JP2010136464A - Power transmitter and power transmission method - Google Patents

Power transmitter and power transmission method Download PDF

Info

Publication number
JP2010136464A
JP2010136464A JP2008307090A JP2008307090A JP2010136464A JP 2010136464 A JP2010136464 A JP 2010136464A JP 2008307090 A JP2008307090 A JP 2008307090A JP 2008307090 A JP2008307090 A JP 2008307090A JP 2010136464 A JP2010136464 A JP 2010136464A
Authority
JP
Japan
Prior art keywords
power transmission
frequency
power
coil
transmission coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008307090A
Other languages
Japanese (ja)
Inventor
Shigeo Sekino
茂雄 関野
Kaoru Someya
薫 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2008307090A priority Critical patent/JP2010136464A/en
Publication of JP2010136464A publication Critical patent/JP2010136464A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmitter capable of excellently efficiently transmit power even if the comparatively large degree of freedom is given to the installation position of a power reception side apparatus or the configuration of a power reception circuit. <P>SOLUTION: The power transmitter 1 includes: a power transmission coil 11 for transmitting power by an electromagnetic induction; and driving means 13-16 for outputting periodically vibrating drive signals to the power transmission coil 11. The power transmitter 1 transmits power to the power reception side apparatus 40 by the driving of the power transmission coil 11. The power transmission device 1 has a configuration in which a coil current is continuously detected while changing the frequency of the drive signal, thereby finding a specific frequency at which the amplitude of the coil current becomes the maximum to adjust the frequency of the drive signal at this specific frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電磁誘導作用によって受電側の機器に電力を伝送する電力伝送装置および電力伝送方法に関する。   The present invention relates to a power transmission device and a power transmission method for transmitting power to a power receiving device by electromagnetic induction.

以前より、電磁誘導作用によって受電側の機器へワイヤレスで電力を伝送する電力伝送装置が知られている。   2. Description of the Related Art A power transmission device that wirelessly transmits power to a power receiving device by electromagnetic induction has been known.

一般的なワイヤレス電力伝送システムにおいては、受電側機器が送電側機器に対して固定的な配置にされて電力伝送が行われるように構成されるのが通常である。このように固定的な配置とすることで、送電側のコイル(以下、送電コイルと呼ぶ)と受電側のコイル(以下、受電コイルと呼ぶ)とが、一定の相対距離および一定の相対配置で近接することとなり、この状態で予め設定された周波数で送電コイルを駆動することで、常に一定効率の電力伝送を行えることとなる。   In a general wireless power transmission system, a power receiving side device is usually configured to be fixedly arranged with respect to a power transmission side device so that power transmission is performed. With such a fixed arrangement, a coil on the power transmission side (hereinafter referred to as a power transmission coil) and a coil on the power reception side (hereinafter referred to as a power reception coil) have a constant relative distance and a constant relative arrangement. In this state, by driving the power transmission coil at a preset frequency, power transmission with constant efficiency can always be performed.

また、本願発明に関連する従来技術として、特許文献1には、一次側ユニットから二次側ユニットへ非接触で電力を伝送するシステムにおいて、受電により二次側ユニットに発生する電圧および電流の検出信号を一次側ユニットに送信し、この信号に基づいて一次側ユニットの駆動周波数を調整する技術が開示されている。また、特許文献2には、信号のワイヤレス伝送と電力のワイヤレス伝送とを時分割に行うシステムにおいて、信号の伝送時と電力の伝送時とでコイルに接続される共振コンデンサの容量値を切り換えて共振周波数を変化させる構成が開示されている。
特開2006−74848号公報 特開平9−326736号公報
In addition, as a related art related to the present invention, Patent Document 1 discloses detection of voltage and current generated in a secondary side unit by receiving power in a system in which power is transmitted from the primary side unit to the secondary side unit in a non-contact manner. A technique for transmitting a signal to a primary side unit and adjusting the drive frequency of the primary side unit based on this signal is disclosed. In Patent Document 2, in a system that performs signal wireless transmission and power wireless transmission in a time-sharing manner, the capacitance value of a resonant capacitor connected to the coil is switched between signal transmission and power transmission. A configuration for changing the resonance frequency is disclosed.
JP 2006-74848 A JP-A-9-326736

電力伝送装置において、受電側機器の設置位置の自由度を比較的大きくできると、機器形状の設計自由度が増すなどの利点が得られる。また、特性の異なる複数種類の受電回路に対して電力伝送が可能になれば、1台の電力伝送装置で複数種類の受電側機器へワイヤレス電力伝送が可能になるなど便利である。   In the power transmission device, if the degree of freedom of the installation position of the power receiving device can be made relatively large, advantages such as an increase in the degree of freedom in designing the device shape can be obtained. Further, if power transmission is possible for a plurality of types of power receiving circuits having different characteristics, it is convenient that a single power transmission device can wirelessly transmit power to a plurality of types of power receiving devices.

しかしながら、送電コイルと受電コイルの相対距離や相対配置が電力伝送時に一定とならなかったり、受電側のコイルや共振コンデンサなどの回路定数が一定でなかったりすると、送電コイルと受電コイルが電磁結合してなる全体回路の共振周波数も変化してしまう。そのため、このような共振周波数が一定とならない状況で、送電コイルを固定的な周波数で駆動したのでは、この周波数が回路の共振点(同調点)からずれて電力伝送効率が低下するという課題が生じる。   However, if the relative distance and relative arrangement between the power transmission coil and the power reception coil are not constant during power transmission, or if the circuit constants such as the coil on the power reception side and the resonance capacitor are not constant, the power transmission coil and the power reception coil are electromagnetically coupled. The resonance frequency of the entire circuit changes. For this reason, when the power transmission coil is driven at a fixed frequency in a situation where the resonance frequency is not constant, there is a problem that the power transmission efficiency is reduced due to the frequency being shifted from the resonance point (tuning point) of the circuit. Arise.

一方、特許文献1の技術のように、二次側ユニットから一次側ユニットへ電圧や電流の検出信号を送ってコイルの駆動周波数を調整する構成を適用した場合、電力伝送用のコイルとは別に信号伝送用のコイルや回路を設けなければならないなど、回路構成が複雑化するという課題が生じる。   On the other hand, when a configuration in which a voltage or current detection signal is sent from the secondary unit to the primary unit and the drive frequency of the coil is adjusted is applied as in the technique of Patent Document 1, separately from the power transmission coil. There arises a problem that the circuit configuration becomes complicated, for example, it is necessary to provide a coil and a circuit for signal transmission.

そもそも、受電側機器の設置位置の自由度を大きくしたり、1台の電力伝送装置で複数種類の受電側機器に対応可能とする場合には、特許文献1のシステムのように、信号送受信用のコイルを送電側機器と受電側機器との両方に互いに対応させて設けることも困難になるという課題もある。   In the first place, when the degree of freedom of the installation position of the power receiving side device is increased, or when it is possible to cope with a plurality of types of power receiving side devices with one power transmission device, as in the system of Patent Document 1, it is used for signal transmission / reception. There is also a problem that it is difficult to provide the coils corresponding to both the power transmission side device and the power reception side device.

この発明の目的は、例えば受電側機器の設置位置や受電回路の構成に比較的大きな自由度が介在する場合でも、良好な効率で電力伝送を行うことのできる電力伝送装置を提供することにある。   An object of the present invention is to provide a power transmission device capable of performing power transmission with good efficiency even when, for example, a relatively large degree of freedom is present in the installation position of the power receiving side device and the configuration of the power receiving circuit. .

上記目的を達成するため、請求項1記載の発明は、
電磁誘導作用により送電を行う送電コイルと、該送電コイルに周期的に振動する駆動信号を出力する駆動手段とを備え、前記送電コイルの駆動によって受電側の機器へ電力を伝送する電力伝送装置において、
前記駆動信号の周波数を変化させる制御手段と、
前記送電コイルに発生する信号を検出する信号検出手段と、
前記駆動信号の周波数を変化させながら前記信号検出手段により検出された信号量を取得していくことで、前記送電コイルの共振動作の大きさが所定条件を満たす大きさとなる特定周波数を見つけて、前記駆動信号の周波数を前記特定周波数に調整する周波数調整手段と、
を備えたことを特徴としている。
In order to achieve the above object, the invention according to claim 1
In a power transmission device, comprising: a power transmission coil that performs power transmission by electromagnetic induction action; and a drive unit that outputs a drive signal that periodically vibrates to the power transmission coil, and transmits power to a power receiving device by driving the power transmission coil. ,
Control means for changing the frequency of the drive signal;
Signal detection means for detecting a signal generated in the power transmission coil;
By acquiring the signal amount detected by the signal detection means while changing the frequency of the drive signal, find the specific frequency at which the magnitude of the resonance operation of the power transmission coil satisfies a predetermined condition, Frequency adjusting means for adjusting the frequency of the drive signal to the specific frequency;
It is characterized by having.

