JP2010022076A - Contactless power transmitter - Google Patents

Contactless power transmitter Download PDF

Info

Publication number
JP2010022076A
JP2010022076A JP2008177691A JP2008177691A JP2010022076A JP 2010022076 A JP2010022076 A JP 2010022076A JP 2008177691 A JP2008177691 A JP 2008177691A JP 2008177691 A JP2008177691 A JP 2008177691A JP 2010022076 A JP2010022076 A JP 2010022076A
Authority
JP
Japan
Prior art keywords
circuit
oscillation
frequency
detection circuit
power value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177691A
Other languages
Japanese (ja)
Inventor
Shunsuke Fujimoto
俊輔 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2008177691A priority Critical patent/JP2010022076A/en
Publication of JP2010022076A publication Critical patent/JP2010022076A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless power transmitter which can avoid degradation in power transmission efficiency due to variation in parts or displacement of a coil so as to enhance transmitting efficiency. <P>SOLUTION: The contactless power transmitter includes an oscillation circuit (13) and transmits power by driving primary winding with alternating current based on the output of the oscillation circuit and converting alternating current induced in secondary winding opposed to the primary winding into direct current. The oscillation circuit is comprised of a variable-frequency oscillation circuit whose oscillating frequency is variable. Input power supplied from a power supply to the primary winding is detected and an oscillating frequency at which the input power is maximized is found. Then the oscillation circuit is driven at the oscillating frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無接点(非接触)電力伝送装置の高効率化技術に関し、例えば携帯用電子機器に内蔵される二次電池を充電する充電装置に利用して有効な技術に関する。   The present invention relates to a technology for improving the efficiency of a non-contact (non-contact) power transmission device, for example, a technology effective when used for a charging device for charging a secondary battery built in a portable electronic device.

近年、親子電話機の子機やPDA(パーソナルデジタルアシスタンス)などの携帯用電子機器には充電可能な二次電池が電源として内蔵されており、所定の充電装置を用いて充電を行うようになされている。従来、二次電池を内蔵した電子機器における充電方式として接触型(有接点型)のものと非接触型(無接点型)のがある。   In recent years, portable electronic devices such as a handset of a parent / child phone and a PDA (Personal Digital Assistance) have a built-in rechargeable secondary battery as a power source and are charged using a predetermined charging device. Yes. Conventionally, there are a contact type (contact type) and a non-contact type (non-contact type) as charging methods in an electronic device incorporating a secondary battery.

接触型の充電装置は、バネ性を有する式の電気接点を有しており、当該接点に電子機器側の電気接点を接触させて両者を電気的に接続し、内蔵二次電池に充電電流を供給する。このような接触型充電装置は、経年変化等により接点部分に接触不良が生じ、二次電池への充電電流の供給が阻害されるという課題がある。   The contact-type charging device has a spring-type electrical contact, contacts the electrical contact on the electronic device side to electrically connect both, and supplies a charging current to the built-in secondary battery. Supply. Such a contact-type charging device has a problem that contact failure occurs at a contact portion due to secular change or the like, and supply of a charging current to the secondary battery is hindered.

一方、非接触型の充電装置は、充電装置側に一次コイルを設けるとともに電子機器側に二次コイルを設け、一次コイルに二次コイルを対向させた状態で一次コイルに交流電流を流して電磁誘導で二次コイルに誘起される交流電流を整流して電池を充電する。非接触型の充電装置は、接点を有していないため経年変化による電力伝送効率の低下という課題はないという利点がある。なお、電力伝送装置に関する発明として、例えば特許文献1や特許文献2に開示されているものなどがある。
特許第3692541号公報 特開2006−314151号公報
On the other hand, the non-contact type charging device is provided with a primary coil on the charging device side, a secondary coil on the electronic device side, and an electromagnetic current flowing through the primary coil with the secondary coil facing the primary coil. The battery is charged by rectifying the alternating current induced in the secondary coil by induction. Since the non-contact type charging device does not have a contact, there is an advantage that there is no problem of reduction in power transmission efficiency due to secular change. In addition, as invention regarding a power transmission apparatus, there exist some which are disclosed by patent document 1 or patent document 2, for example.
Japanese Patent No. 3692541 JP 2006-314151 A

非接触型の充電装置は、部品(特にコイルのインダクタンス値)のばらつきにより共振周波数がずれていたり、充電装置に電子機器を置いた際に一次コイルの中心と二次コイルの中心がずれていたりすると、電力伝送効率が低下するという課題がある。しかしながら、上記特許文献1や特許文献2に開示されている発明においては、所定の周波数の発振信号で一次側コイルを駆動するものであるため、部品のばらつきやコイルのずれによる電力伝送効率の低下を回避することが困難である。   In non-contact type charging devices, the resonance frequency is shifted due to variations in parts (particularly the inductance value of the coil), or the center of the primary coil and the center of the secondary coil are shifted when an electronic device is placed on the charging device. Then, there exists a subject that electric power transmission efficiency falls. However, in the inventions disclosed in Patent Document 1 and Patent Document 2 described above, the primary side coil is driven by an oscillation signal having a predetermined frequency, so that the power transmission efficiency decreases due to component variations and coil displacement. Is difficult to avoid.

この発明は上記のような課題に着目してなされたもので、その目的とするところは、部品のばらつきやコイルの位置ずれによる電力伝送効率の低下を回避し、伝送効率を向上させることができる無接点電力伝送装置を提供することにある。   The present invention has been made paying attention to the problems as described above, and the object of the present invention is to avoid a reduction in power transmission efficiency due to component variations and coil position shift, and to improve transmission efficiency. The object is to provide a non-contact power transmission device.

上記目的を達成するため、本発明は、発振回路を備え該発振回路の出力に基づいて一次側巻線を交流駆動して、前記一次側巻線に対向された二次側巻線に誘起された交流を直流に変換させて電力を伝送する無接点電力伝送装置において、前記発振回路は発振周波数が可変な可変周波数発振回路により構成し、電源から前記一次側巻線に供給される入力電力を検出し入力電力が最大となる発振周波数を探して当該発振周波数で前記発振回路を動作させるように構成したものである。   In order to achieve the above-described object, the present invention is provided with an oscillation circuit and driven by an AC drive of a primary side winding based on an output of the oscillation circuit and induced in a secondary side winding opposed to the primary side winding. In the non-contact power transmission apparatus for converting the alternating current into the direct current and transmitting the power, the oscillation circuit is configured by a variable frequency oscillation circuit having a variable oscillation frequency, and the input power supplied from the power source to the primary winding is received. In this configuration, the oscillation frequency that detects and maximizes the input power is searched and the oscillation circuit is operated at the oscillation frequency.

