JP2017005790A - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JP2017005790A
JP2017005790A JP2015114626A JP2015114626A JP2017005790A JP 2017005790 A JP2017005790 A JP 2017005790A JP 2015114626 A JP2015114626 A JP 2015114626A JP 2015114626 A JP2015114626 A JP 2015114626A JP 2017005790 A JP2017005790 A JP 2017005790A
Authority
JP
Japan
Prior art keywords
power
load
power transmission
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015114626A
Other languages
Japanese (ja)
Inventor
仁義 倉田
Hitoyoshi Kurata
仁義 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015114626A priority Critical patent/JP2017005790A/en
Publication of JP2017005790A publication Critical patent/JP2017005790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission system in which variation in the voltage across a load for the variation in the equivalent resistance of the load is suppressed.SOLUTION: A wireless power transmission system includes a transmission side resonance circuit 130 having a power transmission coil L1 and a transmission side capacitor C1, a driver circuit 120 for supplying the transmission side resonance circuit with an AC current at a drive frequency, a reception side resonance circuit 230 having a power reception coil L2 and a reception side capacitor C2, and a load to which power is supplied from the power reception side resonance circuit. When viewing the power transmission side resonance circuit from the driver circuit, the formula of F matrix of a four-terminal network, constituted of the power transmission side resonance circuit and power reception side resonance circuit, is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、ワイヤレス電力伝送システムに関するものである。   The present invention relates to a wireless power transmission system.

電源ケーブルを用いることなく、例えば電気自動車のバッテリーなどに、外部から大きな電力をワイヤレスで供給するワイヤレス給電技術が注目されている。   For example, a wireless power feeding technique for supplying a large amount of power wirelessly from the outside to a battery of an electric vehicle, for example, without using a power cable has attracted attention.

非特許文献1には、送電装置と受電装置を同じ共振周波数で電磁的に共振させる手法を用いて、ワイヤレスで電力を伝送するものが提案されている。   Non-Patent Document 1 proposes a method of transmitting power wirelessly using a method of electromagnetically resonating a power transmitting device and a power receiving device at the same resonance frequency.

Karalis A.et al (Wireless Power Transfer via Strolngly Coupled Magnetic Resonances) Sience,vol 317,no.5834,pp.83−86,2007.Karalis A. et al (Wireless Power Transfer via Strongly Coupled Magnetic Resonances) Science, vol 317, no. 5834, pp. 83-86, 2007.

非特許文献1では、送電側から受電側にワイヤレスで伝送される電力PDSはPDS≡−iωMIで示されている。ここで、負荷の両端電圧をVo、負荷の等価抵抗をRLとし、送電側から受電側にワイヤレスで伝送される電力PDSがすべて負荷で消費されるとすると、電力PDSはPDS=Vo/RLと表すことができる。これを非特許文献1で示されている式に代入して絶対値で表すと、負荷の両端電圧は、Vo=ω・M・Is・I・RLとなる。つまり、送電装置の周波数ωや送電装置と受電装置の電磁的な結合状態を示す相互インダクタンスMが固定されていたとしても、負荷の等価抵抗RLの状態によって負荷の両端電圧Voが変動する場合がある。 In Non-Patent Document 1, the power P DS transmitted wirelessly from the power transmission side to the power reception side is indicated by P DS ≡−iωMI S ID . Here, when the voltage across the load Vo, the equivalent resistance of the load and RL, the power P DS transmitted wirelessly to the receiving side from the transmitting side is consumed by all the load, the power P DS is P DS = Vo 2 / RL. When this is substituted into the equation shown in Non-Patent Document 1 and expressed as an absolute value, the voltage across the load is Vo 2 = ω · M · Is · ID · RL. In other words, even if the mutual inductance M indicating the frequency ω of the power transmission device and the electromagnetic coupling state between the power transmission device and the power reception device is fixed, the voltage Vo across the load may vary depending on the state of the equivalent resistance RL of the load. is there.

しかしながら、非特許文献1に開示された技術では、負荷の等価抵抗RLの変動に対して何ら考慮されておらず、負荷の等価抵抗RLの状態によっては、負荷の両端電圧が大きく変動するという課題があった。   However, in the technique disclosed in Non-Patent Document 1, no consideration is given to fluctuations in the equivalent resistance RL of the load, and the voltage across the load varies greatly depending on the state of the equivalent resistance RL of the load. was there.

本発明は上記課題に鑑みてなされたものであり、負荷の等価抵抗の変動に対する負荷の両端電圧の変動を抑制したワイヤレス電力伝送システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a wireless power transmission system in which fluctuations in the voltage across the load with respect to fluctuations in the equivalent resistance of the load are suppressed.

本発明に係るワイヤレス電力伝送システムは、送電装置から受電装置に対してワイヤレスにて交流電力を伝送するワイヤレス電力伝送システムであって、送電装置は、送電コイルと送電側コンデンサ部を有する送電側共振回路と、送電側共振回路に駆動周波数にて交流電流を供給する駆動回路と、を備え、受電装置は、受電コイルと受電側コンデンサ部を有する受電側共振回路と、受電側共振回路から電力が供給される負荷と、を備え、駆動回路から送電側共振回路を見たときに、送電側共振回路と受電側共振回路で構成される四端子回路網のFマトリックスを式(1)、四端子回路網のFマトリックスのAの実部をRa、虚部をXa、四端子回路網のFマトリックスのBの実部をRb、虚部をXb、負荷の等価抵抗をRL0とすると、FマトリックスのAおよびBは、以下の式(2)、(3)、(4)を満たすことを特徴とする。   A wireless power transmission system according to the present invention is a wireless power transmission system that wirelessly transmits AC power from a power transmission device to a power reception device, and the power transmission device includes a power transmission coil and a power transmission side capacitor unit. And a drive circuit that supplies an alternating current to the power transmission side resonance circuit at a drive frequency, and the power reception device includes a power reception side resonance circuit having a power reception coil and a power reception side capacitor, and power from the power reception side resonance circuit. And when the power transmission side resonance circuit is viewed from the drive circuit, an F matrix of a four-terminal network composed of the power transmission side resonance circuit and the power reception side resonance circuit is expressed by Equation (1), The real part of A in the F matrix of the network is Ra, the imaginary part is Xa, the real part of B in the F matrix of the four-terminal network is Rb, the imaginary part is Xb, and the equivalent resistance of the load is RL0. Helix A and B, the following equation (2), (3), and satisfies the (4).

Figure 2017005790
(但し、j=−1である。)
Figure 2017005790
(However, j 2 = −1.)

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

本発明によれば、ワイヤレス電力伝送システムの送電側共振回路と受電側共振回路で構成される四端子回路網のFマトリックスのAおよびBが、式(2)、(3)、(4)を満たすように四端子回路網が構成されるので、負荷変動しても負荷の両端電圧の変化を±10%以下に抑えることができる。具体的には、負荷がバッテリーチャージャーなどの電源回路の場合、電源回路の入力電圧許容範囲は通常±10%に規定されており、その範囲を超える電圧の入力は、電源回路を構成する部品に対して高い負荷を与える、又は停止させる虞がある。本発明に係るワイヤレス電力伝送システムは、負荷である電源回路の等価抵抗が変動しても負荷である電源回路の入力電圧の変動を電源回路の入力電圧許容範囲である±10%以下に抑制することができる。すなわち、負荷の等価抵抗の変動に対して負荷の両端電圧の変動を抑制できる。   According to the present invention, A and B of an F matrix of a four-terminal network composed of a power transmission side resonance circuit and a power reception side resonance circuit of a wireless power transmission system are expressed by the following equations (2), (3), and (4). Since the four-terminal network is configured so as to satisfy, the change in the voltage across the load can be suppressed to ± 10% or less even if the load fluctuates. Specifically, when the load is a power supply circuit such as a battery charger, the input voltage allowable range of the power supply circuit is normally defined as ± 10%, and input of a voltage exceeding that range is applied to the components constituting the power supply circuit. On the other hand, there is a risk of applying a high load or stopping the operation. The wireless power transmission system according to the present invention suppresses fluctuations in the input voltage of the power supply circuit that is the load to ± 10% or less, which is the allowable input voltage range of the power supply circuit, even if the equivalent resistance of the power supply circuit that is the load varies. be able to. That is, the fluctuation of the voltage across the load can be suppressed with respect to the fluctuation of the equivalent resistance of the load.

好ましくは、駆動周波数をf、駆動周波数fの変化分をδf、送電側共振回路と受電側共振回路と負荷で構成されるワイヤレス電力伝送網のインピーダンスの虚部をX、虚部Xの駆動周波数fに対する変化分をδXとすると、駆動周波数fは、以下の式(5)および式(6)を満たすとよい。   Preferably, the drive frequency is f, the change in the drive frequency f is δf, the imaginary part of the impedance of the wireless power transmission network composed of the power transmission side resonance circuit, the power reception side resonance circuit and the load is X, and the drive frequency of the imaginary part X If the change with respect to f is δX, the drive frequency f may satisfy the following expressions (5) and (6).

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

この場合、駆動周波数fが式(5)を満たすことにより、インピーダンスの位相が0でなく且つ誘導性であるので、駆動回路から送電コイル側に対して突入電流などの過度な電流の出力を抑制することができる。また、駆動周波数fが式(6)を満たすことにより、駆動回路から送電コイル側に供給される時間平均当たりの電力が正となり、駆動回路側への電力の戻りがないので、駆動回路を構成する部品への負荷を抑制できる。   In this case, since the impedance phase is not 0 and inductive when the drive frequency f satisfies Expression (5), the output of excessive current such as inrush current from the drive circuit to the power transmission coil side is suppressed. can do. Further, when the drive frequency f satisfies the formula (6), the power per time average supplied from the drive circuit to the power transmission coil side becomes positive, and there is no return of power to the drive circuit side, so that the drive circuit is configured. The load on the parts to be performed can be suppressed.

