JP2015044701A - Method for producing difluorophosphate - Google Patents

Method for producing difluorophosphate Download PDF

Info

Publication number
JP2015044701A
JP2015044701A JP2013175924A JP2013175924A JP2015044701A JP 2015044701 A JP2015044701 A JP 2015044701A JP 2013175924 A JP2013175924 A JP 2013175924A JP 2013175924 A JP2013175924 A JP 2013175924A JP 2015044701 A JP2015044701 A JP 2015044701A
Authority
JP
Japan
Prior art keywords
chloride
difluorophosphate
lithium
hexafluorophosphate
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175924A
Other languages
Japanese (ja)
Other versions
JP6199117B2 (en
Inventor
啓佑 九手
Keisuke Kude
啓佑 九手
阿部 拓郎
Takuo Abe
拓郎 阿部
浩樹 滝沢
Hiroki Takizawa
浩樹 滝沢
下田 光春
Mitsuharu Shimoda
光春 下田
義将 櫻井
Yoshimasa Sakurai
義将 櫻井
弘幸 上原
Hiroyuki Uehara
弘幸 上原
高橋 卓也
Takuya Takahashi
卓也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2013175924A priority Critical patent/JP6199117B2/en
Publication of JP2015044701A publication Critical patent/JP2015044701A/en
Application granted granted Critical
Publication of JP6199117B2 publication Critical patent/JP6199117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a difluorophosphate efficiently and conveniently without using a solvent.SOLUTION: There is provided a method for producing a difluorophosphate in which a hexafluorophosphate and moisture are reacted without using a solvent. In the method, the molar ratio between the hexafluorophosphate and the moisture is in the range of 1:1.05 to 1:4.04 and the molar ratio between the hexafluorophosphate and a chloride is in the range of 1:3.05 to 1:4.44.

Description

本発明は、リチウムイオン二次電池の電解液溶媒及び添加剤や、機能性材料中間体及び医薬品用中間体等に使用が期待されるジフルオロリン酸塩の製造方法に関するものである。   The present invention relates to a method for producing difluorophosphate which is expected to be used for an electrolyte solvent and an additive of a lithium ion secondary battery, a functional material intermediate and a pharmaceutical intermediate.

現在、リチウム二次電池は携帯電話、ビデオカメラやノートパソコン等の電子機器の電源として、広く普及している。また近年、環境保全問題やエネルギー問題から、電気自動車やパワーツール、夜間電力用の安価で安全性の高い大型リチウム二次電池の開発も進められている。これら大型化また高性能化するリチウム二次電池に対する要求として高性能化に向けた出力密度やエネルギー密度の向上、並びに高信頼性に向けた高温時や低温時の容量劣化の抑制、サイクル寿命の向上や安全性の向上が求められている。     Currently, lithium secondary batteries are widely used as power sources for electronic devices such as mobile phones, video cameras, and notebook computers. In recent years, the development of large-sized lithium secondary batteries that are inexpensive and highly safe for electric vehicles, power tools, and nighttime power has been promoted due to environmental conservation problems and energy problems. As demands for these larger and higher performance lithium secondary batteries, improvement of output density and energy density for higher performance, suppression of capacity deterioration at high and low temperatures for high reliability, cycle life Improvements and improvements in safety are required.

これまで上記課題を克服するため様々な改善が提案され、正極材料や負極材料、リチウム二次電池の構成部材の最適化が検討され、電解液についても使用される各種溶媒、例えば環状のエチレンカーボネート、プロピレンカーボネート等や鎖状のジメチルカーボネート、ジエチルカーボネート等や各種電解質としてヘキサフルオロリン酸リチウムや四フッ化ホウ酸リチウム、過塩素酸リチウム等、また、上記特性を改善するための添加剤としてフルオロエチレンカーボネートやtrans-ジフルオロエチレンカーボネート等の各種添加剤やこれらの組み合わせが提案されてきた。     Various improvements have been proposed to overcome the above-mentioned problems, and optimization of positive electrode materials, negative electrode materials, and components of lithium secondary batteries has been studied, and various solvents used for electrolytes, for example, cyclic ethylene carbonate , Propylene carbonate, etc., chain dimethyl carbonate, diethyl carbonate, etc., lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, etc. as various electrolytes, and fluoro as an additive for improving the above characteristics Various additives such as ethylene carbonate and trans-difluoroethylene carbonate and combinations thereof have been proposed.

このようなリチウム二次電池用電解液は上記電解液や電解質、添加剤の組み合わせや組成により反応性が異なるため、リチウム二次電池の性能や信頼性等の特性は大きく異なるものとなる。     Such lithium secondary battery electrolytes have different reactivities depending on the combination and composition of the above electrolytes, electrolytes, and additives. Therefore, the performance and reliability of lithium secondary batteries vary greatly.

こうした中で特許文献1には添加剤としてモノフルオロリン酸リチウムやジフルオロリン酸リチウムからなる群から選ばれた少なくとも1種を添加した非水系電解液を用いると、この添加剤がリチウムと反応し、良質な被膜が正極及び負極界面に形成されること、及び、この被膜が、充電状態の活物質と有機溶媒との接触を抑制して、活物質と電解液との接触を因とする非水系電解液の分解を抑制し、保存後の保存特性を向上させることが記載されている。     Under these circumstances, in Patent Document 1, when a non-aqueous electrolyte containing at least one selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate is used as an additive, the additive reacts with lithium. A good quality film is formed at the interface between the positive electrode and the negative electrode, and this film suppresses the contact between the charged active material and the organic solvent, and causes non-contact due to the contact between the active material and the electrolyte. It describes that the decomposition of the aqueous electrolyte is suppressed and the storage characteristics after storage are improved.

フルオロリン酸塩、特にジフルオロリン酸リチウムの製造方法としては様々な手法について検討・開発がなされている。たとえば、ヘキサフルオロリン酸リチウムを原料としてジフルオロリン酸リチウムを製造する方法が特許文献2、3、4および5に記載されている。特許文献2ではヘキサフルオロリン酸リチウムにホウ酸塩を、特許文献3ではヘキサフルオロリン酸リチウムに二酸化ケイ素を、特許文献4ではヘキサフルオロリン酸リチウムと炭酸塩をそれぞれ非水溶媒中で反応させてジフルオロリン酸リチウムを製造する方法が開示されている。しかし、反応時間が40〜72時間と長時間を要し生産性の面から有用な方法とは言い難い。また、特許文献5ではヘキサフルオロリン酸リチウムと水にハロゲン化物を添加し、非水溶媒中で反応させてジフルオロリン酸リチウムを製造する方法が開示されている。しかし、この製法では用いる非水溶媒が高価であること、ジフルオロリン酸リチウムは溶媒の種類により溶解度が小さく大量の溶媒を用いるためそれ相応の容積を有する反応器が必要になることやバッチあたりの生産可能な量が少ないことなどから、経済性や生産性の観点から好ましい方法とは言い難い。     Various methods have been studied and developed as methods for producing fluorophosphates, particularly lithium difluorophosphate. For example, Patent Documents 2, 3, 4, and 5 describe methods for producing lithium difluorophosphate using lithium hexafluorophosphate as a raw material. In Patent Document 2, boric acid salt is reacted with lithium hexafluorophosphate, in Patent Document 3, silicon dioxide is reacted with lithium hexafluorophosphate, and in Patent Document 4, lithium hexafluorophosphate and carbonate are reacted in a non-aqueous solvent. A method for producing lithium difluorophosphate is disclosed. However, a reaction time of 40 to 72 hours is required, and it is difficult to say that this is a useful method in terms of productivity. Patent Document 5 discloses a method for producing lithium difluorophosphate by adding a halide to lithium hexafluorophosphate and water and reacting them in a non-aqueous solvent. However, in this production method, the non-aqueous solvent used is expensive, and since lithium difluorophosphate has a low solubility depending on the type of solvent and a large amount of solvent is used, a reactor having a corresponding volume is required, and per batch. Since the amount that can be produced is small, it is difficult to say that the method is preferable from the viewpoints of economy and productivity.

