JP2015043005A - Autoanalyzer - Google Patents

Autoanalyzer Download PDF

Info

Publication number
JP2015043005A
JP2015043005A JP2014246401A JP2014246401A JP2015043005A JP 2015043005 A JP2015043005 A JP 2015043005A JP 2014246401 A JP2014246401 A JP 2014246401A JP 2014246401 A JP2014246401 A JP 2014246401A JP 2015043005 A JP2015043005 A JP 2015043005A
Authority
JP
Japan
Prior art keywords
stirring
reagent
reaction
automatic analyzer
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014246401A
Other languages
Japanese (ja)
Other versions
JP5919364B2 (en
Inventor
千枝 杉山
Chie Sugiyama
千枝 杉山
松原 茂樹
Shigeki Matsubara
茂樹 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014246401A priority Critical patent/JP5919364B2/en
Publication of JP2015043005A publication Critical patent/JP2015043005A/en
Application granted granted Critical
Publication of JP5919364B2 publication Critical patent/JP5919364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an autoanalyzer capable of executing a substantial agitation of any item even under such situations that, with a recent increase in analysis items in the field of the autoanalyzer, types of analytical reagent with different properties such as viscosity of liquid and a contact angle increase and it is estimated to be further increased in future, and moreover, reagent modes are also diversified such as a concentrated reagent is used by diluting it with water in a device and the types of dilution water is diversified.SOLUTION: When performing an agitating operation of same reagent, agitation of an object to be agitated can be achieved by adding the reagent and, after a lapse of a predetermined time, changing an agitating condition.

Description

本発明は、血液,尿などの生体サンプルの定性,定量分析を行う自動分析装置に係り、特に生体サンプルと試薬を撹拌する攪拌手段を備えた自動分析装置に関する。   The present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine, and more particularly to an automatic analyzer that includes a stirring means for stirring biological samples and reagents.

自動分析装置は、分析対象成分と反応する試薬をサンプルと混合,攪拌し、一定時間反応させた後、生化学分析では反応液の吸光度の変化を光度計により測定し、免疫,遺伝子分析では、分析対象成分と結合した標識体の数を光電子増倍管などの光量計で測定して分析を行う。攪拌手段としては、被攪拌液にヘラ状の攪拌子を浸し、回転または、往復運動させることにより被攪拌物を混合する接触式攪拌方法と、被攪拌物に音波を照射することによって被攪拌物を混合する非接触攪拌方式などがある。   The automatic analyzer mixes and stirs a reagent that reacts with the analyte to be analyzed, reacts for a certain period of time, then measures the change in absorbance of the reaction solution with a photometer in biochemical analysis, and in immunity and gene analysis, Analysis is performed by measuring the number of labeled bodies bound to the analysis target component with a photometer such as a photomultiplier tube. Stirring means include a contact-type stirring method in which a spatula stirrer is immersed in a liquid to be stirred, and the object to be stirred is mixed by rotating or reciprocating, and the object to be stirred is irradiated with sound waves. There is a non-contact stirring method that mixes.

特許文献1には、試薬の種類,液量,希釈液の種類,液量,希釈倍率などの分析条件によって、攪拌子の回転速度,攪拌時間,回転攪拌子の被攪拌液に対する進入量を変更し、攪拌効率を高める技術が開示されている。また、特許文献2には、異なる反応容器内での被撹拌物の液面高さや、粘性・密度・表面張力といった被撹拌物の力学的特性を考慮することで、効果的な攪拌を可能にする技術が開示されている。   In Patent Document 1, the rotation speed of the stirrer, the stirring time, and the amount of entry of the rotating stirrer into the liquid to be stirred are changed according to the analysis conditions such as the type of reagent, liquid volume, type of diluent, liquid volume, and dilution factor. And the technique which raises stirring efficiency is disclosed. Patent Document 2 also enables effective stirring by taking into account the liquid level height of the object to be stirred in different reaction vessels and the mechanical properties of the object to be stirred such as viscosity, density, and surface tension. Techniques to do this are disclosed.

特開平9−145718号公報JP-A-9-145718 特開2005−99046号公報JP-A-2005-99046

ところで、近年、自動分析装置の分野では、分析項目の増加に伴い、液体の粘性や接触角など性質の異なる分析試薬の種類が増加し、今後も更なる増加が予測される。加えて、濃縮試薬を装置内の水にて希釈して使用するなど試薬形態も多様化し、希釈水の種類も多様化している。このように多種多様な形態で使用される試薬全てを充分に攪拌するためには、従来のような一つの試薬に対応する攪拌条件が一つだけである攪拌方法では充分に攪拌が行えないことが懸念される。   By the way, in recent years, in the field of automatic analyzers, as the number of analysis items increases, the types of analysis reagents having different properties such as liquid viscosity and contact angle increase, and further increases are expected in the future. In addition, the reagent forms are diversified, such as diluting the concentrated reagent with water in the apparatus, and the types of diluted water are also diversifying. In order to sufficiently stir all of the reagents used in such a wide variety of forms, it is impossible to stir sufficiently with a stirring method that has only one stirring condition corresponding to one conventional reagent. Is concerned.

本発明の目的は、反応容器内でのサンプルおよび試薬の攪拌を行う際に、どのような項目であっても、充分な攪拌が実行できる自動分析装置を提供することにある。   An object of the present invention is to provide an automatic analyzer capable of performing sufficient stirring for any items when stirring a sample and a reagent in a reaction vessel.

上記目的は、同一試薬における一連の攪拌操作の際に、一定時間経過後に攪拌の条件を変更することによって達成される。   The above object is achieved by changing the stirring conditions after a lapse of a certain time during a series of stirring operations in the same reagent.

すなわち、被攪拌物に浸漬し回転または反復運動させることによって該被攪拌物を攪拌するへら状の攪拌子を複数有し、それぞれ独立に、分析項目に応じて攪拌子の回転数及び角度を変更することができる駆動手段を備えることを特徴とする自動分析装置においては、同一試薬における一連の攪拌操作の際に攪拌子の回転数及び角度を変更し、二種類以上の攪拌条件で攪拌を行うことで解決される。   In other words, it has multiple spatula stirrers that stir the agitated material by immersing it in the agitated material and rotating or repeatedly moving it, and independently change the rotation speed and angle of the stirrer according to the analysis item. In the automatic analyzer characterized by having a drive means capable of performing the stirring, the number of rotations and the angle of the stirrer are changed during a series of stirring operations for the same reagent, and stirring is performed under two or more types of stirring conditions Is solved.

