JP2014124020A - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JP2014124020A
JP2014124020A JP2012278129A JP2012278129A JP2014124020A JP 2014124020 A JP2014124020 A JP 2014124020A JP 2012278129 A JP2012278129 A JP 2012278129A JP 2012278129 A JP2012278129 A JP 2012278129A JP 2014124020 A JP2014124020 A JP 2014124020A
Authority
JP
Japan
Prior art keywords
power
power transmission
circuit
frequency
wireless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012278129A
Other languages
Japanese (ja)
Other versions
JP6094205B2 (en
Inventor
Hitoyoshi Kurata
仁義 倉田
Yasuhiro Ozawa
恭弘 小澤
Kazutaka Tamaoki
和孝 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012278129A priority Critical patent/JP6094205B2/en
Publication of JP2014124020A publication Critical patent/JP2014124020A/en
Application granted granted Critical
Publication of JP6094205B2 publication Critical patent/JP6094205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission system for performing power transmission in a non-contact manner between a power feeding side resonant circuit and power receiving side resonant circuit, where the system can perform efficient and stable power transmission while having a switching element which is freed from the fear of destruction even when using a bridge type high-frequency power supply as driving means for the system.SOLUTION: A wireless power transmission system 100 includes a full-bridge type circuit (high-frequency power supply 10) having an operation frequency f which satisfies an expression (1) X>0 and expression (2) δX/δf≥0; where δf is a variation in the operation frequency, X is an imaginary part of impedance of a wireless power transmission network 80 configured by a circuit including a power feeding side resonant circuit 40, a power reception side resonant circuit 50, and a load circuit 60 to which power is supplied by the power reception side resonant circuit 50 as seeing the power feeding side resonant circuit 40 from the full-bridge type circuit, and δX is a variation in the imaginary part to the operation frequency.

Description

本発明は、ワイヤレス電力伝送システムに関する。   The present invention relates to a wireless power transmission system.

スマートフォンに代表される携帯型端末や、ノートブック型パーソナルコンピュータ等は、装置内にリチウムイオン二次電池などの電源を内蔵しているため、室内、屋外を問わず、装置をどこへでも持ち出して使用できるので、極めて利便性が高い。一方、電池が消耗した場合は、充電などが必要となり、この充電にケーブル等を用いて行うことは、これら装置の持つ利便性を妨げる要因となっている。そこで、これら携帯機器に非接触で電力を供給できるワイヤレス電力伝送システムの開発が活発である。この種のものとして、電磁誘導方式を用いたものが一部実用化されている。   Portable devices such as smartphones and notebook personal computers have built-in power supplies such as lithium-ion secondary batteries, so you can take them anywhere, indoors or outdoors. Since it can be used, it is extremely convenient. On the other hand, when the battery is exhausted, charging or the like is required, and performing charging using a cable or the like is a factor that hinders the convenience of these devices. Therefore, development of a wireless power transmission system capable of supplying power to these portable devices in a contactless manner is active. As this type, a part using an electromagnetic induction method has been put into practical use.

一方、近年共振コイルの作る磁場の共振現象を利用した、磁場共振方式のワイヤレス電力伝送システムも提案されてきている。この方式は、上述の電磁誘導方式に較べて、大電力を比較的離れた給受電装置間で伝送できることから、電気自動車への給電等への応用を目指した検討等、幅広い応用範囲での実用化検討が進められている。   On the other hand, in recent years, a magnetic field resonance type wireless power transmission system using a resonance phenomenon of a magnetic field formed by a resonance coil has been proposed. Compared to the electromagnetic induction method described above, this method can transmit large amounts of power between power receiving and receiving devices that are relatively distant from each other, so that it can be used in a wide range of applications, such as studies aimed at applying power to electric vehicles. Consideration is being made.

上述の電磁誘導方式や磁場共振方式のワイヤレス電力伝送システムにおいては、給電側の共振手段(給電側共振回路)と受電側の共振手段(受電側共振回路)とが、ほぼ同じ共振周波数となるように設定することにより、高効率でのワイヤレス電力伝送が可能になるとされている。   In the electromagnetic induction type or magnetic field resonance type wireless power transmission system described above, the power supply side resonance means (power supply side resonance circuit) and the power reception side resonance means (power reception side resonance circuit) have substantially the same resonance frequency. By setting to, wireless power transmission with high efficiency is made possible.

しかしながら、給電側共振回路と受電側共振回路とが、例えば電磁誘導の原理或いは磁場共振の原理により電磁結合し、全体として一つの共振システムを構成したワイヤレス電力伝送システムにおいては、給電側共振回路と受電側共振回路(給電コイルと受電コイル)との距離、相対位置により、伝送システムとしての共振周波数が変化してしまうということが知られている。そこで、ワイヤレス電力伝送システムにおいては、システムの駆動周波数(動作周波数)、すなわち、給電側電源の周波数を、ワイヤレス電力伝送システムとしての共振周波数に合わせるべく設定することが必要とされている。 However, in the wireless power transmission system in which the power supply side resonance circuit and the power reception side resonance circuit are electromagnetically coupled by, for example, the principle of electromagnetic induction or the principle of magnetic field resonance to constitute one resonance system as a whole, the power supply side resonance circuit and It is known that the resonance frequency of the transmission system changes depending on the distance and relative position between the power receiving side resonance circuit (the power feeding coil and the power receiving coil). Therefore, in the wireless power transmission system, it is necessary to set the drive frequency (operating frequency) of the system, that is, the frequency of the power supply side power supply so as to match the resonance frequency of the wireless power transmission system.