またこれら製法ではヘキサフルオロリン酸リチウムの分解中に生じるフッ化水素、リン酸等の酸が副生し、これら酸の除去が困難であり、さらにジフルオロリン酸リチウムは溶媒中に酸が共存すると分解が加速する。従って、酸が共存する状態で電解液に用いると、分解物による電池サイクル特性の悪化や電解液の着色といった安定性に問題が生じる可能性があり、これら製法は効率良く工業スケールで製造する方法とは言い難い。   In these processes, acids such as hydrogen fluoride and phosphoric acid generated during the decomposition of lithium hexafluorophosphate are by-produced, and it is difficult to remove these acids. Decomposition accelerates. Therefore, when used in an electrolyte solution in the presence of an acid, problems such as deterioration of battery cycle characteristics due to decomposition products and coloration of the electrolyte solution may occur, and these production methods are methods for efficiently producing on an industrial scale. It's hard to say.

また、リチウム塩に加えて、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム、ジフルオロリン酸アンモニウムといった他のジフルオロリン酸塩を効率よく工業スケールで製造する方法も同様に求められている。   In addition to lithium salts, a method for efficiently producing other difluorophosphates such as sodium difluorophosphate, potassium difluorophosphate, and ammonium difluorophosphate on an industrial scale is also required.

特開平11−67270号公報Japanese Patent Laid-Open No. 11-67270 特開2005−53727号公報JP 2005-53727 A 特開2005−219994号公報JP 2005-219994 A 特開2005−306619号公報JP 2005-306619 A 特開2008−222484号公報JP 2008-222484 A

本発明は、溶媒を用いずに効率的かつ簡便にジフルオロリン酸塩を製造する方法を提供することを目的とする。     An object of this invention is to provide the method of manufacturing a difluorophosphate efficiently and simply, without using a solvent.

発明を解決するための手段Means for Solving the Invention

本発明者らは鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は以下のものを提供する。
[1]
ヘキサフルオロリン酸塩と水分と塩化物とを溶媒を介在させることなく反応させて、ジフルオロリン酸塩を得る工程を含むジフルオロリン酸塩の製造方法であって、
ヘキサフルオロリン酸塩に、ジフルオロリン酸塩を得るのに必要な反応当量以上の水分と反応当量以上の塩化物とを同時に添加して反応させることを特徴とするジフルオロリン酸塩の製造方法。
[2]
水分が、気体、液体又は固体の形態の水分であることを特徴とする[1]記載のジフルオロリン酸塩の製造方法。
[3]
水分と塩化物とを同時に添加する形態として、塩化物と水分とを、それぞれ別個にジフルオロリン酸塩の入った容器に導入することを特徴とする[1]又は[2]記載のジフルオロリン酸塩の製造方法。
[4]
水分が液体の形態の水分であることを特徴とする[1]〜[3]のいずれかに記載の製造方法。
[5]
ヘキサフルオロリン酸塩と水分のモル比が1:1.05〜1:4.04の範囲であり、ヘキサフルオロリン酸塩と塩化物のモル比が1:3.05〜1:4.44の範囲であることを特徴とする、[1]〜[4]のいずれかに記載のジフルオロリン酸塩の製造方法。
[6]
ヘキサフルオロリン酸塩がヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウム、又はヘキサフルオロリン酸アンモニウムのいずれかであることを特徴とする、[1]〜[5]のいずれかに記載のジフルオロリン酸塩の製造方法。
[7]
塩化物がアルカリ金属の塩化物、アルカリ土類金属の塩化物、及び塩化アルミニウムからなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[6]のいずれかに記載のジフルオロリン酸塩の製造方法。
[8]
アルカリ金属の塩化物が塩化リチウム、塩化ナトリウム、及び塩化カリウムから選ばれる少なくとも1種であり、アルカリ土類金属の塩化物が塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、及び塩化バリウムから選ばれる少なくとも1種であることを特徴とする[7]に記載のジフルオロリン酸塩の製造方法。
[9]
塩化物が塩化オキサリル、塩化アセチル、塩化チオニル及びジメチルジクロロシランからなる群から選ばれる少なくとも1種であることを特徴とする、[1]〜[6]のいずれかに記載のジフルオロリン酸塩の製造方法。
As a result of intensive studies, the present inventors have completed the present invention. That is, the present invention provides the following.
[1]
A process for producing a difluorophosphate comprising a step of reacting hexafluorophosphate, moisture and chloride without intervening a solvent to obtain a difluorophosphate,
A method for producing a difluorophosphate, characterized by simultaneously adding and reacting hexafluorophosphate with a water equivalent to a reaction equivalent or more necessary for obtaining a difluorophosphate and a chloride with a reaction equivalent or more.
[2]
The method for producing a difluorophosphate according to [1], wherein the moisture is moisture in a gas, liquid or solid form.
[3]
The difluorophosphoric acid according to [1] or [2], wherein chloride and moisture are separately introduced into a container containing difluorophosphate as a form in which moisture and chloride are added simultaneously. Method for producing salt.
[4]
The manufacturing method according to any one of [1] to [3], wherein the water is water in a liquid form.
[5]
The molar ratio of hexafluorophosphate to water is in the range of 1: 1.05 to 1: 4.04, and the molar ratio of hexafluorophosphate to chloride is 1: 3.05 to 1: 4.44. The method for producing a difluorophosphate according to any one of [1] to [4], wherein
[6]
Any of [1] to [5], wherein the hexafluorophosphate is any one of lithium hexafluorophosphate, sodium hexafluorophosphate, potassium hexafluorophosphate, or ammonium hexafluorophosphate. A process for producing the difluorophosphate according to claim 1.
[7]
The chloride according to any one of [1] to [6], wherein the chloride is at least one selected from the group consisting of an alkali metal chloride, an alkaline earth metal chloride, and aluminum chloride. A method for producing difluorophosphate.
[8]
The alkali metal chloride is at least one selected from lithium chloride, sodium chloride, and potassium chloride, and the alkaline earth metal chloride is at least one selected from magnesium chloride, calcium chloride, strontium chloride, and barium chloride. [7] The method for producing a difluorophosphate according to [7].
[9]
The difluorophosphate according to any one of [1] to [6], wherein the chloride is at least one selected from the group consisting of oxalyl chloride, acetyl chloride, thionyl chloride and dimethyldichlorosilane. Production method.

本発明によれば、高価な溶媒を用いずに効率的かつ簡便にジフルオロリン酸塩を製造することができる。また、本発明の方法では、反応中に副生するフッ化水素が塩化物と反応して塩化水素として系外へ蒸発するため、未反応のフッ化水素が系内に残留することがない。そのため、酸によってジフルオロリン酸塩が分解されるおそれがなく、酸が共存する状態で電解液に用いた際の、分解物による電池サイクル特性の悪化や電解液の着色といった安定性に関する問題が生じない。   According to the present invention, a difluorophosphate can be produced efficiently and simply without using an expensive solvent. In the method of the present invention, hydrogen fluoride by-produced during the reaction reacts with chloride and evaporates out of the system as hydrogen chloride, so that unreacted hydrogen fluoride does not remain in the system. Therefore, there is no possibility that the difluorophosphate is decomposed by the acid, and there are problems regarding stability such as deterioration of battery cycle characteristics due to decomposition products and coloring of the electrolytic solution when used in the electrolytic solution in the presence of the acid. Absent.

以下、本発明のジフルオロリン酸塩の製造方法を、その好ましい実施形態に基づいて詳述するが、本発明はこれらの内容に限定されない。
原料となるヘキサフルオロリン酸塩は、市販されているグレードのものであれば、特に制限無く使用することができるが、当然に、高純度の原料を使用すれば、高純度の製品を特別な精製方法を経ることなく得られるため、好ましい。
Hereinafter, although the manufacturing method of the difluorophosphate of this invention is explained in full detail based on the preferable embodiment, this invention is not limited to these content.
The hexafluorophosphate used as a raw material can be used without particular limitation as long as it is a commercially available grade. Naturally, if a high-purity raw material is used, a high-purity product is specially used. Since it is obtained without going through a purification method, it is preferable.