また、被攪拌物に音波を照射することによって攪拌を行うことを特徴とする自動分析装置においては、同一試薬における一連の攪拌操作の際に、圧電素子上の電極の選択及び、音波照射強度を変更することによって解決できる。   In addition, in an automatic analyzer characterized in that stirring is performed by irradiating an object to be stirred with a sound wave, the selection of electrodes on the piezoelectric element and the intensity of sound wave irradiation are determined during a series of stirring operations with the same reagent. It can be solved by changing.

以上説明した本発明により、検体と試薬の混合液を攪拌する手段に対して、同一試薬に二種類以上の異なる攪拌条件で駆動するように制御する制御手段を備えることを特徴とする自動分析装置において、攪拌子を有する装置では、その回転速度,攪拌時間を変更することによって、音波発生手段を有する装置では圧電素子上の電極の選択と、音波照射強度の変更を実行することによって、どのような項目であっても、充分な攪拌が行える自動分析装置を提供することができる。   According to the present invention described above, an automatic analyzer comprising control means for controlling a means for stirring a mixed solution of a specimen and a reagent so that the same reagent is driven under two or more different stirring conditions In the apparatus having the stirrer, the rotation speed and the stirring time are changed, and in the apparatus having the sound wave generating means, the selection of the electrode on the piezoelectric element and the change of the sound wave irradiation intensity are executed. It is possible to provide an automatic analyzer that can perform sufficient stirring even if it is a simple item.

本発明の実施形態に係わる自動分析装置の構成を示す斜視図。The perspective view which shows the structure of the automatic analyzer concerning embodiment of this invention. 本発明の実施形態に係わる自動分析装置の装備されている撹拌機構周辺の断面図。Sectional drawing of the stirring mechanism periphery equipped with the automatic analyzer concerning embodiment of this invention. 本発明の実施形態に係わる自動分析装置の装備されている撹拌機構の、駆動パターンの一例。An example of the drive pattern of the stirring mechanism with which the automatic analyzer concerning embodiment of this invention is equipped. 本発明の実施形態に係わる試薬の液性と攪拌パラメーターの一例。An example of the liquid property and stirring parameter of the reagent concerning embodiment of this invention. 本発明の実施形態に係わる試薬の液性と攪拌機構の設定条件の一例。An example of the liquid property of the reagent concerning the embodiment of the present invention, and the setting conditions of the stirring mechanism. 本発明の実施形態に係わる自動分析装置の装備されている撹拌機構の、駆動パターンの一例。An example of the drive pattern of the stirring mechanism with which the automatic analyzer concerning embodiment of this invention is equipped. 本発明の実施形態に係わる自動分析装置の装備されている撹拌機構の拡張例。The expansion example of the stirring mechanism with which the automatic analyzer concerning embodiment of this invention is equipped. 本発明の実施形態に係わる自動分析装置の装備されている撹拌機構の拡張例。The expansion example of the stirring mechanism with which the automatic analyzer concerning embodiment of this invention is equipped. 本発明の実施形態に係わる自動分析装置の装備されている撹拌機構周辺の断面図。Sectional drawing of the stirring mechanism periphery equipped with the automatic analyzer concerning embodiment of this invention.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明を適用した代表的な自動分析装置の概略図であり、攪拌機構として圧電素子を備えた自動分析装置である。また、図2は、図1に示す自動分析装置に装備されている攪拌機構7周辺の概略構成図である。   FIG. 1 is a schematic diagram of a typical automatic analyzer to which the present invention is applied, and is an automatic analyzer equipped with a piezoelectric element as a stirring mechanism. FIG. 2 is a schematic configuration diagram around the stirring mechanism 7 provided in the automatic analyzer shown in FIG.