請求項2記載の発明は、請求項1記載の電力伝送装置において、
前記周波数調整手段は、前記特定周波数として前記送電コイルの共振動作の大きさがほぼ極値となる前記駆動信号の周波数を見つけることを特徴としている。
The invention according to claim 2 is the power transmission device according to claim 1,
The frequency adjusting means finds the frequency of the drive signal at which the magnitude of the resonance operation of the power transmission coil is almost an extreme value as the specific frequency.

請求項3記載の発明は、請求項1記載の電力伝送装置において、
前記周波数調整手段により前記特定周波数が見つけられた場合に、当該特定周波数の駆動信号により前記送電コイルを駆動して送電を実行させる送電実行制御手段を備えたことを特徴としている。
The invention according to claim 3 is the power transmission device according to claim 1,
When the specific frequency is found by the frequency adjusting means, power transmission execution control means for driving the power transmission coil with a drive signal of the specific frequency to execute power transmission is provided.

請求項4記載の発明は、請求項1記載の電力伝送装置において、
前記周波数調整手段により予め定められた周波数範囲の中に前記特定周波数が見つけられなかった場合に、前記送電コイルによる送電動作を停止させる送電停止制御手段を備えたことを特徴としている。
The invention according to claim 4 is the power transmission device according to claim 1,
A power transmission stop control means is provided for stopping the power transmission operation by the power transmission coil when the specific frequency is not found within a frequency range predetermined by the frequency adjusting means.

請求項5記載の発明は、請求項1記載の電力伝送装置において、
前記送電コイルは共振コンデンサが接続されて共振動作を行う構成であり、
前記駆動手段は、前記駆動信号として周期的に振動する駆動電圧を前記送電コイルに出力する構成であることを特徴としている。
The invention according to claim 5 is the power transmission device according to claim 1,
The power transmission coil is configured to perform a resonance operation with a resonance capacitor connected thereto,
The drive means is configured to output a drive voltage that periodically oscillates as the drive signal to the power transmission coil.

請求項6記載の発明は、請求項5記載の電力伝送装置において、
前記信号検出手段は、前記送電コイルに流れる電流を検出する構成であり、
前記周波数調整手段は、前記送電コイルに流れる電流振幅が最大となる特定周波数に前記駆動信号の周波数を調整する構成であることを特徴としている。
Invention of Claim 6 is the electric power transmission apparatus of Claim 5,
The signal detection means is configured to detect a current flowing through the power transmission coil,
The frequency adjusting means adjusts the frequency of the drive signal to a specific frequency that maximizes the amplitude of the current flowing through the power transmission coil.

請求項7記載の発明は、請求項3記載の電力伝送装置において、
前記周波数調整手段および前記送電実行制御手段の制御によって、特性の異なる複数種類の受電側機器に対して電力の伝送が可能にされていることを特徴としている。
The invention according to claim 7 is the power transmission device according to claim 3,
According to the control of the frequency adjusting unit and the power transmission execution control unit, it is possible to transmit power to a plurality of types of power receiving devices having different characteristics.

請求項8記載の発明は、
電磁誘導作用により送電を行う送電コイルと、該送電コイルに周期的に振動する駆動信号を出力する駆動手段と、前記送電コイルに発生する信号を検出する信号検出手段とを備えた電力伝送装置から受電側の機器へ電力を伝送させる電力伝送方法において、
制御手段が前記駆動信号の周波数を変化させながら前記信号検出手段により検出された信号量を取得し、前記送電コイルの共振動作の大きさが所定条件を満たす大きさとなる特定周波数を見つけるステップと、
前記特定周波数が見つかった場合に、前記制御手段が当該特定周波数の駆動信号で前記送電コイルを駆動して送電を実行させるステップと、
前記特定周波数が予め定められた周波数範囲の中に見つからなかった場合に、前記制御手段が前記送電コイルの駆動を停止させるステップと、
を含むことを特徴としている。
The invention described in claim 8
From a power transmission device comprising a power transmission coil that performs power transmission by electromagnetic induction, a drive unit that outputs a drive signal that periodically vibrates to the power transmission coil, and a signal detection unit that detects a signal generated in the power transmission coil In a power transmission method for transmitting power to a power receiving device,
Acquiring a signal amount detected by the signal detection means while changing the frequency of the drive signal, and finding a specific frequency at which the magnitude of the resonance operation of the power transmission coil satisfies a predetermined condition;
When the specific frequency is found, the control means drives the power transmission coil with a drive signal of the specific frequency to execute power transmission;
The control means stopping the driving of the power transmission coil when the specific frequency is not found in a predetermined frequency range;
It is characterized by including.

本発明に従うと、比較的大きな自由度をもって受電側の回路と電磁結合される場合でも、周波数調整手段により送電コイルの駆動周波数の同調を図ることができ、それにより、高い伝送効率で受電側機器に電力伝送を行うことができる。   According to the present invention, even when the circuit on the power receiving side is electromagnetically coupled with a relatively large degree of freedom, the frequency adjustment means can tune the drive frequency of the power transmission coil, thereby enabling the power receiving side device with high transmission efficiency. Power transmission.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態の電力伝送装置の回路構成を示すブロック図、図2は、受電側機器の回路構成の一例を示すブロック図である。   FIG. 1 is a block diagram illustrating a circuit configuration of a power transmission device according to an embodiment of the present invention, and FIG. 2 is a block diagram illustrating an example of a circuit configuration of a power receiving device.

この実施形態の電力伝送装置1は、受電側機器40に電磁誘導作用によりワイヤレスで電力を伝送する装置である。この電力伝送装置1には、図1に示すように、電磁誘導作用により送電を行う送電コイル11と、送電コイル11に直列に接続された共振コンデンサ12と、送電コイル11を駆動する駆動手段としての駆動回路13と、駆動回路13に周期的な駆動用の制御信号を供給する分周回路14および発振器15と、駆動回路13の出力レベルを変化させるレベル制御回路16と、位相補償用に駆動回路13の出力位相と共振動作の位相とを比較する位相比較回路17と、送電コイル11に流れる電流および送電コイル11の両端電圧を検出する信号検出手段としての電圧計測&電流計測回路18と、装置の全体的な制御を行ったり送電コイル11の駆動周波数を変化させたりする制御手段としての制御回路20と、制御データや制御プログラムを格納したり制御回路20に作業用のメモリ空間を提供したりするメモリ21等が設けられている。   The power transmission device 1 of this embodiment is a device that wirelessly transmits power to the power receiving device 40 by electromagnetic induction. As shown in FIG. 1, the power transmission device 1 includes a power transmission coil 11 that transmits power by electromagnetic induction, a resonance capacitor 12 connected in series to the power transmission coil 11, and a drive unit that drives the power transmission coil 11. Driving circuit 13, frequency dividing circuit 14 and oscillator 15 for supplying a periodic driving control signal to driving circuit 13, level control circuit 16 for changing the output level of driving circuit 13, and driving for phase compensation A phase comparison circuit 17 that compares the output phase of the circuit 13 and the phase of the resonance operation, a voltage measurement & current measurement circuit 18 as signal detection means for detecting the current flowing through the power transmission coil 11 and the voltage across the power transmission coil 11, A control circuit 20 as a control means for performing overall control of the apparatus or changing the drive frequency of the power transmission coil 11, control data and a control program Memory 21 and the like are provided or to provide a working memory space to pay or the control circuit 20.

受電側機器40は、機能構成は特に制限されるものではなく、例えば、図2に示すように、機器の機能を実現する負荷回路45と、負荷回路45に電力を供給する二次電池44と、電力伝送装置1から受電を行う受電コイル41と、受電コイル41に接続された共振コンデンサ42と、受電コイル41に発生する電圧を整流して二次電池44や負荷回路45に供給する整流回路43等を備えている。   The function configuration of the power receiving device 40 is not particularly limited. For example, as illustrated in FIG. 2, a load circuit 45 that realizes the function of the device, and a secondary battery 44 that supplies power to the load circuit 45 A power receiving coil 41 that receives power from the power transmission device 1, a resonant capacitor 42 connected to the power receiving coil 41, and a rectifier circuit that rectifies the voltage generated in the power receiving coil 41 and supplies it to the secondary battery 44 and the load circuit 45. 43 etc.