このようなワイヤレス電力伝送システムにおいて、その駆動周波数を設定する方法として、特許文献1に開示された技術が知られている。すなわち、給電側共振手段と受電側共振手段とを磁場共振結合させ、給電側から見たインピーダンスの周波数依存性を検出し、検出インピーダンスの絶対値が最小となる周波数、もしくは、該インピーダンスの位相がゼロとなる周波数に、システムの駆動周波数を設定するものである。このように駆動周波数を設定すると、ワイヤレス電力伝送システムとして、高い伝送効率を維持することができるとされる。   In such a wireless power transmission system, a technique disclosed in Patent Document 1 is known as a method for setting the drive frequency. That is, the power supply side resonance means and the power reception side resonance means are coupled by magnetic field resonance, and the frequency dependence of the impedance viewed from the power supply side is detected, and the frequency at which the absolute value of the detected impedance is minimized or the phase of the impedance is The drive frequency of the system is set to a frequency that becomes zero. By setting the drive frequency in this way, it is said that high transmission efficiency can be maintained as a wireless power transmission system.

特開2010−233442号公報JP 2010-233442 A

ワイヤレス電力伝送システムを駆動するための電源としては、例えば、4個のスイッチング素子を用いたフルブリッジ型回路が知られている。フルブリッジ型回路により、直流電力をシステムの共振周波数にほぼ一致する高周波電力に変換する。このフルブリッジ型回路は、大電力を必要とする用途に特に有用と考えられる。通常のフルブリッジ型回路は、スイッチング素子のON/OFF時に、スイッチング損失が発生するとされるが、いわゆるフェーズシフト方式を用いることにより、このスイッチング損失を抑制することができる。   As a power source for driving the wireless power transmission system, for example, a full bridge type circuit using four switching elements is known. A full-bridge circuit converts DC power into high-frequency power that substantially matches the resonance frequency of the system. This full-bridge circuit is considered to be particularly useful for applications requiring high power. A normal full-bridge circuit is considered to generate a switching loss when the switching element is turned ON / OFF, but this switching loss can be suppressed by using a so-called phase shift method.

ところで、給電側共振回路と受電側共振回路とを備えるワイヤレス電力伝送システムにおいて、複数のスイッチング素子よりなるブリッジ型回路による高周波電源で該ワイヤレス電力伝送システムを駆動すると、スイッチング素子が破損してしまう虞のあることが、本発明者等の実験により判明した。特に、高周波電源側より共振系を見たときのインピーダンスの絶対値が最小となる周波数、もしくは、該インピーダンスの位相がゼロとなる周波数、すなわち給電側共振回路と受電側共振回路とが電磁結合をしたときの共振周波数でワイヤレス電力伝送システムを駆動すると、高周波電源内のスイッチング素子が破損してしまうという現象が起こることが判明した。この現象は、大電力伝送を行うために電源電圧を上げた場合に、また、ブリッジ型高周波電源回路をフルブリッジ型とし、フェーズシフト方式で動作させた場合に顕著になる。   By the way, in a wireless power transmission system including a power supply side resonance circuit and a power reception side resonance circuit, if the wireless power transmission system is driven by a high-frequency power source using a bridge circuit composed of a plurality of switching elements, the switching elements may be damaged. It has been found by experiments by the present inventors. In particular, the frequency at which the absolute value of the impedance when the resonance system is viewed from the high frequency power supply side is the minimum, or the frequency at which the phase of the impedance is zero, that is, the power supply side resonance circuit and the power reception side resonance circuit are electromagnetically coupled. It was found that when the wireless power transmission system is driven at the resonance frequency, the switching element in the high frequency power source is damaged. This phenomenon becomes prominent when the power supply voltage is increased to perform high power transmission, and when the bridge-type high-frequency power supply circuit is a full-bridge type and is operated in a phase shift system.

よって、本発明の目的は、給電側共振回路と受電側共振回路との間で非接触で電力伝送を行うワイヤレス電力伝送システムにおいて、その駆動手段としてブリッジ型高周波電源を用いた場合においても、スイッチング素子の破損の虞が無く、高効率で安定した電力伝送が可能なワイヤレス電力伝送システムを提供することにある。   Therefore, an object of the present invention is to perform switching even when a bridge type high frequency power supply is used as a driving means in a wireless power transmission system that performs power transmission in a contactless manner between a power supply side resonance circuit and a power reception side resonance circuit. It is an object of the present invention to provide a wireless power transmission system capable of high-efficiency and stable power transmission without causing damage to elements.

