JP2016067122A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2016067122A
JP2016067122A JP2014194561A JP2014194561A JP2016067122A JP 2016067122 A JP2016067122 A JP 2016067122A JP 2014194561 A JP2014194561 A JP 2014194561A JP 2014194561 A JP2014194561 A JP 2014194561A JP 2016067122 A JP2016067122 A JP 2016067122A
Authority
JP
Japan
Prior art keywords
power
power transmission
resonance system
resonance
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014194561A
Other languages
Japanese (ja)
Inventor
吉弘 昌史
Masashi Yoshihiro
昌史 吉弘
義弘 戸高
Yoshihiro Todaka
義弘 戸高
淳史 田中
Junji Tanaka
淳史 田中
大貫 悟
Satoru Onuki
悟 大貫
宮内 靖
Yasushi Miyauchi
靖 宮内
井戸 寛
Hiroshi Ido
寛 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2014194561A priority Critical patent/JP2016067122A/en
Publication of JP2016067122A publication Critical patent/JP2016067122A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission device capable of solving a problem that the resonance state varies due to variation of a load, the resonance voltage of a power transmission resonance system exceeds the withstanding voltage of components constituting the power transmission resonance system and thus the power transmission resonance system is damaged in a non-contact power transmission device based on magnetic field resonance.SOLUTION: In a non-contact power transmission device, a power reception device side monitors required power, and controls the power so that the reception power violently fluctuates according to increase/reduction of reception power and increase/reduction of a load. A power transmission side monitors increase/reduction of a transmission voltage, and supplies proper power according to the load variation. As a result, a capacitor of a resonance circuit can be prevented from being damaged by the load variation. Furthermore, there can be provided a non-contact power transmission device which is adaptable to contamination of foreign materials into a power transmission/reception resonance system, distance variation between the power transmission resonance system and the power reception resonance system, etc., or variation of a load connected to the power reception side.SELECTED DRAWING: Figure 1

Description

本発明は、送電装置に具備された送電コイルと受電装置に具備された受電コイルを介して、非接触(ワイヤレス)で電力の伝送を行う非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission device that performs non-contact (wireless) power transmission via a power transmission coil provided in a power transmission device and a power reception coil provided in the power reception device.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   As a method of transmitting power in a non-contact manner, an electromagnetic induction type by electromagnetic induction (several hundreds of kHz), an electric field / magnetic field resonance type by transmission between LC resonances via electric field or magnetic field resonance, a microwave power transmission type by radio waves (several GHz), Alternatively, a laser power transmission type using electromagnetic waves (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

一般的に、磁界共鳴型の非接触電力伝送装置は、送電装置と受電装置を備える。送電装置は少なくとも送電コイルと共振容量で構成される送電共振系と、送電共振器に電力を供給する送電部を有する。受電装置は少なくとも受電コイルと共振容量で構成される受電共振系を有する。磁界共鳴型の非接触電力伝送装置は、送電共振系と受電共振系が磁界的に共鳴することを利用して、送電装置から受電装置に非接触で電力を伝送する。   Generally, a magnetic resonance type non-contact power transmission device includes a power transmission device and a power reception device. The power transmission device includes a power transmission resonance system including at least a power transmission coil and a resonance capacitor, and a power transmission unit that supplies power to the power transmission resonator. The power receiving apparatus has a power receiving resonance system including at least a power receiving coil and a resonance capacitor. The magnetic resonance type non-contact power transmission device transmits power from the power transmission device to the power reception device in a non-contact manner by utilizing the magnetic resonance between the power transmission resonance system and the power reception resonance system.

このような非接触電力伝送装置において、負荷インピーダンスが高い(軽負荷)状態で送電電圧を立ち上げると、送電装置内に過大な電流が発生し、送電素子が破壊されるという問題がある。この問題に対処するためには、送電装置に実際の電力伝送状態より高い電流値に耐えるデバイスを用いる必要があり、装置のコストが高くなる問題がある。   In such a non-contact power transmission device, when the transmission voltage is raised in a state where the load impedance is high (light load), there is a problem that an excessive current is generated in the power transmission device and the power transmission element is destroyed. In order to cope with this problem, it is necessary to use a device that can withstand a higher current value than the actual power transmission state for the power transmission device, which increases the cost of the device.

特許文献1には、非接触電力伝送装置において、受電装置側にインピーダンス調整部を設けて、受電装置の入力インピーダンスを適宜調整することにより、送電側装置内に過大な電流が発生することを防止する構成が開示されている。   In Patent Document 1, in a non-contact power transmission device, an impedance adjustment unit is provided on the power receiving device side to appropriately adjust the input impedance of the power receiving device, thereby preventing an excessive current from being generated in the power transmission device. The structure to perform is disclosed.