より具体的には、発振周波数が可変な発振回路と、該発振回路の出力に基づいて一次側巻線を交流駆動する駆動回路と、を備え、前記一次側巻線に対向された二次側巻線に誘起された交流を直流に変換させて電力を伝送する無接点電力伝送装置であって、前記一次側巻線に供給される入力電力を検出する検出回路と、前記検出回路により検出された入力電力値を記憶する記憶回路と、前記記憶回路に記憶されている入力電力値と前記検出回路により検出された入力電力値とを比較する比較回路と、前記比較回路の出力に基づいて前記入力電力が最大となる発振周波数を探して当該発振周波数で前記発振回路を動作させる発振周波数制御回路とを設けるようにした。   More specifically, an oscillation circuit having a variable oscillation frequency, and a drive circuit that AC drives the primary winding based on the output of the oscillation circuit, the secondary side facing the primary winding A contactless power transmission device for transmitting electric power by converting alternating current induced in a winding to direct current, a detection circuit for detecting input power supplied to the primary winding, and a detection circuit that detects the input power A storage circuit that stores the input power value, a comparison circuit that compares the input power value stored in the storage circuit with the input power value detected by the detection circuit, and the output based on the output of the comparison circuit An oscillation frequency control circuit that searches for an oscillation frequency that maximizes input power and operates the oscillation circuit at the oscillation frequency is provided.

上記した手段によれば、部品がばらつきを有していたり、一次側巻線と二次側巻線が位置ずれを起こした状態で対向されることで、一次側の共振周波数が設計値からずれたとしても、最大入力電力となる周波数で発振回路が発振動作するように制御されるため、電力伝送効率を向上させることができる。   According to the above means, the resonance frequency of the primary side deviates from the design value because the parts have variations or the primary side winding and the secondary side winding face each other in a misaligned state. Even so, since the oscillation circuit is controlled to oscillate at the frequency at which the maximum input power is obtained, the power transmission efficiency can be improved.

ここで、望ましくは、前記検出回路は、入力電圧を検出する電圧検出回路と、前記駆動回路より流れ出る電流を検出する電流検出回路と、前記電圧検出回路の出力と前記電流検出回路の出力の積を演算する乗算回路とにより構成する。これにより、動作条件が変わったとしてもその都度、入力電力を正確に検出して最大入力電力となる周波数で発振回路が発振動作させることができるようになる。   Preferably, the detection circuit includes a voltage detection circuit that detects an input voltage, a current detection circuit that detects a current flowing out of the drive circuit, a product of an output of the voltage detection circuit and an output of the current detection circuit. And a multiplication circuit for calculating. As a result, each time the operating condition changes, the input power is accurately detected and the oscillation circuit can oscillate at a frequency that provides the maximum input power.

また、前記検出回路は、前記駆動回路より流れ出る電流を検出する電流検出回路のみとしてもよい。入力直流電圧が安定しているシステムでは、検出電流は入力電力と比例しているので、検出した電流値に応じて発振回路の周波数を変化させることにより、簡単な回路で最大入力電力となるように制御することが可能となる。   The detection circuit may be only a current detection circuit that detects a current flowing out of the drive circuit. In a system where the input DC voltage is stable, the detected current is proportional to the input power. Therefore, by changing the frequency of the oscillation circuit according to the detected current value, the maximum input power can be achieved with a simple circuit. It becomes possible to control to.

さらに、望ましくは、前記電流検出回路は、前記駆動回路と接地点との間に接続された抵抗素子と、該抵抗素子により電流−電圧変換された電圧を平均化するフィルタ回路とから構成する。また、前記記憶回路は、サンプリング容量と前記検出回路の出力端子と前記サンプリング容量との間に設けられたスイッチ素子とより構成する。これにより、比較的簡単な構成の回路で、かつプロセスを変更することなく、電流検出回路や記憶回路を実現することができる。   More preferably, the current detection circuit includes a resistance element connected between the drive circuit and a ground point, and a filter circuit that averages a voltage that is current-voltage converted by the resistance element. In addition, the storage circuit includes a sampling capacitor and a switch element provided between the output terminal of the detection circuit and the sampling capacitor. Thereby, a current detection circuit and a memory circuit can be realized with a circuit having a relatively simple configuration and without changing the process.

また、望ましくは、前記発振回路を所定の初期周波数で発振させるための定電圧と前記制御回路から出力される発振制御電圧とを切り替えて前記発振回路に供給可能な切替え手段を備え、前記制御回路は、先ず前記切替え手段によって前記定電圧を前記発振回路に供給して初期周波数で発振させた後、前記検出回路により検出された入力電力値を前記記憶回路に基準電力値として記憶させ、該基準電力値とその後に前記検出回路により検出された入力電力値とに応じて前記発振回路の発振周波数を所定量増大または減少させる第1動作と、その後再度、前記検出回路により検出された入力電力値を前記記憶回路に基準電力値として記憶させ、該基準電力値とその後に前記検出回路により検出された入力電力値とに応じて前記発振回路の発振周波数を前記所定量よりも少ない量だけ増大または減少させる第2動作と、を制御可能であり、上記第1動作と第2動作を繰り返すことで前記発振回路の発振周波数を最大入力電力に対応した周波数に近づけるように構成する。これにより、比較的正確にかつ短時間に前記発振回路を最大入力電力に対応した周波数で発振動作させることが可能となる。   Preferably, the control circuit includes switching means capable of switching between a constant voltage for causing the oscillation circuit to oscillate at a predetermined initial frequency and an oscillation control voltage output from the control circuit and supplying the oscillation circuit to the oscillation circuit. First, the switching means supplies the constant voltage to the oscillation circuit to oscillate at an initial frequency, and then stores the input power value detected by the detection circuit as a reference power value in the storage circuit. A first operation for increasing or decreasing the oscillation frequency of the oscillation circuit by a predetermined amount in accordance with a power value and an input power value detected by the detection circuit, and then an input power value detected by the detection circuit again. Is stored as a reference power value in the storage circuit, and the oscillation frequency of the oscillation circuit is determined according to the reference power value and the input power value detected by the detection circuit thereafter. The second operation for increasing or decreasing the number by an amount smaller than the predetermined amount can be controlled. By repeating the first operation and the second operation, the oscillation frequency of the oscillation circuit corresponds to the maximum input power. Configure to be close to the frequency. Thereby, the oscillation circuit can be oscillated at a frequency corresponding to the maximum input power in a relatively accurate and short time.

本発明に従うと、部品のばらつきやコイルの位置ずれによる電力伝送効率の低下を回避し伝送効率を向上させることができる無接点電力伝送装置を実現できるという効果がある。   According to the present invention, there is an effect that it is possible to realize a non-contact power transmission device that can avoid a reduction in power transmission efficiency due to component variations and coil position shift and can improve transmission efficiency.

以下、本発明の好適な実施形態を図面に基づいて説明する。なお、以下では、本発明を適用して有効な無接点電力伝送装置の一例として充電装置に適用した例を説明するが、本発明を適用可能な無接点電力伝送装置はこれに限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. In the following, an example in which the present invention is applied to a charging device will be described as an example of an effective contactless power transmission device, but the contactless power transmission device to which the present invention can be applied is limited to this. is not.

図1は、本発明に係る無接点電力伝送装置の一実施形態の回路構成を示すブロック図である。   FIG. 1 is a block diagram showing a circuit configuration of an embodiment of a non-contact power transmission apparatus according to the present invention.