本実施形態に係る自動分析装置は、図1に示すように、主として、サンプルディスク1,試薬ディスク2,反応ディスク3,反応槽4,サンプリング機構5,ピペッティング機構6,攪拌機構7,測光機構8,洗浄機構9,表示部10,入力部11,記憶部12,制御部13を備えて構成されている。サンプルディスク1には、採取したサンプルが入れられた複数の試料容器16が、円形ディスク17の円周上に固定されて並べられており、円形ディスク17は、図示しないモータや回転軸等から構成される駆動機構により、位置決め可能に周方向回転する。試薬ディスク2には、サンプルと混合して反応させるための試薬が入れられた複数の試薬ボトル18が円形ディスク19の円周上に固定されて並べられており、その周囲は、温度制御された保冷庫20になっている。また、円形ディスク19は、図示しないモータや回転軸等から構成される駆動機構により、位置決め可能に周方向回転する。反応ディスク3には、サンプルおよび試薬を入れるための反応容器21を保持した反応容器ホルダ22が、複数取り付けられており、駆動機構23により、周方向回転と停止とを一定サイクルで繰り返して、反応容器21を間欠移送する。反応槽4は、反応容器21の移動軌跡に沿って設置され、サンプルと試薬の化学反応を促進するために、例えば、温度制御された恒温水により、反応容器21内の反応液を一定温度に制御する恒温槽である。反応容器21は反応槽4内を移動する。サンプリング機構5は、プローブ24と、支承軸25に取り付けられたアーム26と、支承軸25を回転中心にサンプルディスク1と反応ディスク3との間を往復可能にする駆動機構とを備えて構成され、予め定められたシーケンスに従って、サンプルディスク1の回転と共に定位置に移送されてくる試料容器16内のサンプルを、反応容器21に供給する。同様に、ピペッティング機構6は、プローブ27と、支承軸28に取り付けられたアーム29と、支承軸28を回転中心に試薬ディスク2と反応ディスク3との間を往復可能にする駆動機構とを備えて構成され、予め定められたシーケンスに従って、試薬ディスク2の回転と共に定位置に移送されてくる試薬ボトル18内の試薬を、反応容器21に供給する。なお、試料容器16および試薬ボトル18の各々には、異なる種類のサンプルおよび試薬が入れられており、必要量が反応容器21に供給される。攪拌機構7は、その位置(攪拌位置)に移送されてきた反応容器21内のサンプルおよび試薬を撹拌して混合する攪拌機構である。本発明における攪拌機構の方式は攪拌子による接触式攪拌方式及び、超音波等による非接触式攪拌方式のいずれにおいても、同等の効果を発揮することができる。   As shown in FIG. 1, the automatic analyzer according to this embodiment mainly includes a sample disk 1, a reagent disk 2, a reaction disk 3, a reaction tank 4, a sampling mechanism 5, a pipetting mechanism 6, a stirring mechanism 7, and a photometric mechanism. 8, a cleaning mechanism 9, a display unit 10, an input unit 11, a storage unit 12, and a control unit 13. In the sample disk 1, a plurality of sample containers 16 in which collected samples are placed are fixed and arranged on the circumference of a circular disk 17, and the circular disk 17 includes a motor, a rotating shaft, etc. (not shown). The drive mechanism rotates in the circumferential direction so that positioning is possible. In the reagent disk 2, a plurality of reagent bottles 18 containing reagents for mixing and reacting with the sample are fixedly arranged on the circumference of the circular disk 19, and the periphery thereof is temperature-controlled. It is a cold storage 20. The circular disk 19 is rotated in the circumferential direction so as to be positioned by a drive mechanism including a motor, a rotating shaft, and the like (not shown). A plurality of reaction vessel holders 22 holding reaction vessels 21 for holding samples and reagents are attached to the reaction disk 3, and the circumferential rotation and stop are repeated by a driving mechanism 23 in a certain cycle, and the reaction is performed. The container 21 is intermittently transferred. The reaction tank 4 is installed along the movement trajectory of the reaction vessel 21, and in order to promote the chemical reaction between the sample and the reagent, for example, the reaction solution in the reaction vessel 21 is kept at a constant temperature with temperature-controlled constant temperature water. It is a thermostatic chamber to be controlled. The reaction vessel 21 moves in the reaction tank 4. The sampling mechanism 5 includes a probe 24, an arm 26 attached to the support shaft 25, and a drive mechanism that enables reciprocation between the sample disk 1 and the reaction disk 3 about the support shaft 25. According to a predetermined sequence, the sample in the sample container 16 that is transferred to a fixed position along with the rotation of the sample disk 1 is supplied to the reaction container 21. Similarly, the pipetting mechanism 6 includes a probe 27, an arm 29 attached to the support shaft 28, and a drive mechanism that enables reciprocation between the reagent disk 2 and the reaction disk 3 about the support shaft 28. The reagent in the reagent bottle 18 that is configured and is transferred to a fixed position along with the rotation of the reagent disk 2 is supplied to the reaction container 21 in accordance with a predetermined sequence. Each of the sample container 16 and the reagent bottle 18 contains different types of samples and reagents, and a necessary amount is supplied to the reaction container 21. The stirring mechanism 7 is a stirring mechanism that stirs and mixes the sample and the reagent in the reaction vessel 21 that have been transferred to that position (stirring position). The method of the stirring mechanism in the present invention can exhibit the same effect in any of the contact type stirring method using a stirrer and the non-contact type stirring method using ultrasonic waves.

その一例として図2を用い、非接触攪拌方式の攪拌機構の例を示して説明する。攪拌機構7は、攪拌位置で反応容器21の側面から音波を照射可能になる位置に固定した固定部31と、圧電素子(図2の30)を駆動する圧電素子ドライバ14と、攪拌機構コントローラ15とを含み構成される。攪拌機構コントローラ15は、制御部13に接続され、圧電素子ドライバ14を駆動すると共に、攪拌機構7全体を制御する。固定部31には、音源となる圧電素子30が、その片面が反応槽4の恒温水に浸されるようにして設けられている。圧電素子30は、電極32を複数個持ち、圧電素子ドライバ14によって所定の周波数で加振され、加振される電極32によって音波の照射位置を変えることが可能な構成となっている。測光機構8は、図示していないが、光源と、光度計と、レンズと、測光信号処理部とを備えて構成され、反応容器21内の反応液の吸光度を測定するなど、サンプルの物性を光で測定する。洗浄機構9は、複数のノズル33と、その上下駆動機構34とを備えて構成され、反応容器21内の反応液を吸引し、洗浄液を吐き出し、その位置(洗浄位置)に移送されてきた反応容器21を洗浄する。表示部10は、分析項目や分析結果等の各種画面表示を行い、入力部11は、分析項目等の各種情報の入力を行う。また、記憶部12は、各機構を制御するための予め定めたシーケンス(プログラム)や分析項目等の各種情報を記憶している。   An example of a non-contact stirring type stirring mechanism will be described with reference to FIG. 2 as an example. The stirring mechanism 7 includes a fixed portion 31 fixed at a position where the sound wave can be irradiated from the side surface of the reaction vessel 21 at the stirring position, a piezoelectric element driver 14 for driving a piezoelectric element (30 in FIG. 2), and a stirring mechanism controller 15. And comprising. The stirring mechanism controller 15 is connected to the control unit 13 and drives the piezoelectric element driver 14 and controls the entire stirring mechanism 7. The fixed portion 31 is provided with a piezoelectric element 30 serving as a sound source so that one surface thereof is immersed in the constant temperature water of the reaction tank 4. The piezoelectric element 30 has a plurality of electrodes 32 and is configured to be vibrated at a predetermined frequency by the piezoelectric element driver 14 and to change the irradiation position of the sound wave by the vibrated electrode 32. Although not shown, the photometric mechanism 8 includes a light source, a photometer, a lens, and a photometric signal processing unit, and measures the physical properties of the sample, such as measuring the absorbance of the reaction solution in the reaction vessel 21. Measure with light. The cleaning mechanism 9 includes a plurality of nozzles 33 and a vertical drive mechanism 34, and sucks the reaction liquid in the reaction vessel 21, discharges the cleaning liquid, and the reaction that has been transferred to that position (cleaning position). The container 21 is washed. The display unit 10 displays various screens such as analysis items and analysis results, and the input unit 11 inputs various information such as analysis items. The storage unit 12 stores various information such as a predetermined sequence (program) and analysis items for controlling each mechanism.

