JP2015035868A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2015035868A
JP2015035868A JP2013164990A JP2013164990A JP2015035868A JP 2015035868 A JP2015035868 A JP 2015035868A JP 2013164990 A JP2013164990 A JP 2013164990A JP 2013164990 A JP2013164990 A JP 2013164990A JP 2015035868 A JP2015035868 A JP 2015035868A
Authority
JP
Japan
Prior art keywords
power transmission
power
frequency
coil
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013164990A
Other languages
Japanese (ja)
Other versions
JP6086839B2 (en
Inventor
淳史 田中
Junji Tanaka
淳史 田中
義弘 戸高
Yoshihiro Todaka
義弘 戸高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2013164990A priority Critical patent/JP6086839B2/en
Publication of JP2015035868A publication Critical patent/JP2015035868A/en
Priority to JP2017011796A priority patent/JP6211219B2/en
Application granted granted Critical
Publication of JP6086839B2 publication Critical patent/JP6086839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To resolve a problem that, in a non-contact power transmission device, in a case where a power transmission part of the non-contact power transmission device supplies an AC power to a power transmission resonator by using a circuit consisting of a semiconductor switching element, when a power transmission frequency of a high-frequency power that the power transmission part transmits to the power transmission resonator is accorded to a resonance frequency of the power transmission resonator, a power loss at the switching element of the power transmission part becomes large.SOLUTION: A power transmission frequency of a power transmission part of a non-contact power transmission device is set to be higher than such a frequency that resonance of a power transmission resonator becomes maximum. Due to this configuration, a power loss at a switching element of the power transmission part can be reduced while keeping a resonance state of the power transmission resonance circuit high. Thus, a non-contact power transmission device that can transmit a power with a small temperature rise at the switching element and with a high efficiency can be provided.

Description

本発明は、送電装置に具備された送電コイルと受電装置に具備された受電コイルを介して、非接触(ワイヤレス)で電力の伝送を行う非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission device that performs non-contact (wireless) power transmission via a power transmission coil provided in a power transmission device and a power reception coil provided in the power reception device.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   As a method of transmitting power in a non-contact manner, an electromagnetic induction type by electromagnetic induction (several hundreds of kHz), an electric field / magnetic field resonance type by transmission between LC resonances via electric field or magnetic field resonance, a microwave power transmission type by radio waves (several GHz), Alternatively, a laser power transmission type using electromagnetic waves (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

一般的に、磁界共鳴型は送電装置と受電装置からなり、送電装置は少なくとも送電コイルと共振容量で構成される送電共振器と、送電共振器に電力を供給する送電部を有する。一方、受電装置は少なくとも受電コイルと共振容量で構成される受電共振器を有する。特許文献1には、送電装置の送電共振器と受電装置の受電共振器が、送電装置の送電部の駆動周波数で共振するとき、送電装置から受電装置へ高効率で電力を伝送できることが開示されている。   Generally, the magnetic field resonance type includes a power transmission device and a power reception device, and the power transmission device includes a power transmission resonator including at least a power transmission coil and a resonance capacitor, and a power transmission unit that supplies power to the power transmission resonator. On the other hand, the power receiving device includes a power receiving resonator including at least a power receiving coil and a resonant capacitor. Patent Document 1 discloses that when the power transmission resonator of the power transmission device and the power reception resonator of the power reception device resonate at the drive frequency of the power transmission unit of the power transmission device, power can be transmitted from the power transmission device to the power reception device with high efficiency. ing.

特開2010−130878号公報JP 2010-130878 A

送電装置の送電部は、送電共振器に比較的大きな交流電力を供給する。そのため、送電部には半導体のスイッチング素子を用いたパワー回路が用いられることが多い。しかしながら、半導体のスイッチング素子を送電部に用いた場合、従来のように送電共振器の共振周波数と送電部が送電共振器に供給する交流電力の送電周波数を一致させると、半導体のスイッチング素子における電力損失が増大し、その結果、送電効率が低下することがわかった。以下に詳説する。   The power transmission unit of the power transmission device supplies relatively large AC power to the power transmission resonator. Therefore, a power circuit using a semiconductor switching element is often used for the power transmission unit. However, when a semiconductor switching element is used for the power transmission unit, if the resonance frequency of the power transmission resonator matches the power transmission frequency of the AC power supplied to the power transmission resonator as in the past, the power in the semiconductor switching element is It was found that the loss increased, resulting in a decrease in transmission efficiency. The details are described below.

図2は、半導体のスイッチング素子を2個用いた、一般的なハーフブリッジ回路を示す。上下のスイッチング素子21と22を交互に導通させ、交流電圧V0を発生させることにより、コイル23に交流電流I0を流すことができる。   FIG. 2 shows a general half-bridge circuit using two semiconductor switching elements. By alternately conducting the upper and lower switching elements 21 and 22 to generate an AC voltage V0, an AC current I0 can be passed through the coil 23.

図10乃至12は、図2のハーフブリッジ回路を送電装置の送電部として用い、負荷として送電コイルと共振容量で構成される送電共振器を接続した場合の動作を示す。ハーフブリッジ回路のスイッチング周波数に等しい送電周波数をFsw、送電共振器の共振周波数をFresとしたとき、図10はFsw=Fresの場合、図11はFsw<Fresの場合、図12はFsw>Fresの場合を示す。   10 to 12 show an operation when the half-bridge circuit of FIG. 2 is used as a power transmission unit of a power transmission device and a power transmission resonator including a power transmission coil and a resonance capacitor is connected as a load. When the transmission frequency equal to the switching frequency of the half-bridge circuit is Fsw and the resonance frequency of the transmission resonator is Fres, FIG. 10 shows Fsw = Fres, FIG. 11 shows Fsw <Fres, and FIG. 12 shows Fsw> Fres. Show the case.