上記の送電コイル11は、受電側機器40の受電コイル41が近接された場合に、この受電コイル41と電磁結合するとともに、交流電流が流されることで電磁誘導作用によって受電コイル41側へ電力を伝送する。   The power transmission coil 11 is electromagnetically coupled to the power reception coil 41 when the power reception coil 41 of the power reception side device 40 is brought close to the power transmission coil 11, and power is supplied to the power reception coil 41 side by an electromagnetic induction action when an alternating current flows. To transmit.

駆動回路13は、分周回路14から周期的なパルス信号を受けて、このパルス信号に同期したパルス状の駆動電圧(以下、駆動パルスと呼ぶ)を出力するものである。駆動パルスの振幅は、レベル制御回路16の出力により決定されるようになっている。   The drive circuit 13 receives a periodic pulse signal from the frequency divider circuit 14 and outputs a pulsed drive voltage (hereinafter referred to as a drive pulse) synchronized with the pulse signal. The amplitude of the drive pulse is determined by the output of the level control circuit 16.

発振器15と分周回路14とは、上記駆動パルスの周波数を決定するものである。発振器15は、例えばVCO(電圧制御発振器)などから構成され、制御回路20からの制御電圧に応じて発振周波数を変化させる。発振器15の発振信号は分周回路14で分周されて駆動回路13に出力されるので、この構成により、制御回路20によって、駆動回路13から出力される駆動パルスの周波数が制御可能になっている。   The oscillator 15 and the frequency divider circuit 14 determine the frequency of the drive pulse. The oscillator 15 is composed of, for example, a VCO (Voltage Controlled Oscillator) or the like, and changes the oscillation frequency according to the control voltage from the control circuit 20. Since the oscillation signal of the oscillator 15 is frequency-divided by the frequency divider circuit 14 and output to the drive circuit 13, this configuration allows the control circuit 20 to control the frequency of the drive pulse output from the drive circuit 13. Yes.

電圧計測&電流計測回路18は、特に制限されるものではないが、例えば、共振コンデンサ12の電圧を微分することで送電コイル11に流れる電流を計測する。また、送電コイルの両端子の電圧をそれぞれ導いて差分をとることで両端電圧を計測するものである。なお、電流検出抵抗を用いて送電コイル11に流れる電流を検出する構成としても良い。   Although the voltage measurement & current measurement circuit 18 is not particularly limited, for example, the current flowing through the power transmission coil 11 is measured by differentiating the voltage of the resonance capacitor 12. Moreover, the voltage of both ends is measured by deriving the voltage of both terminals of the power transmission coil and taking the difference. In addition, it is good also as a structure which detects the electric current which flows into the power transmission coil 11 using a current detection resistor.

制御回路20には、CPU(中央制御回路)や各種の信号の入出力を行うI/O回路等が搭載され、上記CPUによりメモリ21に格納された制御プログラム(図6の電力伝送メイン処理)が実行されるようになっている。   The control circuit 20 is equipped with a CPU (central control circuit), an I / O circuit for inputting / outputting various signals, and the like, and a control program stored in the memory 21 by the CPU (power transmission main processing in FIG. 6). Is to be executed.

また、制御回路20は、上記の制御プログラムに基づいて、発振器15の動作開始や停止の制御、発振器15の発振周波数を大小させる制御、レベル制御回路16への制御信号の出力により駆動パルスの振幅を大小させる制御を行ったり、位相比較回路17や電圧計測&電流計測回路18から信号を取り込んだりすることが可能になっている。   Further, the control circuit 20 controls the start and stop of the operation of the oscillator 15 based on the above control program, the control for increasing or decreasing the oscillation frequency of the oscillator 15, and the output of the control signal to the level control circuit 16. It is possible to perform control to increase or decrease the signal size, or to take in a signal from the phase comparison circuit 17 or the voltage measurement & current measurement circuit 18.

次に、上記構成の電力伝送装置1の動作について説明する。   Next, the operation of the power transmission device 1 configured as described above will be described.

図3は、電力伝送装置に受電側機器がセットされて周波数調整がなされる際の動作説明図である。   FIG. 3 is an operation explanatory diagram when the power receiving device is set in the power transmission device and the frequency is adjusted.

電力伝送装置1では、周期的に、受電側機器40がセットされたことを検出する処理や、受電側機器40がセットされた場合に送電コイル11の駆動周波数を最適化する処理を行うようになっている。   The power transmission device 1 periodically performs processing for detecting that the power receiving side device 40 is set and processing for optimizing the drive frequency of the power transmission coil 11 when the power receiving side device 40 is set. It has become.

受電側機器40が電力伝送装置1にセットされると、図3に示すように、送電コイル11と受電コイル41とが近接されることによって両者が互いに電磁結合された状態となる。ここで、送電コイル11と受電コイル41の相互インダクタンスは、両者の相対距離や相対配置ならびに受電コイル41の特性等に依存して、その値が決定される。   When the power receiving side device 40 is set in the power transmission device 1, as shown in FIG. 3, the power transmission coil 11 and the power reception coil 41 are brought into close proximity to each other so that they are electromagnetically coupled to each other. Here, the value of the mutual inductance between the power transmission coil 11 and the power reception coil 41 is determined depending on the relative distance and relative arrangement between the two and the characteristics of the power reception coil 41.

また、送電コイル11と受電コイル41とが電磁結合されると、この結合により、電力伝送装置1側の送電コイル11と共振コンデンサ12、並びに、受電側機器40側の受電コイル41と共振コンデンサ42により、1つの共振回路が構成される。この共振回路の共振周波数は、各コイル11,12の自己インダクタンス値および相互インダクタンス値と、共振コンデンサ12,42の容量値によって決定される。したがって、例えば、受電側機器40のセット位置に比較的大きな自由度があって、送電コイル11と受電コイル41との相対距離や相対配置が変化した場合には、両者の相互インダクタンス値が変化することから、この共振回路の共振周波数の値も変化することになる。また、受電側のコイル定数や容量値が異なれば、それに応じて共振周波数の値も変化する。   Further, when the power transmission coil 11 and the power reception coil 41 are electromagnetically coupled, due to this coupling, the power transmission coil 11 and the resonance capacitor 12 on the power transmission device 1 side, and the power reception coil 41 and the resonance capacitor 42 on the power reception side device 40 side are obtained. Thus, one resonance circuit is configured. The resonance frequency of the resonance circuit is determined by the self-inductance value and mutual inductance value of the coils 11 and 12 and the capacitance value of the resonance capacitors 12 and 42. Therefore, for example, when there is a relatively large degree of freedom in the set position of the power receiving device 40 and the relative distance or relative arrangement between the power transmission coil 11 and the power receiving coil 41 changes, the mutual inductance value of both changes. For this reason, the value of the resonance frequency of the resonance circuit also changes. Further, if the coil constant and the capacitance value on the power receiving side are different, the value of the resonance frequency also changes accordingly.

図4には、対応する受電側機器が設置された場合における送電コイル11の駆動周波数とコイル電流の振幅の関係を表わしたグラフを示す。   FIG. 4 is a graph showing the relationship between the drive frequency of the power transmission coil 11 and the amplitude of the coil current when the corresponding power receiving device is installed.

送電コイル11の駆動周波数を最適化する処理では、制御回路20は、駆動パルスの周波数を変化させながら、電圧計測&電流計測回路18による電流検出値を取得していき、送電コイル11のコイル電流の電流振幅が最大となる周波数を特定周波数として探索する。   In the process of optimizing the drive frequency of the power transmission coil 11, the control circuit 20 acquires the current detection value by the voltage measurement & current measurement circuit 18 while changing the frequency of the drive pulse, and the coil current of the power transmission coil 11. The frequency with the maximum current amplitude is searched as a specific frequency.

駆動パルスの振幅が一定である場合、図4に示すように、駆動パルスの周波数fが共振周波数f0と一致したときに、共振回路に流れる電流の振幅は最大となる。すなわち、このとき送電コイル11の電流振幅が最大となる。したがって、制御回路20は、取得した電流検出値から電流振幅を比較し、特定周波数としてこの周波数f0を見つける。   When the amplitude of the drive pulse is constant, as shown in FIG. 4, when the frequency f of the drive pulse coincides with the resonance frequency f0, the amplitude of the current flowing through the resonance circuit is maximized. That is, at this time, the current amplitude of the power transmission coil 11 is maximized. Therefore, the control circuit 20 compares the current amplitude from the acquired current detection value and finds this frequency f0 as the specific frequency.