この実施形態の無接点電力伝送装置10は、交流電圧(AC)を整流し直流電圧に変換するACアダプタのような直流電源装置(AC−DCコンバータ)11と、一次側コイルL1に電流を流すスイッチング・トランジスタなどからなる駆動回路12と、該駆動回路12に供給される発振信号を生成する発振回路13と、該発振回路13の発信周波数を制御する制御回路14を備える。上記発振回路13は、可変容量素子(例えばバラクタダイオード)などを有し、制御回路14から供給される制御電圧Vcに応じて発振周波数が可変な電圧制御発振回路が用いられる。   The non-contact power transmission device 10 of this embodiment passes a current through a DC power supply device (AC-DC converter) 11 such as an AC adapter that rectifies an AC voltage (AC) and converts it into a DC voltage, and a primary coil L1. A drive circuit 12 including a switching transistor, an oscillation circuit 13 that generates an oscillation signal supplied to the drive circuit 12, and a control circuit 14 that controls the oscillation frequency of the oscillation circuit 13 are provided. The oscillation circuit 13 includes a variable capacitance element (for example, a varactor diode) and the like, and a voltage controlled oscillation circuit whose oscillation frequency is variable according to the control voltage Vc supplied from the control circuit 14 is used.

図2には、上記駆動回路12の具体的な回路例が示されている。このうち、図2(A)は2個ずつ直列形態に接続されてなる4個のMOSFET(電界効果型トランジスタ)Q1〜Q4からなるフルブリッジ型のコイル駆動回路、図2(B)は2個のMOSFET Q1,Q2が直列に接続されてなるハーフブリッジ型のコイル駆動回路を示す。   FIG. 2 shows a specific circuit example of the drive circuit 12. Of these, FIG. 2A shows a full-bridge type coil drive circuit composed of four MOSFETs (field effect transistors) Q1 to Q4 connected in series two by two, and FIG. 2B shows two pieces. 1 shows a half-bridge type coil drive circuit in which MOSFETs Q1 and Q2 are connected in series.

図2(A)のフルブリッジ型駆動回路では、Q1とQ2が同時に、またQ3とQ4が同時にオン、オフされるとともに、Q1,Q2とQ3,Q4とが相補的にオン、オフされることで、コイルL1に順方向と逆方向の電流を交互に流すように制御される。図2(B)のハーフブリッジ型の駆動回路では、Q1とQ2とが相補的にオン、オフされることで、コイルL1に順方向と逆方向の電流を交互に流すように制御される。なお、図2(A),(B)のコイル駆動回路は、一例であって本発明はこのような構成の駆動回路を使用するものに限定されるものではない。   2A, Q1 and Q2 are simultaneously turned on and Q3 and Q4 are turned on and off at the same time, and Q1, Q2 and Q3 and Q4 are turned on and off in a complementary manner. Thus, the coil L1 is controlled so that the forward and reverse currents flow alternately. In the half-bridge drive circuit of FIG. 2B, Q1 and Q2 are complementarily turned on and off, so that currents in forward and reverse directions are alternately supplied to the coil L1. 2A and 2B is an example, and the present invention is not limited to the one using the drive circuit having such a configuration.

また、図1の実施形態における上記制御回路14は、入力電圧Vinの電圧レベルを検出する電圧検出回路41、駆動回路12から流れ出る電流I1を検出する電流検出回路42、上記電圧検出回路41の出力と上記電流検出回路42の出力との積をとることで入力電力値を計算(掛け算)する乗算回路44を備える。   Further, the control circuit 14 in the embodiment of FIG. 1 includes a voltage detection circuit 41 that detects a voltage level of the input voltage Vin, a current detection circuit 42 that detects a current I1 flowing out from the drive circuit 12, and an output of the voltage detection circuit 41. And a multiplication circuit 44 for calculating (multiplying) the input power value by taking the product of the current and the output of the current detection circuit 42.

さらに、制御回路14は、上記乗算回路44の出力を所定のタイミングで取り込んで保持する電力値記憶回路としてのサンプルホールド回路45、上記乗算回路44の出力電圧とサンプルホールド回路45に保持されている電圧とを比較するコンパレータ46、該コンパレータ46の出力に基づいて上記発振回路13の制御電圧Vcを生成する発振周波数制御回路47、該発振周波数制御回路47から出力される制御電圧Vcまたは発振回路の初期周波数を与える定電圧Vaのいずれかを選択して上記発振回路13に供給する切替えスイッチ48を備えている。   Further, the control circuit 14 is held in the sample hold circuit 45 as a power value storage circuit that captures and holds the output of the multiplication circuit 44 at a predetermined timing, and the output voltage of the multiplication circuit 44 and the sample hold circuit 45. The comparator 46 for comparing the voltage, the oscillation frequency control circuit 47 for generating the control voltage Vc of the oscillation circuit 13 based on the output of the comparator 46, the control voltage Vc output from the oscillation frequency control circuit 47 or the oscillation circuit A changeover switch 48 is provided that selects any one of the constant voltages Va that gives an initial frequency and supplies the selected voltage to the oscillation circuit 13.

上記電圧検出回路41は、入力電圧Vinと所定の参照電圧とを入力とし電位差に応じた電圧を出力する誤差アンプなどから構成することができる。また、上記電流検出回路42は、駆動回路12と接地点との間に接続され、駆動回路12から接地点へ向かう電流I1が流れるように設けられた抵抗Rsと、該抵抗Rsによって電流−電圧変換された変動する電圧の平均電圧を出力するフィルタFLTとから構成されている。   The voltage detection circuit 41 can be configured by an error amplifier that receives an input voltage Vin and a predetermined reference voltage and outputs a voltage corresponding to a potential difference. The current detection circuit 42 is connected between the drive circuit 12 and the ground point, and has a resistor Rs provided so that a current I1 flowing from the drive circuit 12 to the ground point flows, and a current-voltage by the resistor Rs. And a filter FLT that outputs an average voltage of the converted and changed voltage.

さらに、上記乗算回路44は、演算増幅回路などを用いて掛け算回路として構成される。上記サンプルホールド回路45は、上記コンパレータ45の反転入力端子と接地点との間に接続されたコンデンサCsと、該コンデンサCsと上記乗算回路44の出力端子との間に接続されたスイッチ素子SW1とにより構成されている。特に限定されるものではないが、制御回路14もしくは制御回路14と発振回路13は、単結晶シリコンのような1個の半導体チップ上に半導体集積回路(以下、制御用ICと称する)として形成される。一方、駆動回路12を構成するスイッチング・トランジスタには、ディスクリートのパワートランジスタが使用される。このスイッチング・トランジスタも制御回路14や発振回路13と共に1つの半導体集積回路として構成しても良い。   Further, the multiplication circuit 44 is configured as a multiplication circuit using an operational amplifier circuit or the like. The sample hold circuit 45 includes a capacitor Cs connected between the inverting input terminal of the comparator 45 and the ground point, and a switch element SW1 connected between the capacitor Cs and the output terminal of the multiplier circuit 44. It is comprised by. Although not particularly limited, the control circuit 14 or the control circuit 14 and the oscillation circuit 13 are formed as a semiconductor integrated circuit (hereinafter referred to as a control IC) on one semiconductor chip such as single crystal silicon. The On the other hand, a discrete power transistor is used as the switching transistor constituting the drive circuit 12. This switching transistor may also be configured as one semiconductor integrated circuit together with the control circuit 14 and the oscillation circuit 13.