特開2013−146141号公報JP 2013-146141 A

非接触電力伝送装置において、負荷で要求される電力の大小によって負荷変動が生じた場合、共振系の共振状態を変化させてしまう。共振系のQ値が負荷変動によって変化してしまうからである。   In the non-contact power transmission device, when a load change occurs due to the magnitude of power required by the load, the resonance state of the resonance system is changed. This is because the Q value of the resonance system changes due to load fluctuation.

一般的に負荷変動によって軽負荷になると共振系のQ値が高くなってしまうので、負荷変動が生じた場合、一定の駆動電圧と一定の駆動波形で送電系を駆動していると、共振系の共振電圧が異常に上昇してしまう。従来技術の課題であった、負荷インピーダンスが高い(軽負荷)状態で送電電圧を立ち上げた場合と同様に、負荷変動が生じた場合でも、共振電圧が共振回路を構成するコンデンサの耐圧を超えてしまい、コンデンサが破損してしまうという問題があった。   In general, the Q value of the resonance system becomes high when the load is light due to load fluctuations. Therefore, when the load fluctuation occurs, if the power transmission system is driven with a constant drive voltage and a constant drive waveform, the resonance system The resonance voltage will rise abnormally. Similar to the case where the transmission voltage is raised in a state where the load impedance is high (light load), which was a problem of the prior art, even when a load change occurs, the resonance voltage exceeds the breakdown voltage of the capacitor constituting the resonance circuit. As a result, the capacitor is damaged.

特許文献1に示されている従来の技術では、可変な入力インピーダンスを実現するための複雑な構成が必須で、送電装置と受電装置の間で通信を必要とする場合もあり、従来に比べて構成が複雑になるといった問題があった。   In the conventional technique shown in Patent Document 1, a complicated configuration for realizing a variable input impedance is essential, and communication may be required between the power transmitting apparatus and the power receiving apparatus. There was a problem that the configuration was complicated.

本発明は、送電装置と受電装置の間で通信を行うことなく、比較的簡易な構成で上記の負荷変動に対応でき、共振回路を構成するコンデンサの破損を防止できる技術を提供することを目的とする。   An object of the present invention is to provide a technique capable of dealing with the above-described load fluctuation with a relatively simple configuration without performing communication between a power transmission device and a power reception device, and preventing damage to a capacitor constituting a resonance circuit. And

本発明の非接触電力伝送装置は、送電コイル及び送電容量により構成された送電共振系を有する送電装置と、受電コイル及び受電容量により構成された受電共振系を有する受電装置とを備え、前記送電装置から前記受電装置へ非接触で電力を伝送する非接触電力伝送装置において、前記送電装置は、更に、送電共振系に供給する電力量を制御する駆動制御回路を備え、前記受電装置は、更に、前記受電装置から電力を出力する出力部と、前記受電共振系が受電した交流電力を検波する検波手段と、前記検波手段と前記出力部の間に配置されたカットオフ回路と、前記カットオフ回路を制御する受電側制御手段を備え、前記受電側制御手段は、前記検波手段の出力電圧が所定の値を超えた時に前記カットオフ回路にて前記検波手段から前記出力部への電力の供給をオフにし、前記検波手段の出力電圧が所定の値を下回った時に前記カットオフ回路にて前記検波手段から前記出力部への電力の供給をオンにし、前記駆動制御回路は、前記送電共振系の共振電圧を検出し、該検出された共振電圧に基づいて、送電共振系に供給する電力量を調節することを特徴とする。   The non-contact power transmission device of the present invention includes a power transmission device having a power transmission resonance system configured by a power transmission coil and a power transmission capacity, and a power reception device having a power reception resonance system configured by a power reception coil and a power reception capacity, In a non-contact power transmission device that transmits power from a device to the power receiving device in a contactless manner, the power transmission device further includes a drive control circuit that controls an amount of power supplied to a power transmission resonance system, and the power receiving device further includes: An output unit that outputs electric power from the power receiving device; a detection unit that detects AC power received by the power reception resonance system; a cutoff circuit disposed between the detection unit and the output unit; and the cutoff unit Power receiving side control means for controlling the circuit, wherein the power receiving side control means outputs the output from the detection means in the cutoff circuit when an output voltage of the detection means exceeds a predetermined value. When the output voltage of the detection means falls below a predetermined value, the cut-off circuit turns on the power supply from the detection means to the output unit, and the drive control circuit The resonance voltage of the power transmission resonance system is detected, and the amount of power supplied to the power transmission resonance system is adjusted based on the detected resonance voltage.

本発明では、受電装置側が必要とされる電圧を監視し、受電電力の増減と負荷の増減に応じて受電電圧が乱高下しないように制御する。また、送電装置側は送電電圧の増減を監視し、負荷変動に対して適切な電力を供給する。   In the present invention, the voltage required on the power receiving apparatus side is monitored, and control is performed so that the received voltage does not fluctuate in accordance with increase or decrease in received power and increase or decrease in load. In addition, the power transmission apparatus side monitors the increase and decrease of the transmission voltage, and supplies appropriate power for load fluctuations.