上記課題を解決するため、実験による種々の検討を行った結果、フルブリッジ型回路の高周波電源において、直列接続構成となっている二つのスイッチング素子のうちOFF状態にあるスイッチング素子のゲート電極にパルス状のノイズが加わる場合が有り、この結果、直列接続構成となっている二つのスイッチング素子がともにON状態となってしまい、スイッチング素子に大電流が流れ、破壊に至るものと推察された。特に、フルブリッジ型回路から給電側共振回路を見たときに、給電側共振回路と受電側共振回路と受電側共振回路から電力が供給される負荷回路を含む回路で構成される回路網のインピーダンスの虚部(リアクタンス)が容量性(容量性リアクタンス)となるときに、パルス状のノイズがスイッチング素子のゲート電極上に加わる場合が頻発することを見出した。従来、ワイヤレス電力伝送システムを、その共振周波数すなわち結合共振系を見たときのインピーダンスの絶対値が最小、もしくは、該インピーダンスの位相がゼロの周波数で駆動することにより、高効率なワイヤレス電力伝送が実現できるとされていた。しかしながら、共振周波数、即ちインピーダンスの位相がゼロ近傍となる周波数は、リアクタンスが突発的に容量性リアクタンスとなり得る領域でもあり、このことがスイッチング素子の突発的な破損をもたらしていたものと考える。   As a result of various examinations by experiments in order to solve the above problem, in a high frequency power supply of a full bridge type circuit, a pulse is applied to the gate electrode of the switching element in the OFF state of two switching elements having a serial connection configuration. As a result, it was inferred that the two switching elements in the series connection configuration are both turned on, and a large current flows through the switching elements, leading to destruction. In particular, when the power supply side resonance circuit is viewed from a full-bridge circuit, the impedance of the circuit network including the power supply side resonance circuit, the power reception side resonance circuit, and the load circuit that is supplied with power from the power reception side resonance circuit It has been found that when the imaginary part (reactance) becomes capacitive (capacitive reactance), pulse-like noise frequently occurs on the gate electrode of the switching element. Conventionally, high-efficiency wireless power transmission is achieved by driving a wireless power transmission system at a frequency where the absolute value of the impedance when the resonance frequency, that is, the coupled resonance system is viewed, or the phase of the impedance is zero. It was supposed to be possible. However, the resonance frequency, that is, the frequency at which the impedance phase is close to zero is also a region where the reactance can suddenly become capacitive reactance, and this is considered to have caused the sudden breakage of the switching element.

本発明は、上述の実験検討をもとになされたものであり、複数のスイッチング素子を有するフルブリッジ型回路と、給電コイルと給電側コンデンサよりなる給電側共振回路と、受電コイルと受電側コンデンサよりなる受電側共振回路と、を備えるワイヤレス電力伝送システムにおいて、フルブリッジ型回路の動作周波数をf、動作周波数の変化分をδf、フルブリッジ型回路から給電側共振回路を見たときに、給電側共振回路と受電側共振回路と受電側共振回路から電力が供給される負荷回路を有する回路で構成されるワイヤレス電力伝送網のインピーダンスの虚部をX、虚部の動作周波数に対する変化分をδXとすると、動作周波数fは、以下の式(1)および式(2)を満たす。
X>0 式(1)
δX/δf≧0 式(2)
こうすることにより、フルブリッジ型回路に含まれるスイッチング素子のゲート電極上にパルス状のノイズが加わることがないことから、スイッチング素子の破損の虞が無く、ワイヤレス電力伝送システムを高効率で安定に動作させることができる。
The present invention has been made on the basis of the above-described experimental study, and is a full-bridge circuit having a plurality of switching elements, a power supply side resonance circuit including a power supply coil and a power supply side capacitor, a power reception coil, and a power reception side capacitor. In a wireless power transmission system comprising: a power-receiving-side resonance circuit comprising: a full-bridge circuit operating frequency f; a change in operating frequency δf; X is the imaginary part of the impedance of the wireless power transmission network composed of the side resonance circuit, the power reception side resonance circuit, and the circuit having the load circuit to which power is supplied from the power reception side resonance circuit, and δX Then, the operating frequency f satisfies the following formulas (1) and (2).
X> 0 Formula (1)
δX / δf ≧ 0 Formula (2)
By doing this, no pulse noise is added to the gate electrode of the switching element included in the full-bridge circuit, so there is no risk of damage to the switching element, and the wireless power transmission system is highly efficient and stable. It can be operated.

好ましくは、フルブリッジ型回路は、フェーズシフト方式により駆動させる。高周波電源をこのような構成としても、直列接続構成されたスイッチング素子がパルス状ノイズにより共にON状態となることが回避できるため、スイッチング素子の破損の虞が無く、ワイヤレス電力伝送システムを高効率で安定に動作させることができる。   Preferably, the full bridge circuit is driven by a phase shift method. Even with such a configuration of the high-frequency power supply, it is possible to avoid that switching elements connected in series are both turned on due to pulsed noise, so there is no risk of damage to the switching elements, and the wireless power transmission system is highly efficient. It can be operated stably.

本発明によれば、給電側共振回路と受電側共振回路との間で非接触で電力伝送を行うワイヤレス電力伝送システムにおいて、その駆動手段としてブリッジ型高周波電源を用いた場合においても、スイッチング素子の破損の虞が無く、高効率で安定した電力伝送が可能なワイヤレス電力伝送システムを提供することができる。   According to the present invention, in a wireless power transmission system that performs non-contact power transmission between a power supply side resonance circuit and a power reception side resonance circuit, even when a bridge type high frequency power source is used as the driving means, It is possible to provide a wireless power transmission system that is capable of high-efficiency and stable power transmission without fear of breakage.