図2において、サンプルおよび試薬が注入された反応容器21は、反応容器ホルダ22によって反応ディスク3に固定され、反応ディスク3の周方向回転に従って、恒温水を入れた反応槽4に浸漬された状態で移動する。そして、攪拌位置に移送されて停止すると、圧電素子30が、圧電素子ドライバ14によって所定の周波数で加振される。圧電素子30が加振されることによって発生された振動は、反応槽4の恒温水内を音波として伝播し、反応容器21の側面に到達する。この音波は、反応容器21の壁面を通過して、内部の被撹拌物であるサンプルおよび試薬に到達する。伝達された振動波は、被攪拌物の気液界面に作用し、旋回流を引き起こす。この旋回流によって、サンプルおよび試薬の撹拌が行われる。   In FIG. 2, a reaction vessel 21 into which a sample and a reagent have been injected is fixed to the reaction disk 3 by a reaction vessel holder 22, and is immersed in a reaction tank 4 containing constant temperature water as the reaction disk 3 rotates in the circumferential direction. Move with. When the piezoelectric element 30 is transferred to the stirring position and stopped, the piezoelectric element 30 is vibrated at a predetermined frequency by the piezoelectric element driver 14. The vibration generated by exciting the piezoelectric element 30 propagates as a sound wave in the constant temperature water of the reaction tank 4 and reaches the side surface of the reaction vessel 21. This sound wave passes through the wall surface of the reaction vessel 21 and reaches the sample and reagent, which are the objects to be stirred inside. The transmitted vibration wave acts on the gas-liquid interface of the object to be stirred, causing a swirling flow. The sample and reagent are agitated by this swirl flow.

以上のように構成された自動分析装置の動作について、以下に説明する。   The operation of the automatic analyzer configured as described above will be described below.

まず、洗浄機構9により洗浄された反応容器21が、反応ディスク3の駆動によって試料注入位置に移送されてくると、サンプルディスク1が回転し、サンプルが入った試料容器16をサンプリング位置に移送する。試薬ディスク2も同様に、所望の試薬ボトル18をピペッティング位置へ移送する。   First, when the reaction container 21 cleaned by the cleaning mechanism 9 is transferred to the sample injection position by driving the reaction disk 3, the sample disk 1 rotates and the sample container 16 containing the sample is transferred to the sampling position. . Similarly, the reagent disk 2 also transfers the desired reagent bottle 18 to the pipetting position.

続いて、サンプリング機構5が動作し、プローブ24を用いて、サンプリング位置に移送されてきた試料容器16から、試料注入位置に移送されてきた反応容器21へサンプルを注入する。サンプルが注入された反応容器21は、試薬注入位置に移送され、ピペッティング機構6の動作により、試薬ディスク2上のピペッティング位置に移送されてきた試薬ボトル18から、試薬注入位置に移送されてきた反応容器21へ試薬が注入される。   Subsequently, the sampling mechanism 5 operates, and the sample is injected from the sample container 16 transferred to the sampling position into the reaction container 21 transferred to the sample injection position using the probe 24. The reaction container 21 into which the sample has been injected is transferred to the reagent injection position, and is transferred to the reagent injection position from the reagent bottle 18 that has been transferred to the pipetting position on the reagent disk 2 by the operation of the pipetting mechanism 6. The reagent is injected into the reaction container 21.

その後、反応容器21は、攪拌位置に移送され、攪拌機構7により、サンプルおよび試薬の攪拌が行われる。   Thereafter, the reaction vessel 21 is transferred to the stirring position, and the sample and the reagent are stirred by the stirring mechanism 7.

攪拌が完了した反応液は、反応容器21が光源と光度計との間を通過する際に、測光機構8により吸光度が測定される。この測定は、数サイクル間行われ、測定が終了した反応容器21は、洗浄機構9により洗浄される。   When the reaction vessel 21 passes between the light source and the photometer, the absorbance of the reaction solution after the stirring is completed is measured by the photometric mechanism 8. This measurement is performed for several cycles, and the reaction vessel 21 that has been measured is washed by the washing mechanism 9.

このような一連の動作が、各反応容器21に対して実行され、本実施形態に係る自動分析装置による分析が行われる。   Such a series of operations is executed for each reaction vessel 21, and analysis is performed by the automatic analyzer according to the present embodiment.

さて、攪拌機構7による攪拌において、本実施形態の特徴となる点について詳細に説明する。   Now, the points that characterize the present embodiment in the stirring by the stirring mechanism 7 will be described in detail.

本実施形態においては、攪拌機構7は、反応容器21が攪拌位置に移送されてくるまでに、制御部13の指示に従って、音波の照射位置および、音波の照射強度を決定する。この時、液量および液性に応じて、電極の選択と音波照射強度が決定される。これは、攪拌パラメーターとして記憶部12に格納されたテーブルから、分析項目ごとに検索することによって実行される。更に、攪拌時には、一定時間の経過後には、電極の選択と音波照射強度を変更して、段階的な攪拌が行えるようにする。   In the present embodiment, the stirring mechanism 7 determines the irradiation position of the sound wave and the irradiation intensity of the sound wave according to the instruction of the control unit 13 until the reaction vessel 21 is transferred to the stirring position. At this time, the selection of the electrode and the intensity of sonication are determined in accordance with the liquid amount and liquidity. This is executed by searching for each analysis item from the table stored in the storage unit 12 as the stirring parameter. Furthermore, at the time of stirring, after a certain period of time, the selection of electrodes and the intensity of sound wave irradiation are changed so that stepwise stirring can be performed.