上記無接点電力伝送装置10から電力の供給を受ける電子機器20は、上記一次側コイルL1と対向される二次側コイルL2と、二次側コイルL2に誘起された交流を整流して直流に変換する整流回路21と、平滑用コンデンサC2と、を備え、一次側コイルに交流駆動することで二次側コイルL2に誘起される交流電流を整流し平滑することによって一次側コイルL1から二次側コイルL2へ電力が伝送される。なお、一次側コイルL1と二次側コイルL2は、平面状に形成されたものあるいは対向させた時にコイルの芯が同一方向を向くように配設されているものが望ましい。   The electronic device 20 that is supplied with power from the non-contact power transmission device 10 rectifies the secondary side coil L2 facing the primary side coil L1 and the alternating current induced in the secondary side coil L2 to direct current. A rectifier circuit 21 for conversion and a smoothing capacitor C2 are provided, and the secondary side of the primary side coil L1 is rectified by rectifying and smoothing the alternating current induced in the secondary side coil L2 by AC driving the primary side coil. Electric power is transmitted to the side coil L2. The primary side coil L1 and the secondary side coil L2 are preferably formed in a planar shape or disposed so that the cores of the coils face the same direction when facing each other.

この実施形態の無接点電力伝送装置10は、入力電圧Vinと一次側コイルL1に流れる電流I1との積をとって一次側の電力(入力電力)を検出し、この入力電力が最大となるように、上記発振回路13の発振周波数を変化させて、その発振出力で、例えば図2(A)や(B)のような構成の駆動回路12のトランジスタをオン、オフするように構成されている。上記制御回路14内の各回路は、内部のクロック信号や制御信号が所定の順序で変化されることによってシーケンシャルに動作し、入力電力が最大となるような制御が実現される。   The non-contact power transmission apparatus 10 of this embodiment detects the primary power (input power) by taking the product of the input voltage Vin and the current I1 flowing through the primary coil L1, and maximizes this input power. Further, the oscillation frequency of the oscillation circuit 13 is changed, and the transistor of the drive circuit 12 having the configuration as shown in FIGS. 2A and 2B is turned on and off by the oscillation output. . Each circuit in the control circuit 14 operates sequentially when the internal clock signal and control signal are changed in a predetermined order, thereby realizing control that maximizes the input power.

ここで、発振周波数の変動制御は、トランジスタの動作可能な範囲(例えば100kHz以下)で行う。また、コイルのインダクタンス値のばらつきや一次側コイルL1と二次側コイルL2を対向させたときの共振周波数の想定変動範囲に応じて、発振周波数の制御範囲を決定しても良い。特に限定されるものではないが、この実施形態では、コイルにばらつきがなくかつ一次側コイルL1と二次側コイルL2とが互いの芯が一致した理想的な状態で対向されて最大の電力伝送効率が得られる場合の共振周波数frを50kHzに設計し、発振回路の可変周波数範囲を10kHz〜100kHzとした。なお、一次側から見た共振周波数は、コイルL1と二次側のコイルL2、整流回路21、平滑コンデンサCを含んだ回路の共振周波数である。   Here, the fluctuation control of the oscillation frequency is performed within the operable range of the transistor (for example, 100 kHz or less). Further, the control range of the oscillation frequency may be determined according to the variation of the inductance value of the coil and the assumed fluctuation range of the resonance frequency when the primary side coil L1 and the secondary side coil L2 are opposed to each other. Although not particularly limited, in this embodiment, the coils are not varied, and the primary side coil L1 and the secondary side coil L2 are opposed to each other in an ideal state in which their cores coincide with each other, thereby maximizing power transmission. The resonance frequency fr when the efficiency is obtained is designed to be 50 kHz, and the variable frequency range of the oscillation circuit is set to 10 kHz to 100 kHz. Note that the resonance frequency viewed from the primary side is the resonance frequency of the circuit including the coil L1, the secondary coil L2, the rectifier circuit 21, and the smoothing capacitor C.

図1の無接点電力伝送装置の入力電力が最大となるのは、理想状態では、図3(a)のように、発振回路13の発振周波数foscが設計目標の共振周波数frと一致する場合である。しかし、実際の製造品では、コイルのインダクタンス値のばらつきや、一次側コイルL1と二次側コイルL2との位置ずれにより、図3(b)に破線Bで示すように、回路の電力伝送特性が理想の特性(実線A)からずれる。本実施形態の無接点電力伝送装置は、このような場合、可変周波数範囲内で、図3(c)のように、実際の電力伝送特性Bを探しながら、発振回路13の発振周波数foscを特性Bの最大入力電力となる周波数f0に一致させる制御を行う。   In the ideal state, the input power of the non-contact power transmission device of FIG. 1 is maximized when the oscillation frequency fosc of the oscillation circuit 13 matches the design target resonance frequency fr as shown in FIG. is there. However, in an actual manufactured product, as shown by a broken line B in FIG. 3B, due to variations in the inductance value of the coil and displacement between the primary side coil L1 and the secondary side coil L2, the power transmission characteristics of the circuit. Deviates from the ideal characteristic (solid line A). In such a case, the non-contact power transmission apparatus according to the present embodiment has characteristics of the oscillation frequency fosc of the oscillation circuit 13 while searching for the actual power transmission characteristic B within the variable frequency range as shown in FIG. Control is performed so as to match the frequency f0 that is the maximum input power of B.

以下、図4のフローチャートを用いて、本実施形態の無接点電力伝送装置における発振周波数制御動作を詳しく説明する。   Hereinafter, the oscillation frequency control operation in the non-contact power transmission apparatus of this embodiment will be described in detail with reference to the flowchart of FIG.

電源が投入されて装置が起動されると、先ず切替えスイッチ48を定電圧Va側に設定する(ステップS1)。すると、発振回路13は、定電圧Vaに対応した初期周波数faで発振を開始する。この初期周波数faは、例えば設計上の最大電力ポイントの周波数frとなるように設定する。そして、発振が安定するタイミングで、サンプルホールド回路45のスイッチSW1をオンさせてそのときの乗算回路44の出力(入力電力値)をサンプリング容量Csに基準電力値として取り込む(ステップS2)。   When the power is turned on and the apparatus is started, first, the changeover switch 48 is set to the constant voltage Va side (step S1). Then, the oscillation circuit 13 starts oscillation at the initial frequency fa corresponding to the constant voltage Va. This initial frequency fa is set to be the frequency fr of the maximum power point in design, for example. Then, at the timing when the oscillation is stabilized, the switch SW1 of the sample hold circuit 45 is turned on, and the output (input power value) of the multiplier circuit 44 at that time is taken into the sampling capacitor Cs as the reference power value (step S2).

次に、発振周波数制御回路47から発振回路13へ供給する制御電圧Vcを所定量だけ変化させるとともに、切替えスイッチ48を切り替えて発振回路13の発振周波数を上げる(ステップS3)。そして、コンパレータ46で、サンプルホールド回路45に取り込まれている基準電力値とそのときの乗算回路44の出力値とを比較することで、現在の電力値が基準電力値よりも大きいか否か判定する(ステップS4)。   Next, the control voltage Vc supplied from the oscillation frequency control circuit 47 to the oscillation circuit 13 is changed by a predetermined amount, and the changeover switch 48 is switched to increase the oscillation frequency of the oscillation circuit 13 (step S3). Then, the comparator 46 compares the reference power value taken into the sample and hold circuit 45 with the output value of the multiplication circuit 44 at that time to determine whether or not the current power value is larger than the reference power value. (Step S4).