本発明の第1の実施形態によるワイヤレス電力伝送システムを示す図である。1 is a diagram illustrating a wireless power transmission system according to a first embodiment of the present invention. 第1の実施形態におけるワイヤレス電力伝送網のインピーダンスの虚部および電力伝送効率を示すグラフである。It is a graph which shows the imaginary part of the impedance of the wireless power transmission network in 1st Embodiment, and power transmission efficiency. 本発明の第2の実施形態によるワイヤレス電力伝送システムを示す図である。It is a figure which shows the wireless power transmission system by the 2nd Embodiment of this invention. 第2の実施形態におけるワイヤレス電力伝送網のインピーダンスの虚部および電力伝送効率を示すグラフである。It is a graph which shows the imaginary part of the impedance and power transmission efficiency of the wireless power transmission network in 2nd Embodiment. 高周波電源となるブリッジ型回路を示す図である。It is a figure which shows the bridge type circuit used as a high frequency power supply.

以下、添付図面を参照しながら、本発明の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図5をもとに、以下に述べる本発明の実施形態において用いるフルブリッジ型回路よりなる高周波電源10について説明する。図5において、4つのスイッチング素子Q1〜Q4よりなるのが高周波電源10であり、この回路に直流電源20より直流電圧を印加し、制御回路30により各スイッチング素子Q1〜Q4のON/OFFを制御することにより、出力端より高周波電力が出力される。スイッチング素子Q1〜Q4には、MOSFET半導体スイッチを用いることができ、MOSFETのゲート電極(図中にGで示す)に制御回路から電圧を印加することによりON/OFFを制御できる。図5において、Q1=Q4=ON、Q2=Q3=OFF(第1期間)、Q1=Q2=Q3=Q4=OFF(第2期間)、Q2=Q3=ON、Q1=Q4=OFF(第3期間)、Q1=Q2=Q3=Q4=OFF(第4期間)とし、このサイクルを繰り返すことで、サイクル周期に対応した周波数の高周波電力を出力させることができる。また、フェーズシフト方式とは、サイクルのスタート点において、Q1とQ4とを同時にON状態とせずに、Q4がON状態となる時刻をある幅(フェーズ)だけQ1から遅らせて動作させるものである。このような動作方式では、4つのスイッチング素子Q1〜Q4がすべてOFFとなっている期間は短くなる。   First, a high-frequency power source 10 composed of a full-bridge circuit used in the embodiment of the present invention described below will be described with reference to FIG. In FIG. 5, the high frequency power supply 10 includes four switching elements Q1 to Q4. A DC voltage is applied to the circuit from the DC power supply 20, and the control circuit 30 controls ON / OFF of the switching elements Q1 to Q4. Thus, high frequency power is output from the output end. As the switching elements Q1 to Q4, MOSFET semiconductor switches can be used, and ON / OFF can be controlled by applying a voltage from the control circuit to the gate electrode (indicated by G in the figure) of the MOSFET. In FIG. 5, Q1 = Q4 = ON, Q2 = Q3 = OFF (first period), Q1 = Q2 = Q3 = Q4 = OFF (second period), Q2 = Q3 = ON, Q1 = Q4 = OFF (third Period), Q1 = Q2 = Q3 = Q4 = OFF (fourth period), and by repeating this cycle, high frequency power having a frequency corresponding to the cycle period can be output. In the phase shift method, Q1 and Q4 are not turned on at the same time at the start point of the cycle, and the time when Q4 is turned on is delayed from Q1 by a certain width (phase). In such an operation method, the period during which all of the four switching elements Q1 to Q4 are OFF is shortened.

図5において、Q1とQ2とが直列に接続されている部分をみると、Q1がONの時にはQ2はOFFであり、よって直流電源20より供給される電流は、出力端に接続される負荷へと流れる。ここで、OFFであるQ2のゲート電極にパルス状のノイズが加わると、Q1、Q2が共にON状態となってしまい。Q1とQ2が直列に接続された回路は短絡状態となる。よって、ここに大電流が流れ、MOSFET素子の破損に到る。このパルス状ノイズの発生は、高周波電源10の出力に接続される負荷のインピーダンス、さらに詳しくはインピーダンスの位相に依存する。   In FIG. 5, when looking at the part where Q1 and Q2 are connected in series, when Q1 is ON, Q2 is OFF, so that the current supplied from the DC power supply 20 is directed to the load connected to the output terminal. And flow. Here, if pulse-like noise is applied to the gate electrode of Q2 which is OFF, both Q1 and Q2 are turned on. A circuit in which Q1 and Q2 are connected in series is short-circuited. Therefore, a large current flows here, resulting in damage to the MOSFET element. The generation of the pulse noise depends on the impedance of the load connected to the output of the high frequency power supply 10, more specifically, the phase of the impedance.