好ましくは、送電装置は、駆動周波数を制御する制御回路をさらに備え、受電装置は、負荷の両端電圧を検出する出力電圧検出回路をさらに備え、負荷は、受電コイルが受電した交流電力を整流する整流回路と、整流回路の出力端子間に接続される可変負荷と、可変負荷に対して並列に接続されるスイッチ素子とスイッチ素子に直列に接続される抵抗素子で構成される疑似負荷と、を含み、制御回路は、スイッチ素子がオン状態のときに出力電圧検出回路が検出した電圧値とスイッチ素子がオフ状態のときに出力電圧検出回路が検出した電圧値との差が最小となる周波数に駆動周波数を設定する周波数探索動作を行ってもよい。この場合、スイッチ素子をオン状態とオフ状態に切り替えることによって負荷抵抗を変化させて、負荷の両端電圧の変化が最小になる周波数を探索する周波数探索動作により、送電装置と受電装置との距離や角度を所望の範囲内に収めることができない場合でも、スイッチ素子と抵抗素子という簡単で安価な手段で負荷変動に対して負荷の両端電圧の変動を最小に抑制することができる。   Preferably, the power transmission device further includes a control circuit that controls the drive frequency, the power reception device further includes an output voltage detection circuit that detects a voltage across the load, and the load rectifies the AC power received by the power reception coil. A rectifier circuit; a variable load connected between output terminals of the rectifier circuit; a pseudo load composed of a switch element connected in parallel to the variable load and a resistance element connected in series to the switch element; The control circuit includes a frequency that minimizes a difference between a voltage value detected by the output voltage detection circuit when the switch element is on and a voltage value detected by the output voltage detection circuit when the switch element is off. You may perform the frequency search operation | movement which sets a drive frequency. In this case, the load resistance is changed by switching the switch element between the on state and the off state, and the distance between the power transmission device and the power reception device is searched by a frequency search operation for searching for a frequency at which the change in the voltage across the load is minimized. Even when the angle cannot fall within a desired range, the fluctuation of the voltage across the load can be minimized with respect to the load fluctuation by a simple and inexpensive means such as a switch element and a resistance element.

好ましくは、送電装置は、駆動周波数を制御する制御回路をさらに備え、受電装置は、負荷の両端電圧を検出する出力電圧検出回路をさらに備え、負荷は、受電コイルが受電した交流電力を整流する整流回路と、整流回路の出力端子間に接続される可変負荷と、可変負荷に対して並列に接続されるスイッチ素子とスイッチ素子に直列に接続される抵抗素子で構成される疑似負荷と、を含み、抵抗素子は、10Ω以下であり、制御回路は、スイッチ素子がオン状態で出力電圧検出回路が検出した電圧値が極大値となる周波数に駆動周波数を設定する周波数探索動作を行ってもよい。この場合、擬似負荷のスイッチ素子をオン状態とすると、負荷が小さな場合(負荷の等価抵抗値が大きい場合)や送受電コイル間の離間距離が大きく磁気的結合が弱い場合でも、出力電圧検出回路は負荷の両端電圧の極大値を検出することができ、且つ、その極大値に対応する周波数は負荷変動に対して負荷の両端電圧の変化が最小となる周波数とほぼ同じとなる。そのため、当該極大値に対応する周波数を駆動回路の周波数に設定してスイッチ素子をオフ状態(遮断状態)に戻した後に電力伝送を行うと、負荷変動に対して負荷の両端電圧の変動を抑制することができる。   Preferably, the power transmission device further includes a control circuit that controls the drive frequency, the power reception device further includes an output voltage detection circuit that detects a voltage across the load, and the load rectifies the AC power received by the power reception coil. A rectifier circuit; a variable load connected between output terminals of the rectifier circuit; a pseudo load composed of a switch element connected in parallel to the variable load and a resistance element connected in series to the switch element; The resistance element is 10Ω or less, and the control circuit may perform a frequency search operation for setting the drive frequency to a frequency at which the voltage value detected by the output voltage detection circuit becomes a maximum value when the switch element is on. . In this case, when the switch element of the pseudo load is turned on, the output voltage detection circuit can be used even when the load is small (when the equivalent resistance value of the load is large) or when the separation distance between the transmitting and receiving coils is large and the magnetic coupling is weak. Can detect the maximum value of the voltage at both ends of the load, and the frequency corresponding to the maximum value is substantially the same as the frequency at which the change in the voltage at both ends of the load is minimized with respect to the load fluctuation. Therefore, if power transmission is performed after setting the frequency corresponding to the maximum value to the frequency of the drive circuit and returning the switch element to the off state (cut-off state), the fluctuation of the voltage across the load is suppressed against the load fluctuation. can do.

好ましくは、送電装置は、高電圧大電力電源と低電圧小電力電源をさらに備え、駆動回路は、高電圧大電力電源あるいは低電圧小電力電源から供給された直流電圧を交流電圧に変換し、高電圧大電力電源は、周波数探索動作中に駆動回路に直流電圧の供給を停止するとよい。この場合、高電圧大電力電源の出力を停止させた状態で低電圧小電力電源によって周波数探索動作を行うことによって、周波数探索動作中に送電装置から漏れる不要輻射を低く抑えることができる。   Preferably, the power transmission device further includes a high voltage high power power source and a low voltage low power power source, and the drive circuit converts a DC voltage supplied from the high voltage high power power source or the low voltage low power power source into an AC voltage, The high-voltage, high-power power supply may stop supplying DC voltage to the drive circuit during the frequency search operation. In this case, unnecessary radiation leaking from the power transmission device during the frequency search operation can be suppressed to a low level by performing the frequency search operation with the low-voltage low-power power source while the output of the high-voltage high-power power source is stopped.

好ましくは、送電コイルまたは受電コイルの位置を移動させる位置調整手段をさらに備え、位置調整手段は、駆動周波数が最も高くなるように送電コイルまたは受電コイルの位置を移動させるとよい。この場合、送電コイルと受電コイルの相対的な位置ずれを小さくすることができるので、電力伝送効率を高く維持しつつ、不要輻射も低い状態で、負荷変動に対して負荷の両端電圧の変化を抑制した安定給電を実現できる。   Preferably, a position adjustment unit that moves the position of the power transmission coil or the power reception coil is further provided, and the position adjustment unit may move the position of the power transmission coil or the power reception coil so that the drive frequency becomes the highest. In this case, since the relative displacement between the power transmission coil and the power reception coil can be reduced, the change in the voltage at both ends of the load with respect to load fluctuations can be maintained with low unnecessary radiation while maintaining high power transmission efficiency. Stable power supply can be realized.

本発明によれば、負荷の等価抵抗の変動に対する負荷の両端電圧の変動を抑制したワイヤレス電力伝送システムを実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the wireless power transmission system which suppressed the fluctuation | variation of the both-ends voltage of a load with respect to the fluctuation | variation of the equivalent resistance of a load is realizable.

本発明の第1の実施形態に係るワイヤレス電力伝送システムを示す構成図である。1 is a configuration diagram illustrating a wireless power transmission system according to a first embodiment of the present invention. 送電コイルと受電コイルの相対的離間距離に対して、負荷の両端電圧の負荷変動に対する変化量が最も小さくなる周波数を示すグラフである。It is a graph which shows the frequency with which the variation | change_quantity with respect to the load fluctuation | variation of the both-ends voltage of load becomes the minimum with respect to the relative separation distance of a power transmission coil and a receiving coil. 本発明の第1実施形態に係るワイヤレス電力伝送システムの駆動周波数に対する各種特性を示すグラフである。It is a graph which shows the various characteristics with respect to the drive frequency of the wireless power transmission system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るワイヤレス電力伝送システムを示す構成図である。It is a block diagram which shows the wireless power transmission system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るワイヤレス電力伝送システムの周波数探索動作を示すフローチャートである。It is a flowchart which shows the frequency search operation | movement of the wireless power transmission system which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係るワイヤレス電力伝送システムを示す構成図である。It is a block diagram which shows the wireless power transmission system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るワイヤレス電力伝送システムの周波数探索動作を示すフローチャートである。It is a flowchart which shows the frequency search operation | movement of the wireless power transmission system which concerns on the 3rd Embodiment of this invention. 負荷の等価抵抗値に対する負荷の両端電圧の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the both-ends voltage of load with respect to the equivalent resistance value of load. 負荷の等価抵抗値に対する送電側共振回路と受電側共振回路と負荷で構成されるワイヤレス電力伝送網のインピーダンスの虚部の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the imaginary part of the impedance of the wireless power transmission network comprised with the power transmission side resonance circuit with respect to the equivalent resistance value of load, a power reception side resonance circuit, and load. 送受電コイル間の結合係数の変化に対する負荷の両端電圧が周波数域P近傍に極大点を持つ負荷の等価抵抗値の最大値を示すグラフである。It is a graph which shows the maximum value of the equivalent resistance value of the load with which the both-ends voltage of the load with respect to the change of the coupling coefficient between power transmission / reception coils has the maximum point in the frequency region P vicinity. 本発明の第4の実施形態に係るワイヤレス電力伝送システムを示す構成図である。It is a block diagram which shows the wireless power transmission system which concerns on the 4th Embodiment of this invention.

以下、添付図面を参照しながら、本発明の好ましい実施形態を説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

(第1実施形態)
まず、本発明の第1実施形態の構成について説明する。図1は、本発明の第1実施形態に係るワイヤレス電力伝送システムを示す構成図である。
(First embodiment)
First, the configuration of the first embodiment of the present invention will be described. FIG. 1 is a configuration diagram illustrating a wireless power transmission system according to a first embodiment of the present invention.