ここで、現在の電力値が基準電力値よりも小さいと判定した場合は、ステップS5へ移行して、再び乗算回路44の出力(入力電力値)を基準電力値としてサンプルホールド回路45に取り込んだ後、発振回路13の発振周波数を下げる(ステップS6)。このときの発振周波数の変化量は、ステップS3で上昇させた発振周波数の変化量よりも小さな値(例えば前回の半分)とする。   Here, when it is determined that the current power value is smaller than the reference power value, the process proceeds to step S5, and the output (input power value) of the multiplication circuit 44 is again taken into the sample hold circuit 45 as the reference power value. Thereafter, the oscillation frequency of the oscillation circuit 13 is lowered (step S6). The amount of change in the oscillation frequency at this time is set to a value (for example, half of the previous time) smaller than the amount of change in the oscillation frequency raised in step S3.

続いて、再び現在の電力値が基準電力値よりも大きいか否か判定する(ステップS7)。ここで、現在の電力値が基準電力値よりも小さいと判定すると、ステップS1へ戻って乗算回路44の出力を基準電力値としてサンプルホールド回路45に取り込み、ステップS3〜S7を繰り返す。   Subsequently, it is determined again whether or not the current power value is larger than the reference power value (step S7). If it is determined that the current power value is smaller than the reference power value, the process returns to step S1, the output of the multiplier circuit 44 is taken into the sample hold circuit 45 as the reference power value, and steps S3 to S7 are repeated.

一方、ステップS7で、現在の電力値が基準電力値よりも大きいと判定した場合は、ステップS8へ移行して、現発振周波数が予め設定されている可変周波数範囲の下限値fminよりも高いか否か判定する。具体的には、発振回路13へ供給する制御電圧Vcと下限値fminに対応した電圧とを比較することで判定する。ステップS8で、現発振周波数が下限値fminよりも高いと判定すると、ステップS5へ戻って再び乗算回路44の出力(入力電力値)を基準電力値としてサンプルホールド回路45に取り込む。   On the other hand, if it is determined in step S7 that the current power value is larger than the reference power value, the process proceeds to step S8, where the current oscillation frequency is higher than the lower limit value fmin of the preset variable frequency range. Judge whether or not. Specifically, the determination is made by comparing the control voltage Vc supplied to the oscillation circuit 13 with the voltage corresponding to the lower limit value fmin. If it is determined in step S8 that the current oscillation frequency is higher than the lower limit value fmin, the process returns to step S5 and the output (input power value) of the multiplier circuit 44 is again taken into the sample hold circuit 45 as a reference power value.

また、ステップS8で、現発振周波数が下限値fminよりも低いと判定すると、ステップS9へ移行して乗算回路44の出力(入力電力値)を基準電力値としてサンプルホールド回路45に取り込んだ後、発振回路13の発振周波数を上げる(ステップS10)。このときの発振周波数の変化量は、前回の発振周波数の変化量よりも小さな値(例えば半分)とする。それから、ステップS11へ進んで現在の電力値が基準電力値よりも大きいか否か判定する。そして、現在の電力値が基準電力値よりも大きいと判定した場合はステップS1へ戻り、現在の電力値が基準電力値よりも小さいと判定した場合はステップS5へ戻り、上記動作を繰り返す。   If it is determined in step S8 that the current oscillation frequency is lower than the lower limit value fmin, the process proceeds to step S9 and the output (input power value) of the multiplier circuit 44 is taken into the sample and hold circuit 45 as a reference power value. The oscillation frequency of the oscillation circuit 13 is increased (step S10). The amount of change in the oscillation frequency at this time is set to a smaller value (for example, half) than the amount of change in the previous oscillation frequency. Then, the process proceeds to step S11 to determine whether or not the current power value is larger than the reference power value. When it is determined that the current power value is larger than the reference power value, the process returns to step S1, and when it is determined that the current power value is smaller than the reference power value, the process returns to step S5 and the above operation is repeated.

さらに、上記ステップS4で、現在の電力値が基準電力値よりも大きいと判定した場合は、ステップS12へ移行して、現発振周波数が可変周波数範囲の上限値fmaxよりも低いか否か判定する。具体的には、発振回路13へ供給する制御電圧Vcと上限値fmaxに対応した電圧とを比較することで判定する。   Further, when it is determined in step S4 that the current power value is larger than the reference power value, the process proceeds to step S12 to determine whether or not the current oscillation frequency is lower than the upper limit value fmax of the variable frequency range. . Specifically, the determination is made by comparing the control voltage Vc supplied to the oscillation circuit 13 with the voltage corresponding to the upper limit value fmax.

ステップS12で、現発振周波数が上限値fmaxよりも低いと判定すると、ステップS2へ戻って乗算回路44の出力(入力電力値)を基準電力値としてサンプルホールド回路45に取り込む。一方、ステップS12で、現発振周波数が上限値fmaxよりも高いと判定すると、ステップS13へ移行して乗算回路44の出力(入力電力値)を基準電力値としてサンプルホールド回路45に取り込んだ後、発振回路13の発振周波数を下げる(ステップS14)。このときの発振周波数の変化量は、前回の発振周波数の変化量よりも小さな値(例えば半分)とする。   If it is determined in step S12 that the current oscillation frequency is lower than the upper limit value fmax, the process returns to step S2 and the output (input power value) of the multiplication circuit 44 is taken into the sample and hold circuit 45 as a reference power value. On the other hand, if it is determined in step S12 that the current oscillation frequency is higher than the upper limit value fmax, the process proceeds to step S13, and the output (input power value) of the multiplier circuit 44 is taken into the sample and hold circuit 45 as a reference power value. The oscillation frequency of the oscillation circuit 13 is lowered (step S14). The amount of change in the oscillation frequency at this time is set to a smaller value (for example, half) than the amount of change in the previous oscillation frequency.

それから、ステップS15へ進んで現在の電力値が基準電力値よりも大きいか否か判定する。そして、現在の電力値が基準電力値よりも小さいと判定した場合はステップS2へ戻り、現在の電力値が基準電力値よりも大きいと判定した場合はステップS5へ移行する。   Then, the process proceeds to step S15 to determine whether or not the current power value is larger than the reference power value. When it is determined that the current power value is smaller than the reference power value, the process returns to step S2, and when it is determined that the current power value is larger than the reference power value, the process proceeds to step S5.

次に、上記のような手順に従った制御動作による具体的な発振周波数の調整動作を、一例として、図3(c)の実線Bのように実際の電力伝送特性が周波数の高い方へずれていた場合の動作を説明する。   Next, as a specific example of the adjustment operation of the oscillation frequency by the control operation according to the above procedure, the actual power transmission characteristic is shifted to the higher frequency as shown by the solid line B in FIG. A description will be given of the operation in the case where it has occurred.