そして、この特定周波数f0が見つかったら、制御回路20はこの特定周波数f0で送電コイル11を駆動して、受電側機器40に電力伝送を実行する。これにより、例えば、受電側機器40の設置位置にバラツキがあったり、受電コイル41の大きさ、巻き数、コアの誘電率や共振コンデンサ42の大きさにバラツキがあって、送電側と受電側の電磁結合に基づく結合回路の共振周波数f0が変化しても、この共振周波数f0を見つけ出して、この共振周波数f0で送電コイル11を駆動することで、常に高い伝送効率で電力伝送装置1から受電側機器40へ電力伝送を行うことが可能となる。   When the specific frequency f0 is found, the control circuit 20 drives the power transmission coil 11 at the specific frequency f0 and performs power transmission to the power receiving side device 40. Thereby, for example, there are variations in the installation position of the power receiving side device 40, and there are variations in the size and number of turns of the power receiving coil 41, the dielectric constant of the core, and the size of the resonant capacitor 42. Even if the resonance frequency f0 of the coupling circuit based on the electromagnetic coupling changes, the resonance frequency f0 is found, and the power transmission coil 11 is driven at the resonance frequency f0, so that power is always received from the power transmission device 1 with high transmission efficiency. It is possible to transmit power to the side device 40.

なお、特定周波数の探索は、図4に示すように、予め設定された探索スタート周波数fsから探索エンド周波数feの範囲で行われる。この探索スタート周波数fsと探索エンド周波数feは、対応可能な受電側の回路が電磁結合した場合に、その共振周波数が含まれる範囲として設定されている。また、送電コイル11と共振コンデンサ12だけからなり受電側の結合のない共振回路の共振周波数は、例えば、この探索スタート周波数fsと探索エンド周波数feの範囲から外れるように設定すると良い。   As shown in FIG. 4, the search for the specific frequency is performed in a range from a preset search start frequency fs to a search end frequency fe. The search start frequency fs and the search end frequency fe are set as ranges in which the resonance frequency is included when a compatible power receiving side circuit is electromagnetically coupled. In addition, the resonance frequency of a resonance circuit that includes only the power transmission coil 11 and the resonance capacitor 12 and has no coupling on the power receiving side may be set to be out of the range of the search start frequency fs and the search end frequency fe, for example.

図5には、金属異物が設置された場合における送電コイル11の駆動周波数とコイル電流の振幅の関係を表わしたグラフを示す。   FIG. 5 is a graph showing the relationship between the drive frequency of the power transmission coil 11 and the amplitude of the coil current when a metallic foreign object is installed.

上述した送電コイル11の駆動周波数を最適化する処理においては、電力伝送装置1に金属異物などが置かれた場合に、それを検出することも可能になっている。送電コイル11に受電側の回路が電磁結合されていない場合、或いは、金属異物などが電磁結合されている場合、その回路の共振周波数は、探索スタート周波数fsから探索エンド周波数feの範囲から外れた値となるように設定されている。   In the process of optimizing the drive frequency of the power transmission coil 11 described above, when a metal foreign object or the like is placed on the power transmission device 1, it can be detected. When the circuit on the power receiving side is not electromagnetically coupled to the power transmission coil 11 or when a metal foreign object is electromagnetically coupled, the resonance frequency of the circuit deviates from the range of the search end frequency fe from the search start frequency fs. It is set to be a value.

従って、図5に示すように、送電コイル11の駆動周波数を探索スタート周波数fsから探索エンド周波数feの範囲で変化させながら、送電コイル11の電流検出値を取得して電流振幅の変化量を観察すると、図5の点線に示すようなピークのない特性線が得られる。このようにピークのない電流振幅の特性線が得られた場合には、制御回路20は、金属異物が置かれているか、或いは、何も置かれていないと判断して、電力伝送の動作を停止制御するようになっている。   Therefore, as shown in FIG. 5, while changing the drive frequency of the power transmission coil 11 in the range from the search start frequency fs to the search end frequency fe, the current detection value of the power transmission coil 11 is acquired and the amount of change in the current amplitude is observed. Then, a characteristic line having no peak as shown by the dotted line in FIG. 5 is obtained. When a characteristic line having a current amplitude having no peak is obtained in this way, the control circuit 20 determines that a metal foreign object is placed or nothing is placed, and performs the power transmission operation. Stop control is provided.

次に、上記のような処理を実現する制御回路20の制御動作について図6と図7のフローチャートに基づいて詳細に説明する。   Next, the control operation of the control circuit 20 that realizes the above processing will be described in detail with reference to the flowcharts of FIGS.

図6は、制御回路20により実行される電力伝送メイン処理の処理手順を示すフローチャートである。   FIG. 6 is a flowchart showing the processing procedure of the power transmission main processing executed by the control circuit 20.

図6の電力伝送メイン処理は、制御回路20により電源投入時に開始されて常時実行される処理である。電力伝送メイン処理が開始されると、先ず、ステップS1において、受電側機器40がセットされたか否かを検出する受電側負荷検出処理を実行する。   The power transmission main process in FIG. 6 is a process that is started by the control circuit 20 when the power is turned on and is always executed. When the power transmission main process is started, first, in step S1, a power receiving side load detection process for detecting whether or not the power receiving side device 40 is set is executed.

この受電側負荷検出処理は、例えば、所定の周波数で駆動振幅を変化させながら送電コイル11を駆動していき、その途中で、送電コイル11の電流振幅が大きく変化する特性点があるか否かを判別することで、受電側機器40がセットされたか否かを判断するものである。受電側機器40では、受電コイル41の出力電圧が整流回路43のダイオードのターンオン電圧を超えた場合に、大きな電流が流れ始める。そのため、この変化が送電コイル11の電流振幅の変化として伝わり、この変化を捉えることで、受電側機器40がセットされたか否かを判別することができる。   In the power receiving side load detection process, for example, the power transmission coil 11 is driven while changing the drive amplitude at a predetermined frequency, and whether or not there is a characteristic point in which the current amplitude of the power transmission coil 11 greatly changes in the middle. It is determined whether or not the power receiving device 40 is set. In the power receiving device 40, a large current starts to flow when the output voltage of the power receiving coil 41 exceeds the turn-on voltage of the diode of the rectifier circuit 43. Therefore, this change is transmitted as a change in the current amplitude of the power transmission coil 11, and it is possible to determine whether or not the power receiving side device 40 has been set by capturing this change.

このような判別処理により、電力伝送装置1の送電コイル11の周辺に何も置かれていないと判断されている間は、ステップS1の受電側負荷検出処理の中で検出ループが繰り返し実行される。そして、電力伝送の対象となる受電側機器40が置かれたと判断されたら、ステップS1の受電側負荷検出処理を抜けて次のステップS2に移行する。   While it is determined by such determination processing that nothing is placed around the power transmission coil 11 of the power transmission device 1, the detection loop is repeatedly executed in the power receiving side load detection processing in step S1. . Then, if it is determined that the power receiving side device 40 that is the target of power transmission is placed, the power receiving side load detection process of step S1 is exited and the process proceeds to the next step S2.

ステップS2では、詳細は後述するが、受電側機器40に高い伝送効率で送電がなされるように、送電コイル11の駆動パルスの周波数を適宜調整する処理を行う。この高効率伝送調整処理により駆動信号の周波数を特定周波数に調整する周波数調整手段が構成される。   In step S2, although details will be described later, processing for appropriately adjusting the frequency of the drive pulse of the power transmission coil 11 is performed so that power is transmitted to the power receiving device 40 with high transmission efficiency. This high-efficiency transmission adjustment process constitutes frequency adjustment means for adjusting the frequency of the drive signal to a specific frequency.

高効率な電力伝送が可能な周波数が決定されたら、続くステップS3において、この周波数の駆動パルスで送電コイル11を駆動して電力伝送を開始する。このステップS3の処理により特定周波数で送電コイルを駆動して送電を実行する送電実行制御手段が構成される。そして、1単位の伝送時間(例えば180秒)ごとに規定の送電が完了したか確認を行うために、先ず、ステップS4で伝送時間Dのカウントを開始させ、ステップS5で伝送時間Dが単位時間(例えば180秒)を経過するまで待機する。   When a frequency capable of highly efficient power transmission is determined, in subsequent step S3, the power transmission coil 11 is driven with a drive pulse of this frequency to start power transmission. By the processing in step S3, power transmission execution control means is configured to execute power transmission by driving the power transmission coil at a specific frequency. In order to confirm whether or not the prescribed power transmission is completed every one unit of transmission time (for example, 180 seconds), first, counting of the transmission time D is started in step S4, and the transmission time D is unit time in step S5. Wait until (for example, 180 seconds) elapses.