ワイヤレス電力伝送システムS1は、図1に示されるように、送電装置100と、受電装置200を有する。このワイヤレス電力伝送システムS1では、送電装置100から受電装置200に向けて、ワイヤレスにて電力が伝送されることとなる。ここでは、ワイヤレス電力伝送システムS1を電気自動車などの移動体への給電設備に適用した例を用いて説明する。   As shown in FIG. 1, the wireless power transmission system S <b> 1 includes a power transmission device 100 and a power reception device 200. In this wireless power transmission system S <b> 1, power is transmitted wirelessly from the power transmission device 100 to the power reception device 200. Here, the wireless power transmission system S1 will be described using an example in which the wireless power transmission system S1 is applied to a power supply facility for a moving body such as an electric vehicle.

送電装置100は、電源回路110、駆動回路120、送電側共振回路130を有する。受電装置200は、受電側共振回路230、負荷220を有する。   The power transmission device 100 includes a power supply circuit 110, a drive circuit 120, and a power transmission side resonance circuit 130. The power receiving device 200 includes a power receiving side resonance circuit 230 and a load 220.

電源回路110は、直流電力を駆動回路120に供給する。電源回路110としては、直流電力を出力するものであれば特に制限されず、例えば、力率改善を行うPFC(Power Factor Correction)回路や、スイッチングコンバータ等のスイッチング電源装置や、高電圧の蓄電池、電圧可変電源等が挙げられる。本実施形態では、電源回路110は、商用電源180に接続され、入力交流電力を所望の直流電力に変換するAC−DC電源として機能する。   The power supply circuit 110 supplies DC power to the drive circuit 120. The power supply circuit 110 is not particularly limited as long as it outputs DC power. For example, a power factor correction (PFC) circuit that improves power factor, a switching power supply such as a switching converter, a high-voltage storage battery, For example, a voltage variable power source may be used. In the present embodiment, the power supply circuit 110 is connected to the commercial power supply 180 and functions as an AC-DC power supply that converts input AC power into desired DC power.

駆動回路120は、電源回路110から供給される直流電力を交流電力に変換する。駆動回路120としては、複数のスイッチング素子がブリッジ接続されたスイッチング回路から構成される。この駆動回路120は、後述する送電側共振回路130に駆動周波数にて交流電流を供給する。   The drive circuit 120 converts the DC power supplied from the power supply circuit 110 into AC power. The drive circuit 120 includes a switching circuit in which a plurality of switching elements are bridge-connected. The drive circuit 120 supplies an alternating current at a drive frequency to a power transmission side resonance circuit 130 described later.

送電側共振回路130は、送電コイルL1と、送電側コンデンサ部C1と、を有する。具体的には、送電側共振回路130は、送電コイルL1と送電側コンデンサ部C1により形成されるLC共振回路を構成している。このLC共振回路の共振周波数fTXを後述する受電側共振回路230の共振周波数fRXに近接して設定することで、磁界共鳴方式の電力伝送が実現される。なお、本実施形態に示すように送電側コンデンサ部C1にはリアクトルLsが直列に挿入されていても良い。この場合、送電側共振回路130と後述する受電側共振回路230と後述する負荷220で構成されるワイヤレス電力伝送網のインピーダンスの虚部が正となるように制御しやすくなる。また、リアクトルLsは、共振周波数fTXよりも十分高い周波数成分に対してハイインピーダンスとなり、高周波成分が除去された電力を送電コイルL1に供給するフィルターとしての役割を果たすこととなる。 The power transmission side resonance circuit 130 includes a power transmission coil L1 and a power transmission side capacitor unit C1. Specifically, the power transmission side resonance circuit 130 constitutes an LC resonance circuit formed by the power transmission coil L1 and the power transmission side capacitor unit C1. By setting the resonance frequency f TX of this LC resonance circuit close to the resonance frequency f RX of the power receiving side resonance circuit 230 described later, magnetic field resonance type power transmission is realized. In addition, as shown in this embodiment, the reactor Ls may be inserted in series with the power transmission side capacitor | condenser part C1. In this case, it becomes easy to control the imaginary part of the impedance of the wireless power transmission network including the power transmission side resonance circuit 130, the power reception side resonance circuit 230 described later, and the load 220 described later to be positive. Further, reactor Ls becomes a high impedance with respect to high enough frequency components than the resonance frequency f TX, and thus serve as a filter for supplying power a high frequency component is removed to the power transmission coil L1.

送電コイルL1は、銅やアルミ等のリッツ線を巻き回して形成されている。その巻き数は、送電コイルL1と後述する受電コイルL2間の離間距離と所望の電力伝送効率に基づいて適宜設定される。この送電コイルL1には、駆動回路120の出力する駆動周波数の交流電圧により、駆動周波数にて交流電流が流れて交流磁界が発生する。つまり、この交流磁界により後述する受電コイルL2に向けて交流電力が伝送されることとなる。本実施形態のワイヤレス電力伝送システムS1を電気自動車などの車両への給電設備に用いた場合、送電コイルL1は地中または地面近傍に配設される。   The power transmission coil L1 is formed by winding a litz wire such as copper or aluminum. The number of windings is appropriately set based on a separation distance between the power transmission coil L1 and a power reception coil L2 described later and a desired power transmission efficiency. In the power transmission coil L1, an alternating current flows at the driving frequency due to the alternating voltage of the driving frequency output from the driving circuit 120, and an alternating magnetic field is generated. That is, AC power is transmitted toward the power receiving coil L2 described later by this AC magnetic field. When the wireless power transmission system S1 of this embodiment is used in a power supply facility for a vehicle such as an electric vehicle, the power transmission coil L1 is disposed in the ground or in the vicinity of the ground.

送電側コンデンサ部C1は、送電コイルL1とともに送電側共振回路130を形成する。送電側コンデンサ部C1は、駆動周波数と負荷220の両端電圧を調整する機能を有する。本実施形態においては、送電側コンデンサ部C1は、送電コイルL1に直列に接続されたコンデンサC11と並列に接続されたコンデンサC12とで構成されているがこれに限らない。例えば、送電コイルL1に直列に接続されたコンデンサC11のみであってもよい。   The power transmission side capacitor unit C1 forms a power transmission side resonance circuit 130 together with the power transmission coil L1. The power transmission side capacitor unit C1 has a function of adjusting the drive frequency and the voltage across the load 220. In this embodiment, although the power transmission side capacitor | condenser part C1 is comprised with the capacitor | condenser C11 connected in series with the power transmission coil L1, and the capacitor | condenser C12 connected in parallel, it is not restricted to this. For example, only the capacitor C11 connected in series to the power transmission coil L1 may be used.

受電側共振回路230は、受電コイルL2と、受電側コンデンサ部C2と、を有する。具体的には、受電側共振回路230は、受電コイルL2と受電側コンデンサ部C2により形成されるLC共振回路を構成している。このLC共振回路の共振周波数fRXを送電側共振回路130の共振周波数fTXに近接して設定することで、磁界共鳴方式の電力伝送が実現される。なお、本実施形態に示すように受電側コンデンサ部C2にはリアクトルLrが直列に挿入されていても良い。このリアクトルLrは、共振周波数fRXよりも十分高い周波数成分に対してハイインピーダンスとなり、高周波成分が除去された電力を後述する負荷220に供給するフィルターとしての役割を果たすこととなる。 The power receiving side resonance circuit 230 includes a power receiving coil L2 and a power receiving side capacitor unit C2. Specifically, the power reception side resonance circuit 230 constitutes an LC resonance circuit formed by the power reception coil L2 and the power reception side capacitor unit C2. By setting the resonance frequency f RX of the LC resonance circuit close to the resonance frequency f TX of the power transmission side resonance circuit 130, magnetic field resonance type power transmission is realized. As shown in the present embodiment, a reactor Lr may be inserted in series in the power receiving side capacitor unit C2. The reactor Lr has a high impedance with respect to a frequency component sufficiently higher than the resonance frequency f RX , and serves as a filter that supplies electric power from which a high frequency component has been removed to a load 220 described later.

受電コイルL2は、送電コイルL1からの電力を受電可能に構成され、銅やアルミ等のリッツ線を巻き回して形成されている。その巻き数は、送電コイルL1と受電コイルL2間の離間距離と所望の電力伝送効率に基づいて適宜設定される。本実施形態のワイヤレス電力伝送システムS1を電気自動車などの車両への給電設備に用いた場合、受電コイルL2は車両下部またはその近傍に搭載される。   The power receiving coil L2 is configured to receive power from the power transmitting coil L1, and is formed by winding a litz wire such as copper or aluminum. The number of turns is appropriately set based on the separation distance between the power transmission coil L1 and the power reception coil L2 and the desired power transmission efficiency. When the wireless power transmission system S1 of the present embodiment is used for a power supply facility for a vehicle such as an electric vehicle, the power receiving coil L2 is mounted on the lower portion of the vehicle or in the vicinity thereof.

受電側コンデンサ部C2は、受電コイルL2とともに受電側共振回路230を形成する。受電側コンデンサ部C2は、駆動周波数と負荷220の両端電圧を調整する機能を有する。本実施形態においては、受電側コンデンサ部C2は、受電コイルL2に並列に接続されたコンデンサC22と直列に接続されたコンデンサC21とで構成されているがこれに限らない。例えば、受電コイルL2に直列に接続されたコンデンサC21のみであってもよい。   The power receiving side capacitor unit C2 forms a power receiving side resonance circuit 230 together with the power receiving coil L2. The power receiving side capacitor unit C <b> 2 has a function of adjusting the drive frequency and the voltage across the load 220. In the present embodiment, the power receiving side capacitor unit C2 includes the capacitor C22 connected in parallel to the power receiving coil L2 and the capacitor C21 connected in series, but is not limited thereto. For example, only the capacitor C21 connected in series to the power receiving coil L2 may be used.