この場合、先ず初期周波数faで発振回路13の発振動作が開始する(図3(C)の(1))。次に、発振回路13の発振周波数がΔf1だけ上げられる(図3(C)の(2))。それから、現在の電力値が基準電力値よりも小さいと判定されて、発振回路13の発振周波数がΔf2(Δf2<Δf1)だけ上げられる(図3(C)の(3))。続いて、現在の電力値が基準電力値よりも小さいと判定され、発振回路13の発振周波数がΔf3(Δf3<Δf2)だけ上げられる(図3(C)の(4))。ここで現在の電力値が基準電力値よりも大きいと判定されて、発振回路13の発振周波数がΔf4(Δf4<Δf3)だけ下げられる(図3(C)の(5))。このような動作を繰り返すことで、発振回路13の発振周波数は次第に実際の電力伝送特性の最大入力電力に対応する周波数f0に近づけられる。   In this case, first, the oscillation operation of the oscillation circuit 13 is started at the initial frequency fa ((1) in FIG. 3C). Next, the oscillation frequency of the oscillation circuit 13 is increased by Δf1 ((2) in FIG. 3C). Then, it is determined that the current power value is smaller than the reference power value, and the oscillation frequency of the oscillation circuit 13 is increased by Δf2 (Δf2 <Δf1) ((3) in FIG. 3C). Subsequently, it is determined that the current power value is smaller than the reference power value, and the oscillation frequency of the oscillation circuit 13 is increased by Δf3 (Δf3 <Δf2) ((4) in FIG. 3C). Here, it is determined that the current power value is larger than the reference power value, and the oscillation frequency of the oscillation circuit 13 is lowered by Δf4 (Δf4 <Δf3) ((5) in FIG. 3C). By repeating such an operation, the oscillation frequency of the oscillation circuit 13 is gradually brought closer to the frequency f0 corresponding to the maximum input power of the actual power transmission characteristics.

なお、図4には示されていないが、上記発振周波数の変更により周波数f0に近づくと発振回路13は最終的にその周波数に固定されて動作するようにされる。具体的には、例えば、発振周波数の変更量Δfが所定量以下になった場合、あるいは発振周波数の変更が所定回数行われた場合などに終了させるようにすることができる。また、最大入力電力となるポイントの検出の手順は、一回で変化させる周波数Δfや初期周波数faの選び方によっても異なるので、図4に示されているような手順に限定されるものではない。   Although not shown in FIG. 4, when the oscillation frequency is changed and the frequency f0 is approached, the oscillation circuit 13 is finally fixed to the frequency and operated. Specifically, for example, it can be terminated when the change amount Δf of the oscillation frequency becomes a predetermined amount or less, or when the change of the oscillation frequency is performed a predetermined number of times. Further, the procedure for detecting the point having the maximum input power differs depending on how to select the frequency Δf and the initial frequency fa to be changed at a time, and is not limited to the procedure shown in FIG.

図5には、前記実施形態の無接点電力伝送装置の第1の変形例を示す。この変形例は、図1における電圧検出回路41および乗算回路44を省略して、電流検出回路42の出力に基づいて発振周波数の変更制御を行うようにしたものである。一次側コイルの入力電力は入力電圧Vinと駆動回路12より流れ出る電流I1との積で表わされるので、入力電圧Vinが一定であれば駆動回路12からの電流I1を検出すれば電力を知ることが可能であり、それによって発振周波数の制御が可能である。従って、図5の変形例は、直流電源11の電圧が安定しているシステムに適用すると有効である。   In FIG. 5, the 1st modification of the non-contact electric power transmission apparatus of the said embodiment is shown. In this modification, the voltage detection circuit 41 and the multiplication circuit 44 in FIG. 1 are omitted, and the oscillation frequency change control is performed based on the output of the current detection circuit 42. Since the input power of the primary coil is represented by the product of the input voltage Vin and the current I1 flowing out of the drive circuit 12, if the input voltage Vin is constant, the power can be known by detecting the current I1 from the drive circuit 12. It is possible to control the oscillation frequency. Therefore, the modification of FIG. 5 is effective when applied to a system in which the voltage of the DC power supply 11 is stable.

図6には、前記実施形態の無接点電力伝送装置の第2の変形例を示す。この変形例は、図1における電圧検出回路41および電流検出回路42を省略して、一次側コイルL1と重なるように配置された補助コイルL3と、この補助コイルL3に誘起された交流から電流または電力を検出する検出回路49とを設け、この検出回路49の出力に基づいて発振周波数の変更制御を行うようにしたものである。   In FIG. 6, the 2nd modification of the non-contact electric power transmission apparatus of the said embodiment is shown. In this modification, the voltage detection circuit 41 and the current detection circuit 42 in FIG. 1 are omitted, and an auxiliary coil L3 disposed so as to overlap with the primary side coil L1 and a current or current from an alternating current induced in the auxiliary coil L3. A detection circuit 49 for detecting electric power is provided, and oscillation frequency change control is performed based on the output of the detection circuit 49.

以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、種々変更可能である。例えば、前記実施形態では、一次側コイルL1に電流を流すスイッチング・トランジスタQ1〜Q4としてMOSFETを使用したが、バイポーラ・トランジスタを使用することも可能である。また、前記実施形態では、直流電源11としてACアダプタを使用すると説明したが、DC−DCコンバータを使用するようにしてもよい。   Although the invention made by the inventor has been specifically described based on examples, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, MOSFETs are used as the switching transistors Q1 to Q4 that allow current to flow through the primary coil L1, but it is also possible to use bipolar transistors. In the above-described embodiment, the AC adapter is used as the DC power supply 11. However, a DC-DC converter may be used.

さらに、負荷となる電子機器がない状態で無接点電力伝送装置の一次側の電源が投入された場合、駆動回路11からはほとんど電流が流れ出ないので、例えば電流検出回路42の出力電圧と所定の参照電圧とを比較するコンパレータを設けて、検出電流が所定値以下の場合には発振回路3を例えば可変周波数範囲の下限値fminに相当する周波数で発振させるようにしても良い。   Further, when the primary side power supply of the contactless power transmission device is turned on in the absence of electronic equipment as a load, almost no current flows out from the drive circuit 11, and therefore, for example, the output voltage of the current detection circuit 42 and a predetermined voltage A comparator for comparing with the reference voltage may be provided so that the oscillation circuit 3 oscillates at a frequency corresponding to the lower limit value fmin of the variable frequency range, for example, when the detected current is a predetermined value or less.

以上の説明では主として本発明者によってなされた発明をその背景となった利用分野である携帯用電子機器に内蔵される二次電池の充電装置に用いられる無接点電力伝送装置に適用した場合について説明したが、本発明はそれに限定されず、2つのコイルを対向させて電力を伝送する装置例えばICカードの電力伝送装置などにも利用することができる。   In the above description, the case where the invention made mainly by the present inventor is applied to a non-contact power transmission device used in a charging device for a secondary battery built in a portable electronic device, which is a field of use behind it, is described. However, the present invention is not limited to this, and the present invention can also be used for an apparatus that transmits power with two coils facing each other, such as an IC card power transmission apparatus.

本発明に係る無接点電力伝送装置の一実施形態の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of one Embodiment of the non-contact electric power transmission apparatus which concerns on this invention. (A),(B)はそれぞれコイルを駆動する駆動回路の具体例を示す回路図である。(A), (B) is a circuit diagram which shows the specific example of the drive circuit which drives a coil, respectively. 無接点電力伝送装置における共振周波数と伝送電力との関係を示す特性図である。It is a characteristic view which shows the relationship between the resonant frequency and transmission power in a non-contact electric power transmission apparatus. 実施形態の無接点電力伝送装置における共振周波数の補正の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of correction | amendment of the resonant frequency in the non-contact electric power transmission apparatus of embodiment. 実施形態の無接点電力伝送装置の第1の変形例を示すブロック図である。It is a block diagram which shows the 1st modification of the non-contact electric power transmission apparatus of embodiment. 実施形態の無接点電力伝送装置の第2の変形例を示すブロック図である。It is a block diagram which shows the 2nd modification of the non-contact electric power transmission apparatus of embodiment.