さらに、単位時間が経過したら、続くステップS6において、送電コイル11の駆動パルスの振幅やコイル電流の電流振幅から、受電側機器40の充電電流を測定し、充電電流が最小規定値以下となっているか否かを判別する。   Further, when the unit time has elapsed, in the subsequent step S6, the charging current of the power receiving side device 40 is measured from the amplitude of the drive pulse of the power transmission coil 11 and the current amplitude of the coil current, and the charging current becomes below the minimum specified value. It is determined whether or not.

そして、最少規定値以下になったと判別されたら、受電側機器40の二次電池44が満充電になったと判断し、ステップS8に移行して電力伝送の動作を停止する。そして、一定時間(例えば120秒)の休止を行って、再び、ステップS1に戻って、ステップS1からの処理を繰り返す。   If it is determined that the value is equal to or less than the minimum specified value, it is determined that the secondary battery 44 of the power receiving side device 40 is fully charged, and the process proceeds to step S8 to stop the power transmission operation. Then, after a fixed time (for example, 120 seconds), the process returns to step S1 again, and the processing from step S1 is repeated.

一方、ステップS6の判別処理で、充電電流が最少規定値以下になっていないと判別されたら、まだ、二次電池44が満充電に達していないと判断し、ステップS7に移行して、伝送時間Dのカウント値をリセットしてから、ステップS1に戻る。そして、ステップS1からの処理を繰り返す。このようなステップS1〜S6のループ処理により、受電側機器40への電力伝送が継続され、二次電池44の充電が増すようになっている。   On the other hand, if it is determined in the determination process in step S6 that the charging current is not less than the minimum specified value, it is determined that the secondary battery 44 has not yet reached full charge, and the process proceeds to step S7 for transmission. After resetting the count value of time D, the process returns to step S1. Then, the processing from step S1 is repeated. By such loop processing of steps S1 to S6, power transmission to the power receiving side device 40 is continued, and charging of the secondary battery 44 is increased.

図7には、電力伝送メイン処理のステップ2で実行される高効率伝送調整処理のフローチャートを示す。   FIG. 7 shows a flowchart of the high-efficiency transmission adjustment process executed in step 2 of the power transmission main process.

高効率伝送調整処理に移行すると、先ず、ステップS11において、振幅が所定電圧(例えば1Vp-p)で周波数が最小値(すなわち探索スタート周波数fs:例えば100kHzなど)の駆動パルスを発生させて送電コイル11を駆動する。そして、ステップS12において電圧計測&電流計測回路18から電流値の検出信号を絶えず読み込む動作を開始させる。   When shifting to the high efficiency transmission adjustment process, first, in step S11, a drive pulse having an amplitude of a predetermined voltage (for example, 1 Vp-p) and a minimum value (that is, a search start frequency fs: for example, 100 kHz) is generated. 11 is driven. In step S12, an operation of continuously reading a current value detection signal from the voltage measurement & current measurement circuit 18 is started.

続いて、ステップS13において、駆動パルスの周波数を例えば+5kHzなど僅かに増加させる。そして、ステップS14において、周波数を増加させた前後にそれぞれ取り込まれた電流値の検出信号からコイル電流の振幅を求め、周波数を増加させた前後の電流振幅を比較してコイル電流の振幅が増加したか否かを判別する。電流振幅が増加していれば、ステップS15に移行し、増加していなければステップS17に移行する。   Subsequently, in step S13, the frequency of the drive pulse is slightly increased, for example, +5 kHz. In step S14, the coil current amplitude is obtained by comparing the current amplitude before and after the frequency is increased by obtaining the amplitude of the coil current from the current value detection signals acquired before and after the frequency is increased. It is determined whether or not. If the current amplitude has increased, the process proceeds to step S15, and if not, the process proceeds to step S17.

ステップS15では、駆動パルスの周波数が最大周波数(すなわち探索エンド周波数fe)に達したか判別し、まだであればステップS13に戻り、達していればステップS16に移行する。   In step S15, it is determined whether the frequency of the drive pulse has reached the maximum frequency (that is, the search end frequency fe). If not, the process returns to step S13, and if it has reached, the process proceeds to step S16.

つまり、上記ステップS13〜S15のループ処理により、駆動パルスの周波数が探索スタート周波数fsから徐々に高くされ、それに伴ってコイル電流の振幅が大きくなりつづける範囲では、ステップS14の判別処理でYes側に分岐して、このステップS13〜S15のループ処理が繰り返されるようになっている。他方、図4に示すように、探索スタート周波数fsから探索エンド周波数feの範囲にコイル電流振幅のピークがあれば、その前後で電流振幅は減少に転じるため、ステップS14の判別処理でループ処理を抜けて、ステップS17に移行されるようになっている。   That is, in the range in which the frequency of the drive pulse is gradually increased from the search start frequency fs by the loop processing of steps S13 to S15 and the amplitude of the coil current continues to increase with this, the determination processing in step S14 moves to the Yes side. The process branches and the loop process of steps S13 to S15 is repeated. On the other hand, as shown in FIG. 4, if there is a peak of the coil current amplitude in the range from the search start frequency fs to the search end frequency fe, the current amplitude starts to decrease before and after that, so the loop processing is performed in the discrimination processing in step S14. The process goes to step S17.

また、図5に示すように、探索スタート周波数fsから探索エンド周波数feの範囲にコイル電流振幅のピークがなければ、ステップS13〜S15のループ処理の繰り返しによりコイル電流振幅の減少がないまま、探索エンド周波数feまで達して、ステップS16に移行するようになっている。   Further, as shown in FIG. 5, if there is no peak of the coil current amplitude in the range from the search start frequency fs to the search end frequency fe, the search is performed while the coil current amplitude is not decreased by repeating the loop processing of steps S13 to S15. The end frequency fe is reached, and the process proceeds to step S16.

ステップS16に移行した場合には、金属異物などが載置されていると判断し、駆動パルスの出力を停止して、制御回路20の制御処理をエラー終了させる。エラー終了させたら、例えば、リセット操作や電源の再投入がなされた場合に、再び、図6の電力伝送メイン処理が再開されるようにする。このステップS16の処理により、送電コイルによる送電動作を停止させる送電停止制御手段が構成される。   When the process proceeds to step S16, it is determined that a metal foreign object or the like is placed, the output of the drive pulse is stopped, and the control process of the control circuit 20 is terminated with an error. If the error is terminated, for example, when a reset operation or power-on is performed again, the power transmission main process in FIG. 6 is resumed. By the processing in step S16, a power transmission stop control means for stopping the power transmission operation by the power transmission coil is configured.

一方、ステップS14の判別処理で、コイル電流が減少に転じてステップS17に移行したら、該ステップS17で駆動パルスの周波数を例えば−1kHzなど僅かに減少させる。そして、ステップS18において、周波数を減少させた前後にそれぞれ取り込まれた電流値の検出信号からコイル電流の振幅を求め、これらを比較することで、周波数を減少させた前後でコイル電流の振幅が減少したか否かを判別する。電流振幅が増加していればステップS19に移行し、増加していなければステップS20に移行する。   On the other hand, when the coil current starts decreasing in Step S14 and proceeds to Step S17, the frequency of the drive pulse is slightly decreased, for example, −1 kHz, in Step S17. In step S18, the amplitude of the coil current is obtained before and after the frequency is decreased by obtaining the amplitude of the coil current from the detection signals of the current values taken before and after the frequency is reduced, and comparing them. It is determined whether or not. If the current amplitude has increased, the process proceeds to step S19, and if not, the process proceeds to step S20.

ステップS19では、駆動パルスの周波数が最小周波数(すなわち探索スタート周波数fs)に達したか判別し、まだであればステップS17に戻り、達していればステップS11に戻る。   In step S19, it is determined whether the frequency of the drive pulse has reached the minimum frequency (that is, the search start frequency fs). If not, the process returns to step S17, and if it has reached, the process returns to step S11.

つまり、上記のステップS17〜S19のループ処理により、駆動パルスの周波数がコイル電流が減少に転じたところから僅かずつ低くされ、再度、コイル電流が増加から減少に転じるコイル電流振幅のピーク点が探索されるようになっている。そして、このピーク点を過ぎたところで、ステップS20に移行される。   That is, by the loop process of steps S17 to S19, the frequency of the drive pulse is gradually decreased from the point where the coil current starts to decrease, and the peak point of the coil current amplitude where the coil current starts to decrease again is searched again. It has come to be. Then, when the peak point is passed, the process proceeds to step S20.

一方、何らかの誤りにより、駆動パルスの周波数が最小値に達するまでコイル電流振幅が増加するなどした場合には、再び、ステップS11に戻って、ステップS11からの処理が繰り返される。   On the other hand, if the coil current amplitude increases until the frequency of the drive pulse reaches the minimum value due to some error, the process returns to step S11 again and the processing from step S11 is repeated.