ここで、本実施形態では、送電コイルL1と受電コイルL2は、送電コイルL1と受電コイルL2の対向方向(図示Z軸方向)に距離G(cm)だけ離れて配置されており、送電コイルL1と受電コイルL2の対向方向と直交する方向(図示X軸方向)には該各コイルの中心点間の距離が距離L(cm)だけ離れて配置されている。送電コイルL1と受電コイルL2との間には、k=M/√(送電コイルL1の自己インダクタンス×受電コイルL2の自己インダクタンス)の式で与えられる結合係数が存在する。Mは、駆動回路120から送電コイルL1に給電された高周波電流によって送電コイルL1から発生する磁束が受電コイルL2と鎖交する量で定義される相互インダクタンスである。すなわち、送電コイルL1と受電コイルL2との間の結合係数kは、Z軸方向の距離G(cm)とX軸方向の距離L(cm)とに相関があり、Z軸方向の距離G(cm)が小さくて、X軸方向の距離L(cm)が0の場合に最も大きく、Z軸方向の距離G(cm)が大きくて、X軸方向の距離L(cm)が大きい場合に最も小さくなる。なお、X軸方向と直角なY軸方向についてもX軸方向の場合と同じ性質を示すため、ここでは説明を省略する。   Here, in the present embodiment, the power transmission coil L1 and the power reception coil L2 are arranged at a distance G (cm) away from each other in the opposing direction (Z-axis direction in the drawing) of the power transmission coil L1 and the power reception coil L2, and the power transmission coil L1 In the direction orthogonal to the facing direction of the power receiving coil L2 (the X-axis direction in the drawing), the distance between the center points of the coils is arranged at a distance L (cm). Between the power transmission coil L1 and the power reception coil L2, there exists a coupling coefficient given by the equation k = M / √ (self inductance of the power transmission coil L1 × self inductance of the power reception coil L2). M is a mutual inductance defined by the amount of magnetic flux generated from the power transmission coil L1 linked to the power reception coil L2 by the high-frequency current fed from the drive circuit 120 to the power transmission coil L1. That is, the coupling coefficient k between the power transmission coil L1 and the power reception coil L2 is correlated with the distance G (cm) in the Z-axis direction and the distance L (cm) in the X-axis direction, and the distance G ( cm) is the smallest when the distance L (cm) in the X-axis direction is 0, and the largest when the distance G (cm) in the Z-axis direction is large and the distance L (cm) in the X-axis direction is large. Get smaller. Note that the Y-axis direction perpendicular to the X-axis direction also exhibits the same properties as those in the X-axis direction, and a description thereof is omitted here.

負荷220は、整流回路210と可変負荷Vloadで構成される。負荷220は、受電側コイルL2が受電した交流電力を貯蔵または消費する。   The load 220 includes a rectifier circuit 210 and a variable load Vload. The load 220 stores or consumes AC power received by the power receiving coil L2.

整流回路210は、受電コイルL2が受電した交流電力を整流する機能を有する。具体的には、整流回路210は、受電コイルL2が受電した交流電力を直流電力に変換し、可変負荷Vloadに供給する。整流回路210としては、1素子のスイッチング素子またはダイオードと平滑コンデンサから構成される半波整流回路やブリッジ接続された4素子のスイッチング素子またはダイオードと平滑コンデンサから構成される全波整流回路などが挙げられる。   The rectifier circuit 210 has a function of rectifying the AC power received by the power receiving coil L2. Specifically, the rectifier circuit 210 converts AC power received by the power receiving coil L2 into DC power and supplies it to the variable load Vload. Examples of the rectifier circuit 210 include a half-wave rectifier circuit composed of a single switching element or a diode and a smoothing capacitor, a full-wave rectifier circuit composed of a bridge-connected four-element switching element or a diode and a smoothing capacitor, and the like. It is done.

可変負荷Vloadは、整流回路210の出力端子間に接続され、整流回路210で交流電力から直流電力に変換された電力を貯蔵または消費する。可変負荷Vloadとしては、抵抗器、電子負荷、電動モーターなどの電動機器、二次電池、二次電池に充電するバッテリーチャージャー等が挙げられる。可変負荷Vloadは、電力の需要状態(貯蔵状態または消費状態)によって負荷の等価抵抗値が時間と共に変わる抵抗負荷と見なすことができる。なお、整流回路210での消費電力は可変負荷Vloadでの消費電力に比べて十分小さいので、負荷220の等価抵抗値は、ほぼ可変負荷Vloadの等価抵抗値とみなしてよい。   The variable load Vload is connected between the output terminals of the rectifier circuit 210, and stores or consumes power converted from AC power to DC power by the rectifier circuit 210. Examples of the variable load Vload include a resistor, an electronic load, an electric device such as an electric motor, a secondary battery, a battery charger for charging the secondary battery, and the like. The variable load Vload can be regarded as a resistive load in which the equivalent resistance value of the load changes with time depending on the power demand state (storage state or consumption state). Since the power consumption in the rectifier circuit 210 is sufficiently smaller than the power consumption in the variable load Vload, the equivalent resistance value of the load 220 may be regarded as the equivalent resistance value of the variable load Vload.

ここで、送電側共振回路130と受電側共振回路230とで構成される四端子回路網のFマトリックスを式(1)、FマトリックスのAの実部をRa、虚部をXa、FマトリックスのBの実部をRb、虚部をXbとし、駆動回路120の出力側から送電側共振回路を見たときの送電側共振回路130と受電側共振回路230と負荷220とで構成される二端子回路網のインピーダンスZの虚部をX、駆動回路120の交流電力の周波数fに対するインピーダンスZの虚部Xの変化分をδX、負荷220が任意の大きさの負荷の場合の等価抵抗をRL0として、FマトリックスのAおよびBが、以下の式(2),(3),(4)を満たすように四端子回路網の回路定数を決定する。なお、FマトリックスのAおよびBは、四端子回路網を構成する回路部品の抵抗値、容量値、インダクタンス値および駆動周波数によって決まるものである。また、駆動周波数の上下限値は特に制限されないが、送電コイルL1と受電コイルL2の間の結合係数kが仕様で決められた最大となる場合、すなわち送電コイルL1と受電コイルL2の中心点間の距離が仕様で決められた最小となる場合に選定された駆動回路120の駆動周波数を上限値とし、送電コイルL1と受電コイルL2の間の結合係数kが仕様で決められた最小となる場合、すなわち送電コイルL1と受電コイルL2の中心点間の距離が仕様で決められた最大となる場合に選定された駆動回路120の駆動周波数を下限値とするとよい。   Here, the F matrix of the four-terminal network composed of the power transmission side resonance circuit 130 and the power reception side resonance circuit 230 is expressed by Equation (1), the real part of A of the F matrix is Ra, the imaginary part is Xa, and the F matrix The real part of B is Rb, the imaginary part is Xb, and two terminals constituted by the power transmission side resonance circuit 130, the power reception side resonance circuit 230, and the load 220 when the power transmission side resonance circuit is viewed from the output side of the drive circuit 120. The imaginary part of the impedance Z of the network is X, the change of the imaginary part X of the impedance Z with respect to the frequency f of the AC power of the drive circuit 120 is δX, and the equivalent resistance when the load 220 is a load of an arbitrary size is RL0. The circuit constants of the four-terminal network are determined so that A and B of the F matrix satisfy the following expressions (2), (3), and (4). Note that A and B of the F matrix are determined by the resistance value, the capacitance value, the inductance value, and the drive frequency of the circuit components that constitute the four-terminal circuit network. The upper and lower limits of the drive frequency are not particularly limited, but when the coupling coefficient k between the power transmission coil L1 and the power reception coil L2 is the maximum determined by the specification, that is, between the center points of the power transmission coil L1 and the power reception coil L2. When the driving frequency of the selected driving circuit 120 is the upper limit value when the distance of the power is the minimum determined by the specification, the coupling coefficient k between the power transmission coil L1 and the power receiving coil L2 is the minimum determined by the specification That is, the drive frequency of the drive circuit 120 selected when the distance between the center points of the power transmission coil L1 and the power reception coil L2 is the maximum determined by the specification may be set as the lower limit value.

Figure 2017005790
(但し、j=−1である。)
Figure 2017005790
(However, j 2 = −1.)

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

更に好ましくは、FマトリックスのAおよびBが、式(2),(3),(4)を満たし、加えて駆動周波数が以下の式(5),(6)を満たすように四端子回路網の回路定数を決定する。   More preferably, the four-terminal network is such that A and B of the F matrix satisfy the expressions (2), (3), and (4), and the drive frequency satisfies the following expressions (5) and (6): Circuit constants are determined.

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

ここで、FマトリックスのAおよびBが式(2),(3),(4)を満たすことにより、負荷の等価抵抗値が変わっても負荷の両端電圧の変化を±10%以下にできる理由について詳細に説明する。   Here, the reason that the change in the voltage across the load can be reduced to ± 10% or less even if the equivalent resistance value of the load changes by satisfying the expressions (2), (3), and (4) of A and B of the F matrix Will be described in detail.

送電側共振回路130の入力電圧をVi、入力電流をIiとし、負荷220の両端電圧(出力電圧)をVo、負荷220へ流れ込む電流(出力電流)をIoとすると、四端子回路網のFマトリックスの式(1)と入力電圧Vi、入力電流Ii、出力電圧Vo、出力電流Ioとの関係は以下の式(7)〜(9)ようになる。   When the input voltage of the power transmission side resonance circuit 130 is Vi, the input current is Ii, the voltage across the load 220 (output voltage) is Vo, and the current flowing into the load 220 (output current) is Io, an F matrix of a four-terminal network. (1) and the relationship between the input voltage Vi, the input current Ii, the output voltage Vo, and the output current Io are expressed by the following expressions (7) to (9).

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

ここで、負荷220は任意の大きさの負荷とし、その等価抵抗をRL0で表すと、該負荷220は受電側共振回路230の出力端子間に接続されているので、出力電圧Voと出力電流Ioと負荷220の等価抵抗RL0の間には、以下の式(10)の関係が成立する。   Here, the load 220 is a load of an arbitrary size, and the equivalent resistance is represented by RL0. Since the load 220 is connected between the output terminals of the power receiving side resonance circuit 230, the output voltage Vo and the output current Io And the equivalent resistance RL0 of the load 220, the relationship of the following formula (10) is established.