[第1の実施形態]
図1は、本発明に係る第1の実施形態によるワイヤレス電力伝送システム100を示す図である。図1に示すように、本実施形態によるワイヤレス電力伝送システム100は、図5をもとに説明した高周波電源10、直流電源20、高周波電源の制御回路30、給電コイルL2とそれに直列に接続されたコンデンサC2よりなる給電側共振回路40、受電コイルL3とそれに直列に接続されたコンデンサC3よりなる受電側共振回路50および負荷回路60よりなる。給電側共振回路40の給電コイルL2と受電側共振回路50の受電コイルL3とは電磁結合をし、給電コイルL2から受電コイルL3へとワイヤレス電力伝送がなされる。尚、本実施形態では、高周波電源10の出力端と給電側共振回路40との間にリアクトル70を配置しているが、このリアクトルは無くてもワイヤレス電力伝送システムとして動作させることができる。このリアクトル70を含む、給電側共振回路40、受電側共振回路50および負荷回路60をワイヤレス電力伝送網80と呼ぶ。リアクトル70を使用しない場合も含めて、高周波電源10の出力端につながる回路がワイヤレス電力伝送網80である。
[First Embodiment]
FIG. 1 is a diagram illustrating a wireless power transmission system 100 according to a first embodiment of the present invention. As shown in FIG. 1, the wireless power transmission system 100 according to the present embodiment is connected to the high-frequency power source 10, the DC power source 20, the control circuit 30 for the high-frequency power source, and the feeding coil L2 described in FIG. The power supply side resonance circuit 40 is composed of the capacitor C2, the power reception coil L3, and the power reception side resonance circuit 50 and the load circuit 60 are composed of the capacitor C3 connected in series therewith. The power supply coil L2 of the power supply side resonance circuit 40 and the power reception coil L3 of the power reception side resonance circuit 50 are electromagnetically coupled, and wireless power transmission is performed from the power supply coil L2 to the power reception coil L3. In the present embodiment, the reactor 70 is disposed between the output end of the high-frequency power supply 10 and the power supply side resonance circuit 40. However, even if this reactor is not provided, it can be operated as a wireless power transmission system. The power supply side resonance circuit 40, the power reception side resonance circuit 50, and the load circuit 60 including the reactor 70 are referred to as a wireless power transmission network 80. The wireless power transmission network 80 is a circuit connected to the output terminal of the high frequency power supply 10 including the case where the reactor 70 is not used.

図2は、高周波電源10の出力端から見た上述のワイヤレス電力伝送網80のインピーダンスZ(=R+jX)の虚部すなわちリアクタンスの周波数特性(実線)と、このときの電力伝送効率の動作周波数依存性(破線)を示したグラフである。ここで、Rはワイヤレス電力伝送網80の実抵抗分を表し、Xは虚部すなわちリアクタンスを表す。なお、jは虚数単位である。このリアクタンスの周波数特性をもとに、ワイヤレス電力伝送システム100の動作周波数を4つの領域に分けて検討する。領域1は、リアクタンスが容量性リアクタンスから共振周波数までの周波数範囲であり、領域2は、誘導性リアクタンスとなりその傾き(周波数微分)がゼロ以上となっている周波数範囲であり、領域3は、リアクタンスは誘導性リアクタンスであるがその傾きが負となっている周波数範囲であり、領域4は、領域2と同様リアクタンスが誘導性リアクタンスであると同時にその傾きがゼロ以上となっている周波数範囲である。以上の4つの領域のそれぞれについて、動作周波数(駆動周波数)をそれぞれの領域の範囲内としたワイヤレス電力伝送を行うと、領域1および領域3では長時間動作の間にスイッチング素子の破損が起こることがあるが、領域2および領域3では長時間動作でもスイッチング素子の破損は起こらず、安定したワイヤレス電力伝送ができる。すなわち、高周波電源10の動作周波数をf、動作周波数の変化分をδf、高周波電源10の出力端から見たワイヤレス電力伝送網80のインピーダンスの虚部(リアクタンス)をX、虚部(リアクタンス)の動作周波数に対する変化分をδXとすると、動作周波数fは、以下の式(1)および式(2)を満たすと、スイッチング素子の破損は起こらず、安定したワイヤレス電力伝送ができることとなる。
X>0 式(1)
δX/δf≧0 式(2)
なお、電力伝送効率の観点から言えば、図2から明らかなように、領域4よりも領域2での動作が好ましい。
FIG. 2 shows the imaginary part of the impedance Z (= R + jX) of the wireless power transmission network 80 as viewed from the output terminal of the high-frequency power supply 10, that is, the frequency characteristic (solid line) of reactance, and the power transmission efficiency at this time depends on the operating frequency. It is the graph which showed the property (broken line). Here, R represents the actual resistance of the wireless power transmission network 80, and X represents the imaginary part, that is, the reactance. J is an imaginary unit. Based on the frequency characteristic of the reactance, the operating frequency of the wireless power transmission system 100 is examined by dividing it into four regions. Region 1 is a frequency range in which the reactance is from the capacitive reactance to the resonance frequency, region 2 is an inductive reactance, and its slope (frequency differentiation) is zero or more, and region 3 is the reactance. Is an inductive reactance frequency range in which the slope is negative, and region 4 is a frequency range in which the reactance is inductive reactance as in region 2 and at the same time the slope is greater than or equal to zero. . In each of the above four areas, if wireless power transmission is performed with the operating frequency (driving frequency) within the range of each area, the switching elements in the areas 1 and 3 may be damaged during long-time operation. However, in the region 2 and the region 3, the switching element is not damaged even when operated for a long time, and stable wireless power transmission can be performed. That is, the operating frequency of the high-frequency power supply 10 is f, the change in the operating frequency is δf, the imaginary part (reactance) of the impedance of the wireless power transmission network 80 viewed from the output end of the high-frequency power supply 10 is X, and the imaginary part (reactance) Assuming that the change with respect to the operating frequency is δX, if the operating frequency f satisfies the following formulas (1) and (2), the switching element is not damaged, and stable wireless power transmission can be performed.
X> 0 Formula (1)
δX / δf ≧ 0 Formula (2)
From the viewpoint of power transmission efficiency, as apparent from FIG. 2, the operation in the region 2 is preferable to the region 4.