ヘキサフルオロリン酸塩としては、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウムおよびヘキサフルオロリン酸アンモニウムが挙げられる。ヘキサフルオロリン酸リチウムを原料とし、リチウム二次電池等で使用されるジフルオロリン酸リチウムを製造する方法においては、原料であるヘキサフルオロリン酸リチウムは高純度なリチウムイオン電池向け電解質グレードのものを使用すると好ましい。     Examples of hexafluorophosphate include lithium hexafluorophosphate, sodium hexafluorophosphate, potassium hexafluorophosphate, and ammonium hexafluorophosphate. In the method of producing lithium difluorophosphate used in lithium secondary batteries, etc., using lithium hexafluorophosphate as a raw material, the raw material lithium hexafluorophosphate is an electrolyte grade for high-purity lithium ion batteries. It is preferable to use it.

反応に使用する塩化物は少なくとも1種以上であり、特に限定されるものではないが、塩化物が無機塩化物である場合には、
塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウムなどのアルカリ金属塩、
塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウムなどのアルカリ土類金属塩、
塩化アルミニウム、塩化アンモニウム、四塩化ケイ素、
塩化鉄(II)、塩化鉄(III)、塩化ニッケル、四塩化チタン、塩化クロム(III)、塩化マンガン、塩化銅などの遷移金属塩、等を好ましい塩化物として挙げることができる。
The chloride used in the reaction is at least one kind and is not particularly limited, but when the chloride is an inorganic chloride,
Alkali metal salts such as lithium chloride, sodium chloride, potassium chloride, cesium chloride,
Alkaline earth metal salts such as magnesium chloride, calcium chloride, strontium chloride, barium chloride,
Aluminum chloride, ammonium chloride, silicon tetrachloride,
Examples of preferable chlorides include transition metal salts such as iron (II) chloride, iron (III) chloride, nickel chloride, titanium tetrachloride, chromium (III) chloride, manganese chloride, and copper chloride.

これらの中で特に工業的な観点から塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム、塩化アルミニウムが好ましい。更に、本発明の製造方法により得られるジフルオロリン酸リチウムをリチウム二次電池の添加剤として使用する場合には、塩化リチウムが不純物としての陽イオンを含まないため好適である。     Among these, lithium chloride, sodium chloride, potassium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, and aluminum chloride are preferable from an industrial viewpoint. Further, when lithium difluorophosphate obtained by the production method of the present invention is used as an additive for a lithium secondary battery, lithium chloride does not contain a cation as an impurity, which is preferable.

また一方、上記以外の塩化物としては、塩化オキサリル、塩化アセチル、塩化チオニル、プロピオン酸塩化物や、ジメチルジクロロシラン、五塩化リン、または塩化ホスホニルなどを挙げることができる。特に、塩化オキサリル、塩化アセチル、及び塩化チオニルの群から選ばれる少なくとも1種が好ましい。     On the other hand, examples of the chloride other than the above include oxalyl chloride, acetyl chloride, thionyl chloride, propionate chloride, dimethyldichlorosilane, phosphorus pentachloride, or phosphonyl chloride. In particular, at least one selected from the group of oxalyl chloride, acetyl chloride, and thionyl chloride is preferable.

本発明の製造方法では、ヘキサフルオロリン酸塩に、ジフルオロリン酸塩を得るのに必要な反応当量以上の水分を、溶媒を介在させることなく反応させるが、その反応の際に、反応当量以上の塩化物を共に添加して、反応に関与させることが望ましい。     In the production method of the present invention, the hexafluorophosphate is reacted with a water equivalent to or higher than the reaction equivalent necessary for obtaining the difluorophosphate without intervening a solvent. It is desirable to add both of the chlorides together to participate in the reaction.

ヘキサフルオロリン酸塩と、反応させる水分中に含まれる水のモル比は、1:1.0〜1:4.0、より詳細には1:1.05〜1:4.04の範囲であることが望ましい。他方、ヘキサフルオロリン酸塩と塩化物のモル比は、1:3.0〜1:4.4の範囲、より詳細にはそのモル比が1:3.05〜1:4.44の範囲であることが望ましく、特に好ましくは1:3.60〜1:4.40の範囲である。水を溶媒の如く過剰に用いると、加水分解反応が進行しモノフルオロリン酸塩が、さらに加水分解反応が進行しリン酸塩がそれぞれ副生するため好ましくない。     The molar ratio of water contained in the water to be reacted with the hexafluorophosphate is in the range of 1: 1.0 to 1: 4.0, more specifically 1: 1.05 to 1: 4.04. It is desirable to be. On the other hand, the molar ratio of hexafluorophosphate to chloride is in the range of 1: 3.0 to 1: 4.4, more specifically the molar ratio is in the range of 1: 3.05 to 1: 4.44. It is desirable that it is in the range of 1: 3.60 to 1: 4.40. If water is used excessively as a solvent, the hydrolysis reaction proceeds and the monofluorophosphate is further produced, and the hydrolysis reaction further proceeds and the phosphate is formed as a by-product.

また、ヘキサフルオロリン酸塩がヘキサフルオロリン酸リチウムである場合に、ヘキサフルオロリン酸リチウムと水のモル比は1:1.0〜1:4.0の範囲であり、好ましくは1:1.05〜1:4.04の範囲であることが望ましい。他方、ヘキサフルオロリン酸リチウムと塩化物のモル比は1:3.05〜1:4.44の範囲であることが望ましく、特に好ましくは1:3.60〜1:4.40の範囲である。     When the hexafluorophosphate is lithium hexafluorophosphate, the molar ratio of lithium hexafluorophosphate to water is in the range of 1: 1.0 to 1: 4.0, preferably 1: 1. It is desirable to be in the range of 0.05 to 1: 4.04. On the other hand, the molar ratio of lithium hexafluorophosphate to chloride is preferably in the range of 1: 3.05 to 1: 4.44, particularly preferably in the range of 1: 3.60 to 1: 4.40. is there.

水分は、塩化物と同時にジフルオロリン酸塩に添加して反応に関与させても良く、予め塩化物と接触させて塩化物の水和物もしくは塩化物の含水物として反応に関与させても良い。前者の方法を用いる場合には、予めジフルオロリン酸塩を容器に封入し、その容器に、塩化物及び水をそれぞれ別々に一定速度で導入することが好ましい。     Water may be added to the difluorophosphate at the same time as the chloride and may be involved in the reaction, or may be contacted with the chloride in advance to be involved in the reaction as a chloride hydrate or chloride hydrate. . When the former method is used, it is preferable that difluorophosphate is sealed in a container in advance, and chloride and water are separately introduced into the container at a constant rate.

ヘキサフルオロリン酸塩、塩化物もしくはその水和物は、予め粉砕するなどして粒子の形状を細かくすると、反応における接触面積が増加し、反応時間を短縮させることができる。粉砕の手法は特に限定されるものではないが、具体的にハンマーミル、ジェットミル、ピンミル、ボールミル、乳鉢等で粉砕することができる。またスプレードライヤー等で予め微粉化した塩化物等も好適である。     When the shape of the particles of hexafluorophosphate, chloride or hydrate thereof is pulverized in advance, the contact area in the reaction increases, and the reaction time can be shortened. The pulverization method is not particularly limited, and specifically, pulverization can be performed with a hammer mill, a jet mill, a pin mill, a ball mill, a mortar, or the like. Also suitable are chlorides or the like finely divided in advance with a spray dryer or the like.

水分は、気体、液体、または固体のいずれの状態でも使用することができる。気体としては水蒸気であるが、水蒸気を含む気体であってもよい。水蒸気を含む気体は不活性ガスまたは空気を含んでいてもよい。不活性ガスまたは空気を含む場合には、その含有比率は、水蒸気に対して0〜99vol%であることが好ましい。     Moisture can be used in any state of gas, liquid, or solid. The gas is water vapor, but may be a gas containing water vapor. The gas containing water vapor may contain an inert gas or air. When an inert gas or air is included, the content ratio is preferably 0 to 99 vol% with respect to water vapor.