Figure 2017005790
Figure 2017005790

この式(10)を式(8),(9)に代入すると、以下の式(11)が得られる。   Substituting this equation (10) into equations (8) and (9) yields the following equation (11).

Figure 2017005790
Figure 2017005790

ここで、負荷220の等価抵抗RL0の変化に対する出力電圧Voの変化が0になる条件は、以下の式(12)となる。   Here, the condition that the change in the output voltage Vo becomes 0 with respect to the change in the equivalent resistance RL0 of the load 220 is expressed by the following equation (12).

Figure 2017005790
Figure 2017005790

したがって、式(12)が常に成り立つためにはB=0でなければならない。一般にBは、実部Rbと虚部Xbで表される複素数B=Rb+jXbであり、実部Rbおよび虚部Xbは、四端子回路網を構成する回路部品の抵抗値、容量値、インダクタンス値および駆動周波数によって決まるものである。しかしながら、送電コイルL1と受電コイルL2のQ値(後述する)が非常に高い場合には、Rb≒0となるので、実質的にBの虚部Xb=0を満たす四端子回路網の回路定数を求める問題に帰着させることができる。したがって、ワイヤレス電力伝送システムS1において、駆動周波数が、四端子回路網のFマトリックスの式(1)のBの虚部Xb=0を満たすように四端子回路網の回路定数を設定すると、負荷220の等価抵抗RL0の値が変わっても負荷220の両端電圧Voの変化を最小にできる。   Therefore, in order for equation (12) to always hold, B = 0 must be satisfied. In general, B is a complex number B = Rb + jXb represented by a real part Rb and an imaginary part Xb. The real part Rb and the imaginary part Xb are a resistance value, a capacitance value, an inductance value, and a circuit component constituting a four-terminal network. It depends on the driving frequency. However, when the Q values (described later) of the power transmission coil L1 and the power reception coil L2 are very high, Rb≈0, so that the circuit constant of the four-terminal network that substantially satisfies the imaginary part Xb = 0 of B. To the problem of seeking Therefore, in the wireless power transmission system S1, when the circuit constant of the four-terminal network is set so that the driving frequency satisfies the imaginary part Xb = 0 of B in Formula (1) of the F-matrix of the four-terminal network, the load 220 Even if the value of the equivalent resistance RL0 changes, the change in the voltage Vo across the load 220 can be minimized.

負荷変動による負荷220の両端電圧Voの変化δVoはできるだけ小さい方が良いが、負荷220の構成要素である可変負荷Vloadがバッテリーチャージャー等の電源回路である場合は、電源回路の入力電圧変動は一般的に±10%の範囲まで許容されている。そこで、任意の負荷時の負荷220の等価抵抗RL0を式(11)に代入した場合の負荷220の両端電圧Vo(RL0)と、該等価抵抗RL0とは異なる負荷220の等価抵抗RLを式(11)に代入した場合の負荷220の両端電圧Vo(RL)との差を、負荷220の等価抵抗がRL0からRLに変化した場合の負荷220の両端電圧Voの変化δVoとし、負荷220の等価抵抗がRL0の場合の負荷220の両端電圧Vo(RL0)に対する負荷220の両端電圧Voの変化δVoの比δVo/Voを計算すると、以下の式(13)のようになる。   The change δVo of the voltage Vo at both ends of the load 220 due to the load fluctuation is preferably as small as possible. However, when the variable load Vload as a component of the load 220 is a power supply circuit such as a battery charger, the input voltage fluctuation of the power supply circuit is generally In general, it is allowed up to a range of ± 10%. Therefore, when the equivalent resistance RL0 of the load 220 at an arbitrary load is substituted into the expression (11), the voltage Vo (RL0) across the load 220 and the equivalent resistance RL of the load 220 different from the equivalent resistance RL0 are expressed by the expressions ( 11), the difference from the both-ends voltage Vo (RL) of the load 220 when substituted into 11) is defined as a change δVo of the both-ends voltage Vo of the load 220 when the equivalent resistance of the load 220 changes from RL0 to RL. When the ratio δVo / Vo of the change δVo of the voltage 220 across the load 220 to the voltage Vo (RL0) across the load 220 when the resistance is RL0 is calculated, the following equation (13) is obtained.

Figure 2017005790
Figure 2017005790

ここで、式(13)中のRaとXaは、Fマトリックス式(1)のAの実部と虚部であり、RbとXbは、Fマトリックス式(1)のBの実部と虚部である。Aの実部Raと虚部XaおよびBの実部Rbと虚部Xbは、四端子回路網を構成する回路部品の抵抗値、容量値、インダクタンス値および駆動周波数によって決まるものである。また、任意の負荷時の負荷220の等価抵抗RL0を負荷の需要電力が最大となる場合の負荷とし、該等価抵抗RL0とは異なる負荷220の等価抵抗RLを負荷の需要電力が最小の場合の負荷とすると、負荷の需要電力が最小の場合の等価抵抗RLは無限大値であるので、該δVo/Voは最大となり、以下の式(14)のようになる。   Here, Ra and Xa in Formula (13) are the real part and imaginary part of A in F matrix formula (1), and Rb and Xb are the real part and imaginary part of B in F matrix formula (1). It is. The real part Ra and the imaginary part Xa of A and the real part Rb and the imaginary part Xb of B are determined by the resistance value, the capacitance value, the inductance value, and the drive frequency of the circuit components constituting the four-terminal network. Further, the equivalent resistance RL0 of the load 220 at an arbitrary load is set as a load when the demand power of the load becomes maximum, and the equivalent resistance RL of the load 220 different from the equivalent resistance RL0 is set as the case where the demand power of the load is minimum. Assuming that the load is the load, the equivalent resistance RL when the demand power of the load is the minimum is an infinite value, so the δVo / Vo is the maximum, as shown in the following formula (14).

Figure 2017005790
Figure 2017005790

また、式(13)においてRL>RL0の場合、負荷220の等価抵抗がRL0の場合の負荷220の両端電圧Vo(RL0)に対する負荷220の両端電圧Voの変化δVoの比δVo/Voが常に正であるので、該δVo/Voが10%以下となるFマトリックス式(1)のBの虚部Xbの満たすべき条件は、式(14)≦0.1であり、以下の式(15)のようになる。また、式(15)の左辺の判別式Dは、以下の式(16)のようになる。   Further, in the equation (13), when RL> RL0, the ratio δVo / Vo of the change δVo of the voltage 220 across the load 220 to the voltage Vo (RL0) across the load 220 when the equivalent resistance of the load 220 is RL0 is always positive. Therefore, the condition to be satisfied by the imaginary part Xb of B in the F matrix formula (1) in which the δVo / Vo is 10% or less is the formula (14) ≦ 0.1, and the following formula (15) It becomes like this. Also, the discriminant D on the left side of the equation (15) is as the following equation (16).

Figure 2017005790
Figure 2017005790

Figure 2017005790
Figure 2017005790

式(15)より、負荷220の両端電圧の変化の比δVo/Voが10%以下となるFマトリックス式(1)のBの虚部Xbの満たすべき条件は、式(15)の左辺の値が常に0または負となる虚部Xbの実数の範囲を求めることとなる。ここで、虚部Xbを実数とするには、式(16)の判別式Dは常に0または正であるべきである。また、送電側から受電側にワイヤレスで高効率に電力を伝送するワイヤレス電力伝送システムの四端子回路網の回路Q値は非常に大きいので(送電側共振回路の送電コイルL1、送電側コンデンサ部C1、受電側共振回路の受電コイルL2および受電側コンデンサ部C2の等価直列抵抗ESRが十分に小さいので)、(Xa/Ra)は、(Xa/Ra)≒0である。そこで、式(16)の判別式Dが0または正であるという条件と(Xa/Ra)≒0である条件を式(15)と式(16)に適用すると、実動作時の駆動周波数において、任意の負荷時の負荷220の等価抵抗RL0が式(2)の範囲であって、且つ、Fマトリックスの式(1)のBの虚部Xbが式(3)および式(4)を満たすように四端子回路網の回路定数を設定すると、負荷の値が変わっても負荷220の両端電圧Voの変化を10%以下に抑えることができる。 From the equation (15), the condition to be satisfied by the imaginary part Xb of B in the F matrix equation (1) in which the ratio δVo / Vo of the voltage across the load 220 is 10% or less is the value on the left side of the equation (15). Therefore, the real number range of the imaginary part Xb in which is always 0 or negative is obtained. Here, in order to make the imaginary part Xb a real number, the discriminant D in the equation (16) should always be 0 or positive. In addition, since the circuit Q value of the four-terminal network of the wireless power transmission system that wirelessly and efficiently transmits power from the power transmission side to the power reception side is very large (the power transmission coil L1 of the power transmission side resonance circuit, the power transmission side capacitor unit C1). Since the equivalent series resistance ESR of the power receiving coil L2 and the power receiving side capacitor C2 of the power receiving side resonance circuit is sufficiently small), (Xa / Ra) 2 is (Xa / Ra) 2 ≈0. Therefore, when the condition that the discriminant D in Expression (16) is 0 or positive and the condition that (Xa / Ra) 2 ≈0 are applied to Expression (15) and Expression (16), the drive frequency during actual operation , The equivalent resistance RL0 of the load 220 at an arbitrary load is in the range of the equation (2), and the imaginary part Xb of B in the equation (1) of the F matrix represents the equations (3) and (4). If the circuit constants of the four-terminal network are set so as to satisfy, the change in the voltage Vo across the load 220 can be suppressed to 10% or less even if the load value changes.