図10乃至12において、(1)はスイッチング素子21がオンであるとともにスイッチング素子22がオフの定常状態、(2)はスイッチング素子21がオンからオフへ切り替わるとともにスイッチング素子22がオフからオンへ切り替わる直前の過渡状態、(3)はスイッチング素子21がオンからオフへ切り替わったとともにスイッチング素子22がオフからオンへ切り替わった直後の過渡状態、(4)はスイッチング素子21がオフであるとともにスイッチング素子22がオンの定常状態を示す。   10 to 12, (1) is a steady state in which the switching element 21 is on and the switching element 22 is off, and (2) is a state in which the switching element 21 is switched from on to off and the switching element 22 is switched from off to on. The transient state immediately before, (3) is the transient state immediately after the switching element 21 is switched from on to off and the switching element 22 is switched from off to on, and (4) is the switching element 21 is off and the switching element 22 is switched off. Indicates a steady state of ON.

図10に示したFsw=Fresで共振する場合では、電流I0と電圧V0は同位相である。この場合、回路の動作は以下のとおりである。   In the case of resonance at Fsw = Fres shown in FIG. 10, the current I0 and the voltage V0 are in phase. In this case, the operation of the circuit is as follows.

図10(1)の定常状態では、電源からスイッチング素子21を通してコイル23へ大きい電流I0が流れる。このとき、I0>0となる。   In the steady state of FIG. 10 (1), a large current I 0 flows from the power source to the coil 23 through the switching element 21. At this time, I0> 0.

図10(2)の過渡状態では、I0>0のままI0は小さくなり、Fsw=Fresで共振しているため、スイッチング素子21がオンからオフへ切り替わるとともにスイッチング素子22がオフからオンへ切り替わる瞬間にI0=0となる。   In the transient state of FIG. 10 (2), I0 becomes smaller with I0> 0 and resonates with Fsw = Fres, so that the switching element 21 is switched from on to off and the switching element 22 is switched from off to on. In this case, I0 = 0.

図10(3)の過渡状態では、電源からスイッチング素子22を通してコイル23へ小さい電流I0が流れる。このとき、I0<0となる。   In the transient state of FIG. 10 (3), a small current I 0 flows from the power source to the coil 23 through the switching element 22. At this time, I0 <0.

図10(4)の定常状態では、電源からスイッチング素子22を通してコイル23へ大きい電流I0が流れる。このとき、I0<0となる。   In the steady state of FIG. 10 (4), a large current I 0 flows from the power source to the coil 23 through the switching element 22. At this time, I0 <0.

したがって、Fsw=Fresの場合はスイッチング素子による電力損失は問題とならず理想的な状態といえる。   Therefore, when Fsw = Fres, the power loss due to the switching element does not matter and can be said to be an ideal state.

図11に示したFsw<Fresで共振する場合では、電流I0の位相は電圧V0の位相に対して進む。この場合、回路の動作は以下のとおりである。   In the case of resonance at Fsw <Fres shown in FIG. 11, the phase of the current I0 advances with respect to the phase of the voltage V0. In this case, the operation of the circuit is as follows.

図11(1)の定常状態では、電源からスイッチング素子21を通してコイル23へ大きい電流I0が流れる。このとき、I0>0となる。   In the steady state of FIG. 11 (1), a large current I 0 flows from the power source to the coil 23 through the switching element 21. At this time, I0> 0.

図11(2)の過渡状態では、電流I0の位相は電圧V0の位相に対して進んでいるため、電流I0はコイル23からスイッチング素子21の寄生ダイオードを通して電源へ流れる。そのため、V0>電源電圧となり、V0の電位が高くなる。このとき、I0<0となる。   In the transient state of FIG. 11 (2), the phase of the current I0 is advanced with respect to the phase of the voltage V0, so that the current I0 flows from the coil 23 to the power supply through the parasitic diode of the switching element 21. Therefore, V0> power supply voltage, and the potential of V0 increases. At this time, I0 <0.

図11(3)の過渡状態では、スイッチング素子21がオンからオフへ切り替わったとともにスイッチング素子22がオフからオンへ切り替わった直後であるので、電流I0はコイル23からスイッチング素子22を通してグラウンドへ流れる。このとき、V0は電源電圧よりも高い状態からグラウンドへ急速に変化し、スイッチング素子22に大電流が流れる。そのため、スイッチング素子22が発熱し、スイッチング素子22において電力損失が発生する。このとき、I0<0となる。   In the transient state of FIG. 11 (3), since the switching element 21 is switched from on to off and immediately after the switching element 22 is switched from off to on, the current I0 flows from the coil 23 to the ground through the switching element 22. At this time, V0 rapidly changes from a state higher than the power supply voltage to the ground, and a large current flows through the switching element 22. Therefore, the switching element 22 generates heat, and power loss occurs in the switching element 22. At this time, I0 <0.

図11(4)の定常状態では、電源からスイッチング素子22を通してコイル23へ大きい電流I0が流れる。このとき、I0<0となる。   In the steady state of FIG. 11 (4), a large current I 0 flows from the power source to the coil 23 through the switching element 22. At this time, I0 <0.

したがって、Fsw<Fresの場合はスイッチング素子によるスイッチング時の電力損失が大きくなり問題となる。   Therefore, in the case of Fsw <Fres, power loss at the time of switching by the switching element becomes large, which becomes a problem.

図12に示したFsw>Fresで共振する場合では、電流I0の位相は電圧V0の位相に対して遅れる。この場合、回路の動作は以下のとおりである。   In the case of resonance at Fsw> Fres shown in FIG. 12, the phase of the current I0 is delayed with respect to the phase of the voltage V0. In this case, the operation of the circuit is as follows.

図12(1)の定常状態では、電源からスイッチング素子21を通してコイル23へ大きい電流I0が流れる。このとき、I0>0となる。   In the steady state of FIG. 12 (1), a large current I 0 flows from the power source to the coil 23 through the switching element 21. At this time, I0> 0.

図12(2)の過渡状態では、電源からスイッチング素子21を通してコイル23へ電流I0が流れる。このとき、I0>0となる。   In the transient state of FIG. 12 (2), a current I 0 flows from the power source to the coil 23 through the switching element 21. At this time, I0> 0.