処理能力の低い装置においては、一度の攪拌で充分に攪拌時間が確保されるため、同一素子に対して二つ以上の攪拌パラメーターを用いて攪拌を実行することが出来る。図3には、一つの攪拌素子に対し、二つの攪拌パラメーターを適用する例を示した。反応容器21が回転し、検体と試薬の混合液の入ったセルが攪拌機構7aの前に移送されると反応容器21は停止し、攪拌機構7aが駆動する。このときのパラメーターが、第一試薬添加後、第一回目の攪拌パラメーター301である。一定時間経過後に301とは異なる、パラメーター302に変更され、攪拌が行われる。さらに、数分後には、第二試薬が添加され、第一試薬の時と同様に、反応容器21が回転し、検体と試薬の混合液の入ったセルが攪拌機構7aの前に移送されると反応容器21は停止し、攪拌機構7aが駆動する。このときのパラメーターが、第二試薬添加後、第一回目の攪拌パラメーター303である。その後、パラメーター304への切り替えが行われ、攪拌が行われる。攪拌パラメーターの変更例を図4,図5を用いて説明する。例えば、濃縮試薬を用いた分析において、希釈水と比較して試薬の接触角が著しく小さい場合を考える。ここで、仮想の試薬の液性例を図4に示し、そのときの攪拌パラメーターを図5に示す。ここで圧電素子30は、10個のセグメントに、最上部を1として分割し、電圧は最も大きいものを1として10段階に切り替えが可能であるとする。従来の設定では、希釈水と試薬の混合液の液量と液性に沿った攪拌パラメーター501を採用した。このときの音波照射強度は5で中程度である。しかし、本ケースでは、希釈水/試薬の比率は13:2と圧倒的に希釈水が多い。このような場合、試薬吐出直後の希釈水と試薬の混合が進んでいない状態においては、希釈水の液性に沿った攪拌パラメーター502を採用するのが良い。したがって、音波照射程度は、3となり、比較的強い。最初の音波照射後は、希釈水と試薬が混合された状態にあるので、混合液の液性に沿った攪拌パラメーター501を採用する。これは、従来の設定で使用していたものと同じである。また、粘性の違いによって、同じ液量でも使用するセグメントの位置を変えることもある。   In an apparatus having a low processing capacity, a sufficient stirring time is ensured by a single stirring, and therefore stirring can be performed using two or more stirring parameters for the same element. FIG. 3 shows an example in which two stirring parameters are applied to one stirring element. When the reaction vessel 21 rotates and the cell containing the mixed liquid of the specimen and the reagent is transferred before the stirring mechanism 7a, the reaction vessel 21 stops and the stirring mechanism 7a is driven. The parameter at this time is the first stirring parameter 301 after the addition of the first reagent. After a certain period of time, the parameter 302 is changed from 301, and stirring is performed. Further, after a few minutes, the second reagent is added, and the reaction vessel 21 rotates as in the case of the first reagent, and the cell containing the mixed liquid of the sample and the reagent is transferred in front of the stirring mechanism 7a. And the reaction vessel 21 is stopped, and the stirring mechanism 7a is driven. The parameter at this time is the first stirring parameter 303 after the addition of the second reagent. Thereafter, switching to the parameter 304 is performed, and stirring is performed. An example of changing the stirring parameter will be described with reference to FIGS. For example, in an analysis using a concentrated reagent, consider a case where the contact angle of the reagent is significantly smaller than that of diluted water. Here, FIG. 4 shows a liquid property example of the virtual reagent, and FIG. 5 shows the stirring parameters at that time. Here, it is assumed that the piezoelectric element 30 can be divided into 10 segments, with the uppermost portion being 1 and the highest voltage being 1 and switching to 10 stages. In the conventional setting, an agitation parameter 501 was adopted in accordance with the liquid volume and liquidity of the diluted water / reagent mixed liquid. The intensity of sound wave irradiation at this time is 5 and medium. However, in this case, the dilution water / reagent ratio is overwhelmingly large as 13: 2. In such a case, in a state where mixing of the dilution water and the reagent is not progressing immediately after the reagent is discharged, it is preferable to employ the stirring parameter 502 along the liquid property of the dilution water. Therefore, the degree of sound wave irradiation is 3, which is relatively strong. Since the diluted water and the reagent are in a mixed state after the first acoustic wave irradiation, the stirring parameter 501 in accordance with the liquid property of the mixed solution is adopted. This is the same as that used in the conventional setting. Moreover, the position of the segment to be used may be changed even with the same liquid amount due to the difference in viscosity.

さらに、二種類以上の試薬を使用する際にも同様に、第一試薬と第二試薬で液性が著しく異なる場合には、一定時間の経過後に使用する電極の選択と音波照射強度の変更を行うことによって効果的な攪拌を実現できる。   Furthermore, when using two or more types of reagents, if the liquid properties of the first reagent and the second reagent are significantly different, select the electrode to be used and change the sonication intensity after a certain period of time. By carrying out, effective stirring can be realized.

ところで、処理能力の高い装置については一度の攪拌では充分な音波照射時間が確保できないために、複数の攪拌素子を利用することがある。図6に二つの攪拌素子に異なる攪拌パラメーターを設定する例を示した。反応容器21が回転し、検体と試薬の混合液の入ったセルが攪拌機構7b−1の前に移動してくると反応容器21は停止し、攪拌機構7b−1が601の攪拌パラメーターにて駆動する。続いて再び、検体と試薬の混合液の入ったセルが攪拌機構7b−2の前に移動してくると反応容器21は停止し、攪拌機構7b−2は602の攪拌パラメーターにて駆動する。さらに、数分後には、第二試薬が添加され、第一試薬の時と同様に、反応容器21が回転し、検体と試薬の混合液の入ったセルは攪拌機構7b−1の前で603の攪拌パラメーター、攪拌機構7b−2の前で604の攪拌パラメーターにて駆動する。   By the way, for a device having a high processing capacity, a sufficient sonication time cannot be secured by a single stirring, and thus a plurality of stirring elements may be used. FIG. 6 shows an example in which different stirring parameters are set for the two stirring elements. When the reaction vessel 21 rotates and the cell containing the mixed liquid of the specimen and the reagent moves in front of the stirring mechanism 7b-1, the reaction vessel 21 is stopped and the stirring mechanism 7b-1 is set at the stirring parameter 601. To drive. Subsequently, when the cell containing the mixed liquid of the specimen and the reagent again moves before the stirring mechanism 7b-2, the reaction vessel 21 stops and the stirring mechanism 7b-2 is driven with the stirring parameter 602. Further, after a few minutes, the second reagent is added, and the reaction vessel 21 rotates as in the case of the first reagent, and the cell containing the mixed liquid of the sample and the reagent is 603 in front of the stirring mechanism 7b-1. The agitation parameter of 604 is driven with an agitation parameter of 604 in front of the agitation mechanism 7b-2.

このようにして、一つの試薬に対し、異なる二つの攪拌パラメーターを採用した攪拌機構を適用させることで、充分な攪拌効果を得られる。   Thus, sufficient stirring effect can be obtained by applying a stirring mechanism employing two different stirring parameters to one reagent.