なお、式(13)において、任意の負荷時の負荷220の等価抵抗RL0を負荷の需要電力が最小となる場合の負荷とし、該等価抵抗RL0とは異なる負荷220の等価抵抗RLを負荷の需要電力が最大の場合の負荷とすると、負荷220の等価抵抗がRL0の場合の負荷220の両端電圧Vo(RL0)に対する負荷220の両端電圧Voの変化δVoの比δVo/Voは常に負となり、δVo/Vo≧−0.1を満たす条件は、式(2)、(3)、(4)で示す範囲よりも広い範囲であった。したがって、任意の負荷で動作している時に負荷が急に重く(負荷220の等価抵抗RL0が小さくなること)、または軽く(負荷220の等価抵抗RL0が大きくなること)なった場合でも、Fマトリックス式(1)で示される四端子回路網の回路定数を式(2)、(3)、(4)を満たすように設定すると、負荷220の等価抵抗がRL0の場合の負荷220の両端電圧Vo(RL0)に対する負荷220の両端電圧Voの変化δVoの比δVo/Voを±10%以内とすることができる。   In Equation (13), the equivalent resistance RL0 of the load 220 at an arbitrary load is a load when the load demand power is minimum, and the equivalent resistance RL of the load 220 different from the equivalent resistance RL0 is the demand for the load. Assuming that the load is when the power is maximum, the ratio δVo / Vo of the change δVo of the voltage 220 across the load 220 to the voltage Vo (RL0) across the load 220 when the equivalent resistance of the load 220 is RL0 is always negative, and δVo The condition satisfying /Vo≧−0.1 was a range wider than the range represented by the formulas (2), (3), and (4). Therefore, even when the load is suddenly heavy (the equivalent resistance RL0 of the load 220 becomes small) or light (the equivalent resistance RL0 of the load 220 becomes large) when operating with an arbitrary load, the F matrix When the circuit constants of the four-terminal network represented by Expression (1) are set so as to satisfy Expressions (2), (3), and (4), the voltage Vo across the load 220 when the equivalent resistance of the load 220 is RL0. The ratio δVo / Vo of the change δVo of the voltage Vo across the load 220 with respect to (RL0) can be within ± 10%.

以上のように、本実施形態に係るワイヤレス電力伝送システムS1は、ワイヤレス電力伝送システムS1の送電側共振回路130と受電側共振回路230とで構成される四端子回路網のFマトリックスのAおよびBが、式(2)、(3)、(4)を満たすように四端子回路網が構成されるので、負荷変動しても負荷220の両端電圧の変化を±10%以下に抑えることができる。具体的には、負荷220がバッテリーチャージャーなどの電源回路の場合、電源回路の入力電圧許容範囲は通常±10%に規定されており、その範囲を超える電圧の入力は、電源回路を構成する部品に対して高い負荷を与える、又は停止させる虞がある。本実施形態に係るワイヤレス電力伝送システムS1は、負荷220である電源回路の等価抵抗が変動しても負荷220である電源回路の入力電圧の変動を電源回路の入力電圧許容範囲である±10%以下に抑制することができる。すなわち、負荷220の等価抵抗の変動に対して負荷220の両端電圧の変動を抑制できる。   As described above, the wireless power transmission system S1 according to the present embodiment includes the A and B of the F matrix of the four-terminal network composed of the power transmission side resonance circuit 130 and the power reception side resonance circuit 230 of the wireless power transmission system S1. However, since the four-terminal network is configured to satisfy the expressions (2), (3), and (4), the change in the voltage across the load 220 can be suppressed to ± 10% or less even when the load fluctuates. . Specifically, when the load 220 is a power supply circuit such as a battery charger, the allowable input voltage range of the power supply circuit is normally defined as ± 10%, and input of a voltage exceeding the range is a component constituting the power supply circuit. There is a risk that a high load is applied to or stopped. In the wireless power transmission system S1 according to the present embodiment, even if the equivalent resistance of the power supply circuit that is the load 220 varies, the fluctuation of the input voltage of the power supply circuit that is the load 220 is within the allowable input voltage range of ± 10%. The following can be suppressed. That is, the fluctuation of the voltage across the load 220 can be suppressed with respect to the fluctuation of the equivalent resistance of the load 220.

また、本実施形態に係るワイヤレス電力伝送システムS1においては、駆動周波数をf、駆動周波数fの変化分をδf、送電側共振回路130と受電側共振回路230と負荷220で構成されるワイヤレス電力伝送網のインピーダンスZの虚部をX、虚部Xの駆動周波数fに対する変化分をδXとすると、駆動周波数fは、式(5)および式(6)を満たしている。そのため、駆動周波数fが式(5)を満たすことにより、インピーダンスZの位相が0でなく且つ誘導性であるので、駆動回路から送電コイルL1側に対して突入電流などの過度な電流の出力を抑制することができる。また、駆動周波数fが式(6)を満たすことにより、駆動回路から送電コイルL1側に供給される時間平均当たりの電力が正となり、駆動回路側への電力の戻りがないので、駆動回路を構成する部品への負荷を抑制できる。   In the wireless power transmission system S1 according to the present embodiment, the driving frequency is f, the change in the driving frequency f is δf, and the wireless power transmission is configured by the power transmission side resonance circuit 130, the power reception side resonance circuit 230, and the load 220. If the imaginary part of the impedance Z of the mesh is X and the change of the imaginary part X with respect to the driving frequency f is δX, the driving frequency f satisfies Expressions (5) and (6). Therefore, when the drive frequency f satisfies the formula (5), the phase of the impedance Z is not 0 and is inductive, so that an excessive current output such as an inrush current is output from the drive circuit to the power transmission coil L1 side. Can be suppressed. Further, when the drive frequency f satisfies the formula (6), the power per time average supplied from the drive circuit to the power transmission coil L1 side becomes positive, and there is no return of power to the drive circuit side. The load on the components to be configured can be suppressed.

ここで、上述の実施形態によって負荷220の等価抵抗の変動に対して負荷220の両端電圧の変動が抑制できることについて、具体的な例を用いて説明する。   Here, the fact that the fluctuation of the voltage across the load 220 can be suppressed with respect to the fluctuation of the equivalent resistance of the load 220 according to the above-described embodiment will be described using a specific example.

第1実施形態に係るワイヤレス電力伝送システムS1を以下のように構成した。まず、送電コイルL1と受電コイルL2間の許容離間距離ならびに電力伝送効率の仕様に基づき、送電コイルL1のインダクタンス値を120(μH)、受電コイルL2のインダクタンス値を126(μH)、リアクトルLsのインダクタンス値を10(μH)、リアクトルLrのインダクタンス値を10(μH)とした。このとき、送電コイルL1と受電コイルL2との間の結合係数kは、Z軸方向の距離G(cm)が最小で10(cm)、X軸方向の距離L(cm)が0(cm)で0.33であった。なお、送電コイルL1、受電コイルL2、リアクトルLs、リアクトルLrの損失を示すQ値は、各コイルまたは各リアクトルのインダクタンスをL、その直流抵抗成分をr、周波数をfqとすると、Q=ωL/rで表される。但し、ω=2πfqのfqは駆動周波数の近傍値とする。本例においては、各Q値は200とした。また、コンデンサC11,C12,C21,C22の損失を示すQ値は、送電コイルL1、受電コイルL2、リアクトルLs、リアクトルLrのQ値に比べて十分大きいため、コンデンサC11,C12,C21,C22の損失分は無視した。負荷220としては、整流回路210として全波整流回路を用い、可変負荷Vloadとして電子負荷を用い、仕様に基づき、負荷220の両端電圧である電子負荷の入力電圧が245(V)で最大電力3.3(kW)が得られるように電子負荷の最小抵抗値を18(Ω)とした。なお、整流回路210における消費電力は、可変負荷Vloadにおける消費電力が十分に大きな場合は相対的に小さいと看做せるため無視した。すなわち、負荷220の等価抵抗は、負荷220の両端電圧が245(V)で負荷220の需要電力が最大電力3.3(kW)であるため、等価抵抗=(負荷の両端電圧)/負荷の需要電力の関係式に基づき、245/3300=18(Ω)となる。 The wireless power transmission system S1 according to the first embodiment is configured as follows. First, based on the specification of the allowable separation distance between the power transmission coil L1 and the power reception coil L2 and the power transmission efficiency, the inductance value of the power transmission coil L1 is 120 (μH), the inductance value of the power reception coil L2 is 126 (μH), and the reactor Ls The inductance value was 10 (μH), and the inductance value of the reactor Lr was 10 (μH). At this time, the coupling coefficient k between the power transmission coil L1 and the power reception coil L2 is 10 (cm) at a minimum in the distance G (cm) in the Z-axis direction and 0 (cm) in the distance L (cm) in the X-axis direction. It was 0.33. The Q value indicating the loss of the power transmission coil L1, the power receiving coil L2, the reactor Ls, and the reactor Lr is represented by Q = ωL / where L represents the inductance of each coil or each reactor, r represents its DC resistance component, and fq represents the frequency. represented by r. However, fq of ω = 2πfq is a value near the driving frequency. In this example, each Q value is 200. Further, since the Q value indicating the loss of the capacitors C11, C12, C21, C22 is sufficiently larger than the Q values of the power transmission coil L1, the power receiving coil L2, the reactor Ls, and the reactor Lr, the capacitors C11, C12, C21, C22 The loss was ignored. As the load 220, a full-wave rectifier circuit is used as the rectifier circuit 210, an electronic load is used as the variable load Vload, and the input voltage of the electronic load, which is the voltage across the load 220, is 245 (V) based on the specifications, and the maximum power 3 The minimum resistance value of the electronic load was 18 (Ω) so that .3 (kW) was obtained. Note that the power consumption in the rectifier circuit 210 is ignored because it can be regarded as relatively small when the power consumption in the variable load Vload is sufficiently large. That is, the equivalent resistance of the load 220 is that the voltage across the load 220 is 245 (V) and the power demand of the load 220 is the maximum power 3.3 (kW), so equivalent resistance = (voltage across the load) 2 / load the basis of the power demand relationship, the 245 2/3300 = 18 (Ω ).