ステップS18の判別処理でコイル電流振幅のピーク点が検出されたら、このピーク点を過ぎたときにステップS20に移行したはずなので、ステップS20で、その1ステップ前の駆動パルスの周波数を共振周波数に一番近い最適な特定周波数としてメモリ21に記憶する。そして、ステップS21で駆動パルスを一旦停止させ、続く、ステップS22で記憶した特定周波数を続いて行う電力伝送周波数として確定させて、この高効率伝送調整処理を終了する。   If the peak point of the coil current amplitude is detected in the discrimination process in step S18, the process should have shifted to step S20 when the peak point has passed, so in step S20, the frequency of the drive pulse one step before is changed to the resonance frequency. The closest specific frequency is stored in the memory 21. Then, the drive pulse is temporarily stopped in step S21, the subsequent specific frequency stored in step S22 is determined as the power transmission frequency to be subsequently performed, and the high-efficiency transmission adjustment process is terminated.

このような高効率伝送調整処理により、受電側機器40の設置位置にバラツキがあったり、受電側の回路(受電コイル41や共振コンデンサ42など)の定数が異なる任意の受電側機器40が設置されるような場合でも、送電コイル11と受電コイル41とが電磁結合してなる伝送回路の共振周波数に同調した駆動パルスの周波数を見つけて、駆動パルスの周波数をこの最適な周波数に調整することができる。そして、続く電力伝送処理により、この最適な周波数で受電側機器40へ電力伝送を行うことが可能になっている。   Due to such a high-efficiency transmission adjustment process, any power receiving side device 40 having a variation in the installation position of the power receiving side device 40 or a different constant of the circuit on the power receiving side (such as the power receiving coil 41 or the resonance capacitor 42) is installed. Even in such a case, it is possible to find the frequency of the driving pulse tuned to the resonance frequency of the transmission circuit formed by electromagnetically coupling the power transmission coil 11 and the power receiving coil 41 and adjust the frequency of the driving pulse to this optimum frequency. it can. The subsequent power transmission process enables power transmission to the power receiving side device 40 at this optimum frequency.

以上のように、この実施形態の電力伝送装置1によれば、送電コイル11の駆動周波数を変化させながら、送電コイル11に流れる電流の振幅が最大となる特定周波数を見つけて、この周波数で送電コイル11を駆動して電力伝送を行うので、送電コイル11と受電コイル41とが電磁結合してなる回路の共振周波数が固定されない場合でも、そのときどきの共振周波数に同調させた駆動パルスを生成して、常に高効率の電力伝送を行うことができる。   As described above, according to the power transmission device 1 of this embodiment, while changing the drive frequency of the power transmission coil 11, the specific frequency that maximizes the amplitude of the current flowing in the power transmission coil 11 is found, and power is transmitted at this frequency. Since power transmission is performed by driving the coil 11, even when the resonance frequency of the circuit formed by electromagnetically coupling the power transmission coil 11 and the power reception coil 41 is not fixed, a drive pulse tuned to the resonance frequency at that time is generated. Thus, highly efficient power transmission can always be performed.

また、このように、共振周波数が一定でなくても、自動的に駆動パルスの周波数を共振周波数に同調させることができるので、例えば、電力伝送装置1に対する受電側機器40の設置位置に比較的大きな自由度を持たせることが出来たり、受電回路の特性の異なる複数種類の電力伝送装置に対して1台の電力伝送装置1により電力伝送を行うことも可能となる。   Further, in this way, even if the resonance frequency is not constant, the frequency of the drive pulse can be automatically tuned to the resonance frequency, so that, for example, the power receiving device 40 is relatively positioned at the installation position of the power transmission device 1. It is possible to provide a large degree of freedom, and it is possible to perform power transmission by one power transmission device 1 for a plurality of types of power transmission devices having different characteristics of the power receiving circuit.

また、送電コイル11の駆動周波数をコイル電流の振幅が最大となる周波数に調整するようになっているので、最も高い電力伝送効率が得られるようになっている。   Moreover, since the drive frequency of the power transmission coil 11 is adjusted to a frequency that maximizes the amplitude of the coil current, the highest power transmission efficiency can be obtained.

また、コイル電流の振幅が最大となる周波数が、探索スタート周波数fsから探索エンド周波数feの範囲に見つからない場合には、電力伝送を停止するようになっているので、例えば、電力伝送装置1に金属異物などが置かれた場合になどに、電力伝送を継続して金属異物を加熱してしまうといった事態を回避することができる。   Further, when the frequency at which the amplitude of the coil current becomes maximum is not found in the range from the search start frequency fs to the search end frequency fe, the power transmission is stopped. For example, when a metal foreign object is placed, it is possible to avoid a situation in which power transmission is continued and the metal foreign object is heated.

また、送電コイル11に所定電圧の駆動パルスを周波数を制御しながら出力するとともに、コイル電流の振幅の測定を行って、送電コイル11の最適な駆動周波数を見つける構成なので、回路構成が複雑化せず、より確実に最適周波数を見つけ出すことが可能になっている。   In addition, since the drive pulse of a predetermined voltage is output to the power transmission coil 11 while controlling the frequency and the amplitude of the coil current is measured to find the optimum drive frequency of the power transmission coil 11, the circuit configuration is complicated. Therefore, the optimum frequency can be found more reliably.

なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。例えば、上記実施形態では、送電コイル11を駆動するのに駆動回路13からパルス状の駆動電圧を出力する構成を示したが、例えば、正弦波状の駆動電圧を出力する構成としても良い。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, a configuration in which a pulsed drive voltage is output from the drive circuit 13 to drive the power transmission coil 11 has been described. However, for example, a configuration in which a sinusoidal drive voltage is output may be used.

また、上記実施形態では、送電コイル11の駆動周波数をコイル電流の振幅が最大となる共振点に合わせるように例示したが、ある程度の大きさの伝送効率で電力伝送が可能な範囲であれば、送電コイル11の駆動周波数を共振点から外れた周波数に合わせるようにしても良い。例えば、コイル電流の振幅が予め設定されたしきい値以上となる周波数を見つけて、送電コイル11の駆動周波数をこの周波数に合わせるようにしても良い。   Moreover, in the said embodiment, although illustrated so that the drive frequency of the power transmission coil 11 might be matched with the resonance point where the amplitude of a coil current becomes the maximum, if it is a range which can transmit electric power with a certain amount of transmission efficiency, You may make it match the drive frequency of the power transmission coil 11 with the frequency remove | deviated from the resonance point. For example, a frequency at which the amplitude of the coil current is equal to or greater than a preset threshold value may be found, and the drive frequency of the power transmission coil 11 may be adjusted to this frequency.

また、上記実施形態では、送電コイル11のコイル電流の振幅の大きさにより伝送効率の大小を判断して最適な駆動周波数を決定する構成例を示したが、例えば、駆動電圧と駆動電流の位相差も考慮して受電側に出力されている電力量を演算し、この演算した電力量により伝送効率の大小を判断して最適な駆動周波数を決定するように構成しても良い。   In the above embodiment, the configuration example in which the optimum driving frequency is determined by judging the magnitude of the transmission efficiency based on the magnitude of the coil current amplitude of the power transmission coil 11 has been described. The power amount output to the power receiving side may be calculated in consideration of the phase difference, and the optimum drive frequency may be determined by determining the magnitude of transmission efficiency based on the calculated power amount.

その他、実施の形態で示した具体的な回路構成および制御方法は、発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the specific circuit configuration and control method shown in the embodiment can be changed as appropriate without departing from the spirit of the invention.

本発明の実施形態の電力伝送装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power transmission apparatus of embodiment of this invention. 受電側機器の回路構成の一例を示すブロック図である。It is a block diagram which shows an example of the circuit structure of a receiving device. 電力伝送装置に受電側機器がセットされて周波数調整がなされる際の動作を示した説明図である。It is explanatory drawing which showed the operation | movement at the time of a frequency adjustment being performed by a receiving side apparatus being set to a power transmission device. 対応する受電側機器が設置された場合の送電コイルの駆動周波数と送電コイルの電流振幅の関係を示したグラフである。It is the graph which showed the relationship between the drive frequency of a power transmission coil, and the current amplitude of a power transmission coil when the corresponding power receiving side apparatus is installed. 金属異物が設置された場合の送電コイルの駆動周波数と送電コイルの電流振幅の関係を示したグラフである。It is the graph which showed the relationship between the drive frequency of the power transmission coil in case a metal foreign material is installed, and the current amplitude of a power transmission coil. 制御回路により実行される電力伝送メイン処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the electric power transmission main process performed by the control circuit. 電力伝送メイン処理のステップS2で実行される高効率伝送調整処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the high efficiency transmission adjustment process performed by step S2 of an electric power transmission main process.