次に、ヘキサフルオロリン酸塩と水とのその他の好適な反応条件を説明する。
反応温度は特に限定されるものではないが、30〜80℃であることが好ましく、特には20〜70℃であることが好ましい。この温度が低すぎると反応に極めて長時間を要することになる。また、反応中に副生するフッ化水素と塩化物との反応が遅くなり、塩化水素として系外へ蒸発させることが困難となる他、未反応のフッ化水素が系内に残留することとなり、その後精製するときに使用する溶媒を分解するため好ましくない。また一方、反応温度が高すぎるとヘキサフルオロリン酸塩の熱分解が激しくなり、五フッ化リンとして系外に脱離するため、収率が低下する傾向がある。
Next, other suitable reaction conditions between hexafluorophosphate and water will be described.
Although reaction temperature is not specifically limited, It is preferable that it is 30-80 degreeC, and it is especially preferable that it is 20-70 degreeC. If this temperature is too low, the reaction will take a very long time. In addition, the reaction between hydrogen fluoride and chloride produced as a by-product during the reaction slows down, making it difficult to evaporate out of the system as hydrogen chloride, and unreacted hydrogen fluoride remains in the system. This is not preferable because it decomposes the solvent used for subsequent purification. On the other hand, if the reaction temperature is too high, the thermal decomposition of hexafluorophosphate becomes intense, and it is eliminated from the system as phosphorus pentafluoride, so the yield tends to decrease.

反応時間としては、実験室規模では5分間〜48時間程度であり、反応温度の制御により適宜選択する。また、反応の際、攪拌や振動を与えることが好ましい。例えば、20Lスケール程度の場合、0.5〜10時間所定の速さで攪拌したり、所定の強度の振動を与えたりすることで、より反応を進行させることができる。攪拌や振動の操作については、マグネチックスターラー等の攪拌機や、超音波などを用いた振動攪拌機等の当業者に良く知られた技術を使用することができる。     The reaction time is about 5 minutes to 48 hours on a laboratory scale, and is appropriately selected by controlling the reaction temperature. In addition, it is preferable to apply stirring and vibration during the reaction. For example, in the case of about 20 L scale, the reaction can be further advanced by stirring at a predetermined speed for 0.5 to 10 hours or applying a vibration with a predetermined intensity. For operations of stirring and vibration, techniques well known to those skilled in the art such as a stirrer such as a magnetic stirrer and a vibration stirrer using ultrasonic waves can be used.

また更に、以上の製造工程により得られたジフルオロリン酸塩を精製する方法としては以下の通り実施することができる。
精製方法は、特に限定されるものではないが、ジフルオロリン酸塩を溶解し、フッ化リチウムの溶解度の小さい溶媒を用いることができる。例えばメタノール、エタノール、プロパノール等のアルコール類、ホルムアルデヒド、アセトン、メチルエチルケトン、イソブチルメチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、ジメチルエーテル、ジメトキシエタン等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、フルオロエチレンカーボネート等のカーボネート類が使用でき、これら一種以上の溶媒に反応物を溶解し、不溶解分を分離し、エバポレーター等で脱溶媒することで高純度なジフルオロリン酸塩を得ることができる。
Furthermore, as a method for purifying the difluorophosphate obtained by the above production steps, it can be carried out as follows.
Although the purification method is not particularly limited, a solvent in which difluorophosphate is dissolved and lithium fluoride has low solubility can be used. For example, alcohols such as methanol, ethanol and propanol, ketones such as formaldehyde, acetone, methyl ethyl ketone and isobutyl methyl ketone, esters such as ethyl acetate and butyl acetate, ethers such as dimethyl ether and dimethoxyethane, dimethyl carbonate, diethyl carbonate, Carbonates such as propylene carbonate, ethylene carbonate, and fluoroethylene carbonate can be used. High purity difluorophosphoric acid is obtained by dissolving the reactants in one or more of these solvents, separating the insolubles, and removing the solvent with an evaporator or the like. A salt can be obtained.

以下の実施例により本発明を更に詳細に説明するが、本発明はかかる実施例に限定されるものではない。
反応生成物の分析はVarian社製NMR System300型を用いて19F-NMRにて行った。また、生成物の収率は、内部標準物質としてヘキサフルオロベンゼンを用いて、19F-NMR分析により目的物と内部標準物質(ケミカルシフト値-166.8ppm)との積分値比により定量した。水分は三菱化学社製 Model CA-06を用い定量した。遊離酸分(HF)はDIONEX社製DX-120 Ion Chromatographyを用い、F-として定量した。不溶解分は150gのDME(1,2‐ジメトキシエタン)に溶解し、ポリテトラフルオロエチレン(PTFE)製メンブレンフィルターでろ過し、不溶解分量を測定した。
The present invention will be described in more detail by the following examples, but the present invention is not limited to such examples.
The analysis of the reaction product was performed by 19 F-NMR using a Varian NMR System 300 type. Further, the yield of the product was quantified by 19 F-NMR analysis using hexafluorobenzene as an internal standard substance, based on an integrated value ratio between the target product and the internal standard substance (chemical shift value—166.8 ppm). The moisture was quantified using Model CA-06 manufactured by Mitsubishi Chemical Corporation. The free acid content (HF) was quantified as F using DX-120 Ion Chromatography manufactured by DIONEX. The insoluble matter was dissolved in 150 g of DME (1,2-dimethoxyethane), filtered through a membrane filter made of polytetrafluoroethylene (PTFE), and the insoluble matter was measured.

参考例1Reference example 1

(水蒸気)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸リチウム30.0g(0.1975mol)に塩化リチウム35.4g(0.8351mol)を加え、乳鉢で粉砕混合した後、200mLのパーフルオロアルコキシアルカン(PFA)製ボトルに回収し、窒素ガスを通気して置換し、50℃にて30分間保持した。次に攪拌しながら、70℃の温水中に窒素ガスをバブリングしてなる70℃の蒸気圧分の水14g(0.7769mol)をガスとして導入し、50℃で9時間反応を行い、粗ジフルオロリン酸リチウムを31.1g得た。得られた結晶は19F-NMRおよび31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をジメトキシエタンに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(water vapor)
Add 35.4 g (0.8351 mol) of lithium chloride to 30.0 g (0.1975 mol) of lithium hexafluorophosphate in a dry box with a dew point of less than -50 ° C., pulverize and mix in a mortar, and then 200 mL of perfluoroalkoxyalkane. The product was collected in a (PFA) bottle, purged with nitrogen gas, and kept at 50 ° C. for 30 minutes. Next, while stirring, 14 g (0.7769 mol) of water corresponding to a vapor pressure of 70 ° C. obtained by bubbling nitrogen gas into 70 ° C. warm water was introduced as a gas, and the reaction was carried out at 50 ° C. for 9 hours to obtain crude difluoro 31.1 g of lithium phosphate was obtained. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystal was dissolved in dimethoxyethane, and by-product lithium fluoride was filtered off and then removed to obtain lithium difluorophosphate.

参考例2Reference example 2

(水蒸気)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸リチウム21.1g(0.1389mol)に塩化リチウム24.7g(0.5827mol)を加え、乳鉢で粉砕混合した後、200mLのPFA製ボトルに回収し、窒素ガスを通気して置換しながら卓上ボールミル回転架台にセットし、回転混合させながら40℃にて30分間保持した。次に攪拌しながら、50℃の温水中に窒素ガスをバブリングしてなる50℃の蒸気圧分の水7.4g(0.4107mol)をガスとして導入し、40℃で10時間の反応を行った。得られた結晶を120℃の乾燥機中で窒素気流の下で乾燥し、粗ジフルオロリン酸リチウムを20.5g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をジメトキシエタンに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(water vapor)
Add 24.7 g (0.5827 mol) of lithium chloride to 21.1 g (0.1389 mol) of lithium hexafluorophosphate in a dry box with a dew point of less than -50 ° C., pulverize and mix in a mortar, and then add it to a 200 mL PFA bottle. The sample was collected and set on a table-top ball mill rotating table while being replaced with nitrogen gas, and kept at 40 ° C. for 30 minutes while being rotated and mixed. Next, while stirring, 7.4 g (0.4107 mol) of water corresponding to a vapor pressure of 50 ° C. obtained by bubbling nitrogen gas into 50 ° C. warm water was introduced as a gas, and the reaction was carried out at 40 ° C. for 10 hours. It was. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 20.5 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystal was dissolved in dimethoxyethane, and by-product lithium fluoride was filtered off and then removed to obtain lithium difluorophosphate.