この結果、負荷変動による共振回路のコンデンサの破損を防止できる。また、送受電共振系への異物の混入や送電共振系と受電共振系との距離変化等、または受電側に接続された負荷の変動に対応可能な非接触電力伝送装置を提供することができる。   As a result, damage to the capacitor of the resonance circuit due to load fluctuation can be prevented. In addition, it is possible to provide a non-contact power transmission device that can cope with foreign matter mixed into the power transmission / reception resonance system, a change in the distance between the power transmission resonance system and the power reception resonance system, or a change in the load connected to the power reception side. .

本発明の実施の形態1における非接触電力伝送装置の構成を示すブロック図The block diagram which shows the structure of the non-contact electric power transmission apparatus in Embodiment 1 of this invention. 本発明の実施の形態1におけるカットオフ回路と受電側制御手段の第1の回路図First circuit diagram of cut-off circuit and power receiving side control means in Embodiment 1 of the present invention 本発明の実施の形態1におけるカットオフ回路と受電側制御手段の第2の回路図Second circuit diagram of cut-off circuit and power reception side control means in embodiment 1 of the present invention 本発明の実施の形態1におけるカットオフ回路と受電側制御手段の第3の回路図Third circuit diagram of cut-off circuit and power receiving side control means in embodiment 1 of the present invention 本発明の実施の形態2における非接触電力伝送装置の構成を示すブロック図The block diagram which shows the structure of the non-contact electric power transmission apparatus in Embodiment 2 of this invention.

<実施の形態1>
図1は、本発明における実施の形態1の非接触電力伝送装置100の概略構成を示す。非接触電力伝送装置100は、送電装置10と受電装置20により構成される。送電装置10は、高周波電力を非接触伝送するための送電共振系50を備える。受電装置20は、送電装置10の送電共振系50が送電する高周波電力を受電するための受電共振系60を備える。本発明の非接触電力伝送装置100は、送電共振系50と受電共振系60を磁気的に結合させて、送電装置10から受電装置20に非接触で電力を伝送する。
<Embodiment 1>
FIG. 1 shows a schematic configuration of a non-contact power transmission apparatus 100 according to Embodiment 1 of the present invention. The non-contact power transmission device 100 includes a power transmission device 10 and a power reception device 20. The power transmission device 10 includes a power transmission resonance system 50 for non-contact transmission of high-frequency power. The power reception device 20 includes a power reception resonance system 60 for receiving high-frequency power transmitted by the power transmission resonance system 50 of the power transmission device 10. The contactless power transmission device 100 of the present invention magnetically couples the power transmission resonance system 50 and the power reception resonance system 60 to transmit power from the power transmission device 10 to the power reception device 20 in a contactless manner.

送電装置10は、更に、送電共振系50を駆動する駆動回路30と、送電共振系50の共振電圧を検出して駆動回路30の駆動電力を制御する駆動制御回路40を備える。   The power transmission device 10 further includes a drive circuit 30 that drives the power transmission resonance system 50 and a drive control circuit 40 that detects the resonance voltage of the power transmission resonance system 50 and controls the drive power of the drive circuit 30.

受電装置20は、更に、受電共振系60の出力を検波する検波手段71、検波手段71の出力電力を受電装置20から出力するか否かをオン/オフするカットオフ回路72、受電電力が不足する場合は電力を補充する電力補充手段73、電力を加算する加算器74、カットオフ回路72を制御する受電側制御手段80、電力を出力する出力部90を備える。   The power receiving device 20 further includes a detecting unit 71 for detecting the output of the power receiving resonance system 60, a cut-off circuit 72 for turning on / off whether or not the output power of the detecting unit 71 is output from the power receiving device 20, and insufficient received power. In this case, the power supply means 73 includes a power supplement means 73 for supplementing power, an adder 74 for adding power, a power receiving side control means 80 for controlling the cutoff circuit 72, and an output section 90 for outputting power.

出力部90には不図示の負荷が接続される。負荷が軽く出力部90からの出力電力がさほど必要でない場合は、送電装置からの供給電力より受電装置の消費電力が小さくなり、受電電圧が上昇してしまう。その場合、受電側制御手段80は、カットオフ回路72で検波手段71の出力電力を遮断して、負荷90側の電圧の上昇を回避する。一方、負荷が重く出力部90からの出力電力が不足している場合は、受電側制御手段80は、電力補充手段73により電力を補充する制御を行う。   A load (not shown) is connected to the output unit 90. When the load is light and the output power from the output unit 90 is not necessary, the power consumption of the power receiving device is smaller than the power supplied from the power transmitting device, and the power receiving voltage increases. In that case, the power receiving side control means 80 cuts off the output power of the detection means 71 by the cut-off circuit 72 to avoid the increase of the voltage on the load 90 side. On the other hand, when the load is heavy and the output power from the output unit 90 is insufficient, the power receiving side control unit 80 performs control to replenish power by the power replenishing unit 73.