処理能力がさらに高くなった場合には、攪拌機構をさらに増やすことも可能である。例えば、二試薬を用いた分析において、第一試薬と第二試薬で異なる攪拌機構を使用することが考えられる。その場合の構造は図7のように拡張できる。第一試薬添加後、攪拌機構7c−1が攪拌パラメーター701を実行し、攪拌機構7c−2が攪拌パラメーター702を実行する。さらに、第二試薬添加後には、攪拌機構7d−1が攪拌パラメーター703を実行し、攪拌機構7d−2が攪拌パラメーター704を実行するという具合である。   If the processing capacity is further increased, the number of stirring mechanisms can be further increased. For example, in the analysis using two reagents, it is conceivable to use different stirring mechanisms for the first reagent and the second reagent. The structure in that case can be expanded as shown in FIG. After the first reagent is added, the stirring mechanism 7c-1 executes the stirring parameter 701, and the stirring mechanism 7c-2 executes the stirring parameter 702. Further, after the second reagent is added, the stirring mechanism 7d-1 executes the stirring parameter 703, and the stirring mechanism 7d-2 executes the stirring parameter 704.

さらに、別の実施形態として、反応容器の回転/停止のサイクルを複数回繰り返した後に測光を行う方法もある。図8にその例を示した。処理能力の高い装置において小型化が進んだ場合、複数の攪拌素子を備えることが出来なくなることが考えられる。この場合、一つの攪拌機構であっても、攪拌機構の前を通過する度に音波を照射することで充分に攪拌を行ってから測光を開始することで解決できる。すなわち、第一試薬添加後、攪拌機構7eが攪拌パラメーター801を実行する。一回の攪拌では攪拌パラメーターを切り替える十分な時間がないため、そのまま反応容器21の回転/停止のサイクルを数回繰り返し、反応容器21が一周するまで繰り返す。再び、検体と試薬の混合液の入ったセルが攪拌機構7eの前に移動してくると攪拌機構7eは、攪拌パラメーター802を実行する。さらに、第二試薬添加後には、攪拌機構7eは攪拌パラメーター803を実行し、反応容器21が一周した後に攪拌パラメーター804を実行する。   Furthermore, as another embodiment, there is a method in which photometry is performed after repeating the rotation / stop cycle of the reaction vessel a plurality of times. An example is shown in FIG. When downsizing is advanced in an apparatus having a high processing capability, it may be impossible to provide a plurality of stirring elements. In this case, even one stirring mechanism can be solved by starting photometry after sufficiently stirring by irradiating a sound wave every time it passes in front of the stirring mechanism. That is, after the first reagent is added, the stirring mechanism 7e executes the stirring parameter 801. Since there is not enough time to switch the stirring parameters in one stirring, the rotation / stop cycle of the reaction vessel 21 is repeated several times as it is until the reaction vessel 21 makes one round. When the cell containing the mixed liquid of the specimen and the reagent moves again before the stirring mechanism 7e, the stirring mechanism 7e executes the stirring parameter 802. Further, after the addition of the second reagent, the stirring mechanism 7e executes the stirring parameter 803, and executes the stirring parameter 804 after the reaction vessel 21 has made a round.

攪拌子による接触式の攪拌方式について、攪拌子の概略図を図9に示す。この場合でも、非接触式攪拌機構の場合と同様に、添加する試薬に応じて一定時間の経過後に攪拌条件を変更することによって、効果的な攪拌を実現できる。例えば、攪拌パラメーターの変更例として図4に示す仮想の試薬を考えるとき、攪拌パラメーターの変更例は図5と同様の概念で置き換えることができる。すなわち、図4の仮想試薬において、従来の設定では、希釈水と試薬の混合液の液量と液性に沿った攪拌パラメーター501を採用していた。このときの攪拌パラメーターは、攪拌子を中程度の攪拌速度と設定する。しかし、本ケースのように、希釈水/試薬の比率は13:2と圧倒的に希釈水が多い場合、試薬吐出直後の希釈水と試薬の混合が進んでいない状態においては、希釈水の液性に沿った攪拌パラメーター502を採用するのが良い。この場合、攪拌パラメーター501に比べ、攪拌子の攪拌速度を速くする。パラメーター502で一定時間の攪拌した後には、希釈水と試薬が混合された状態にあるので、混合液の液性に沿って中程度の速度で回転する攪拌パラメーター501を採用する。これは、従来の設定で使用していたものと同じである。このようなパラメーターの変更は、回転速度変更の他に、攪拌時間,攪拌子の被攪拌液に対する進入量などの変更によっても実現できる。   FIG. 9 shows a schematic diagram of the stirring bar for the contact type stirring system using the stirring bar. Even in this case, as in the case of the non-contact type stirring mechanism, effective stirring can be realized by changing the stirring conditions after the elapse of a fixed time according to the reagent to be added. For example, when the hypothetical reagent shown in FIG. 4 is considered as an example of changing the stirring parameter, the example of changing the stirring parameter can be replaced with the same concept as in FIG. That is, in the virtual reagent of FIG. 4, in the conventional setting, the agitation parameter 501 along the liquid amount and liquidity of the mixed solution of the dilution water and the reagent was adopted. The stirring parameter at this time sets a stirrer as a moderate stirring speed. However, as in this case, when the dilution water / reagent ratio is 13: 2 and there is an excessive amount of dilution water, in the state where mixing of the dilution water and the reagent immediately after the reagent discharge has not progressed, the dilution water solution It is preferable to employ a stirring parameter 502 in line with the characteristics. In this case, compared with the stirring parameter 501, the stirring speed of the stirring bar is increased. After stirring for a certain time with the parameter 502, the diluted water and the reagent are in a mixed state. Therefore, the stirring parameter 501 that rotates at a medium speed along the liquid property of the mixed solution is adopted. This is the same as that used in the conventional setting. Such a parameter change can be realized not only by changing the rotation speed but also by changing the stirring time, the amount of the stir bar entering the liquid to be stirred, and the like.

このように、一定時間の経過後にパラメーターを変更することによって、あらゆる装置に対して、どのような項目においても充分な攪拌を行うことができる。   In this way, by changing the parameters after a certain period of time, sufficient stirring can be performed for any device in any item.