参考例3Reference example 3

(水蒸気)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸リチウム30.0g(0.1975mol)に塩化リチウム35.4g(0.8351mol)を加え、乳鉢で粉砕混合した後、縦型の流動相式反応器に投入し、窒素ガスを通気して置換し、粉体を流動混合させながら60℃にて30分間保持した。次に攪拌しながら、60℃の温水中に窒素ガスをバブリングしてなる60℃の蒸気圧分の水8.4g(0.4661mol)をガスとして導入し、60℃で10時間の反応を行った。得られた結晶を120℃の乾燥機中で窒素気流の下で乾燥し、粗ジフルオロリン酸リチウムを21.5g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をメチルエチルケトンに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(water vapor)
35.4 g (0.8351 mol) of lithium chloride is added to 30.0 g (0.1975 mol) of lithium hexafluorophosphate in a dry box having a dew point of less than −50 ° C., and pulverized and mixed in a mortar. The reactor was charged and replaced with nitrogen gas, and kept at 60 ° C. for 30 minutes while fluidly mixing the powder. Next, while stirring, 8.4 g (0.4661 mol) of water corresponding to a vapor pressure of 60 ° C. obtained by bubbling nitrogen gas into 60 ° C. warm water was introduced as a gas, and the reaction was performed at 60 ° C. for 10 hours. It was. The obtained crystal was dried in a dryer at 120 ° C. under a stream of nitrogen to obtain 21.5 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystal was dissolved in methyl ethyl ketone, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

参考例4Reference example 4

(水和物)
露点−50℃未満のドライボックス中で塩化リチウム14.1g(0.3326mol)に純水3.3g(0.1831mol)を加え、乳鉢で粉砕混合し、200mLのPFA製ボトルに回収した。その後、PFAボトル中にヘキサフルオロリン酸リチウム14.1g(0.0928mol)を加え、窒素ガスを通気して置換しながら振とう機にセットし、50℃にて12時間反応させ、粗ジフルオロリン酸リチウムを16.1g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をアセトンに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Hydrate)
In a dry box having a dew point of less than −50 ° C., 3.3 g (0.1831 mol) of pure water was added to 14.1 g (0.3326 mol) of lithium chloride, pulverized and mixed in a mortar, and collected in a 200 mL PFA bottle. Thereafter, 14.1 g (0.0928 mol) of lithium hexafluorophosphate was added to the PFA bottle, and the mixture was placed on a shaker while replacing with nitrogen gas, and reacted at 50 ° C. for 12 hours. 16.1 g of lithium acid was obtained. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystal was dissolved in acetone, and lithium fluoride produced as a by-product was filtered off and then desolvated to obtain lithium difluorophosphate.

参考例5Reference Example 5

(水和物)
露点−50℃未満のドライボックス中で塩化リチウム15.7g(0.3704mol)に純水3.3g(0.1831mol)を加え、乳鉢で粉砕混合し、200mLのPFA製ボトルに回収した。その後、PFAボトル中にヘキサフルオロリン酸リチウムを16.9g(0.1113mol)加え、窒素ガスを通気して置換しながら振とう機にセットし、50℃にて16時間反応させ、粗ジフルオロリン酸リチウムを19.3g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をアセトンに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Hydrate)
In a dry box having a dew point of less than −50 ° C., 3.3 g (0.1831 mol) of pure water was added to 15.7 g (0.3704 mol) of lithium chloride, pulverized and mixed in a mortar, and collected in a 200 mL PFA bottle. Thereafter, 16.9 g (0.1113 mol) of lithium hexafluorophosphate was added to the PFA bottle, and the mixture was placed on a shaker while replacing with nitrogen gas, and reacted at 50 ° C. for 16 hours. 19.3g of lithium acid was obtained. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystal was dissolved in acetone, and lithium fluoride produced as a by-product was filtered off and then desolvated to obtain lithium difluorophosphate.

参考例6Reference Example 6

(水蒸気 塩化リチウム無添加)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸リチウム30.0g(0.1975mol)を乳鉢で粉砕混合した後、200mLのPFA製ボトルに回収し、窒素ガスを通気して置換し50℃にて30分間保持した。次に、攪拌しながら70℃の温水中に窒素ガスをバブリングしてなる70℃の蒸気圧分の水14g(0.7769mol)をガスとして導入し、50℃で9時間反応を行い粗生成物を21.1g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。得られたNMRの測定結果を表1に示す。反応後の生成物は目的物の他、モノフルオロリン酸リチウムやリン酸塩が多く副生した。
(No water vapor lithium chloride added)
30.0 g (0.1975 mol) of lithium hexafluorophosphate was pulverized and mixed in a mortar in a dry box with a dew point of less than −50 ° C., and then collected in a 200 mL PFA bottle and replaced with aerated nitrogen gas. For 30 minutes. Next, 14 g (0.7769 mol) of water corresponding to a vapor pressure of 70 ° C. obtained by bubbling nitrogen gas into 70 ° C. warm water while stirring is introduced as a gas, and the reaction is carried out at 50 ° C. for 9 hours to obtain a crude product. 21.1 g was obtained. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. The obtained NMR measurement results are shown in Table 1. In addition to the target product, the product after the reaction was a by-product of lithium monofluorophosphate and phosphate.

参考例7Reference Example 7

(塩化リチウム無添加)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸リチウム30.0g(0.1975mol)を乳鉢で粉砕混合した後、200mLのPFA製ボトルに回収し、窒素ガスを通気して置換し、50℃にて30分間保持した。次に攪拌しながら、純水3.3g(0.1831mol)を加え50℃で9時間反応を行い、粗生成物を23.1g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。得られたNMRの測定結果を表1に示す。反応後の生成物は目的物の他、モノフルオロリン酸塩やリン酸塩等が多く副生した。
(No lithium chloride added)
30.0 g (0.1975 mol) of lithium hexafluorophosphate was pulverized and mixed in a mortar in a dry box with a dew point of less than −50 ° C., and then collected in a 200 mL PFA bottle, and replaced by aeration with nitrogen gas. Hold at 30 ° C. for 30 minutes. Next, with stirring, 3.3 g (0.1831 mol) of pure water was added and reacted at 50 ° C. for 9 hours to obtain 23.1 g of a crude product. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. The obtained NMR measurement results are shown in Table 1. In addition to the desired product, the product after the reaction was mostly by-produced monofluorophosphate and phosphate.

参考例8Reference Example 8

(カリウム塩、水蒸気)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸カリウム18.4g(0.10mol)に塩化カリウム25.8g(0.3458mol)を加え、乳鉢で粉砕混合した後、縦型の流動相式反応器に投入し、窒素ガスを通気して置換し、粉体を流動混合させながら60℃にて30分間保持した。次に攪拌しながら、60℃の温水中に窒素ガスをバブリングしてなる60℃の蒸気圧分の水8.4g(0.4661mol)をガスとして導入し、60℃で10時間の反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸カリウムを14.4g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をメチルエチルケトンに溶解し、副生したフッ化カリウムをろ別後、脱溶媒し、ジフルオロリン酸カリウムを得た。
(Potassium salt, water vapor)
After adding 25.8 g (0.3458 mol) of potassium chloride to 18.4 g (0.10 mol) of potassium hexafluorophosphate in a dry box having a dew point of less than −50 ° C., and pulverizing and mixing in a mortar, a vertical fluid phase type The reactor was charged and replaced with nitrogen gas, and kept at 60 ° C. for 30 minutes while fluidly mixing the powder. Next, while stirring, 8.4 g (0.4661 mol) of water corresponding to a vapor pressure of 60 ° C. obtained by bubbling nitrogen gas into 60 ° C. warm water was introduced as a gas, and the reaction was performed at 60 ° C. for 10 hours. It was. The obtained crystals were dried in a 120 ° C. drier under a nitrogen stream to obtain 14.4 g of crude potassium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in methyl ethyl ketone, and the by-produced potassium fluoride was filtered off and then removed to obtain potassium difluorophosphate.