ここで、図2を参照して、Z軸方向の距離G(cm)が最小で10(cm)、X軸方向の距離L(cm)が0(cm)の場合における駆動周波数を上限値とする理由について説明する。図2は、送電コイルL1と受電コイルL2の相対的離間距離に対して、負荷の両端電圧の負荷変動に対する変化量δVoが最も小さくなる周波数を示すグラフである。図2に示すグラフは、横軸に送電コイルL1と受電コイルL2のX軸方向またはY軸方向の相対的離間距離OFFSET(cm)を表示し、縦軸に負荷220の両端電圧Voの負荷変動に対する変化量δVoが最も小さくなる周波数(kHz)を表示している。図2に示す例においては、送電コイルL1と受電コイルL2のZ軸方向の相対的離間距離が8cm、10cm、13cm、18cmの場合を表示している。図2に示すように、送電コイルL1と受電コイルL2の相対的距離が最も小さい場合に、負荷220の両端電圧Voの負荷変動に対する変化量δVoが最も小さくなる周波数が高い値となることがわかる。すなわち、所定の仕様で決められた送電コイルL1と受電コイルL2の相対的距離が最も小さい場合において負荷220の両端電圧Voの負荷変動に対する変化量δVoが最も小さくなる周波数を駆動周波数の上限値とすることによって、送電コイルL1と受電コイルL2の相対的距離が変化した場合であっても、上限値よりも低い周波数に負荷220の両端電圧Voの負荷変動に対する変化量δVoが小さくなる周波数を見出すことが可能となる。   Here, referring to FIG. 2, the driving frequency when the distance G (cm) in the Z-axis direction is at least 10 (cm) and the distance L (cm) in the X-axis direction is 0 (cm) is defined as the upper limit value. Explain why. FIG. 2 is a graph showing the frequency at which the change amount δVo with respect to the load fluctuation of the voltage across the load is the smallest with respect to the relative separation distance between the power transmission coil L1 and the power reception coil L2. In the graph shown in FIG. 2, the horizontal axis indicates the relative separation distance OFFSET (cm) in the X-axis direction or the Y-axis direction of the power transmitting coil L1 and the power receiving coil L2, and the vertical axis indicates the load fluctuation of the voltage Vo across the load 220. The frequency (kHz) at which the change amount δVo with respect to the smallest value is displayed. In the example shown in FIG. 2, the case where the relative separation distance of the power transmission coil L1 and the power reception coil L2 in the Z-axis direction is 8 cm, 10 cm, 13 cm, and 18 cm is displayed. As shown in FIG. 2, when the relative distance between the power transmission coil L1 and the power reception coil L2 is the shortest, it can be seen that the frequency at which the change amount δVo with respect to the load fluctuation of the voltage Vo at both ends of the load 220 is the smallest becomes a high value. . That is, when the relative distance between the power transmission coil L1 and the power reception coil L2 determined by a predetermined specification is the smallest, the frequency at which the change amount δVo with respect to the load fluctuation of the both-end voltage Vo of the load 220 is the smallest is the upper limit value of the drive frequency. As a result, even when the relative distance between the power transmission coil L1 and the power reception coil L2 changes, the frequency at which the change amount δVo with respect to the load fluctuation of the voltage Vo across the load 220 is reduced to a frequency lower than the upper limit value is found. It becomes possible.

続いて、駆動回路120の出力電圧が実効値で390(V)、負荷220の等価抵抗RL0が18Ω、駆動周波数が90±0.125(kHz)の範囲、負荷220の両端電圧VoがVo=245±1(V)の範囲、Fマトリックスの式(1)のBの虚部XbがXb≒0を満たすコンデンサC11,C12,C21,C22の組を求め、そのときの回路特性を求めた。結果を表1の試料No1〜No5に示す。表1中、δVo/Voは、負荷220の等価抵抗RL0が18Ωの場合の負荷220の両端電圧Voに対して、負荷220の等価抵抗RL0が18Ωから18Ω+1kΩになった場合の負荷220の両端電圧の電圧差(変化量)δVoの割合を表し、η(%)は送電側共振回路130と受電側共振回路230間の電力伝送効率を表している。表1に示すように、試料No4と試料No5は、負荷220の等価抵抗RL0が式(2)を満たさず、Fマトリックスの式(1)のBの虚部Xb(実数値)が、虚数値を要求範囲としている式(3)、(4)を満たさないことから、負荷220の両端電圧Voの負荷変動に対する変化が10(%)を超えてしまい、不適格である。一方、試料No1〜No3は、負荷220の等価抵抗RL0が式(2)を満たし、Fマトリックスの式(1)のBの虚部Xbが式(3),(4)を満たしている。そのため、電力伝送効率が高く、負荷の220の両端電圧Voの負荷変動に対する変化が10%以下に抑制できている。以上のことから、四端子回路網の回路定数であるコンデンサC11,C12,C21,C22を試料No1〜No3の値に設定すると、負荷の220の両端電圧Voの変動を抑制できる。   Subsequently, the output voltage of the drive circuit 120 is an effective value of 390 (V), the equivalent resistance RL0 of the load 220 is 18Ω, the drive frequency is 90 ± 0.125 (kHz), and the voltage Vo across the load 220 is Vo = A set of capacitors C11, C12, C21, and C22 in which the imaginary part Xb of B in Formula (1) of the F matrix satisfies Xb≈0 in the range of 245 ± 1 (V) was obtained, and the circuit characteristics at that time were obtained. The results are shown in Samples No. 1 to No. 5 in Table 1. In Table 1, δVo / Vo is the voltage across the load 220 when the equivalent resistance RL0 of the load 220 is changed from 18Ω to 18Ω + 1 kΩ with respect to the voltage Vo across the load 220 when the equivalent resistance RL0 of the load 220 is 18Ω. Represents the ratio of the voltage difference (change amount) δVo, and η (%) represents the power transmission efficiency between the power transmission side resonance circuit 130 and the power reception side resonance circuit 230. As shown in Table 1, in Sample No. 4 and Sample No. 5, the equivalent resistance RL0 of the load 220 does not satisfy Equation (2), and the imaginary part Xb (real value) of B in Equation (1) of the F matrix is an imaginary value. Since the equations (3) and (4) are not satisfied, the change of the voltage Vo across the load 220 with respect to the load fluctuation exceeds 10 (%), which is not suitable. On the other hand, in the samples No1 to No3, the equivalent resistance RL0 of the load 220 satisfies Expression (2), and the imaginary part Xb of B in Expression (1) of the F matrix satisfies Expressions (3) and (4). Therefore, the power transmission efficiency is high, and the change with respect to the load fluctuation of the voltage Vo between both ends of the load 220 can be suppressed to 10% or less. From the above, when the capacitors C11, C12, C21, and C22, which are circuit constants of the four-terminal network, are set to the values of the samples No1 to No3, fluctuations in the voltage Vo across the load 220 can be suppressed.

Figure 2017005790
Figure 2017005790

続いて、駆動周波数に対する負荷220の両端電圧Vo(V)と、インピーダンスZの虚部X(Ω)と、送電側共振回路130と受電側共振回路230間の電力伝送効率η(%)を求めた。結果を図3に示す。図3は、本発明の第1実施形態に係るワイヤレス電力伝送システムの駆動周波数に対する各種特性を示すグラフである。図3に示すグラフは、横軸に駆動周波数(kHz)を表示し、縦軸(図示左側)に負荷220の両端電圧Vo(V)を表示し、縦軸(図示右側)に送電側共振回路130と受電側共振回路230間の電力伝送効率η(%)とインピーダンスZの虚部X(Ω)を表示している。また、本例においては、送電コイルL1と受電コイルL2との結合係数kが0.33で、負荷220の等価抵抗が18Ωの場合の駆動周波数に対する各種特性を示している。図3に示すように、負荷220の両端電圧Voが極大値を示す駆動周波数は2つ存在するが、周波数の高い方の極大点近傍のO点を駆動回路120の駆動周波数として採用すると好ましい。負荷220の両端電圧Voが極大値を示す駆動周波数のうち、低い方の周波数は式(5)を満たさないが、高い方の周波数は式(5),(6)を満たすことから、インピーダンスZの位相が0でなく且つ誘導性であるので、駆動回路120から送電コイルL1側に対して突入電流などの過度な電流の出力を抑制することができるとともに、駆動回路120から送電コイルL1側に供給される時間平均当たりの電力が正となり、駆動回路120側への電力の戻りがないので、駆動回路120を構成する部品への負荷を抑制できる。   Subsequently, the voltage Vo (V) across the load 220 with respect to the driving frequency, the imaginary part X (Ω) of the impedance Z, and the power transmission efficiency η (%) between the power transmission side resonance circuit 130 and the power reception side resonance circuit 230 are obtained. It was. The results are shown in FIG. FIG. 3 is a graph showing various characteristics with respect to the driving frequency of the wireless power transmission system according to the first embodiment of the present invention. The graph shown in FIG. 3 displays the drive frequency (kHz) on the horizontal axis, the voltage Vo (V) across the load 220 on the vertical axis (left side in the figure), and the power transmission side resonance circuit on the vertical axis (right side in the figure). The power transmission efficiency η (%) between 130 and the power receiving resonance circuit 230 and the imaginary part X (Ω) of the impedance Z are displayed. In this example, various characteristics with respect to the drive frequency when the coupling coefficient k between the power transmission coil L1 and the power reception coil L2 is 0.33 and the equivalent resistance of the load 220 is 18Ω are shown. As shown in FIG. 3, there are two drive frequencies at which the voltage Vo across the load 220 exhibits a maximum value. However, it is preferable to adopt the O point near the maximum point with the higher frequency as the drive frequency of the drive circuit 120. Of the drive frequencies at which the voltage Vo across the load 220 exhibits a maximum value, the lower frequency does not satisfy the equation (5), but the higher frequency satisfies the equations (5) and (6). Therefore, the output of excessive current such as inrush current from the drive circuit 120 to the power transmission coil L1 side can be suppressed and the drive circuit 120 to the power transmission coil L1 side. Since the supplied power per time average is positive and there is no return of power to the drive circuit 120 side, the load on the components constituting the drive circuit 120 can be suppressed.