前記公知文献に開示の従来技術のように、送電装置10と受電装置20に別途通信手段を設け、受電装置20に接続された負荷が小さくなった情報を受電装置20が送電装置10に送信し、その情報を受信した送電装置10は駆動回路の電力を低下させるように制御しても負荷変動に対応できる。   As in the prior art disclosed in the publicly known document, the power transmission device 10 and the power reception device 20 are separately provided with a communication unit, and the power reception device 20 transmits information indicating that the load connected to the power reception device 20 is reduced to the power transmission device 10. The power transmission device 10 that has received the information can cope with load fluctuations even if it is controlled to reduce the power of the drive circuit.

これに対し、本発明の非接触電力伝送装置では、負荷変動に対して、まずは受電共振系の挙動を制御する。これにより、受電装置側で負荷変動による変化を吸収する。同時に送電装置側では受電側と独立して送電電力を調節する。すなわち、非接触電力伝送装置では、負荷変動に対応するにあたって、送電装置10と受電装置20に別途通信手段を設ける必要がない。以下、負荷変動に対して受電共振系を制御する手段について説明する。
(受電共振系の電圧監視に基づく電力制御)
図1の送電共振系50と受電共振系60からなる送受電共振系は、送電共振系50と受電共振系60の相対的な位置関係に依存して結合係数が変動した場合や、負荷が変動すると、送電共振系50と受電共振系60の共振電圧や共振周波数が変動する。
On the other hand, in the non-contact power transmission apparatus of the present invention, first, the behavior of the power receiving resonance system is controlled with respect to the load fluctuation. Thereby, the change by load fluctuation is absorbed in the power receiving apparatus side. At the same time, the power transmission device adjusts the transmission power independently of the power receiving side. That is, in the non-contact power transmission device, it is not necessary to separately provide communication means in the power transmission device 10 and the power reception device 20 in order to cope with load fluctuations. Hereinafter, a means for controlling the power receiving resonance system with respect to load fluctuation will be described.
(Power control based on voltage monitoring of the power receiving resonance system)
The power transmission / reception resonance system including the power transmission resonance system 50 and the power reception resonance system 60 in FIG. 1 has a coupling coefficient variation or a load variation depending on the relative positional relationship between the power transmission resonance system 50 and the power reception resonance system 60. Then, the resonance voltage and resonance frequency of the power transmission resonance system 50 and the power reception resonance system 60 change.

図1において、例えば、電気機器等の消費電力が低下した場合には負荷が軽くなる。出力部90に接続される負荷が軽くなると、受電共振系60の負荷が減少するので、受電共振系の共振電圧が上昇し、検波手段71の出力電圧が上昇しようとする。   In FIG. 1, for example, when the power consumption of an electrical device or the like is reduced, the load is reduced. When the load connected to the output unit 90 becomes lighter, the load of the power receiving resonance system 60 decreases, so the resonance voltage of the power receiving resonance system rises and the output voltage of the detection means 71 tends to rise.

受電側制御手段80は、出力部90の電圧を監視する。受電側制御手段80は、出力部90の電圧が所定の値を超えること検知すると、カットオフ回路72をオフして検波手段71から出力部90への電力の供給を切断する。これにより、検波手段71から出力される電力により引き起こされる出力部90の電圧の上昇を抑制できる。   The power receiving side control unit 80 monitors the voltage of the output unit 90. When detecting that the voltage of the output unit 90 exceeds a predetermined value, the power receiving side control unit 80 turns off the cutoff circuit 72 and cuts off the supply of power from the detection unit 71 to the output unit 90. Thereby, the voltage rise of the output part 90 caused by the electric power output from the detection means 71 can be suppressed.

受電側制御手段80は、出力部90の電圧が再び所定の値以下となったことを検知すると、カットオフ回路72をオンして検波手段71の出力を出力部90に供給する。   When the power receiving side control means 80 detects that the voltage of the output section 90 again becomes a predetermined value or less, the power receiving side control means 80 turns on the cutoff circuit 72 and supplies the output of the detection means 71 to the output section 90.

ただし、検波手段71の出力を切断すると、送受電共振系から外部に出力される電力が減少し、送受電共振系に電力が蓄積されてしまう。すなわち、送電共振系50の共振電圧も上昇する。   However, if the output of the detection means 71 is cut, the power output from the power transmission / reception resonance system to the outside decreases, and the power is accumulated in the power transmission / reception resonance system. That is, the resonance voltage of the power transmission resonance system 50 also increases.