[第2の実施形態]
図3は、本発明に係る第2の実施形態によるワイヤレス電力伝送システム200を示す図である。図3に示すように、本実施形態によるワイヤレス電力伝送システム200は、図5をもとに説明した高周波電源10、直流電源20、高周波電源の制御回路30、給電コイルL2とそれに直列に接続されたコンデンサC2よりなる給電側共振回路40、給電コイルL2と電磁誘導結合して給電側共振回路40に電力を供給するコイルL1、受電コイルL3とそれに直列に接続されたコンデンサC3よりなる受電側共振回路50、受電コイルL3と電磁誘導結合して受電共振回路から電力を取り出すコイルL4および負荷回路60よりなる。給電側共振回路40の給電コイルL2と受電側共振回路50の受電コイルL3とは電磁結合をし、給電コイルL2から受電コイルL3へとワイヤレス電力伝送がなされる。尚、本実施形態においても、L1、給電側共振回路40、受電側共振回路50、L4、負荷回路60を含めてワイヤレス電力伝送網90と呼ぶ。すなわち、高周波電源10の出力端につながる回路がワイヤレス電力伝送網90である。
[Second Embodiment]
FIG. 3 is a diagram illustrating a wireless power transmission system 200 according to a second embodiment of the present invention. As shown in FIG. 3, the wireless power transmission system 200 according to the present embodiment is connected in series with the high-frequency power source 10, the DC power source 20, the control circuit 30 for the high-frequency power source described above with reference to FIG. The power supply side resonance circuit 40 including the capacitor C2 and the coil L1 electromagnetically coupled to the power supply coil L2 to supply power to the power supply side resonance circuit 40, the power reception coil L3 and the power reception side resonance including the capacitor C3 connected in series thereto. A circuit 50, a coil L4 that electromagnetically couples with the power receiving coil L3, and extracts power from the power receiving resonance circuit, and a load circuit 60. The power supply coil L2 of the power supply side resonance circuit 40 and the power reception coil L3 of the power reception side resonance circuit 50 are electromagnetically coupled, and wireless power transmission is performed from the power supply coil L2 to the power reception coil L3. In the present embodiment, L1, the power supply side resonance circuit 40, the power reception side resonance circuits 50 and L4, and the load circuit 60 are collectively referred to as a wireless power transmission network 90. That is, the circuit connected to the output terminal of the high frequency power supply 10 is the wireless power transmission network 90.