参考例9Reference Example 9

(ナトリウム塩、水蒸気)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸ナトリウム20.6g(0.1226mol)に塩化ナトリウム14.3g(0.2447mol)を加え、乳鉢で粉砕混合した後、200mLのPFA製ボトルに回収し、窒素ガスを通気して置換しながら卓上ボールミル回転架台にセットし、回転混合させながら25℃にて30分間保持した。次に攪拌しながら、30℃の温水中に窒素ガスをバブリングしてなる30℃の蒸気圧分の水3.7g(0.2053mol)をガスとして導入し、25℃で6時間の反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸ナトリウムを17.1g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶をジメトキシエタンに溶解し、副生したフッ化ナトリウムをろ別後、脱溶媒し、ジフルオロリン酸ナトリウムを得た。
(Sodium salt, water vapor)
Add 14.3 g (0.2447 mol) of sodium chloride to 20.6 g (0.1226 mol) of sodium hexafluorophosphate in a dry box with a dew point of less than -50 ° C., pulverize and mix in a mortar, and then add it to a 200 mL PFA bottle. The sample was collected and set on a table-top ball mill rotating table while being replaced with nitrogen gas and kept at 25 ° C. for 30 minutes while being rotated and mixed. Next, while stirring, 3.7 g (0.2053 mol) of water having a vapor pressure of 30 ° C. obtained by bubbling nitrogen gas into 30 ° C. warm water was introduced as a gas, and the reaction was performed at 25 ° C. for 6 hours. It was. The obtained crystal was dried in a dryer at 120 ° C. under a nitrogen stream to obtain 17.1 g of crude sodium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in dimethoxyethane, and sodium fluoride produced as a by-product was filtered off and then removed to obtain sodium difluorophosphate.

(塩化リチウム)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.1g(0.6589mol)を入れ、窒素ガスでシールしながら振とう機にセットし、純水47.5g(2.6375mol)と塩化リチウム粉末123.0g(2.9016モル)をそれぞれ0.2g/min、2.1g/minの速度で導入し、40℃で22時間反応を行った。
得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウム56.8gを得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Lithium chloride)
Put 100.1 g (0.6589 mol) of granular lithium hexafluorophosphate into a 500 mL PFA bottle, set it on a shaker while sealing with nitrogen gas, 47.5 g (2.6375 mol) of pure water and chloride Lithium powder 123.0 g (2.9016 mol) was introduced at a rate of 0.2 g / min and 2.1 g / min, respectively, and reacted at 40 ° C. for 22 hours.
The obtained crystals were dried in a 120 ° C. dryer under a nitrogen stream to obtain 56.8 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(塩化チオニル)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.3g(0.6603mol)を入れたものを、窒素ガスでシールしながら振とう機にセットし、その上で純水27.9g(1.5487mol)と塩化チオニル260.5g(2.1896mol)をそれぞれ0.2g/min、1.7g/minの速度で導入し、25℃で22時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを61.4g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Thionyl chloride)
A 500 mL PFA bottle containing granular lithium hexafluorophosphate 100.3 g (0.6603 mol) was placed in a shaker while being sealed with nitrogen gas, and then 27.9 g of pure water ( 1.5487 mol) and 260.5 g (2.1896 mol) of thionyl chloride were introduced at a rate of 0.2 g / min and 1.7 g / min, respectively, and the reaction was carried out at 25 ° C. for 22 hours. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 61.4 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(ジメチルジクロロシラン)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.1g(0.6589mol)を入れたものを、窒素ガスでシールしながら振とう機にセットし、純水28.6g(1.5875mol)とジメチルジクロロシラン261.4g(2.0254mol)をそれぞれ0.2g/min、1.9g/minの速度で導入し、20℃で20時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを60.5g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Dimethyldichlorosilane)
A 500 mL PFA bottle containing granular lithium hexafluorophosphate (100.1 g, 0.6589 mol) was placed on a shaker while being sealed with nitrogen gas, and 28.6 g (1.5875 mol) of pure water. ) And 261.4 g (2.0254 mol) of dimethyldichlorosilane were introduced at a rate of 0.2 g / min and 1.9 g / min, respectively, and reacted at 20 ° C. for 20 hours. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 60.5 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(塩化オキサリル)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.2g(0.5662mol)を入れたものを、窒素ガスでシールしながら振とう機にセットし、純水24.5g(1.3600mol)と塩化オキサリル259.2g(2.0421mol)をそれぞれ0.2g/min、2.0g/minの速度で導入し、30℃で21時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを54.9g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Oxalyl chloride)
A 500 mL PFA bottle containing 100.2 g (0.5662 mol) of granular lithium hexafluorophosphate is placed in a shaker while being sealed with nitrogen gas, and 24.5 g (1.3600 mol) of pure water. ) And 259.2 g (2.0421 mol) of oxalyl chloride were introduced at a rate of 0.2 g / min and 2.0 g / min, respectively, and reacted at 30 ° C. for 21 hours. The obtained crystal was dried in a dryer at 120 ° C. under a nitrogen stream to obtain 54.9 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(塩化アセチル)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.3g(0.6603mol)を入れ、窒素ガスでシールしながら振とう機にセットし、純水28.5g(1.5820mol)と塩化アセチル176.3g(2.2459mol)をそれぞれ0.2g/min、1.2g/minの速度で導入し、30℃で22時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを58.4g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Acetyl chloride)
Put a granular lithium hexafluorophosphate 100.3g (0.6603mol) into a 500mL PFA bottle, set it on a shaker while sealing with nitrogen gas, 28.5g (1.5820mol) pure water and chloride 176.3 g (2.2459 mol) of acetyl was introduced at a rate of 0.2 g / min and 1.2 g / min, respectively, and reacted at 30 ° C. for 22 hours. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 58.4 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(プロピオン酸塩化物)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.3g(0.6603mol)を入れ、窒素ガスでシールしながら振とう機にセットし、純水28.6g(1.5880mol)とプロピオン酸塩化物203.5g(2.1995mol)をそれぞれ0.2g/min、1.4g/minの速度で導入し、45℃で24時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを50.7g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Propionate chloride)
Put 100.3 g (0.6603 mol) of granular lithium hexafluorophosphate into a 500 mL PFA bottle, and set it on a shaker while sealing with nitrogen gas. 28.6 g (1.5880 mol) of pure water and propion 203.5 g (2.9995 mol) of acid chloride was introduced at a rate of 0.2 g / min and 1.4 g / min, respectively, and reacted at 45 ° C. for 24 hours. The obtained crystals were dried in a 120 ° C. dryer under a nitrogen stream to obtain 50.7 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(五塩化リン)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.1g(0.6589mol)を入れ、窒素ガスでシールしながら振とう機にセットし、純水25.5g(1.4159mol)と五塩化リン粉末456.5g(2.1922mol)をそれぞれ0.2g/min、3.5g/minの速度で導入し、30℃で20時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを55.8g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Phosphorus pentachloride)
Put 100.1 g (0.6589 mol) of granular lithium hexafluorophosphate into a 500 mL PFA bottle, set it on a shaker while sealing with nitrogen gas, and add 25.5 g (1.4159 mol) of pure water and 5 456.5 g (2.1922 mol) of phosphorus chloride powder was introduced at a rate of 0.2 g / min and 3.5 g / min, respectively, and reacted at 30 ° C. for 20 hours. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 55.8 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(三塩化リン)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.3g(0.6603mol)を入れ、窒素ガスでシールしながら振とう機にセットし、純水26.1g(1.4492mol)と三塩化リン300.2g(2.1860mol)をそれぞれ0.2g/min、2.2g/minの速度で導入し、30℃で20時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを56.6g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Phosphorus trichloride)
Put 100.3 g (0.6603 mol) of granular lithium hexafluorophosphate into a 500 mL PFA bottle, set it on a shaker while sealing with nitrogen gas, and add 26.1 g (1.4492 mol) of pure water and three 300.2 g (2.1860 mol) of phosphorus chloride was introduced at a rate of 0.2 g / min and 2.2 g / min, respectively, and reacted at 30 ° C. for 20 hours. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 56.6 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(塩化ホスホニル)
500mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム100.2g(0.6596mol)を入れ、窒素ガスでシールしながら振とう機にセットし、純水27.2g(1.5103mol)と塩化ホスホニル335.2g(2.1861mol)をそれぞれ0.2g/min、2.5g/minの速度で導入し、30℃で20時間反応を行った。得られた結晶を120℃の乾燥機中で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを57.1g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Phosphonyl chloride)
Put 100.2 g (0.6596 mol) of granular lithium hexafluorophosphate into a 500 mL PFA bottle, set it on a shaker while sealing with nitrogen gas, and add 27.2 g (1.5103 mol) of pure water and chloride. Phosphonyl 335.2 g (2.1861 mol) was introduced at a rate of 0.2 g / min and 2.5 g / min, respectively, and reacted at 30 ° C. for 20 hours. The obtained crystals were dried in a dryer at 120 ° C. under a nitrogen stream to obtain 57.1 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