図12(3)の過渡状態では、スイッチング素子21がオンからオフへ切り替わったとともにスイッチング素子22がオフからオンへ切り替わった直後であるので、電流I0はスイッチング素子22の寄生ダイオードを通してコイル23へ流れる。このとき、I0>0となる。   In the transient state of FIG. 12 (3), since the switching element 21 is switched from on to off and immediately after the switching element 22 is switched from off to on, the current I0 flows to the coil 23 through the parasitic diode of the switching element 22. . At this time, I0> 0.

図12(4)の定常状態では、電流がI0>0からI0=0となり、その後I0<0と電流の向きが逆になる。電流I0はコイル23からスイッチング素子22を通してグラウンドへ電流が流れる。   In the steady state of FIG. 12 (4), the current changes from I0> 0 to I0 = 0, and then the direction of the current is opposite to I0 <0. The current I0 flows from the coil 23 to the ground through the switching element 22.

Fsw>Fresの場合は、Fsw<Fresの場合と異なり、スイッチング素子21およびスイッチング素子22における電圧の急激な変化は発生しない。その結果、Fsw<Fresの場合とは異なり、スイッチング素子21や22には大電流が流れないため、電力損失は小さくて済む。   In the case of Fsw> Fres, unlike the case of Fsw <Fres, a rapid change in the voltage in the switching element 21 and the switching element 22 does not occur. As a result, unlike the case of Fsw <Fres, a large current does not flow through the switching elements 21 and 22, so that the power loss is small.

ところで、特許文献1が示すように高効率の電力伝送を実現するためには、従来ではFsw=Fresとすることが好ましいとされてきた。すなわち、図10のように動作することが好ましいとされてきた。   By the way, as shown in Patent Document 1, it has been conventionally preferable to set Fsw = Fres in order to realize high-efficiency power transmission. That is, it has been preferable to operate as shown in FIG.

しかし、実際の回路での動作は、例えばFsw=Fresとなるように設計しても、環境温度変化、部品の経年変化、送電回路や受電回路の周辺に物体が接近する等の外乱要因により、Fsw=Fresの条件を満たさなく場合がある。特に、前記外乱要因により図11に示したようにFsw<Fresとなると、スイッチング素子において大きな電力損失が発生し、高効率な非接触電力伝送を実現できないという問題がある。   However, even if the operation in the actual circuit is designed so that, for example, Fsw = Fres, due to disturbance factors such as environmental temperature change, aging of parts, and the proximity of an object near the power transmission circuit and power reception circuit, There are cases where the condition of Fsw = Fres is not satisfied. In particular, when Fsw <Fres as shown in FIG. 11 due to the disturbance factor, a large power loss occurs in the switching element, and there is a problem that highly efficient non-contact power transmission cannot be realized.

上記課題を解決するために、本発明の非接触電力伝送装置は、非接触電力伝送装置の送電装置が送電部と送電共振器を有し、送電部が半導体のスイッチング素子からなる回路により送電共振器に交流電力を供給する場合において、送電部の送電周波数を共振が最大となる周波数よりも高い周波数に設定することを特徴とする。   In order to solve the above problems, a contactless power transmission device according to the present invention includes a power transmission resonance of a power transmission device of a contactless power transmission device having a power transmission unit and a power transmission resonator, and the power transmission unit includes a semiconductor switching element. In the case where AC power is supplied to the device, the power transmission frequency of the power transmission unit is set to a frequency higher than the frequency at which resonance is maximized.

本発明によれば、送電共振回路の共振状態を高い状態に保ちつつ、送電部のスイッチング素子における電力損失を小さくすることが可能となるので、スイッチング素子における温度上昇が小さく高効率で電力伝送が可能な非接触電力伝送装置を提供することができる。   According to the present invention, it is possible to reduce the power loss in the switching element of the power transmission unit while keeping the resonance state of the power transmission resonance circuit in a high state. A possible contactless power transmission device can be provided.

実施の形態1における非接触電力伝送装置の構成を示すブロック図The block diagram which shows the structure of the non-contact electric power transmission apparatus in Embodiment 1. 実施の形態1における送電部の概略を示す回路図The circuit diagram which shows the outline of the power transmission part in Embodiment 1 実施の形態1における送電制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the power transmission control part in Embodiment 1. 実施の形態1における送電コイルの電圧を最大とする周波数から望ましい送電周波数を求めるための表Table for obtaining a desired power transmission frequency from the frequency that maximizes the voltage of the power transmission coil in the first embodiment 実施の形態1における送電コイルの電圧と送電周波数の関係を示す図The figure which shows the relationship between the voltage of the power transmission coil in Embodiment 1, and power transmission frequency 実施の形態1における本発明の効果を示す図The figure which shows the effect of this invention in Embodiment 1 実施の形態2における送電制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the power transmission control part in Embodiment 2. 実施の形態2における送電コイルの電圧と送電周波数の関係を示す図The figure which shows the relationship between the voltage of the power transmission coil in Embodiment 2, and power transmission frequency 実施の形態3における送電制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the power transmission control part in Embodiment 3. スイッチング回路の動作を説明する図The figure explaining operation of a switching circuit スイッチング回路の動作を説明する別の図Another figure explaining operation of switching circuit スイッチング回路の動作を説明するさらに別の図Yet another diagram illustrating the operation of the switching circuit

図1は、本発明の非接触電力伝送装置の構成を示す。非接触電力伝送装置は、送電装置1と受電装置2により構成される。送電装置1は、高周波電力を非接触伝送するための送電コイル4を有する。受電装置2は、送電コイル4が供給する高周波電力を受電するための受電コイル8を有する。図1の構成の非接触電力伝送装置において、例えば、送電コイル4と受電コイル8の間における磁界共鳴を介して送電装置1から受電装置2へ電力を伝送するように構成することができる。なお、送電コイル4と受電コイル8の結合形態は、電磁誘導、電波、電場または磁場の共有によるもの等、適宜採用することができる。   FIG. 1 shows a configuration of a non-contact power transmission apparatus according to the present invention. The non-contact power transmission device includes a power transmission device 1 and a power reception device 2. The power transmission device 1 includes a power transmission coil 4 for non-contact transmission of high-frequency power. The power receiving device 2 includes a power receiving coil 8 for receiving high-frequency power supplied from the power transmitting coil 4. The non-contact power transmission apparatus having the configuration shown in FIG. 1 can be configured to transmit power from the power transmission apparatus 1 to the power reception apparatus 2 via magnetic field resonance between the power transmission coil 4 and the power reception coil 8, for example. Note that the coupling form of the power transmission coil 4 and the power reception coil 8 can be appropriately adopted such as electromagnetic induction, radio wave, electric field or magnetic field sharing.