そこで、駆動制御回路40は送電共振系50の共振電圧を検出し、駆動回路30からの出力電力を低下させる。その結果、送電共振系50と受電共振系60の共振電圧の上昇を抑えることができ、出力部90の負荷の減少に対応するとともに、送電共振系50と受電共振系60のコンデンサの破損も防止できる。   Therefore, the drive control circuit 40 detects the resonance voltage of the power transmission resonance system 50 and reduces the output power from the drive circuit 30. As a result, it is possible to suppress an increase in the resonance voltage of the power transmission resonance system 50 and the power reception resonance system 60, to cope with a decrease in the load of the output unit 90, and to prevent damage to the capacitors of the power transmission resonance system 50 and the power reception resonance system 60. it can.

図2A〜図2Cに、カットオフ回路72と受電側制御手段80の回路図を示す。受電装置20には、カットオフ回路72と受電側制御手段80以外にも構成要素がある。但し、図2A〜図2Cでは、カットオフ回路72と受電側制御手段80の説明を簡単にするために、受電装置20におけるカットオフ回路72と受電側制御手段80以外の構成要素を省略した。   2A to 2C are circuit diagrams of the cut-off circuit 72 and the power receiving side control means 80. FIG. The power receiving device 20 includes components other than the cut-off circuit 72 and the power receiving side control means 80. However, in FIG. 2A to FIG. 2C, components other than the cutoff circuit 72 and the power receiving side control unit 80 in the power receiving device 20 are omitted in order to simplify the description of the cutoff circuit 72 and the power receiving side control unit 80.

図2Aにカットオフ回路72と受電側制御手段80の第1の回路図を示す。図2Aの第1の回路では、受電側制御手段80がコンパレータ801で構成されるため、別途DC電力がコンパレータ801に供給される。コンパレータ801への電力は、検波手段71の出力電力を所定の電圧に変換して供給しても良いし、別途電源を用意してもよい。図1に示したように、カットオフ回路72には検波手段71から電力が入力される。   FIG. 2A shows a first circuit diagram of the cutoff circuit 72 and the power receiving side control means 80. In the first circuit of FIG. 2A, since the power receiving side control means 80 is configured by the comparator 801, DC power is separately supplied to the comparator 801. The power to the comparator 801 may be supplied by converting the output power of the detection means 71 into a predetermined voltage, or a separate power source may be prepared. As shown in FIG. 1, power is input from the detection means 71 to the cutoff circuit 72.

図2Aにおいて負荷が軽くなり、A点の電圧が上昇して抵抗分圧したB点がコンパレータ801の基準電圧を超えると、コンパレータ801の出力がHighからLowになる。その結果トランジスタ721がオフとなり、FET723もオフとなる。   In FIG. 2A, when the load becomes lighter and the voltage at point A rises and the point B divided by resistance exceeds the reference voltage of the comparator 801, the output of the comparator 801 changes from High to Low. As a result, the transistor 721 is turned off and the FET 723 is also turned off.

その後、A点の電圧が下がり、B点の電圧が、ヒステリシスを持ったコンパレータ801の基準電圧を下回ると、コンパレータ801の出力がLowからHighになり、FET723がオンとなるので、出力部90への電力の供給が再開される。   Thereafter, when the voltage at the point A decreases and the voltage at the point B falls below the reference voltage of the comparator 801 having hysteresis, the output of the comparator 801 changes from Low to High, and the FET 723 is turned on. The supply of power is resumed.

図2Bはカットオフ回路72と受電側制御手段80の第2の回路図を示す。図2Bの第2の回路は図2Aの第1の回路に比べて簡略化されている。   FIG. 2B shows a second circuit diagram of the cutoff circuit 72 and the power receiving side control means 80. The second circuit of FIG. 2B is simplified compared to the first circuit of FIG. 2A.

図2Bにおいては、B点の電圧が上がるとトランジスタ802がオンになり、トランジスタ722もオンとなるので、FET723がオフとなる。ただし、この場合、トランジスタ802のスイッチ速度にも依存するが、一般に、図2Aの場合よりもかなり応答が遅く、トランジスタ802がオフからオンになる際にFET723がかなり発熱してしまう。   In FIG. 2B, when the voltage at the point B increases, the transistor 802 is turned on and the transistor 722 is also turned on, so that the FET 723 is turned off. However, in this case, although depending on the switching speed of the transistor 802, in general, the response is considerably slower than in the case of FIG. 2A, and the FET 723 generates considerable heat when the transistor 802 is turned on.

図2Cはカットオフ回路72と受電側制御手段80の第3の回路図を示す。受電側制御手段80をカレントスイッチで構成することにより、図2Bの課題である応答速度を向上することができる。   FIG. 2C shows a third circuit diagram of the cutoff circuit 72 and the power receiving side control means 80. By configuring the power receiving side control means 80 with a current switch, the response speed, which is the problem of FIG. 2B, can be improved.