符号の説明Explanation of symbols

10 無接点電力伝送装置
11 直流電源
12 駆動回路
13 発振回路
14 制御回路
41 電圧検出回路
42 電流検出回路
44 乗算回路
45 サンプルホールド回路
46 コンパレータ
47 発振周波数制御回路
48 切替えスイッチ
L1 一次側コイル
L2 二次側コイル
FLT フィルタ
Cs サンプリング容量
DESCRIPTION OF SYMBOLS 10 Contactless power transmission device 11 DC power supply 12 Drive circuit 13 Oscillation circuit 14 Control circuit 41 Voltage detection circuit 42 Current detection circuit 44 Multiplication circuit 45 Sample hold circuit 46 Comparator 47 Oscillation frequency control circuit 48 Changeover switch L1 Primary side coil L2 Secondary Side coil FLT filter Cs Sampling capacity

Claims (7)

発振回路を備え該発振回路の出力に基づいて一次側巻線を交流駆動して、前記一次側巻線に対向された二次側巻線に誘起された交流を直流に変換させて電力を伝送する無接点電力伝送装置であって、
前記発振回路は発振周波数が可変な可変周波数発振回路により構成され、電源から前記一次側巻線に供給される入力電力を検出し入力電力が最大となる発振周波数を探して当該発振周波数で前記発振回路を動作させるように構成されていることを特徴とする無接点電力伝送装置。
Equipped with an oscillation circuit that drives the primary winding based on the output of the oscillation circuit, converts the alternating current induced in the secondary winding facing the primary winding to direct current, and transmits power A non-contact power transmission device,
The oscillation circuit is composed of a variable frequency oscillation circuit having a variable oscillation frequency. The oscillation circuit detects the input power supplied from the power source to the primary winding and searches for the oscillation frequency that maximizes the input power, and oscillates at the oscillation frequency. A contactless power transmission apparatus configured to operate a circuit.
発振周波数が可変な発振回路と、該発振回路の出力に基づいて一次側巻線を交流駆動する駆動回路と、を備え、前記一次側巻線に対向された二次側巻線に誘起された交流を直流に変換させて電力を伝送する無接点電力伝送装置であって、
前記一次側巻線に供給される入力電力を検出する検出回路と、
前記検出回路により検出された入力電力値を記憶する記憶回路と、
前記記憶回路に記憶されている入力電力値と前記検出回路により検出された入力電力値とを比較する比較回路と、
前記比較回路の出力に基づいて前記入力電力が最大となる発振周波数を探して当該発振周波数で前記発振回路を動作させる発振周波数制御回路と、を備えていることを特徴とする無接点電力伝送装置。
An oscillation circuit having a variable oscillation frequency, and a drive circuit that AC drives the primary side winding based on the output of the oscillation circuit, and is induced in the secondary side winding opposed to the primary side winding. A non-contact power transmission device for transmitting power by converting alternating current to direct current,
A detection circuit for detecting input power supplied to the primary winding;
A storage circuit for storing an input power value detected by the detection circuit;
A comparison circuit that compares the input power value stored in the storage circuit with the input power value detected by the detection circuit;
An oscillation frequency control circuit that searches for an oscillation frequency that maximizes the input power based on the output of the comparison circuit and operates the oscillation circuit at the oscillation frequency. .
前記検出回路は、入力電圧を検出する電圧検出回路と、前記駆動回路より流れ出る電流を検出する電流検出回路と、前記電圧検出回路の出力と前記電流検出回路の出力の積を演算する乗算回路とにより構成されていることを特徴とする請求項2に記載の無接点電力伝送装置。   The detection circuit includes a voltage detection circuit that detects an input voltage, a current detection circuit that detects a current flowing out of the drive circuit, a multiplication circuit that calculates a product of an output of the voltage detection circuit and an output of the current detection circuit, The non-contact power transmission device according to claim 2, wherein the non-contact power transmission device is configured as follows. 前記検出回路は、前記駆動回路より流れ出る電流を検出する電流検出回路であることを特徴とする請求項2に記載の無接点電力伝送装置。   The non-contact power transmission device according to claim 2, wherein the detection circuit is a current detection circuit that detects a current flowing out of the drive circuit. 前記電流検出回路は、前記駆動回路と接地点との間に接続された抵抗素子と、該抵抗素子により電流−電圧変換された電圧を平均化するフィルタ回路とからなることを特徴とする請求項3または4に記載の無接点電力伝送装置。   The current detection circuit includes a resistance element connected between the drive circuit and a ground point, and a filter circuit that averages a voltage that is current-voltage converted by the resistance element. The contactless power transmission device according to 3 or 4. 前記記憶回路は、サンプリング容量と前記検出回路の出力端子と前記サンプリング容量との間に設けられたスイッチ素子とより構成されていることを特徴とする請求項2〜5のいずれかに記載の無接点電力伝送装置。   6. The memory device according to claim 2, wherein the storage circuit includes a sampling capacitor, a switch element provided between the output terminal of the detection circuit and the sampling capacitor. Contact power transmission device. 前記発振回路を所定の初期周波数で発振させるための定電圧と前記制御回路から出力される発振制御電圧とを切り替えて前記発振回路に供給可能な切替え手段を備え、
前記制御回路は、
先ず前記切替え手段によって前記定電圧を前記発振回路に供給して初期周波数で発振させた後、
前記検出回路により検出された入力電力値を前記記憶回路に基準電力値として記憶させ、該基準電力値とその後に前記検出回路により検出された入力電力値とに応じて前記発振回路の発振周波数を所定量増大または減少させる第1動作と、
その後再度、前記検出回路により検出された入力電力値を前記記憶回路に基準電力値として記憶させ、該基準電力値とその後に前記検出回路により検出された入力電力値とに応じて前記発振回路の発振周波数を前記所定量よりも少ない量だけ増大または減少させる第2動作と、を制御可能であり、
上記第1動作と第2動作を繰り返すことで前記発振回路の発振周波数を最大入力電力に対応した周波数に近づけることを特徴とする請求項2〜6のいずれかに記載の無接点電力伝送装置。
A switching means capable of switching between a constant voltage for oscillating the oscillation circuit at a predetermined initial frequency and an oscillation control voltage output from the control circuit and supplying the oscillation circuit to the oscillation circuit;
The control circuit includes:
First, the switching means supplies the constant voltage to the oscillation circuit to oscillate at an initial frequency,
The input power value detected by the detection circuit is stored as a reference power value in the storage circuit, and the oscillation frequency of the oscillation circuit is set according to the reference power value and the input power value detected by the detection circuit thereafter. A first action to increase or decrease by a predetermined amount;
Then, again, the input power value detected by the detection circuit is stored as a reference power value in the storage circuit, and the oscillation circuit of the oscillation circuit is changed according to the reference power value and the input power value detected by the detection circuit thereafter. A second operation that increases or decreases the oscillation frequency by an amount less than the predetermined amount, and is controllable,
7. The non-contact power transmission apparatus according to claim 2, wherein the first operation and the second operation are repeated to bring the oscillation frequency of the oscillation circuit close to a frequency corresponding to the maximum input power.
JP2008177691A 2008-07-08 2008-07-08 Contactless power transmitter Pending JP2010022076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177691A JP2010022076A (en) 2008-07-08 2008-07-08 Contactless power transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177691A JP2010022076A (en) 2008-07-08 2008-07-08 Contactless power transmitter