送電装置1において、送電コイル4と共振容量5は送電共振器を構成し、送電部3は高周波電力を送電共振器に供給する。   In the power transmission device 1, the power transmission coil 4 and the resonance capacitor 5 constitute a power transmission resonator, and the power transmission unit 3 supplies high-frequency power to the power transmission resonator.

送電装置1の送電部3は、送電共振器に比較的大きな交流電力を供給する。そのため、送電部3には半導体のスイッチング素子を用いたパワー回路が用いられる。パワー回路には、ハーフブリッジ回路やフルブリッジ回路が広く用いられている。図2は、2個のFETをスイッチング素子として用いたハーフブリッジ回路を示す。以下では、図2に示したハーフブリッジ回路が送電部3を構成する場合について説明する。なお、送電部3は4個のFETをスイッチング素子として用いたフルブリッジ回路で構成してもよい。   The power transmission unit 3 of the power transmission device 1 supplies relatively large AC power to the power transmission resonator. Therefore, a power circuit using a semiconductor switching element is used for the power transmission unit 3. As the power circuit, a half bridge circuit or a full bridge circuit is widely used. FIG. 2 shows a half-bridge circuit using two FETs as switching elements. Below, the case where the half bridge circuit shown in FIG. 2 comprises the power transmission part 3 is demonstrated. The power transmission unit 3 may be configured by a full bridge circuit using four FETs as switching elements.

ところで、高効率の電力伝送を実現するためには、送電コイル4と共振容量5による送電共振器の共振周波数Fresと、送電部3が送電共振器に供給する高周波電力の送電周波数Fswを概略一致させることが好ましいとされてきた。   By the way, in order to realize high-efficiency power transmission, the resonance frequency Fres of the power transmission resonator by the power transmission coil 4 and the resonance capacitor 5 and the power transmission frequency Fsw of the high-frequency power supplied to the power transmission resonator by the power transmission unit 3 are approximately the same. It has been preferred to do so.

しかし、実際の回路での動作は、例えばFsw=Fresとなるように設計しても、環境温度変化、部品の経年変化、送電回路や受電回路の周辺に物体が接近する等の外乱要因により、Fsw=Fresの条件を満たさなくなる場合がある。特に、送電部3に半導体のスイッチング素子を用いたパワー回路が用いられる場合には、前記外乱要因により図10に示したようにFsw<Fresとなると、スイッチング素子において大きな電力損失が発生し、高効率な非接触電力伝送を実現できないという問題がある。   However, even if the operation in the actual circuit is designed so that, for example, Fsw = Fres, due to disturbance factors such as environmental temperature change, aging of parts, and the proximity of an object near the power transmission circuit and power reception circuit, The condition of Fsw = Fres may not be satisfied. In particular, when a power circuit using a semiconductor switching element is used for the power transmission unit 3, if Fsw <Fres as shown in FIG. 10 due to the disturbance factor, a large power loss occurs in the switching element, There is a problem that efficient non-contact power transmission cannot be realized.

そこで、本発明の送電制御部7は前記のような外乱が発生することを想定して、Fsw>Fresとなるように送電共振器の共振状態を最適化する。そうすれば、外乱が発生してもFsw<Fresとなることはなく、スイッチング素子において大きな電力損失が生じることはない。   Therefore, the power transmission control unit 7 of the present invention optimizes the resonance state of the power transmission resonator so that Fsw> Fres, assuming that the above-described disturbance occurs. Then, even if a disturbance occurs, Fsw <Fres is not satisfied, and a large power loss does not occur in the switching element.

送電共振器の共振状態が最適の場合は、送電コイル4の両端電圧が最大となる。したがって、送電共振器の共振状態は、送電コイル4の両端電圧を測定することにより検出できる。送電コイル電圧検出部6は送電コイル4の両端電圧を測定し、送電制御部7は送電コイル電圧検出部6が検出した共振状態の情報に基づいて送電部3の制御を行う。この共振状態の制御に本発明の特徴があり、詳しくは後述する。なお、送電制御部7はマイコンによって構成することが好ましいが、FPGAや電子回路によって構成することもできる。   When the resonance state of the power transmission resonator is optimal, the voltage across the power transmission coil 4 is maximized. Therefore, the resonance state of the power transmission resonator can be detected by measuring the voltage across the power transmission coil 4. The power transmission coil voltage detection unit 6 measures the voltage across the power transmission coil 4, and the power transmission control unit 7 controls the power transmission unit 3 based on the resonance state information detected by the power transmission coil voltage detection unit 6. This resonance state control is a feature of the present invention and will be described in detail later. In addition, although it is preferable to comprise the power transmission control part 7 with a microcomputer, it can also be comprised by FPGA and an electronic circuit.

受電装置2は、送電装置1の送電コイル4が送出した電力を受電する受電コイル8を有する。受電コイル8と共振容量9によって構成される受電共振器には電力変換部10が接続される。電力変換部10は、受電コイル8が受電した高周波電力の検波や平滑化を行い、必要とする電力形式に変換した後に電力出力端子11から出力する。   The power receiving device 2 includes a power receiving coil 8 that receives power transmitted from the power transmitting coil 4 of the power transmitting device 1. A power converter 10 is connected to a power receiving resonator constituted by the power receiving coil 8 and the resonance capacitor 9. The power conversion unit 10 detects and smoothes the high-frequency power received by the power receiving coil 8, converts it to a required power format, and outputs it from the power output terminal 11.

