacker Chemie Ag Carbon coated silicon particles for lithium ion batteries
JP2018206594A (en) * 2017-06-02 2018-12-27 信越化学工業株式会社 Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
CN113124683B (en) * 2020-01-15 2022-09-27 株洲弗拉德科技有限公司 Vacuum vapor deposition furnace with feeder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379984A (en) * 1989-08-21 1991-04-04 Mitsui Toatsu Chem Inc High heat resistant rotary kiln
JPH08171911A (en) * 1994-12-16 1996-07-02 Mitsubishi Gas Chem Co Inc Manufacture of carbon material for negative electrode of nonaqueous solvent secondary battery
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2007216212A (en) * 2006-01-19 2007-08-30 Asahi Kasei Chemicals Corp Oxide catalyst for manufacturing unsaturated acid and unsaturated nitrile and manufacturing method thereof and method for manufacturing unsaturated acid and unsaturated nitrile
JP2009262146A (en) * 2008-03-31 2009-11-12 Asahi Kasei Chemicals Corp Method for manufacturing oxide catalyst
JP2011058785A (en) * 2009-09-14 2011-03-24 Takasago Ind Co Ltd Rotary kiln and battery material manufactured by the rotary kiln

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927324A (en) * 1995-05-09 1997-01-28 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000012021A (en) * 1998-06-23 2000-01-14 Nippon Steel Corp Carbon material for lithium secondary battery negative electrode
JP4252846B2 (en) * 2002-07-31 2009-04-08 パナソニック株式会社 Lithium secondary battery
JP4171897B2 (en) * 2003-04-24 2008-10-29 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP4684734B2 (en) * 2005-04-28 2011-05-18 Jx日鉱日石エネルギー株式会社 Carbonaceous materials for electrode materials
JP5196149B2 (en) * 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP2009224323A (en) * 2008-02-21 2009-10-01 Nippon Steel Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material
JP2010067437A (en) * 2008-09-10 2010-03-25 Sumitomo Chemical Co Ltd Electrode active material, electrode, and nonaqueous electrolyte secondary battery
CN102196994B (en) * 2009-10-22 2013-09-11 昭和电工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379984A (en) * 1989-08-21 1991-04-04 Mitsui Toatsu Chem Inc High heat resistant rotary kiln
JPH08171911A (en) * 1994-12-16 1996-07-02 Mitsubishi Gas Chem Co Inc Manufacture of carbon material for negative electrode of nonaqueous solvent secondary battery
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2007216212A (en) * 2006-01-19 2007-08-30 Asahi Kasei Chemicals Corp Oxide catalyst for manufacturing unsaturated acid and unsaturated nitrile and manufacturing method thereof and method for manufacturing unsaturated acid and unsaturated nitrile
JP2009262146A (en) * 2008-03-31 2009-11-12 Asahi Kasei Chemicals Corp Method for manufacturing oxide catalyst
JP2011058785A (en) * 2009-09-14 2011-03-24 Takasago Ind Co Ltd Rotary kiln and battery material manufactured by the rotary kiln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192349A (en) * 2015-03-31 2016-11-10 株式会社豊田自動織機 Method of manufacturing carbon-coated silicon-based negative active material particle

Also Published As

Publication number Publication date
JP5964919B2 (en) 2016-08-03
JP2013008654A (en) 2013-01-10
JP5964917B2 (en) 2016-08-03
JP2015046398A (en) 2015-03-12
JP2015228381A (en) 2015-12-17
JP5698102B2 (en) 2015-04-08
JP5965040B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5965040B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
EP2088221B1 (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
JP4171897B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP2019114559A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and secondary battery
JP3952180B2 (en) Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP6312212B2 (en) Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6451598B2 (en) Method of manufacturing negative electrode active material for rotary cylindrical furnace and non-aqueous electrolyte secondary battery
JP2011192453A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
KR20160065107A (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP2016100047A (en) Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2003317717A (en) Method for manufacturing negative electrode material of nonaqueous electrolyte secondary battery
JP2000106182A (en) Negative electrode material for lithium secondary battery and manufacture thereof, and the lithium secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP6477456B2 (en) Method of manufacturing negative electrode active material for rotary cylindrical furnace and non-aqueous electrolyte secondary battery
JP2004296161A (en) Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery
JP6312213B2 (en) Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6046594B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP6394498B2 (en) Graphite-coated particles and method for producing the same
JP2003308837A (en) Negative electrode material for lithium ion secondary battery and its manufacturing method
JP6975435B2 (en) Non-aqueous electrolyte secondary battery Negative electrode manufacturing method
JP2001202961A (en) Anode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP6173969B2 (en) Granular silicon oxide and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R150 Certificate of patent or registration of utility model

Ref document number: 5964917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150