1 サンプルディスク
2 試薬ディスク
3 反応ディスク
4 反応槽
5 サンプリング機構
6 ピペッティング機構
7 攪拌機構
8 測光機構
9 洗浄機構
10 表示部
11 入力部
12 記憶部
13 制御部
14 圧電素子ドライバ
15 攪拌機構コントローラ
16 試料容器
17,19 円形ディスク
18 試薬ボトル
20 保冷庫
21 反応容器
22 反応容器ホルダ
23 駆動機構
24,27 プローブ
25,28 支承軸
26,29 アーム
30 圧電素子
31 固定部
32 電極
33 ノズル
34 上下駆動機構
35 攪拌子
301 攪拌素子一つの場合の、第一試薬添加後、一回目の攪拌パラメーター
302 攪拌素子一つの場合の、第一試薬添加後、二回目の攪拌パラメーター
303 攪拌素子一つの場合の、第二試薬添加後、一回目の攪拌パラメーター
304 攪拌素子一つの場合の、第二試薬添加後、二回目の攪拌パラメーター
501 従来の攪拌パラメーター
502 試薬添加後、一回目に行う攪拌の攪拌パラメーター
601 攪拌素子二つの場合の、第一試薬添加後、一回目の攪拌パラメーター
602 攪拌素子二つの場合の、第一試薬添加後、二回目の攪拌パラメーター
603 攪拌素子二つの場合の、第二試薬添加後、一回目の攪拌パラメーター
604 攪拌素子二つの場合の、第二試薬添加後、二回目の攪拌パラメーター
701 攪拌素子四つの場合の、第一試薬添加後、一回目の攪拌パラメーター
702 攪拌素子四つの場合の、第一試薬添加後、二回目の攪拌パラメーター
703 攪拌素子四つの場合の、第二試薬添加後、一回目の攪拌パラメーター
704 攪拌素子四つの場合の、第二試薬添加後、二回目の攪拌パラメーター
801 処理能力が高いが、攪拌素子を一つしか持たない場合における、第一試薬添加後、一回目の攪拌パラメーター
802 同上、第一試薬添加後、二回目の攪拌パラメーター
803 同上、第二試薬添加後、一回目の攪拌パラメーター
804 同上、第二試薬添加後、二回目の攪拌パラメーター
DESCRIPTION OF SYMBOLS 1 Sample disk 2 Reagent disk 3 Reaction disk 4 Reaction tank 5 Sampling mechanism 6 Pipetting mechanism 7 Stirring mechanism 8 Photometric mechanism 9 Washing mechanism 10 Display part 11 Input part 12 Storage part 13 Control part 14 Piezoelectric element driver 15 Stirring mechanism controller 16 Sample Containers 17 and 19 Circular disk 18 Reagent bottle 20 Cold storage chamber 21 Reaction container 22 Reaction container holder 23 Drive mechanism 24 and 27 Probes 25 and 28 Bearing shafts 26 and 29 Arm 30 Piezoelectric element 31 Fixing part 32 Electrode 33 Nozzle 34 Vertical drive mechanism 35 Stirring element 301 In the case of one stirring element, the first stirring parameter 302 after the first reagent addition 302 In the case of one stirring element, the second stirring parameter 303 after the first reagent addition The second stirring parameter 303 in the case of one stirring element After the addition of the reagent, the first stirring parameter 304 In this case, after the addition of the second reagent, the second stirring parameter 501 Conventional stirring parameter 502 After the reagent addition, the stirring parameter 601 for the first stirring is performed. Stirring parameter 602 In the case of two stirring elements, after the first reagent addition, the second stirring parameter 603 In the case of two stirring elements, after the second reagent addition, the first stirring parameter 604 The second stirring parameter in the case of two stirring elements After the addition of the reagent, the second stirring parameter 701 In the case of four stirring elements After the first reagent addition, the first stirring parameter 702 In the case of four stirring elements, after the first reagent addition, the second stirring parameter 703 The stirring element In the four cases, after the second reagent addition, the first stirring parameter 704 In the case of four stirring elements, after the second reagent addition, the second time Stirring parameter 801 The processing capacity is high, but when there is only one stirring element, after the first reagent addition, the first stirring parameter 802 Same as above, after the first reagent addition, the second stirring parameter 803 Same as above, second First stirring parameter 804 after reagent addition Same as above, second stirring parameter after second reagent addition

Claims (6)