符号の説明Explanation of symbols

1 電力伝送装置
12 共振コンデンサ
11 送電コイル
14 分周回路
15 発振器
17 位相比較回路
18 電圧計測&電流計測回路
20 制御回路
40 受電側機器
41 受電コイル
42 共振コンデンサ
43 整流回路
44 二次電池
45 負荷回路
DESCRIPTION OF SYMBOLS 1 Power transmission device 12 Resonance capacitor 11 Power transmission coil 14 Dividing circuit 15 Oscillator 17 Phase comparison circuit 18 Voltage measurement & current measurement circuit 20 Control circuit 40 Power receiving side device 41 Power receiving coil 42 Resonance capacitor 43 Rectifier circuit 44 Secondary battery 45 Load circuit

Claims (8)

電磁誘導作用により送電を行う送電コイルと、該送電コイルに周期的に振動する駆動信号を出力する駆動手段とを備え、前記送電コイルの駆動によって受電側の機器へ電力を伝送する電力伝送装置において、
前記駆動信号の周波数を変化させる制御手段と、
前記送電コイルに発生する信号を検出する信号検出手段と、
前記駆動信号の周波数を変化させながら前記信号検出手段により検出された信号量を取得していくことで、前記送電コイルの共振動作の大きさが所定条件を満たす大きさとなる特定周波数を見つけて、前記駆動信号の周波数を前記特定周波数に調整する周波数調整手段と、
を備えたことを特徴とする電力伝送装置。
In a power transmission device, comprising: a power transmission coil that performs power transmission by electromagnetic induction action; and a drive unit that outputs a drive signal that periodically vibrates to the power transmission coil, and transmits power to a power receiving device by driving the power transmission coil. ,
Control means for changing the frequency of the drive signal;
Signal detection means for detecting a signal generated in the power transmission coil;
By acquiring the signal amount detected by the signal detection means while changing the frequency of the drive signal, find the specific frequency at which the magnitude of the resonance operation of the power transmission coil satisfies a predetermined condition, Frequency adjusting means for adjusting the frequency of the drive signal to the specific frequency;
A power transmission device comprising:
前記周波数調整手段は、前記特定周波数として前記送電コイルの共振動作の大きさがほぼ極値となる前記駆動信号の周波数を見つけることを特徴とする請求項1記載の電力伝送装置。   The power transmission device according to claim 1, wherein the frequency adjustment unit finds the frequency of the drive signal at which the magnitude of the resonance operation of the power transmission coil becomes an extreme value as the specific frequency. 前記周波数調整手段により前記特定周波数が見つけられた場合に、当該特定周波数の駆動信号により前記送電コイルを駆動して送電を実行させる送電実行制御手段を備えたことを特徴とする請求項1記載の電力伝送装置。   2. The power transmission execution control unit according to claim 1, further comprising: a power transmission execution control unit configured to drive the power transmission coil by a driving signal having the specific frequency and execute power transmission when the specific frequency is found by the frequency adjusting unit. Power transmission device. 前記周波数調整手段により予め定められた周波数範囲の中に前記特定周波数が見つけられなかった場合に、前記送電コイルによる送電動作を停止させる送電停止制御手段を備えたことを特徴とする請求項1記載の電力伝送装置。   The power transmission stop control means for stopping the power transmission operation by the power transmission coil when the specific frequency is not found in a frequency range predetermined by the frequency adjusting means. Power transmission equipment. 前記送電コイルは共振コンデンサが接続されて共振動作を行う構成であり、
前記駆動手段は、前記駆動信号として周期的に振動する駆動電圧を前記送電コイルに出力する構成であることを特徴とする請求項1記載の電力伝送装置。
The power transmission coil is configured to perform a resonance operation with a resonance capacitor connected thereto,
The power transmission device according to claim 1, wherein the drive unit is configured to output a drive voltage that periodically oscillates as the drive signal to the power transmission coil.
前記信号検出手段は、前記送電コイルに流れる電流を検出する構成であり、
前記周波数調整手段は、前記送電コイルに流れる電流振幅が最大となる特定周波数に前記駆動信号の周波数を調整する構成であることを特徴とする請求項5記載の電力伝送装置。
The signal detection means is configured to detect a current flowing through the power transmission coil,
The power transmission device according to claim 5, wherein the frequency adjustment unit is configured to adjust the frequency of the drive signal to a specific frequency that maximizes an amplitude of a current flowing through the power transmission coil.
前記周波数調整手段および前記送電実行制御手段の制御によって、特性の異なる複数種類の受電側機器に対して電力の伝送が可能にされていることを特徴とする請求項3記載の電力伝送装置。   The power transmission device according to claim 3, wherein power transmission is enabled to a plurality of types of power receiving devices having different characteristics by the control of the frequency adjusting unit and the power transmission execution control unit. 電磁誘導作用により送電を行う送電コイルと、該送電コイルに周期的に振動する駆動信号を出力する駆動手段と、前記送電コイルに発生する信号を検出する信号検出手段とを備えた電力伝送装置から受電側の機器へ電力を伝送させる電力伝送方法において、
制御手段が前記駆動信号の周波数を変化させながら前記信号検出手段により検出された信号量を取得し、前記送電コイルの共振動作の大きさが所定条件を満たす大きさとなる特定周波数を見つけるステップと、
前記特定周波数が見つかった場合に、前記制御手段が当該特定周波数の駆動信号で前記送電コイルを駆動して送電を実行させるステップと、
前記特定周波数が予め定められた周波数範囲の中に見つからなかった場合に、前記制御手段が前記送電コイルの駆動を停止させるステップと、
を含むことを特徴とする電力伝送方法。
From a power transmission device comprising a power transmission coil that performs power transmission by electromagnetic induction, a drive unit that outputs a drive signal that periodically vibrates to the power transmission coil, and a signal detection unit that detects a signal generated in the power transmission coil In a power transmission method for transmitting power to a power receiving device,
Acquiring a signal amount detected by the signal detection means while changing the frequency of the drive signal, and finding a specific frequency at which the magnitude of the resonance operation of the power transmission coil satisfies a predetermined condition;
When the specific frequency is found, the control means drives the power transmission coil with a drive signal of the specific frequency to execute power transmission;
The control means stopping the driving of the power transmission coil when the specific frequency is not found in a predetermined frequency range;
A power transmission method comprising:
JP2008307090A 2008-12-02 2008-12-02 Power transmitter and power transmission method Pending JP2010136464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307090A JP2010136464A (en) 2008-12-02 2008-12-02 Power transmitter and power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307090A JP2010136464A (en) 2008-12-02 2008-12-02 Power transmitter and power transmission method

Publications (1)

Publication Number Publication Date
JP2010136464A true JP2010136464A (en) 2010-06-17

Family

ID=42347152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307090A Pending JP2010136464A (en) 2008-12-02 2008-12-02 Power transmitter and power transmission method

Country Status (1)

Country Link
JP (1) JP2010136464A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166693A (en) * 2009-01-15 2010-07-29 Nissan Motor Co Ltd Non-contact power supply device
JP2012016171A (en) * 2010-06-30 2012-01-19 Toshiba Corp Power transmission system and power transmission device
JP2012065477A (en) * 2010-09-16 2012-03-29 Toshiba Corp Wireless electric power transmission device
WO2012044103A2 (en) * 2010-09-30 2012-04-05 Lg Innotek Co., Ltd. Energy transmission apparatus and method
WO2012091210A1 (en) * 2010-12-30 2012-07-05 전자부품연구원 Wireless power supply device using magnetic resonance induction for detecting foreign substance
JP2012157127A (en) * 2011-01-25 2012-08-16 Meidensha Corp Non-contact power supply device and non-contact power supply method
JP2012205500A (en) * 2011-03-23 2012-10-22 Hanrim Postech Co Ltd Method for controlling power transmission in wireless power transmission apparatus, and wireless power transmission apparatus
JP2013017379A (en) * 2011-07-05 2013-01-24 Sony Corp Power reception device, power transmission device, non-contact power transmission system and detection method
WO2013098931A1 (en) * 2011-12-27 2013-07-04 富士機械製造株式会社 Wireless power feed system
JP2013532463A (en) * 2010-06-24 2013-08-15 ハイアール グループ コーポレーション Wireless power feeding system and self-adaptive adjustment method thereof
JP2014222994A (en) * 2013-05-14 2014-11-27 東光株式会社 Wireless power transmission device
WO2015001744A1 (en) * 2013-07-01 2015-01-08 パナソニックIpマネジメント株式会社 Power feed device and method for acquisition of frequency characteristics
WO2015001745A1 (en) * 2013-07-01 2015-01-08 パナソニックIpマネジメント株式会社 Power supply device and power supply method
JP2015012716A (en) * 2013-06-28 2015-01-19 株式会社東芝 Wireless power transmission system, power transmission apparatus, and power reception apparatus
US9197101B2 (en) 2011-11-29 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
US9224533B2 (en) 2011-11-29 2015-12-29 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
US9620995B2 (en) 2011-04-26 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP2017073975A (en) * 2013-08-08 2017-04-13 日立マクセル株式会社 Non-contact power transmission device
WO2018211912A1 (en) * 2017-05-19 2018-11-22 オムロン株式会社 Non-contact power supply device
JP2019083685A (en) * 2012-05-02 2019-05-30 アップル インコーポレイテッドApple Inc. Method of detecting receiver and inductive power transmission system
JP2019154196A (en) * 2018-03-06 2019-09-12 オムロン株式会社 Non-contact power supply device
JP2020534774A (en) * 2017-09-18 2020-11-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Foreign matter detection in wireless power transfer system
US11283308B2 (en) 2012-05-02 2022-03-22 Apple Inc. Methods for detecting and identifying a receiver in an inductive power transfer system