次に、図1に示した出力部90に接続される負荷が重くなる場合について説明する。例えば、出力部90に接続された電気機器等の消費電力が増加した場合、負荷が重くなる。出力部90に接続される負荷が重くなると、出力部90の電圧が基準より低下する。   Next, the case where the load connected to the output unit 90 shown in FIG. 1 becomes heavy will be described. For example, when the power consumption of an electrical device or the like connected to the output unit 90 increases, the load becomes heavy. When the load connected to the output unit 90 becomes heavy, the voltage of the output unit 90 decreases from the reference.

そこで、受電側制御手段80は、出力部90の電圧が基準より低下したことを検出すると、電力補充手段73の手段により加算器74を通じて電力を供給する。これにより、出力電圧の低下を防止でき、安定した電力供給が可能となる。   Therefore, when the power receiving side control unit 80 detects that the voltage of the output unit 90 has decreased below the reference, the power receiving side control unit 80 supplies power through the adder 74 by means of the power supplementing unit 73. Thereby, the fall of an output voltage can be prevented and stable electric power supply is attained.

この負荷が重くなった場合の出力部90の出力電圧の低下は、送受電系の電力供給の挙動から必ず発生する。先ず、負荷が増加すると検波手段71を通じて受電共振系60から出力される電力が増大する。その増大する電力は送電共振系50が作る共振している磁界からエネルギーを受け取って負荷に供給することにより賄われる。   The decrease in the output voltage of the output unit 90 when the load becomes heavy always occurs due to the power supply behavior of the power transmission / reception system. First, when the load increases, the power output from the power receiving resonance system 60 through the detection means 71 increases. The increasing electric power is covered by receiving energy from the resonating magnetic field generated by the power transmission resonance system 50 and supplying it to the load.

すなわち、駆動回路30から出力される電力は、負荷を含めた送受電系のインピーダンスに応じて検波手段71から出力される。ここで、送電共振系50と受電共振系60は送受電共振系を構成しているが、電力はこの送受電共振系という時定数を持ったフィルタを経由して送電装置10から受電装置20へ伝送される。そのため、負荷に要求される電力が変化した場合、その変化に追従するまでに所定の時間が必要となってしまう。本発明の電力補充手段73は、この一時的な電圧の低下を補償する。   That is, the power output from the drive circuit 30 is output from the detection means 71 in accordance with the impedance of the power transmission / reception system including the load. Here, the power transmission resonance system 50 and the power reception resonance system 60 constitute a power transmission / reception resonance system. The power is transmitted from the power transmission device 10 to the power reception device 20 via a filter having a time constant called the power transmission / reception resonance system. Is transmitted. Therefore, when the power required for the load changes, a predetermined time is required to follow the change. The power supplement means 73 of the present invention compensates for this temporary voltage drop.

なお、コンデンサ等で構成している電力補充手段73は、負荷が軽い場合は充電しておき、負荷が重くなった場合は放電することにより負荷変動を調整する。
<実施の形態2>
図3は、本発明における実施の形態2の非接触電力伝送装置101の概略構成を示す。図1に示した実施の形態1と比べると、受電装置21が異なっている。以下、受電装置21について詳しく説明する。
The power replenishing means 73 constituted by a capacitor or the like is charged when the load is light, and is adjusted by discharging when the load is heavy.
<Embodiment 2>
FIG. 3 shows a schematic configuration of the non-contact power transmission apparatus 101 according to the second embodiment of the present invention. Compared with Embodiment 1 shown in FIG. 1, the power receiving device 21 is different. Hereinafter, the power receiving device 21 will be described in detail.

受電共振系60で受電された電力は、両波整流器711で直流電力に変換したのち、出力部90に接続された不図示の負荷等に給電される。過小電圧検出器812は、出力部90の負荷が重くなり伝送電力だけでは電力が不足すると判断すると、スイッチ734を導通状態にして、蓄電手段732に蓄えられた電力を出力部90に供給する。   The power received by the power receiving resonance system 60 is converted into DC power by the both-wave rectifier 711 and then fed to a load (not shown) connected to the output unit 90. When the undervoltage detector 812 determines that the load of the output unit 90 becomes heavy and the transmission power alone is insufficient, the switch 734 is turned on to supply the power stored in the power storage unit 732 to the output unit 90.

一方、出力部90からの電力出力が減少した場合、すなわち、出力部90からの電力供給が過剰になる場合、余った電力がダイオード731を介して蓄電手段732に蓄えられる。   On the other hand, when the power output from the output unit 90 decreases, that is, when the power supply from the output unit 90 becomes excessive, the surplus power is stored in the power storage unit 732 via the diode 731.