(塩化チオニル)
20Lのテフロン(登録商標)製反応器にヘキサフルオロリン酸リチウム1500.0g(9.8743mol)の顆粒を導入した。次いで純水400.0g(22.2037mol)と塩化チオニル3925.0g(32.9913mol)をそれぞれ2.9g/min、29.4g/minの速度で導入し、窒素ガスでシールし、攪拌しながら30℃で20時間反応を行った。得られた結晶を120℃で窒素気流下乾燥し、粗ジフルオロリン酸リチウムを822.2g得た。得られた結晶を19F-NMR、31P-NMRにて生成比を算出した。結果、ほぼ定量的に反応が進行していることを確認した。得られたNMRの測定結果を表1に示す。次に、得られた結晶を酢酸エチルに溶解し、副生したフッ化リチウムをろ別後、脱溶媒し、ジフルオロリン酸リチウムを得た。
(Thionyl chloride)
Into a 20 L Teflon (registered trademark) reactor, 1500.0 g (9.8743 mol) of granules of lithium hexafluorophosphate were introduced. Next, 400.0 g (22.2037 mol) of pure water and 3925.0 g (32.9913 mol) of thionyl chloride were introduced at a rate of 2.9 g / min and 29.4 g / min, respectively, sealed with nitrogen gas, and stirred. The reaction was performed at 30 ° C. for 20 hours. The obtained crystals were dried at 120 ° C. under a nitrogen stream to obtain 822.2 g of crude lithium difluorophosphate. The production ratio of the obtained crystals was calculated by 19 F-NMR and 31 P-NMR. As a result, it was confirmed that the reaction proceeded almost quantitatively. The obtained NMR measurement results are shown in Table 1. Next, the obtained crystals were dissolved in ethyl acetate, and lithium fluoride produced as a by-product was filtered off and then removed to obtain lithium difluorophosphate.

比較例1Comparative Example 1

(塩化チオニル DME溶媒)
250mLのPFA製ボトルに顆粒状のヘキサフルオロリン酸リチウム7.1g(0.0467mol)と塩化チオニル11.0g(0.0925mol)を入れ、そこにジメトキシエタン34gを加えてヘキサフルオロリン酸リチウムを溶解させた。その後、純水1.7g(0.0944mol)を滴下し、70℃で30分間反応を行った。得られた反応液を19F-NMR、31P-NMRにて生成比を算出した。得られたNMRの測定結果を表1に示す。結果、ヘキサフルオロリン酸リチウムの加水分解反応が十分に進行していないことが確認できた。
(Thionyl chloride DME solvent)
In a 250 mL PFA bottle, put granular lithium hexafluorophosphate (7.1 g, 0.0467 mol) and thionyl chloride (11.0 g, 0.0925 mol), add dimethoxyethane (34 g), and add lithium hexafluorophosphate. Dissolved. Thereafter, 1.7 g (0.0944 mol) of pure water was added dropwise and reacted at 70 ° C. for 30 minutes. The production ratio of the obtained reaction solution was calculated by 19 F-NMR and 31 P-NMR. The obtained NMR measurement results are shown in Table 1. As a result, it was confirmed that the hydrolysis reaction of lithium hexafluorophosphate did not proceed sufficiently.

比較例2Comparative Example 2

(塩化リチウム 酢酸エチル溶媒)
露点−50℃未満のドライボックス中でヘキサフルオロリン酸リチウム10.0g(0.0658mol)に塩化リチウム11.2g(0.2642mol)を加え、乳鉢で粉砕混合した後、200mLのPFA製ボトルに回収し、そこに酢酸エチル49gを加えてヘキサフルオロリン酸リチウムを溶解させた。次に、窒素ガスを通気して置換し、50℃にて30分間保持した後、70℃で攪拌しながら純水2.4g(0.1333mol)を滴下し、70℃で60分間反応を行った。得られた反応液を19F-NMR、31P-NMRにて生成比を算出した。得られたNMRの測定結果を表1に示す。ジフルオロリン酸リチウムが99.4%の選択性で得られたが、反応液に黄色い着色が見られたことから、電池特性への悪影響が考えられる。
(Lithium chloride ethyl acetate solvent)
Add 11.2 g (0.2642 mol) of lithium chloride to 10.0 g (0.0658 mol) of lithium hexafluorophosphate in a dry box with a dew point of less than −50 ° C., pulverize and mix in a mortar, and then add it to a 200 mL PFA bottle. Then, 49 g of ethyl acetate was added to dissolve lithium hexafluorophosphate. Next, the gas was replaced with nitrogen gas, held at 50 ° C. for 30 minutes, 2.4 g (0.1333 mol) of pure water was added dropwise with stirring at 70 ° C., and the reaction was performed at 70 ° C. for 60 minutes. It was. The production ratio of the obtained reaction solution was calculated by 19 F-NMR and 31 P-NMR. The obtained NMR measurement results are shown in Table 1. Although lithium difluorophosphate was obtained with a selectivity of 99.4%, yellow coloration was seen in the reaction solution, which may have an adverse effect on battery characteristics.

Figure 2015044701
Figure 2015044701

Claims (9)