以上が、本発明の非接触電力伝送装置における電力伝送動作の概略である。   The above is the outline of the power transmission operation in the non-contact power transmission apparatus of the present invention.

本発明は、非接触電力伝送装置の送電装置1における共振状態の制御に特徴がある。以下では、実施の形態ごとに共振状態の制御について詳説する。
<実施の形態1>
送電制御部7は、送電部3が出力する高周波電力の送電周波数を制御する。本発明では、送電部3にハーフブリッジ回路を用いるので、送電共振器が最適の共振状態となるようにハーフブリッジ回路のスイッチング周波数Fswを設定する。
The present invention is characterized by controlling the resonance state in the power transmission device 1 of the non-contact power transmission device. Hereinafter, the control of the resonance state will be described in detail for each embodiment.
<Embodiment 1>
The power transmission control unit 7 controls the transmission frequency of the high frequency power output from the power transmission unit 3. In the present invention, since a half bridge circuit is used for the power transmission unit 3, the switching frequency Fsw of the half bridge circuit is set so that the power transmission resonator is in an optimal resonance state.

最適のスイッチング周波数Fswを見つけるために、Fswの値を初期値の開始周波数から所定の終了周波数まで変化させる。Fswの値を変化させながら、送電コイル電圧を検出し、送電側共振周波数が最大となる送電周波数をFswとして設定する。   In order to find the optimum switching frequency Fsw, the value of Fsw is changed from the initial start frequency to a predetermined end frequency. While changing the value of Fsw, the power transmission coil voltage is detected, and the power transmission frequency at which the power transmission side resonance frequency becomes maximum is set as Fsw.

図3は、本発明の実施の形態1における共振状態の制御のフローチャートを示す。   FIG. 3 shows a flowchart of resonance state control in Embodiment 1 of the present invention.

送電装置1が動作を開始すると、送電制御部7は送電部3が出力する高周波電力の送電周波数を設定する。送電周波数の初期値は予め定められた開始周波数とし、その値を変数fmaxに代入するとともに、送電コイル電圧の最大値を保存する変数Vmaxに0を代入する(ステップS101)。   When the power transmission device 1 starts operating, the power transmission control unit 7 sets the transmission frequency of the high-frequency power output from the power transmission unit 3. The initial value of the power transmission frequency is set to a predetermined start frequency, and the value is substituted into the variable fmax, and 0 is substituted into the variable Vmax that stores the maximum value of the power transmission coil voltage (step S101).

この送電周波数が開始周波数の状態で送電を開始する(ステップS102)。   Power transmission is started with this power transmission frequency being the start frequency (step S102).

送電コイル電圧検出部6は送電コイル4の両端電圧を計測する(ステップS103)。   The power transmission coil voltage detection part 6 measures the both-ends voltage of the power transmission coil 4 (step S103).

測定した送電コイル4の両端電圧と変数Vmaxの値を比較し、測定した送電コイル4の両端電圧がVmaxよりも小さいときはステップS106に進み、それ以外の時はステップS105へ進む(ステップS104)。   The measured both-end voltage of the power transmission coil 4 and the value of the variable Vmax are compared. When the measured both-end voltage of the power transmission coil 4 is smaller than Vmax, the process proceeds to step S106, and otherwise, the process proceeds to step S105 (step S104). .

測定した送電コイル4の両端電圧がVmax以上の時は、その測定値を変数Vmaxに代入し、このときの送電周波数を変数fmaxに代入する(ステップS105)。   When the measured voltage across power transmission coil 4 is equal to or higher than Vmax, the measured value is substituted into variable Vmax, and the power transmission frequency at this time is substituted into variable fmax (step S105).

ステップS106では、送電周波数を減少させる。この送電周波数の減少量はシステムによって適切な増加量を決めればよい。   In step S106, the power transmission frequency is decreased. The amount of decrease in the transmission frequency may be determined appropriately by the system.

送電周波数が予め定められた終了周波数以上のときは、ステップS103に戻って同様の動作を繰り返す。一方、送電周波数が終了周波数より小さくなったときは、ステップS108へ進む(ステップS107)。   When the power transmission frequency is equal to or higher than the predetermined end frequency, the process returns to step S103 and the same operation is repeated. On the other hand, when the power transmission frequency becomes lower than the end frequency, the process proceeds to step S108 (step S107).

以上のステップにより、送電コイル4の両端電圧の最大値Vmaxと、送電コイル4の両端電圧を最大にする共振送電周波数fmaxを検出することができる。   Through the above steps, the maximum value Vmax of the voltage across the power transmission coil 4 and the resonant power transmission frequency fmax that maximizes the voltage across the power transmission coil 4 can be detected.

本発明では、半導体のスイッチング素子を送電部に用いた場合において、スイッチング周波数をFsw、送電共振器の共振周波数をFresとしたとき、Fsw>Fresとすることを特徴とする。ステップS108は、共振送電周波数fmaxから最適送電周波数fsendを求める。   The present invention is characterized in that, when a semiconductor switching element is used for the power transmission unit, Fsw> Fres when the switching frequency is Fsw and the resonance frequency of the power transmission resonator is Fres. In step S108, the optimum power transmission frequency fsend is obtained from the resonance power transmission frequency fmax.

図4は共振送電周波数fmaxと、最適送電周波数fsendの関係を予め定めておいた関係を表にしたものである。fsendは、図4の表と求められたfmaxに基づいて定めることができる。   FIG. 4 is a table showing a relationship in which the relationship between the resonant power transmission frequency fmax and the optimum power transmission frequency fsend is determined in advance. The fsend can be determined based on the table of FIG. 4 and the obtained fmax.