但し、出力部90からの電力供給が過剰になる場合であって、かつ、蓄電手段732が満充電の場合には、出力部90の電圧が上昇しようとする。この時、過剰電圧検出器811は、出力部90の電圧の上昇を検出し、スイッチ712を開放する。これにより両波整流器711から出力される電力が出力部90に供給されなくなり、出力部90の異常な電圧上昇を防止できる。   However, when the power supply from the output unit 90 becomes excessive and the power storage unit 732 is fully charged, the voltage of the output unit 90 tends to increase. At this time, the excess voltage detector 811 detects a rise in the voltage of the output unit 90 and opens the switch 712. As a result, the electric power output from the both-wave rectifier 711 is not supplied to the output unit 90, and an abnormal voltage increase of the output unit 90 can be prevented.

スイッチ712が開放され、両波整流器711からの出力が消費されない場合は、送受電共振系に電力が蓄積されてしまう。すなわち、送電共振系50の共振電圧も上昇する。   When the switch 712 is opened and the output from the both-wave rectifier 711 is not consumed, power is accumulated in the power transmission / reception resonance system. That is, the resonance voltage of the power transmission resonance system 50 also increases.

そこで、駆動制御回路40は送電共振系50の共振電圧を検出し、共振電圧が所定の値を超えている場合は、駆動回路30からの出力電力を低下させる。その結果、送電共振系50と受電共振系60の共振電圧の上昇を抑えることができ、出力部90の負荷の減少に対応するとともに、コンデンサの破損も防止できる。   Therefore, the drive control circuit 40 detects the resonance voltage of the power transmission resonance system 50, and reduces the output power from the drive circuit 30 when the resonance voltage exceeds a predetermined value. As a result, an increase in the resonance voltage of the power transmission resonance system 50 and the power reception resonance system 60 can be suppressed, and it is possible to cope with a decrease in the load of the output unit 90 and to prevent damage to the capacitor.

本発明の非接触電力伝送装置は、負荷の変動に応じて伝送する電力量を調整しつつ、電力伝送回路の破損を防止できる。   The non-contact power transmission device of the present invention can prevent the power transmission circuit from being damaged while adjusting the amount of power to be transmitted according to the load variation.

10 送電装置
20、21 受電装置
30 駆動回路
40 駆動制御回路
50 送電共振系
60 受電共振系
71 検波手段
711 両波整流器
712 スイッチ
72 カットオフ回路
721、722 トランジスタ
723 FET
73 電力補充手段
731 ダイオード
732 蓄電手段
734 スイッチ
74 加算器
80 受電側制御手段
801 コンパレータ
802 トランジスタ
811 過剰電圧検出器
812 過小電圧検出器
90 出力部
100、101 非接触電力伝送装置
DESCRIPTION OF SYMBOLS 10 Power transmission apparatus 20, 21 Power reception apparatus 30 Drive circuit 40 Drive control circuit 50 Power transmission resonance system 60 Power reception resonance system 71 Detection means 711 Both-wave rectifier 712 Switch 72 Cut-off circuit 721, 722 Transistor 723 FET
73 Power supplement means 731 Diode 732 Power storage means 734 Switch 74 Adder 80 Power receiving side control means 801 Comparator 802 Transistor 811 Overvoltage detector 812 Undervoltage detector 90 Output unit 100, 101 Non-contact power transmission device

Claims (2)

送電コイル及び送電容量により構成された送電共振系を有する送電装置と、
受電コイル及び受電容量により構成された受電共振系を有する受電装置とを備え、
前記送電装置から前記受電装置へ非接触で電力を伝送する非接触電力伝送装置において、
前記送電装置は、更に、送電共振系に供給する電力量を制御する駆動制御回路を備え、
前記受電装置は、更に、
前記受電装置から電力を出力する出力部と、
前記受電共振系が受電した交流電力を検波する検波手段と、
前記検波手段と前記出力部の間に配置されたカットオフ回路と、
前記カットオフ回路を制御する受電側制御手段を備え、
前記受電側制御手段は、前記検波手段の出力電圧が所定の値を超えた時に前記カットオフ回路にて前記検波手段から前記出力部への電力の供給をオフにし、前記検波手段の出力電圧が所定の値を下回った時に前記カットオフ回路にて前記検波手段から前記出力部への電力の供給をオンにし、
前記駆動制御回路は、前記送電共振系の共振電圧を検出し、該検出された共振電圧に基づいて、送電共振系に供給する電力量を調節することを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonance system composed of a power transmission coil and a power transmission capacity;
A power receiving device having a power receiving resonance system constituted by a power receiving coil and a power receiving capacity;
In a non-contact power transmission device that transmits power in a non-contact manner from the power transmission device to the power reception device,
The power transmission device further includes a drive control circuit that controls the amount of power supplied to the power transmission resonance system,
The power receiving device further includes:
An output unit for outputting power from the power receiving device;
Detection means for detecting AC power received by the power receiving resonance system;
A cutoff circuit disposed between the detection means and the output unit;
Power receiving side control means for controlling the cut-off circuit,
The power receiving side control means turns off the supply of power from the detection means to the output unit in the cut-off circuit when the output voltage of the detection means exceeds a predetermined value, and the output voltage of the detection means Turn on the power supply from the detection means to the output unit in the cut-off circuit when below a predetermined value,
The drive control circuit detects a resonance voltage of the power transmission resonance system, and adjusts an amount of power supplied to the power transmission resonance system based on the detected resonance voltage.
前記受電装置は電力補充手段を備え、
前記カットオフ回路によるオン/オフにより、カットオフ回路の出力電力に一時的な電力の低下が生じた場合に、前記電力補充手段が前記カットオフ回路の出力電力を補充することを特徴とする請求項1に記載の非接触電力伝送装置。
The power receiving device includes power supplement means,
The power replenishing means replenishes the output power of the cut-off circuit when a temporary decrease in the output power of the cut-off circuit occurs due to on / off by the cut-off circuit. Item 2. The non-contact power transmission device according to Item 1.
JP2014194561A 2014-09-25 2014-09-25 Non-contact power transmission device Pending JP2016067122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194561A JP2016067122A (en) 2014-09-25 2014-09-25 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194561A JP2016067122A (en) 2014-09-25 2014-09-25 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2016067122A true JP2016067122A (en) 2016-04-28