ヘキサフルオロリン酸塩と水分と塩化物とを溶媒を介在させることなく反応させて、ジフルオロリン酸塩を得る工程を含むジフルオロリン酸塩の製造方法であって、
ヘキサフルオロリン酸塩に、ジフルオロリン酸塩を得るのに必要な反応当量以上の水分と反応当量以上の塩化物とを同時に添加して反応させることを特徴とするジフルオロリン酸塩の製造方法。
A process for producing a difluorophosphate comprising a step of reacting hexafluorophosphate, moisture and chloride without intervening a solvent to obtain a difluorophosphate,
A method for producing a difluorophosphate, characterized by simultaneously adding and reacting hexafluorophosphate with a water equivalent to a reaction equivalent or more necessary for obtaining a difluorophosphate and a chloride with a reaction equivalent or more.
水分が、気体、液体又は固体の形態の水分であることを特徴とする請求項1記載のジフルオロリン酸塩の製造方法。   The method for producing a difluorophosphate according to claim 1, wherein the moisture is in the form of gas, liquid or solid. 水分と塩化物とを同時に添加する形態として、塩化物と水分とを、それぞれ別個にジフルオロリン酸塩の入った容器に導入することを特徴とする請求項1又は2に記載のジフルオロリン酸塩の製造方法。   The difluorophosphate according to claim 1 or 2, wherein the chloride and moisture are separately introduced into a container containing difluorophosphate as a form in which moisture and chloride are added simultaneously. Manufacturing method. 水分が液体の形態の水分であることを特徴とする請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the water is water in a liquid form. ヘキサフルオロリン酸塩と水分のモル比が1:1.05〜1:4.04の範囲であり、ヘキサフルオロリン酸塩と塩化物のモル比が1:3.05〜1:4.44の範囲であることを特徴とする、請求項1〜4のいずれかに記載のジフルオロリン酸塩の製造方法。   The molar ratio of hexafluorophosphate to water is in the range of 1: 1.05 to 1: 4.04, and the molar ratio of hexafluorophosphate to chloride is 1: 3.05 to 1: 4.44. The method for producing a difluorophosphate according to claim 1, wherein the difluorophosphate is in a range of ヘキサフルオロリン酸塩がヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウム、又はヘキサフルオロリン酸アンモニウムのいずれかであることを特徴とする、請求項1〜5のいずれかに記載のジフルオロリン酸塩の製造方法。   The hexafluorophosphate is any one of lithium hexafluorophosphate, sodium hexafluorophosphate, potassium hexafluorophosphate, or ammonium hexafluorophosphate. The manufacturing method of difluorophosphate of description. 塩化物がアルカリ金属の塩化物、アルカリ土類金属の塩化物、及び塩化アルミニウムからなる群から選ばれる少なくとも1種であることを特徴とする、請求項1〜6のいずれかに記載のジフルオロリン酸塩の製造方法。   The difluorophosphorus according to any one of claims 1 to 6, wherein the chloride is at least one selected from the group consisting of an alkali metal chloride, an alkaline earth metal chloride, and aluminum chloride. Method for producing acid salt. アルカリ金属の塩化物が塩化リチウム、塩化ナトリウム、及び塩化カリウムから選ばれる少なくとも1種であり、アルカリ土類金属の塩化物が塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、及び塩化バリウムから選ばれる少なくとも1種であることを特徴とする請求項7に記載のジフルオロリン酸塩の製造方法。   The alkali metal chloride is at least one selected from lithium chloride, sodium chloride, and potassium chloride, and the alkaline earth metal chloride is at least one selected from magnesium chloride, calcium chloride, strontium chloride, and barium chloride. The method for producing a difluorophosphate according to claim 7, wherein: 塩化物が塩化オキサリル、塩化アセチル、塩化チオニル及びジメチルジクロロシランからなる群から選ばれる少なくとも1種であることを特徴とする、請求項1〜6のいずれかに記載のジフルオロリン酸塩の製造方法。   The method for producing a difluorophosphate according to any one of claims 1 to 6, wherein the chloride is at least one selected from the group consisting of oxalyl chloride, acetyl chloride, thionyl chloride and dimethyldichlorosilane. .
JP2013175924A 2013-08-27 2013-08-27 Method for producing difluorophosphate Active JP6199117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175924A JP6199117B2 (en) 2013-08-27 2013-08-27 Method for producing difluorophosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175924A JP6199117B2 (en) 2013-08-27 2013-08-27 Method for producing difluorophosphate

Publications (2)

Publication Number Publication Date
JP2015044701A true JP2015044701A (en) 2015-03-12
JP6199117B2 JP6199117B2 (en) 2017-09-20

Family

ID=52670584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175924A Active JP6199117B2 (en) 2013-08-27 2013-08-27 Method for producing difluorophosphate

Country Status (1)

Country Link
JP (1) JP6199117B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175186A1 (en) * 2015-04-27 2016-11-03 関東電化工業株式会社 Method for purifying difluorophosphate
CN108147385A (en) * 2016-12-02 2018-06-12 中央硝子株式会社 The manufacturing method of difluorophosphate
JP2019172475A (en) * 2018-03-26 2019-10-10 三井化学株式会社 Method for producing lithium difluorophosphate
WO2019245092A1 (en) * 2018-06-21 2019-12-26 주식회사 천보 Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same
JP2020200234A (en) * 2020-09-01 2020-12-17 セントラル硝子株式会社 Method for producing lithium difluorophosphate
US11225417B2 (en) 2018-06-22 2022-01-18 Chun Bo., Ltd Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal
WO2024082463A1 (en) * 2022-10-17 2024-04-25 山东海科创新研究院有限公司 Synthesis method for ammonium difluorophosphate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111367A1 (en) * 2007-03-12 2008-09-18 Central Glass Company, Limited Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
JP2010155773A (en) * 2008-12-02 2010-07-15 Stella Chemifa Corp Method for producing difluorophosphate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111367A1 (en) * 2007-03-12 2008-09-18 Central Glass Company, Limited Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
JP2010155773A (en) * 2008-12-02 2010-07-15 Stella Chemifa Corp Method for producing difluorophosphate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170139507A (en) * 2015-04-27 2017-12-19 칸토 덴카 코교 가부시키가이샤 Method for purifying difluorophosphate
JPWO2016175186A1 (en) * 2015-04-27 2018-02-15 関東電化工業株式会社 Method for purifying difluorophosphate
WO2016175186A1 (en) * 2015-04-27 2016-11-03 関東電化工業株式会社 Method for purifying difluorophosphate
US10717650B2 (en) 2015-04-27 2020-07-21 Kanto Denka Kogyo Co., Ltd. Method for purifying difluorophosphate
KR102632698B1 (en) * 2015-04-27 2024-02-02 칸토 덴카 코교 가부시키가이샤 Method for purifying difluorophosphate
CN108147385A (en) * 2016-12-02 2018-06-12 中央硝子株式会社 The manufacturing method of difluorophosphate
KR20180063850A (en) * 2016-12-02 2018-06-12 샌트랄 글래스 컴퍼니 리미티드 Method for producing lithium difluorophosphate
JP2018090439A (en) * 2016-12-02 2018-06-14 セントラル硝子株式会社 Process for producing lithium difluorophosphate
KR102045964B1 (en) * 2016-12-02 2019-11-18 샌트랄 글래스 컴퍼니 리미티드 Method for producing lithium difluorophosphate
JP7020749B2 (en) 2018-03-26 2022-02-16 三井化学株式会社 Method for producing lithium difluorophosphate
JP2019172475A (en) * 2018-03-26 2019-10-10 三井化学株式会社 Method for producing lithium difluorophosphate
WO2019245092A1 (en) * 2018-06-21 2019-12-26 주식회사 천보 Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same
US11148949B2 (en) 2018-06-21 2021-10-19 Chun Bo., Ltd Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal
EP3617139A4 (en) * 2018-06-21 2021-02-24 Chun Bo Co., Ltd. Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same
US11225417B2 (en) 2018-06-22 2022-01-18 Chun Bo., Ltd Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal
JP2020200234A (en) * 2020-09-01 2020-12-17 セントラル硝子株式会社 Method for producing lithium difluorophosphate
WO2024082463A1 (en) * 2022-10-17 2024-04-25 山东海科创新研究院有限公司 Synthesis method for ammonium difluorophosphate

Also Published As

Publication number Publication date
JP6199117B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6226643B2 (en) Method for producing lithium difluorophosphate
JP6199117B2 (en) Method for producing difluorophosphate
JP5795634B2 (en) Production of LiPO2F2 from POF3 or PF5
KR101773539B1 (en) Method for producing difluorophosphate
JP4616925B2 (en) Method for producing difluorophosphate
CN107720717B (en) Preparation method of lithium difluorophosphate
JP4810867B2 (en) Method for producing electrolyte for lithium ion battery
JP4560132B2 (en) Method for producing difluorophosphate
JP6910324B2 (en) Disulfonylamide salt granules or powder
WO2021025107A1 (en) Method for producing lithium difluorophosphate, method for producing difluorophosphate ester, lithium difluorophosphate, method for producing nonaqueous electrolyte solution, and method for producing nonaqueous secondary battery
US9567217B2 (en) Method for producing difluorophosphate
KR101521069B1 (en) Purification method for producing difluorophosphate
US20150111098A1 (en) Method for Producing Tetrafluoro(Oxalate)phosphate Solution
JP7475343B2 (en) Purified lithium bis(fluorosulfonyl)imide (LIFSI) product, method for purifying crude LIFSI, and uses of the purified LIFSI product
KR101955096B1 (en) Novel preparing method of very efficient and simple lithium bis(fluorosulfonyl)imide
KR20200049164A (en) Very efficient Method for preparing lithium bis(fluorosulfonyl)imide
EP3774656A1 (en) Production of lithium hexafluorophosphate
JP2016008145A (en) Lithium fluorosulfate and solution containing the same, and method for producing the same
JP2008195547A (en) Method for producing hexafluorophosphate salt
JP5891598B2 (en) Method for producing lithium fluorosulfonate and lithium fluorosulfonate
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP2017210392A (en) Method for producing electrolyte material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6199117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250