図5は送電周波数と送電コイル4の両端電圧の測定結果をグラフにしたものである。送電コイル4のインダクタンスは425μH、共振容量5のキャパシタンスは4950pFである。これらの値の送電コイルと共振容量を直列接続したとき、計算上の共振周波数は約110kHzである。しかしながら、求められたfmaxは105kHzであった。計算値と異なるのは、送電装置1と受電装置2の位置関係や、送電装置1と受電装置2の周辺環境やその他の影響によるものである。   FIG. 5 is a graph showing the measurement results of the transmission frequency and the voltage across the transmission coil 4. The inductance of the power transmission coil 4 is 425 μH, and the capacitance of the resonance capacitor 5 is 4950 pF. When these values of the power transmission coil and the resonant capacitor are connected in series, the calculated resonant frequency is about 110 kHz. However, the determined fmax was 105 kHz. The difference from the calculated value is due to the positional relationship between the power transmission device 1 and the power reception device 2, the surrounding environment of the power transmission device 1 and the power reception device 2, and other influences.

図4の表に基づいて、fmaxが105kHzであったので、fsendは107kHzとした(ステップS108)。   Based on the table of FIG. 4, since fmax was 105 kHz, fsend was set to 107 kHz (step S108).

次に、送電周波数制御部7は、送電部3に対して求めた望ましい送電周波数fsendを送電周波数Fswとして設定する(ステップS109)。送電共振器の共振周波数Fresはfmaxであるから、Fsw>Fresの関係を満足する。   Next, the power transmission frequency control unit 7 sets the desired power transmission frequency fsend obtained for the power transmission unit 3 as the power transmission frequency Fsw (step S109). Since the resonance frequency Fres of the power transmission resonator is fmax, the relationship of Fsw> Fres is satisfied.

図6は送電周波数Fswをfmax(105kHz)に設定して非接触電力伝送を行った場合と、Fswをfsend(107kHz)に設定して非接触電力伝送を行った場合の、送電部3のスイッチング素子であるFETの温度の時間変化を示したグラフである。Fsw=fmax(105kHz)の時と比べ、Fsw=fsend(107kHz)のときは、FETにおける電力損失が抑制されるので、FETにおける温度上昇が抑制される。
<実施の形態2>
本発明の送電装置1において、送電コイル4と共振容量5は送電共振器を構成するが、この送電共振器は送電コイル4と共振容量5が直列に接続された、いわゆる直列共振回路である。ここで、送電コイル4と共振容量5が抵抗成分の無い理想的なコイルと理想的なコンデンサであると仮定すると、この直列共振回路である送電共振器が共振した場合、送電コイル4と共振容量5にかかる電圧は無限大になる。実際には、送電コイル4と共振容量5にも抵抗成分があり、また、リード線の抵抗に起因する回路自体の抵抗成分もあるので、送電コイル4と共振容量5にかかる電圧が無限大まで上がることは無い。しかしながら、送電共振器が共振した場合には非常に高い電圧がかかり、特に共振容量5のコンデンサの耐圧を超えた場合は、コンデンサが壊れてしまう。そこで、コンデンサの上限電圧またはコイルの上限電圧を超える範囲で送電共振器を動作させることにより部品の破壊を防ぐことができる。
FIG. 6 shows the switching of the power transmission unit 3 when contactless power transmission is performed with the transmission frequency Fsw set to fmax (105 kHz) and when contactless power transmission is performed with Fsw set to fsend (107 kHz). It is the graph which showed the time change of the temperature of FET which is an element. Compared to when Fsw = fmax (105 kHz), when Fsw = fsend (107 kHz), the power loss in the FET is suppressed, so that the temperature rise in the FET is suppressed.
<Embodiment 2>
In the power transmission device 1 of the present invention, the power transmission coil 4 and the resonance capacitor 5 constitute a power transmission resonator. This power transmission resonator is a so-called series resonance circuit in which the power transmission coil 4 and the resonance capacitor 5 are connected in series. Here, assuming that the power transmission coil 4 and the resonance capacitor 5 are an ideal coil and an ideal capacitor having no resistance component, when the power transmission resonator as the series resonance circuit resonates, the power transmission coil 4 and the resonance capacitance The voltage applied to 5 becomes infinite. Actually, the power transmission coil 4 and the resonance capacitor 5 also have a resistance component, and there is also a resistance component of the circuit itself due to the resistance of the lead wire, so that the voltage applied to the power transmission coil 4 and the resonance capacitor 5 is infinite. There is no going up. However, when the power transmission resonator resonates, a very high voltage is applied. In particular, when the breakdown voltage of the capacitor having the resonance capacitance 5 is exceeded, the capacitor is broken. Therefore, it is possible to prevent the components from being destroyed by operating the power transmission resonator in a range exceeding the upper limit voltage of the capacitor or the upper limit voltage of the coil.

図7は、本発明の実施の形態2における共振状態の制御のフローチャートを示す。図8に示すように送電コイル4の電圧上限値がVlimitのときには、図7のフローチャートにより、測定した送電コイル4の電圧とVlimitを比較し、Vlimitよりも大きいときはステップS108、それ以外の時はステップS104へ進む(ステップS204)。その他のステップは、実施の形態1と同様であるので詳細な説明は省略する。   FIG. 7 shows a flowchart of resonance state control in the second embodiment of the present invention. As shown in FIG. 8, when the voltage upper limit value of the power transmission coil 4 is Vlimit, the measured voltage of the power transmission coil 4 is compared with Vlimit according to the flowchart of FIG. Advances to step S104 (step S204). Since other steps are the same as those in the first embodiment, detailed description thereof will be omitted.