Family

ID=55805933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194561A Pending JP2016067122A (en) 2014-09-25 2014-09-25 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2016067122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391134A (en) * 2017-08-08 2019-02-26 凌力尔特科技控股有限责任公司 The RX load limiter based on open circuit for wireless power transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287118A (en) * 2004-03-29 2005-10-13 Shin Kobe Electric Mach Co Ltd Overcharge preventive device of battery for electric vehicle
JP2007288952A (en) * 2006-04-18 2007-11-01 Toshiba Corp Electronic equipment
JP2010110533A (en) * 2008-11-07 2010-05-20 Olympus Corp Wireless electric supply system
JP2014121137A (en) * 2012-12-14 2014-06-30 Tdk Corp Wireless power-receiving device and wireless power transmission device using the same
JP2014176189A (en) * 2013-03-08 2014-09-22 Hitachi Maxell Ltd Non-contact power transmission device and non-contact power transmission method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287118A (en) * 2004-03-29 2005-10-13 Shin Kobe Electric Mach Co Ltd Overcharge preventive device of battery for electric vehicle
JP2007288952A (en) * 2006-04-18 2007-11-01 Toshiba Corp Electronic equipment
JP2010110533A (en) * 2008-11-07 2010-05-20 Olympus Corp Wireless electric supply system
JP2014121137A (en) * 2012-12-14 2014-06-30 Tdk Corp Wireless power-receiving device and wireless power transmission device using the same
JP2014176189A (en) * 2013-03-08 2014-09-22 Hitachi Maxell Ltd Non-contact power transmission device and non-contact power transmission method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391134A (en) * 2017-08-08 2019-02-26 凌力尔特科技控股有限责任公司 The RX load limiter based on open circuit for wireless power transmission
JP2019033662A (en) * 2017-08-08 2019-02-28 リニアー テクノロジー ホールティング エルエルシー OPEN CIRCUIT-BASED Rx POWER LIMITER FOR WIRELESS POWER TRANSFER
US10615626B2 (en) 2017-08-08 2020-04-07 Linear Technology Holding Llc Open circuit-based Rx power limiter for wireless power transfer

Similar Documents

Publication Publication Date Title
US10097047B2 (en) Wireless power transmission system and power transmission device of wireless power transmission system
US9787105B2 (en) Apparatus and method for high efficiency variable power transmission
US9904306B2 (en) Voltage converter, wireless power reception device and wireless power transmission system including the same
US9362048B2 (en) Contactless power feed equipment
US10862339B2 (en) Power reception device and power transmission device
US9831917B2 (en) Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same
US20220006331A1 (en) System and method for providing inductive power at multiple power levels
JP6413261B2 (en) High frequency power supply for ICP emission analyzer
JP2019140736A (en) Non-contact power feeding apparatus
CN110875636B (en) System Controlled Wireless Power Maximum Efficiency Tracking
JP2013005699A (en) Non-contact power supply device
JP2019176565A (en) Non-contact power supply device
JP6420025B2 (en) Non-contact power transmission apparatus and non-contact power transmission method
JP2016226242A (en) Non-contact power supply device
JP2016067122A (en) Non-contact power transmission device
WO2016006066A1 (en) Contactless power supply device
JP6310846B2 (en) Non-contact power transmission system and secondary battery pack
JP2012175809A (en) Switching power supply unit
KR20200100811A (en) Resonance matching circuit
JP2016039647A (en) Non-contact power transmission device
JP2014124020A (en) Wireless power transmission system
JP2018078746A (en) Wireless power supply device
JP2017169426A (en) Non-contact power transmission device and non-contact power transmission method
CN114846734A (en) Power receiving device and wireless power supply system
JP2016082782A (en) Wireless power receiving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180305