検体と試薬が注入される反応容器と、
前記反応容器を保持する反応ディスクと、
前記反応容器内の検体と試薬の混合液を撹拌する第一及び第二の撹拌手段と、
前記反応ディスクの動作と、前記撹拌手段の撹拌条件を制御する制御部と、
を備えた自動分析装置において、
前記制御部は、
前記混合液の粘性に応じて設定された第一と第二の攪拌条件を記憶部に記憶し、
当該記憶された第一の撹拌条件を適用して、前記第一の攪拌手段で前記検体と試薬の混合液を撹拌した後、前記反応容器を保持した反応ディスクを回転することにより該混合液の入った前記反応容器を前記第二の撹拌手段の前に移動し、
当該記憶された、前記第一の撹拌条件と異なる第二の撹拌条件を適用して、前記第二の攪拌手段で同一検体及び同一試薬を含む混合液を撹拌することを特徴とする
自動分析装置。
A reaction container into which a sample and a reagent are injected;
A reaction disc holding the reaction vessel;
First and second stirring means for stirring the mixed solution of the specimen and the reagent in the reaction container;
A control unit for controlling the operation of the reaction disk and the stirring condition of the stirring means;
In an automatic analyzer equipped with
The controller is
The first and second stirring conditions set according to the viscosity of the mixed liquid are stored in the storage unit,
By applying the stored first stirring condition and stirring the mixed solution of the specimen and the reagent by the first stirring means, the reaction disk holding the reaction vessel is rotated to rotate the mixed solution. Move the reaction vessel in front of the second stirring means,
Applying the memorized second stirring condition different from the first stirring condition and stirring the mixed solution containing the same specimen and the same reagent by the second stirring means .
請求項1に記載の自動分析装置において、
さらに、前記第一の撹拌条件と前記第二の撹拌条件とを適用して撹拌された同一検体及び同一試薬を含む混合液の測光を行う測光手段を備えることを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
Further, an automatic analyzer comprising photometric means for performing photometry of a mixed liquid containing the same specimen and the same reagent which are stirred by applying the first stirring condition and the second stirring condition.
請求項1または2に記載の自動分析装置において、
前記第一及び第二の撹拌手段は、音波発生源として複数の電極を備える圧電素子であって、
前記制御部は、前記第一と前記第二の撹拌条件とで、使用する電極の選択を異なるものとすることを特徴とする自動分析装置。
The automatic analyzer according to claim 1 or 2,
The first and second stirring means are piezoelectric elements including a plurality of electrodes as sound wave generation sources,
The automatic analyzer according to claim 1, wherein the controller is configured to select different electrodes to be used depending on the first and second stirring conditions.
検体と試薬が注入される反応容器と、
前記反応容器を保持する反応ディスクと、
前記反応容器内の検体と試薬の混合液を撹拌する第一及び第二の撹拌手段と、
前記反応ディスクの動作と、前記撹拌手段の撹拌条件を制御する制御部と、を備えた自動分析装置における混合液の
撹拌方法において、
前記制御部は、
前記混合液の粘性に応じて設定された第一と第二の攪拌条件を記憶部に記憶し、
当該記憶された第一の撹拌条件を適用して、前記第一の攪拌手段で前記検体と試薬の混合液を撹拌した後、前記反応容器を保持した反応ディスクを回転することにより該混合液の入った前記反応容器を前記第二の撹拌手段の前に移動し、
当該記憶された、前記第一の撹拌条件と異なる第二の撹拌条件を適用して、前記第二の攪拌手段で同一検体及び同一試薬を含む混合液を撹拌することを特徴とする混合液の攪拌方法。
A reaction container into which a sample and a reagent are injected;
A reaction disc holding the reaction vessel;
First and second stirring means for stirring the mixed solution of the specimen and the reagent in the reaction container;
In the stirring method of the mixed solution in the automatic analyzer comprising the operation of the reaction disk and a control unit for controlling the stirring conditions of the stirring means,
The controller is
The first and second stirring conditions set according to the viscosity of the mixed liquid are stored in the storage unit,
By applying the stored first stirring condition and stirring the mixed solution of the specimen and the reagent by the first stirring means, the reaction disk holding the reaction vessel is rotated to rotate the mixed solution. Move the reaction vessel in front of the second stirring means,
Applying the stored second stirring condition different from the first stirring condition and stirring the mixed liquid containing the same specimen and the same reagent by the second stirring means Stirring method.
請求項1に記載の混合液の攪拌方法において、
前記自動分析装置は、さらに、前記第一の攪拌条件と前記第二の攪拌条件とを適用して攪拌された同一検体及び同一試薬を含む混合液の測光を行う測光手段を備えることを特徴とする混合液の攪拌方法。
In the stirring method of the liquid mixture of Claim 1,
The automatic analyzer further includes photometric means for performing photometry of a mixed solution containing the same sample and the same reagent that are stirred by applying the first stirring condition and the second stirring condition. A method of stirring the mixed liquid.
請求項4または5に記載の自動分析装置において、
前記第一及び第二の攪拌手段は、音波発生源として複数の電極を備える圧電素子であって、
前記制御部は、前記第一と前記第二の攪拌条件とで、使用する電極の選択を異なるものとすることを特徴とする自動分析装置。
The automatic analyzer according to claim 4 or 5,
The first and second stirring means are piezoelectric elements including a plurality of electrodes as sound wave generation sources,
The automatic analyzer according to claim 1, wherein the controller is configured to select different electrodes for use according to the first and second stirring conditions.
JP2014246401A 2014-12-05 2014-12-05 Automatic analyzer Active JP5919364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246401A JP5919364B2 (en) 2014-12-05 2014-12-05 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246401A JP5919364B2 (en) 2014-12-05 2014-12-05 Automatic analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012118141A Division JP5668021B2 (en) 2012-05-24 2012-05-24 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2015043005A true JP2015043005A (en) 2015-03-05
JP5919364B2 JP5919364B2 (en) 2016-05-18

Family

ID=52696561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246401A Active JP5919364B2 (en) 2014-12-05 2014-12-05 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP5919364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087175A (en) * 2015-11-13 2017-05-25 リコーエレメックス株式会社 Agitation device and analysis device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233827A (en) * 1995-02-23 1996-09-13 Toshiba Corp Automatic analyser
WO1999046601A1 (en) * 1998-03-13 1999-09-16 Hitachi, Ltd. Automatic analyzer and automatic analysis method
JP2001242176A (en) * 2000-02-29 2001-09-07 Hitachi Ltd Automatic analyzing apparatus
JP2007033414A (en) * 2005-07-29 2007-02-08 Olympus Corp Analyzer
JP2008003057A (en) * 2006-06-26 2008-01-10 Olympus Corp Analyzer and analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233827A (en) * 1995-02-23 1996-09-13 Toshiba Corp Automatic analyser
WO1999046601A1 (en) * 1998-03-13 1999-09-16 Hitachi, Ltd. Automatic analyzer and automatic analysis method
JP2001242176A (en) * 2000-02-29 2001-09-07 Hitachi Ltd Automatic analyzing apparatus
JP2007033414A (en) * 2005-07-29 2007-02-08 Olympus Corp Analyzer
JP2008003057A (en) * 2006-06-26 2008-01-10 Olympus Corp Analyzer and analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087175A (en) * 2015-11-13 2017-05-25 リコーエレメックス株式会社 Agitation device and analysis device
CN107029647A (en) * 2015-11-13 2017-08-11 古野电气株式会社 Agitating device and analytical equipment
CN107029647B (en) * 2015-11-13 2021-03-23 古野电气株式会社 Stirring device and analysis device

Also Published As

Publication number Publication date
JP5919364B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2009136612A1 (en) Automated analyzer
EP1128185B1 (en) Mixing device for automatic analyzer
JP5203979B2 (en) Automatic analyzer
JP2007303901A (en) Chemical analyzer
JP2009025248A (en) Automatic analyzer and dispensation method
JP4887174B2 (en) Automatic analyzer
JP3641992B2 (en) Chemical analyzer
JP5919364B2 (en) Automatic analyzer
JP5668021B2 (en) Automatic analyzer
JP2003172738A (en) Automatic analysis apparatus
JP3642713B2 (en) Automatic analyzer
JP5284059B2 (en) Automatic analyzer
JP4377318B2 (en) Automatic analyzer
JP4045452B2 (en) Chemical analyzer
JP3829145B2 (en) Automatic analyzer
JP2015021944A (en) Automatic analyzer
JP2005291730A (en) Biochemical analyzer
WO2024135279A1 (en) Automatic analysis device
JP3783551B2 (en) Automatic analyzer
JP2001337095A (en) Automatic analyzer
JP2007085805A (en) Automatic analyzer
EP2127749A2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
JP3121829U (en) Automatic analyzer
JP2011141244A (en) Analyzer
JP2009222453A (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5919364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350