以上の実施の形態1及び2では、送電コイル4の両端電圧を最大にするfmaxと、最適の送電周波数fsendの関係を予め定めておいた図4の表を用いて、求められたfmaxから望ましい送電周波数fsendを算出した。一方、fmaxに基づいて一定の演算を行うことによりfsendを算出してもよい。例えば、fmaxに一定の数値を加算、または一定の数値を乗算してfsendを求めることもできるし、fmaxの周期を求めてその周期に一定の数値を減算、または一定の数値を除算した周期からfsendを求めることもできる。
<実施の形態3>
本発明の送電動作を連続して行った場合、環境温度変化、部品の経年変化、送電回路や受電回路の周辺に物体が接近する等の変化が動作中に発生する可能性がある。本発明の実施の形態3では、送電周波数制御部は、送電部の送電周波数を設定した後に、一定の環境温度の変化、若しくは一定の送電コイルの両端電圧の変化を検出した場合、又は一定の時間が経過した場合は、送電部の送電周波数を設定し直す。これにより、前記外乱や時変化が生じた場合でも、最適な送電を実現することができる。
In the first and second embodiments described above, it is desirable from the obtained fmax using the table of FIG. 4 in which the relationship between fmax that maximizes the voltage across power transmission coil 4 and the optimum power transmission frequency fsend is determined in advance. The power transmission frequency fsend was calculated. On the other hand, fsend may be calculated by performing a certain calculation based on fmax. For example, fsend can be obtained by adding a constant numerical value to fmax or multiplying by a constant numerical value, or by obtaining a period of fmax and subtracting a constant numerical value from the period, or by dividing a constant numerical value. fsend can also be obtained.
<Embodiment 3>
When the power transmission operation of the present invention is continuously performed, a change such as an environmental temperature change, a secular change of parts, and an object approaching the periphery of the power transmission circuit or the power reception circuit may occur during the operation. In Embodiment 3 of the present invention, the power transmission frequency control unit detects a constant environmental temperature change or a constant voltage change across the power transmission coil after setting the power transmission frequency of the power transmission unit, or a constant If the time has elapsed, reset the power transmission frequency of the power transmission unit. Thereby, even when the disturbance and the time change occur, the optimum power transmission can be realized.

図9は、本発明の実施の形態3における制御のフローチャートを示す。   FIG. 9 shows a flowchart of control in Embodiment 3 of the present invention.

本実施の形態においても、実施の形態1におけるステップS101からS109、または実施の形態2におけるステップS101からS108およびS204と同様の周波数設定動作を行う(ステップS301)。この動作は、実施の形態1または実施の形態2と同様であるので詳細な説明は省略する。   Also in the present embodiment, the same frequency setting operation as steps S101 to S109 in the first embodiment or steps S101 to S108 and S204 in the second embodiment is performed (step S301). Since this operation is the same as that of the first embodiment or the second embodiment, detailed description thereof is omitted.

予め定めた変化量を越えた環境温度の変化、または予め定めた変化量を越えた送電コイルの両端電圧の変化を検出した場合、または予め定めた時間が経過した場合は、ステップS301に戻り、再度周波数設定動作を行う。その他の場合は、ステップS302を再度実行する。環境温度はスイッチング素子、共振容量、共振コイルの温度等を計測することにより得る(ステップS302)。   When a change in the environmental temperature exceeding the predetermined change amount, or a change in the voltage across the power transmission coil exceeding the predetermined change amount is detected, or when a predetermined time has elapsed, the process returns to step S301. Perform the frequency setting operation again. In other cases, step S302 is executed again. The environmental temperature is obtained by measuring the temperature of the switching element, the resonant capacitance, the resonant coil, etc. (step S302).

以上のように、本発明の非接触電力伝送装置は送電部の送電周波数Fswを共振が最大となる周波数よりも高い周波数Fresに設定する。これにより、環境温度変化、部品の経年変化、送電回路や受電回路の周辺に物体が接近する等の外乱要因が生じた場合でも、Fsw<Fresの状態となることを防止することができる。そのため、スイッチング素子の電力損失を低減でき、高効率の非接触電力伝送を行うことができる。   As described above, the non-contact power transmission apparatus of the present invention sets the power transmission frequency Fsw of the power transmission unit to a frequency Fres that is higher than the frequency at which resonance is maximized. Thereby, even when a disturbance factor such as an environmental temperature change, component secular change, or an object approaches the periphery of the power transmission circuit or the power reception circuit, the state of Fsw <Fres can be prevented. Therefore, the power loss of the switching element can be reduced, and highly efficient contactless power transmission can be performed.

本発明の非接触電力伝送装置は、送電装置にFET等のスイッチング素子を用いた場合でも効率的な電力伝送が可能となる。   The contactless power transmission device of the present invention enables efficient power transmission even when a switching element such as an FET is used for the power transmission device.

1 送電装置
2 受電装置
3 送電部
4 送電コイル
5 共振容量
6 送電コイル電圧検出部
7 送電制御部
8 受電コイル
9 共振容量
10 電力変換部
11 電力出力端子
21 スイッチング素子
22 スイッチング素子
23 コイル
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Power reception apparatus 3 Power transmission part 4 Power transmission coil 5 Resonance capacity 6 Power transmission coil voltage detection part 7 Power transmission control part 8 Power reception coil 9 Resonance capacity 10 Power conversion part 11 Power output terminal 21 Switching element 22 Switching element 23 Coil

Claims (4)