図4は、高周波電源10の出力端から見た上述のワイヤレス電力伝送網90のインピーダンスZ(=R+jX)の虚部すなわちリアクタンスの周波数特性(実線)と、このときの電力伝送効率の動作周波数依存性(破線)を示したグラフである。ここで、Rはワイヤレス電力伝送網90の実抵抗分を表し、Xは虚部すなわちリアクタンスを表す。なお、jは虚数単位である。このリアクタンスの周波数特性をもとに、ワイヤレス電力伝送システム200の動作周波数を6つの領域に分けて検討する。領域1は、リアクタンスが誘導性リアクタンスでありその傾きがゼロ以上となっている周波数範囲であり、領域2は、リアクタンスは誘導性リアクタンスであるが、その傾きが負となっている周波数領域であり、領域3は、二つの共振点に挟まれたリアクタンスが容量性リアクタンスとなっている周波数範囲であり、領域4は、リアクタンスが誘導性リアクタンスでありその傾きがゼロ以上となっている周波数範囲であり、領域5は、リアクタンスは誘導性リアクタンスであるが、その傾きが負となっている周波数領域であり、領域6は、リアクタンスが誘導性リアクタンスでありその傾きがゼロ以上となっている周波数範囲である。以上の6つの領域のそれぞれについて、動作周波数(駆動周波数)をそれぞれの領域の範囲内としたワイヤレス電力伝送を行うと、領域2、領域3および領域5では長時間動作の間にスイッチング素子の破損が起こることがあるが、領域1、領域4および領域6では長時間動作でもスイッチング素子の破損は起こらず、安定したワイヤレス電力伝送ができる。すなわち、高周波電源10の動作周波数をf、動作周波数の変化分をδf、高周波電源10の出力端から見たワイヤレス電力伝送網90のインピーダンスの虚部(リアクタンス)をX、虚部(リアクタンス)の動作周波数に対する変化分をδXとすると、動作周波数fは、以下の式(1)および式(2)を満たすと、スイッチング素子の破損は起こらず、安定したワイヤレス電力伝送ができることとなる。
X>0 式(1)
δX/δf≧0 式(2)
なお、電力伝送効率の観点から言えば、図4から明らかなように、領域1、領域6よりも領域4での動作が好ましい。
FIG. 4 shows the imaginary part of the impedance Z (= R + jX) of the wireless power transmission network 90 as seen from the output terminal of the high-frequency power supply 10, that is, the frequency characteristic (solid line) of reactance, and the power transmission efficiency at this time depends on the operating frequency. It is the graph which showed the property (broken line). Here, R represents the actual resistance of the wireless power transmission network 90, and X represents the imaginary part, that is, the reactance. J is an imaginary unit. Based on the frequency characteristic of the reactance, the operating frequency of the wireless power transmission system 200 is examined by dividing it into six regions. Region 1 is a frequency range in which the reactance is inductive reactance and the slope is zero or more, and region 2 is a frequency range in which the reactance is inductive reactance but the slope is negative. Region 3 is a frequency range in which the reactance sandwiched between the two resonance points is a capacitive reactance, and region 4 is a frequency range in which the reactance is an inductive reactance and the slope thereof is zero or more. Yes, region 5 is a frequency region in which the reactance is inductive reactance but its slope is negative, and region 6 is a frequency range in which the reactance is inductive reactance and the slope is zero or more. It is. In each of the above six areas, when wireless power transmission is performed with the operating frequency (driving frequency) within the range of each area, the switching elements in the areas 2, 3, and 5 are damaged during long-time operation. However, in the regions 1, 4 and 6, the switching element is not damaged even during long-time operation, and stable wireless power transmission can be performed. That is, the operating frequency of the high-frequency power supply 10 is f, the change in the operating frequency is δf, the imaginary part (reactance) of the impedance of the wireless power transmission network 90 viewed from the output end of the high-frequency power supply 10 is X, and the imaginary part (reactance) Assuming that the change with respect to the operating frequency is δX, if the operating frequency f satisfies the following formulas (1) and (2), the switching element is not damaged, and stable wireless power transmission can be performed.
X> 0 Formula (1)
δX / δf ≧ 0 Formula (2)
From the viewpoint of power transmission efficiency, as is apparent from FIG. 4, the operation in the region 4 is preferable to the regions 1 and 6.

以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。   The present invention has been described based on the embodiments. It will be understood by those skilled in the art that the embodiments are illustrative, and that various modifications and changes are possible within the scope of the claims of the present invention, and that such modifications and changes are also within the scope of the claims of the present invention. By the way. Accordingly, the description and drawings herein are to be regarded as illustrative rather than restrictive.

例えば、給電コイルから受電コイルへの電力伝送手段としては、いかなる方式にも適用可能である。すなわち、給電コイルが電磁誘導によって電力を送電し、受電コイルが電磁誘導によって給電コイルからの電力を受電する方式であってもよい。また、給電コイルが磁界共鳴によって電力を送電し、受電コイルが磁界共鳴によって給電コイルからの電力を受電する方式であってもよい。   For example, any method can be applied as power transmission means from the power feeding coil to the power receiving coil. In other words, the power feeding coil may transmit power by electromagnetic induction, and the power receiving coil may receive power from the power feeding coil by electromagnetic induction. Alternatively, a method may be employed in which the power feeding coil transmits power by magnetic field resonance and the power receiving coil receives power from the power feeding coil by magnetic field resonance.

本発明に係るワイヤレス電力伝送システムによれば、携帯端末等のワイヤレス充電のみならず、高電圧、大容量を必要とする電気自動車等へのワイヤレス充電も安定して行うことができる。   According to the wireless power transmission system of the present invention, not only wireless charging of a portable terminal or the like but also wireless charging of an electric vehicle or the like that requires high voltage and large capacity can be stably performed.

10 高周波電源
20 直流電源
30 制御回路
40 給電側共振回路
50 受電側共振回路
60 負荷回路
70 リアクトル
80、90 ワイヤレス電力伝送網
100、200 ワイヤレス電力伝送システム
DESCRIPTION OF SYMBOLS 10 High frequency power supply 20 DC power supply 30 Control circuit 40 Power supply side resonance circuit 50 Power reception side resonance circuit 60 Load circuit 70 Reactor 80, 90 Wireless power transmission network 100, 200 Wireless power transmission system

Claims (2)