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166693A (en) * 2009-01-15 2010-07-29 Nissan Motor Co Ltd Non-contact power supply device
JP2013532463A (en) * 2010-06-24 2013-08-15 ハイアール グループ コーポレーション Wireless power feeding system and self-adaptive adjustment method thereof
US9225390B2 (en) 2010-06-24 2015-12-29 Haier Group Corporation And Qing Dao Haier Electronic Co., Ltd. Wireless power supplying system and adaptive adjustment method thereof
JP2012016171A (en) * 2010-06-30 2012-01-19 Toshiba Corp Power transmission system and power transmission device
JP2012065477A (en) * 2010-09-16 2012-03-29 Toshiba Corp Wireless electric power transmission device
US10374462B2 (en) 2010-09-30 2019-08-06 Lg Innotek Co., Ltd. Energy transmission apparatus and method
US9866065B2 (en) 2010-09-30 2018-01-09 Lg Innotek Co., Ltd. Energy transmission apparatus and method
WO2012044103A2 (en) * 2010-09-30 2012-04-05 Lg Innotek Co., Ltd. Energy transmission apparatus and method
US20130187478A1 (en) * 2010-09-30 2013-07-25 Lg Innotek Co., Ltd. Energy transmission apparatus and method
WO2012044103A3 (en) * 2010-09-30 2012-08-23 Lg Innotek Co., Ltd. Energy transmission apparatus and method
WO2012091210A1 (en) * 2010-12-30 2012-07-05 전자부품연구원 Wireless power supply device using magnetic resonance induction for detecting foreign substance
JP2012157127A (en) * 2011-01-25 2012-08-16 Meidensha Corp Non-contact power supply device and non-contact power supply method
JP2012205500A (en) * 2011-03-23 2012-10-22 Hanrim Postech Co Ltd Method for controlling power transmission in wireless power transmission apparatus, and wireless power transmission apparatus
JP2016136835A (en) * 2011-03-23 2016-07-28 ハンリム ポステック カンパニー リミテッド Method for controlling power transmission in wireless power transmission apparatus and wireless power transmission apparatus
US9620995B2 (en) 2011-04-26 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
US10103581B2 (en) 2011-04-26 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
US11011930B2 (en) 2011-07-05 2021-05-18 Sony Corporation Energy receiver, detection method, power transmission system, detection device, and energy transmitter
US11271428B2 (en) 2011-07-05 2022-03-08 Sony Corporation Energy receiver, detection method, power transmission system, detection device, and energy transmitter
US9530558B2 (en) 2011-07-05 2016-12-27 Sony Corporation Energy receiver, detection method, power transmission system, detection device, and energy transmitter
JP2013017379A (en) * 2011-07-05 2013-01-24 Sony Corp Power reception device, power transmission device, non-contact power transmission system and detection method
US9197101B2 (en) 2011-11-29 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
US9224533B2 (en) 2011-11-29 2015-12-29 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
CN103999323A (en) * 2011-12-27 2014-08-20 富士机械制造株式会社 Wireless power feed system
JPWO2013098931A1 (en) * 2011-12-27 2015-04-30 富士機械製造株式会社 Wireless power supply system
WO2013098931A1 (en) * 2011-12-27 2013-07-04 富士機械製造株式会社 Wireless power feed system
JP2019083685A (en) * 2012-05-02 2019-05-30 アップル インコーポレイテッドApple Inc. Method of detecting receiver and inductive power transmission system
US11283308B2 (en) 2012-05-02 2022-03-22 Apple Inc. Methods for detecting and identifying a receiver in an inductive power transfer system
JP2014222994A (en) * 2013-05-14 2014-11-27 東光株式会社 Wireless power transmission device
JP2015012716A (en) * 2013-06-28 2015-01-19 株式会社東芝 Wireless power transmission system, power transmission apparatus, and power reception apparatus
WO2015001745A1 (en) * 2013-07-01 2015-01-08 パナソニックIpマネジメント株式会社 Power supply device and power supply method
CN105358365A (en) * 2013-07-01 2016-02-24 松下知识产权经营株式会社 Power feed device and method for acquisition of frequency characteristics
EP3018796A4 (en) * 2013-07-01 2016-07-20 Panasonic Ip Man Co Ltd Power feed device and method for acquisition of frequency characteristics
JP2015012748A (en) * 2013-07-01 2015-01-19 パナソニックIpマネジメント株式会社 Power feeding apparatus and frequency characteristic acquisition method
WO2015001744A1 (en) * 2013-07-01 2015-01-08 パナソニックIpマネジメント株式会社 Power feed device and method for acquisition of frequency characteristics
CN105358365B (en) * 2013-07-01 2017-09-22 松下知识产权经营株式会社 Electric supply installation and method of supplying power to
JP2017073975A (en) * 2013-08-08 2017-04-13 日立マクセル株式会社 Non-contact power transmission device
US11245291B2 (en) 2017-05-19 2022-02-08 Omron Corporation Non-contact power supply device capable of performing constant voltage output operation
WO2018211912A1 (en) * 2017-05-19 2018-11-22 オムロン株式会社 Non-contact power supply device
JP2018196288A (en) * 2017-05-19 2018-12-06 オムロン株式会社 Non-contact power supply device
JP7003445B2 (en) 2017-05-19 2022-02-04 オムロン株式会社 Contactless power supply
JP2020534774A (en) * 2017-09-18 2020-11-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Foreign matter detection in wireless power transfer system
WO2019171786A1 (en) * 2018-03-06 2019-09-12 オムロン株式会社 Contactless feeding apparatus
US11139693B2 (en) 2018-03-06 2021-10-05 Omron Corporation Contactless power transmission apparatus
JP2019154196A (en) * 2018-03-06 2019-09-12 オムロン株式会社 Non-contact power supply device

Similar Documents

Publication Publication Date Title
JP2010136464A (en) Power transmitter and power transmission method
TWI710196B (en) Methods and apparatus of performing foreign object detecting
US10978916B2 (en) Power transmission device and wireless power transmission system
RU2491697C2 (en) Device and method for contact-free power supply
JP6471971B2 (en) Wireless power transmission system and power transmission device for wireless power transmission system
US9525209B2 (en) Method, apparatus, and computer-readable storage medium for contactless power supply and power control
JP4640496B2 (en) Power transmission equipment
JP6137201B2 (en) Wireless power transmission system, power receiver, and wireless power transmission method
JP5690251B2 (en) Resonance type wireless charger
US10523067B2 (en) Power transmitting device and power transmission system
EP3413427B1 (en) Power transmitting device and power receiving device
JP2010022076A (en) Contactless power transmitter
WO2019171786A1 (en) Contactless feeding apparatus
EP3198701A1 (en) Methods and systems for contactless battery discharging
KR20170112389A (en) Apparatus for transmiting power wirelessly and control method thereof
JP2014121108A (en) Wireless power supply system, power transmission device, and power transmission method
CN110875639B (en) Power transmission device, power reception device, and control method for power transmission device
JP7070347B2 (en) Contactless power supply
JP6565808B2 (en) Power transmission device and power transmission system
JP6685016B2 (en) Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system
WO2019064339A1 (en) Power transmission system, power receiver, and power receiver control method
WO2023248733A1 (en) Charging device
JP6791185B2 (en) Non-contact power supply device
JP2023088134A (en) Non-contact power supply device
JP2019054672A (en) Power receiver, power transmitter, controller, and system