Publications (1)

Publication Number Publication Date
JP2010022076A true JP2010022076A (en) 2010-01-28

Family

ID=41706432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177691A Pending JP2010022076A (en) 2008-07-08 2008-07-08 Contactless power transmitter

Country Status (1)

Country Link
JP (1) JP2010022076A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403804A (en) * 2010-09-09 2012-04-04 株式会社半导体能源研究所 Power feeding device, wireless power feeding system using the same and wireless power feeding method
WO2012132145A1 (en) * 2011-03-30 2012-10-04 三洋電機株式会社 Charging platform
WO2013132702A1 (en) * 2012-03-07 2013-09-12 株式会社 村田製作所 System for transmitting electric power and power-transmission device
KR101328990B1 (en) * 2011-03-10 2013-11-14 삼성에스디아이 주식회사 Battery pack and electronic device including the same
US8669678B2 (en) 2011-02-22 2014-03-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8928182B2 (en) 2011-12-16 2015-01-06 Tdk Corporation Wireless power feeder and wireless power transmission system
JP2015039249A (en) * 2011-03-24 2015-02-26 田淵電機株式会社 Wireless power transmission device
US9152103B2 (en) 2013-08-19 2015-10-06 Kyocera Document Solutions Inc. Image forming apparatus ensuring short warm-up time by efficiently heating fixing unit
WO2015189998A1 (en) * 2014-06-13 2015-12-17 株式会社 東芝 Drive device and method, and wireless power transmission device
JP2015536130A (en) * 2012-10-04 2015-12-17 リニアー テクノロジー コーポレイションLinear Technology Corporation Automatic resonant driver for wireless power transmitter that senses the transmission power required for optimal frequency

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235766A (en) * 1991-10-07 1993-09-10 Nec Corp A/d converter
JPH07270160A (en) * 1994-03-30 1995-10-20 Topcon Corp Position detector for scanning laser light
JPH08196084A (en) * 1995-01-12 1996-07-30 Yamaha Motor Co Ltd Power supply system
JPH10174206A (en) * 1996-12-09 1998-06-26 Yamaha Motor Co Ltd Method and apparatus for adjustment of frequency in power-supply apparatus
JP2000014053A (en) * 1998-06-16 2000-01-14 Nec Corp Method and apparatus for automatic tuning frequency- controlled induction feeding
JP2005006396A (en) * 2003-06-11 2005-01-06 Seiko Epson Corp Charging system
JP2008141940A (en) * 2006-11-10 2008-06-19 Sanyo Electric Co Ltd Battery charging cradle and mobile electronic device
JP2008263710A (en) * 2007-04-11 2008-10-30 Olympus Corp Wireless power supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235766A (en) * 1991-10-07 1993-09-10 Nec Corp A/d converter
JPH07270160A (en) * 1994-03-30 1995-10-20 Topcon Corp Position detector for scanning laser light
JPH08196084A (en) * 1995-01-12 1996-07-30 Yamaha Motor Co Ltd Power supply system
JPH10174206A (en) * 1996-12-09 1998-06-26 Yamaha Motor Co Ltd Method and apparatus for adjustment of frequency in power-supply apparatus
JP2000014053A (en) * 1998-06-16 2000-01-14 Nec Corp Method and apparatus for automatic tuning frequency- controlled induction feeding
JP2005006396A (en) * 2003-06-11 2005-01-06 Seiko Epson Corp Charging system
JP2008141940A (en) * 2006-11-10 2008-06-19 Sanyo Electric Co Ltd Battery charging cradle and mobile electronic device
JP2008263710A (en) * 2007-04-11 2008-10-30 Olympus Corp Wireless power supply system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403804A (en) * 2010-09-09 2012-04-04 株式会社半导体能源研究所 Power feeding device, wireless power feeding system using the same and wireless power feeding method
JP2012080758A (en) * 2010-09-09 2012-04-19 Semiconductor Energy Lab Co Ltd Power supply device, wireless power supply system using power supply device, and wireless power supply method
US10044224B2 (en) 2010-09-09 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, wireless power feeding system using the same and wireless power feeding method
US9391476B2 (en) 2010-09-09 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, wireless power feeding system using the same and wireless power feeding method
US8669678B2 (en) 2011-02-22 2014-03-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
KR101328990B1 (en) * 2011-03-10 2013-11-14 삼성에스디아이 주식회사 Battery pack and electronic device including the same
US9041359B2 (en) 2011-03-10 2015-05-26 Samsung Sdi Co., Ltd. Battery pack with integral non-contact discharging means and electronic device including the same
JP2015039249A (en) * 2011-03-24 2015-02-26 田淵電機株式会社 Wireless power transmission device
WO2012132145A1 (en) * 2011-03-30 2012-10-04 三洋電機株式会社 Charging platform
US8928182B2 (en) 2011-12-16 2015-01-06 Tdk Corporation Wireless power feeder and wireless power transmission system
JP5614510B2 (en) * 2012-03-07 2014-10-29 株式会社村田製作所 Power transmission system and power transmission device
WO2013132702A1 (en) * 2012-03-07 2013-09-12 株式会社 村田製作所 System for transmitting electric power and power-transmission device
JP2015536130A (en) * 2012-10-04 2015-12-17 リニアー テクノロジー コーポレイションLinear Technology Corporation Automatic resonant driver for wireless power transmitter that senses the transmission power required for optimal frequency
US9152103B2 (en) 2013-08-19 2015-10-06 Kyocera Document Solutions Inc. Image forming apparatus ensuring short warm-up time by efficiently heating fixing unit
WO2015189998A1 (en) * 2014-06-13 2015-12-17 株式会社 東芝 Drive device and method, and wireless power transmission device
JPWO2015189998A1 (en) * 2014-06-13 2017-04-20 株式会社東芝 Driving device and method, and wireless power transmission device
US10148136B2 (en) 2014-06-13 2018-12-04 Kabushiki Kaisha Toshiba Drive device, method thereof, and wireless power transmission device

Similar Documents

Publication Publication Date Title
JP2010022076A (en) Contactless power transmitter
US10892648B2 (en) Wireless power transfer method, apparatus and system for low and medium power
US8111041B2 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument
KR101893104B1 (en) Wireless power receiver for controlling wireless power by using switch
EP2207250B1 (en) Contactless power transmission circuit
WO1998034319A1 (en) Equipment and method for transmitting electric power
JP5861811B1 (en) Power transmission system
JP2010136464A (en) Power transmitter and power transmission method
JP6279452B2 (en) Non-contact power transmission device
JP2006230032A (en) Power transmitter and power transmissison method
JP5516824B2 (en) Power transmission system
KR102554226B1 (en) Apparatus and method for transmitting power wirelessly
JP6037022B2 (en) Power transmission device, wireless power transmission system, and power transmission discrimination method
JP4830467B2 (en) Resonant type converter
JP2006325350A (en) Power supply device
US11146111B2 (en) Power receiver, power transmission system, and power receiving meihod
US10355532B2 (en) Inductive power transfer
JP6675093B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6675094B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6685016B2 (en) Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system
JP2017216815A (en) Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528