送電コイル及び共振容量により構成された送電共振器を有する送電装置と、
受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、
前記送電コイルと前記受電コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
前記送電装置は、更に、
スイッチング素子を用いた送電回路で前記送電共振器に高周波電力を与える送電部と、
前記送電コイルの両端電圧を測定する電圧検出部と、
前記送電部の送電周波数を制御する送電周波数制御部とを有し、
前記送電周波数制御部は、前記電圧検出部が測定した前記送電コイルの両端電圧に基づき、前記送電コイルの両端電圧が最大となる共振送電周波数を求め、前記送電部の送電周波数を前記共振送電周波数よりも高い周波数に設定することを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonant capacitor;
A power receiving device having a power receiving resonator composed of a power receiving coil and a resonant capacitor;
In a non-contact power transmission device that transmits power from the power transmission device to the power reception device via magnetic resonance between the power transmission coil and the power reception coil,
The power transmission device further includes:
A power transmission unit that applies high-frequency power to the power transmission resonator in a power transmission circuit using a switching element;
A voltage detector for measuring the voltage across the power transmission coil;
A power transmission frequency control unit for controlling a power transmission frequency of the power transmission unit,
The power transmission frequency control unit obtains a resonant power transmission frequency that maximizes the voltage across the power transmission coil based on the voltage across the power transmission coil measured by the voltage detection unit, and determines the power transmission frequency of the power transmission unit as the resonance power transmission frequency. A non-contact power transmission device, characterized in that it is set to a higher frequency.
前記送電周波数制御部は、前記送電コイルの両端電圧が予め定められた上限値を超えない範囲で前記送電部の送電周波数を設定することを特徴とする請求項1に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein the power transmission frequency control unit sets a power transmission frequency of the power transmission unit within a range in which a voltage across the power transmission coil does not exceed a predetermined upper limit value. . 前記送電周波数制御部は、前記送電部の送電周波数を設定した後に、一定の環境温度の変化、若しくは一定の送電コイルの両端電圧の変化を検出した場合、又は一定の時間が経過した場合は、前記送電部の送電周波数を設定し直すことを特徴とする請求項1又は2に記載の非接触電力伝送装置。   The power transmission frequency control unit, after setting the power transmission frequency of the power transmission unit, when detecting a constant change in environmental temperature, or a change in the voltage across the constant power transmission coil, or when a certain time has elapsed, The non-contact power transmission apparatus according to claim 1, wherein a power transmission frequency of the power transmission unit is reset. 前記スイッチング素子を用いた送電回路は、2個のFETをスイッチング素子として用いたハーフブリッジ回路、又は4個のFETをスイッチング素子として用いたフルブリッジ回路であることを特徴とする請求項1乃至3のいずれかに記載の非接触電力伝送装置。   The power transmission circuit using the switching element is a half bridge circuit using two FETs as switching elements or a full bridge circuit using four FETs as switching elements. The non-contact power transmission device according to any one of the above.
JP2013164990A 2013-08-08 2013-08-08 Non-contact power transmission device Active JP6086839B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013164990A JP6086839B2 (en) 2013-08-08 2013-08-08 Non-contact power transmission device
JP2017011796A JP6211219B2 (en) 2013-08-08 2017-01-26 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164990A JP6086839B2 (en) 2013-08-08 2013-08-08 Non-contact power transmission device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017011796A Division JP6211219B2 (en) 2013-08-08 2017-01-26 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2015035868A true JP2015035868A (en) 2015-02-19
JP6086839B2 JP6086839B2 (en) 2017-03-01

Family

ID=52544035

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013164990A Active JP6086839B2 (en) 2013-08-08 2013-08-08 Non-contact power transmission device
JP2017011796A Active JP6211219B2 (en) 2013-08-08 2017-01-26 Non-contact power transmission device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017011796A Active JP6211219B2 (en) 2013-08-08 2017-01-26 Non-contact power transmission device

Country Status (1)

Country Link
JP (2) JP6086839B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157853A1 (en) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 Contactless power supply device and contactless power supply system
WO2017094387A1 (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
WO2017104450A1 (en) * 2015-12-18 2017-06-22 オムロン株式会社 Non-contact power supply device and method for controlling same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075696A1 (en) * 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
JP2011514801A (en) * 2008-03-17 2011-05-06 パワーマット リミテッド Inductive transmission system
WO2012172899A1 (en) * 2011-06-17 2012-12-20 株式会社 豊田自動織機 Resonance-type non-contact power supply system
JP2015002643A (en) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 Non-contact power transmission system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525710B2 (en) * 2007-06-29 2010-08-18 セイコーエプソン株式会社 Power transmission control device, power transmission device, electronic device, and non-contact power transmission system
JP2010136464A (en) * 2008-12-02 2010-06-17 Casio Computer Co Ltd Power transmitter and power transmission method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075696A1 (en) * 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
JP2011514801A (en) * 2008-03-17 2011-05-06 パワーマット リミテッド Inductive transmission system
WO2012172899A1 (en) * 2011-06-17 2012-12-20 株式会社 豊田自動織機 Resonance-type non-contact power supply system
JP2015002643A (en) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 Non-contact power transmission system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157853A1 (en) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 Contactless power supply device and contactless power supply system
JPWO2016157853A1 (en) * 2015-03-27 2017-12-21 パナソニックIpマネジメント株式会社 Non-contact power supply device and non-contact power supply system
WO2017094387A1 (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
JP2017103860A (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
CN107852035A (en) * 2015-11-30 2018-03-27 欧姆龙株式会社 Contactless power supply device
WO2017104450A1 (en) * 2015-12-18 2017-06-22 オムロン株式会社 Non-contact power supply device and method for controlling same
CN107852034A (en) * 2015-12-18 2018-03-27 欧姆龙株式会社 Contactless power supply device and its control method

Also Published As

Publication number Publication date
JP6086839B2 (en) 2017-03-01
JP2017073975A (en) 2017-04-13
JP6211219B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6440519B2 (en) Wireless power transmission system and power transmission device
US10097047B2 (en) Wireless power transmission system and power transmission device of wireless power transmission system
JP6288519B2 (en) Wireless power transmission system
JP6497614B2 (en) Power transmission device and wireless power transmission system
US9991748B2 (en) Wireless power transmission system and power transmission device
CN110226282B (en) LLC resonant converter
Huang et al. Comparison of two high frequency converters for capacitive power transfer
JP6177351B2 (en) Automatic matching circuit for high frequency power supply
JP6211219B2 (en) Non-contact power transmission device
JP2013078171A (en) Power receiving device and non-contact power supply system
KR102432265B1 (en) Rectifier circuit and device comprising same
KR102008810B1 (en) Wireless power transmitting apparatus and method
WO2015097805A1 (en) Automatic matching circuit for high-frequency matching circuit
JP2012135117A (en) Non-contact power transmission system
WO2015104779A1 (en) Wireless power supply device and wireless power supply device start-up method
CN101242144B (en) Method for controlling DC-DC converter
EP1811813B1 (en) High-frequency heating power source
JPWO2015087396A1 (en) Rectifier circuit for high frequency power supply
JP2015136274A (en) Non-contact power transmission device
Mikołajewski A self-oscillating hf power generator with a Class E resonant amplifier
KR101394018B1 (en) Power supplying apparatus and wireless power transmitting apparatus
JP2013233053A (en) Wireless power transmission system
KR20210116510A (en) Serial Distributed Radio Frequency Generator for Use in Wireless Power Transmission
JP2016067122A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170131

R150 Certificate of patent or registration of utility model

Ref document number: 6086839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250