複数のスイッチング素子を有するフルブリッジ型回路と、
給電コイルと給電側コンデンサよりなる給電側共振回路と、
受電コイルと受電側コンデンサよりなる受電側共振回路と、を備えるワイヤレス電力伝送システムにおいて、
前記フルブリッジ型回路の動作周波数をf、前記動作周波数の変化分をδf、前記フルブリッジ型回路から前記給電側共振回路を見たときに、前記給電側共振回路と前記受電側共振回路と前記受電側共振回路から電力が供給される負荷回路を有する回路で構成されるワイヤレス電力伝送網のインピーダンスの虚部をX、前記虚部の前記動作周波数に対する変化分をδXとすると、
前記動作周波数fは、以下の式(1)および式(2)を満たすワイヤレス電力伝送システム。
X>0 式(1)
δX/δf≧0 式(2)
A full-bridge circuit having a plurality of switching elements;
A power supply side resonance circuit comprising a power supply coil and a power supply side capacitor;
In a wireless power transmission system including a power receiving coil and a power receiving side resonance circuit including a power receiving side capacitor,
When the operating frequency of the full-bridge circuit is f, the change of the operating frequency is δf, and the power-feeding-side resonance circuit is viewed from the full-bridge circuit, the power-feeding-side resonance circuit, the power-receiving-side resonance circuit, and the When the imaginary part of the impedance of the wireless power transmission network composed of a circuit having a load circuit to which power is supplied from the power-receiving-side resonance circuit is X, and the change of the imaginary part with respect to the operating frequency is δX,
The operating frequency f is a wireless power transmission system that satisfies the following equations (1) and (2).
X> 0 Formula (1)
δX / δf ≧ 0 Formula (2)
前記フルブリッジ型回路は、フェーズシフト方式により駆動させる請求項1に記載のワイヤレス電力伝送システム。   The wireless power transmission system according to claim 1, wherein the full bridge circuit is driven by a phase shift method.
JP2012278129A 2012-12-20 2012-12-20 Wireless power transmission system Active JP6094205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012278129A JP6094205B2 (en) 2012-12-20 2012-12-20 Wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012278129A JP6094205B2 (en) 2012-12-20 2012-12-20 Wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2014124020A true JP2014124020A (en) 2014-07-03
JP6094205B2 JP6094205B2 (en) 2017-03-15

Family

ID=51404114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278129A Active JP6094205B2 (en) 2012-12-20 2012-12-20 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP6094205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005790A (en) * 2015-06-05 2017-01-05 Tdk株式会社 Wireless power transmission system
KR20190015861A (en) * 2017-08-07 2019-02-15 르노삼성자동차 주식회사 The tilting algorithm for achieving high efficiency on wireless charging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299265A (en) * 2007-06-04 2008-12-11 Funai Electric Co Ltd Liquid crystal display
JP2010233442A (en) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd Apparatus and method for supplying power in non-contact manner
JP2010252446A (en) * 2009-04-13 2010-11-04 Nippon Soken Inc Contactless power supply equipment, contactless power receiver, and contactless power supply system
JP2012120253A (en) * 2010-11-29 2012-06-21 Equos Research Co Ltd Power transmission system
JP2012210117A (en) * 2011-03-30 2012-10-25 Equos Research Co Ltd Power transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299265A (en) * 2007-06-04 2008-12-11 Funai Electric Co Ltd Liquid crystal display
JP2010233442A (en) * 2009-03-06 2010-10-14 Nissan Motor Co Ltd Apparatus and method for supplying power in non-contact manner
JP2010252446A (en) * 2009-04-13 2010-11-04 Nippon Soken Inc Contactless power supply equipment, contactless power receiver, and contactless power supply system
JP2012120253A (en) * 2010-11-29 2012-06-21 Equos Research Co Ltd Power transmission system
JP2012210117A (en) * 2011-03-30 2012-10-25 Equos Research Co Ltd Power transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005790A (en) * 2015-06-05 2017-01-05 Tdk株式会社 Wireless power transmission system
KR20190015861A (en) * 2017-08-07 2019-02-15 르노삼성자동차 주식회사 The tilting algorithm for achieving high efficiency on wireless charging system
KR102398054B1 (en) 2017-08-07 2022-05-13 르노코리아자동차 주식회사 The tilting algorithm for achieving high efficiency on wireless charging system

Also Published As

Publication number Publication date
JP6094205B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
EP2950415B1 (en) Wireless power transmission system and power transmission device of wireless power transmission system
EP2908405B1 (en) Wireless Power Transmission System and Power Transmitting Device
US20140175868A1 (en) Electric power supply apparatus, contactless electricity transmission apparatus, vehicle, and contactless electric power transfer system
US9225176B2 (en) Apparatus and method for high efficiency variable power transmission
US20160064951A1 (en) Wireless power transmission system and power transmission device
JP5550785B2 (en) Circuit of contactless inductive power transmission system
JP6135471B2 (en) Power transmission device and wireless power transmission system using the same
KR20170055426A (en) Non-contact power transmission system
JP2018026961A (en) Switching power supply device
US20110227545A1 (en) Vibration power generator, vibration power generating device and communication device having vibration power generating device mounted thereon
JP5862844B2 (en) Wireless power transmission system
WO2013136409A1 (en) Power-receiving device and control method for power-receiving device, and computer program
JP5788819B2 (en) Power supply device, power transmission device, and power transmission system
JP5852225B2 (en) Power receiving apparatus and power receiving method
CN104981964B (en) Wireless power transmission apparatus and its method
JP2019103386A (en) Wireless power reception device, and wireless power transmission system using the same
JP6102242B2 (en) Wireless power supply device and wireless power transmission device
JP6094205B2 (en) Wireless power transmission system
JP6593648B2 (en) Power receiving apparatus and wireless power transmission system
Elekhtiar et al. Design of a capacitive power transfer system for charging of electric vehicles
JP2014233197A (en) Inductive power transmission device
JP2013215066A (en) Power transmission system
JP5587697B2 (en) Electric field coupling contactless power supply system
WO2021199303A1 (en) Wireless power supply system
Chao et al. Series-parallel loosely coupled battery charger with primary-side control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150