(第2実施形態)
次に、図4を参照して、本発明の第2実施形態に係るワイヤレス電力伝送システムS2の構成について説明する。図4は、本発明の第2実施形態に係るワイヤレス電力伝送システムを示す構成図である。
(Second Embodiment)
Next, the configuration of the wireless power transmission system S2 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram illustrating a wireless power transmission system according to the second embodiment of the present invention.

ワイヤレス電力伝送システムS2は、第1実施形態と同様に、送電装置100と、受電装置200を有する。このワイヤレス電力伝送システムS2では、送電装置100から受電装置200に向けて、ワイヤレスにて電力が伝送されることとなる。本実施形態では、送電装置100は、電源回路111と、駆動回路120と、送電側共振回路130と、制御回路140を有する。受電装置200は、受電側共振回路230と、負荷221と、出力電圧検出回路250と、受電側制御回路260と、を有する。駆動回路120、送電側共振回路130、受電側共振回路230の構成は、第1実施形態に係るワイヤレス電力伝送システムS1と同様である。すなわち、第2実施形態に係るワイヤレス電力伝送システムS2は、電源回路110、負荷220に代えて電源回路111、負荷221を備えている点、制御回路140、出力電圧検出回路250、受電側制御回路260を備えている点において、第1実施形態と相違する。以下、第1実施形態と異なる点を中心に説明する。   The wireless power transmission system S2 includes a power transmission device 100 and a power reception device 200, as in the first embodiment. In the wireless power transmission system S <b> 2, power is transmitted wirelessly from the power transmission device 100 to the power reception device 200. In the present embodiment, the power transmission device 100 includes a power supply circuit 111, a drive circuit 120, a power transmission side resonance circuit 130, and a control circuit 140. The power receiving device 200 includes a power receiving side resonance circuit 230, a load 221, an output voltage detection circuit 250, and a power receiving side control circuit 260. The configuration of the drive circuit 120, the power transmission side resonance circuit 130, and the power reception side resonance circuit 230 is the same as that of the wireless power transmission system S1 according to the first embodiment. That is, the wireless power transmission system S2 according to the second embodiment includes a power supply circuit 111 and a load 221 instead of the power supply circuit 110 and the load 220, a control circuit 140, an output voltage detection circuit 250, and a power receiving side control circuit. The second embodiment is different from the first embodiment in that 260 is provided. Hereinafter, a description will be given focusing on differences from the first embodiment.

電源回路111は、商用電源180に接続され、入力交流電力を直流電力に変換して駆動回路120に供給する。本実施形態では、電源回路111は、高電圧大電力電源150と、低電圧小電力電源160を備えている。具体的には、高電圧大電力電源150は、350(V)〜430(V)程度の直流電圧を駆動回路120に供給し、低電圧小電力電源160は、50(V)〜150(V)程度の直流電圧を駆動回路120に供給する。したがって、本実施形態では、駆動回路120は、高電圧大電力電源150あるいは低電圧小電力電源160から供給される直流電圧を交流電圧に変換することとなる。また、高電圧大電力電源150は、高圧出力端子T3が駆動回路120の高圧入力端子T5に接続され、GND端子T4が駆動回路120の低圧入力端子T6に接続されている。さらに、高電圧大電力電源150は、制御端子CNT1を有し、後述する制御回路140により出力がオン状態とハイインピーダンス状態を切り換えられるように構成されている。このように構成される高電圧大電力電源150としては、PFC(Power Factor Correction)回路を搭載した電源(力率改善回路内蔵電源)が好ましい。更に好ましくは、PFC回路を搭載し、効率低下が小さい範囲で出力電圧を可変できる電源がよい。一方、低電圧小電力電源160は、高圧出力端子T1がダイオードD1を介して駆動回路120の高圧入力端子T5に接続され、GND端子T2が駆動回路120の低圧入力端子T6に接続されている。具体的には、低電圧小電力電源160の高圧出力端子T1にダイオードD1のアノードが接続され、駆動回路120の高圧入力端子T5にダイオードD1のカソードが接続され、駆動回路120の高圧入力端子T5から低電圧小電力電源160の高圧出力端子T1への電流の流れ込みを防いでいる。また、低電圧小電力電源160は、制御端子CNT2を有し、後述する制御回路140により出力がオン状態とハイインピーダンス状態を切り換えられるように構成されている。このように構成される低電圧小電力電源160としては、スイッチング電源が挙げられる。   The power supply circuit 111 is connected to the commercial power supply 180, converts input AC power into DC power, and supplies the DC power to the drive circuit 120. In the present embodiment, the power supply circuit 111 includes a high voltage high power power supply 150 and a low voltage low power power supply 160. Specifically, the high voltage high power power supply 150 supplies a DC voltage of about 350 (V) to 430 (V) to the drive circuit 120, and the low voltage low power power supply 160 is 50 (V) to 150 (V). ) About DC voltage is supplied to the drive circuit 120. Therefore, in this embodiment, the drive circuit 120 converts the DC voltage supplied from the high-voltage high-power power supply 150 or the low-voltage low-power power supply 160 into an AC voltage. The high voltage high power power supply 150 has a high voltage output terminal T3 connected to the high voltage input terminal T5 of the drive circuit 120, and a GND terminal T4 connected to the low voltage input terminal T6 of the drive circuit 120. Further, the high-voltage high-power power supply 150 has a control terminal CNT1, and is configured such that an output can be switched between an on state and a high impedance state by a control circuit 140 described later. As the high-voltage high-power power supply 150 configured in this way, a power supply (power factor correction circuit built-in power supply) equipped with a PFC (Power Factor Correction) circuit is preferable. More preferably, a power supply equipped with a PFC circuit and capable of varying the output voltage in a range where the efficiency decrease is small is preferable. On the other hand, in the low voltage low power power supply 160, the high voltage output terminal T1 is connected to the high voltage input terminal T5 of the drive circuit 120 via the diode D1, and the GND terminal T2 is connected to the low voltage input terminal T6 of the drive circuit 120. Specifically, the anode of the diode D1 is connected to the high voltage output terminal T1 of the low voltage low power source 160, the cathode of the diode D1 is connected to the high voltage input terminal T5 of the drive circuit 120, and the high voltage input terminal T5 of the drive circuit 120 is connected. Is prevented from flowing into the high-voltage output terminal T1 of the low-voltage low-power power supply 160. The low-voltage low-power power supply 160 has a control terminal CNT2, and is configured such that an output can be switched between an on state and a high impedance state by a control circuit 140 described later. An example of the low-voltage low-power power supply 160 configured in this way is a switching power supply.

制御回路140は、駆動回路120から送電側共振回路130に供給する交流電流の駆動周波数を制御する機能を有する。つまり、制御回路140は、駆動周波数の周波数探索動作を行うように構成されている。なお、具体的な周波数探索動作については後述する。また、制御回路140は、高電圧大電力電源150と低電圧小電力電源160の出力を切り換える機能も有している。本実施形態では、制御回路140は、駆動周波数の周波数探索動作中に、高電圧大電力電源150から駆動回路120への直流電圧の供給を停止するよう制御している。つまり、制御回路140は、駆動周波数の周波数探索動作中においては、高電圧大電力電源150の出力がハイインピーダンス状態となるよう制御端子CNT1に信号を出力し、低電圧小電力電源160の出力がオン状態となるよう制御端子CNT2に信号を出力している。これにより、高電圧大電力電源150の出力を停止させた状態で低電圧小電力電源160によって周波数探索動作を行うことによって、周波数探索動作中に送電装置100から漏れる不要輻射を低く抑えることができる。さらに、制御回路140は、後述する負荷221のスイッチ素子SWをオン状態あるいはオフ状態とする指示を後述する受電側制御回路260に通信手段(図示しない)を介して送信する。   The control circuit 140 has a function of controlling the drive frequency of the alternating current supplied from the drive circuit 120 to the power transmission side resonance circuit 130. That is, the control circuit 140 is configured to perform a frequency search operation for the drive frequency. A specific frequency search operation will be described later. The control circuit 140 also has a function of switching the outputs of the high voltage high power power supply 150 and the low voltage low power power supply 160. In the present embodiment, the control circuit 140 controls to stop the supply of the DC voltage from the high voltage high power power supply 150 to the drive circuit 120 during the frequency search operation of the drive frequency. That is, during the frequency search operation of the drive frequency, the control circuit 140 outputs a signal to the control terminal CNT1 so that the output of the high voltage high power source 150 is in a high impedance state, and the output of the low voltage low power source 160 is A signal is output to the control terminal CNT2 so as to be turned on. Thus, by performing the frequency search operation by the low voltage low power power supply 160 with the output of the high voltage high power power supply 150 stopped, unnecessary radiation leaking from the power transmission device 100 during the frequency search operation can be suppressed to a low level. . Further, the control circuit 140 transmits an instruction to turn on or off a switch element SW of a load 221 described later to a power receiving side control circuit 260 described later via a communication unit (not shown).

負荷221は、整流回路210と、可変負荷Vloadと、疑似負荷240を有する。整流回路210は、第1実施形態と同様、受電コイルL2が受電した交流電力を整流する機能を有する。可変負荷Vloadは、第1実施形態と同様、整流回路210の出力端子間に接続され、整流回路210で交流電力から直流電力に変換された電力を貯蔵または消費する。疑似負荷240は、負荷221の等価抵抗値を可変する機能を有する。具体的には、疑似負荷240は、スイッチ素子SWと抵抗素子Rdで構成され、可変負荷Vloadに対して並列接続されている。スイッチ素子SWは、抵抗素子Rdの可変負荷Vloadへの接続/非接続を切り換える役割を果たす。抵抗素子Rdは、スイッチ素子SWに直列に接続されている。このように構成される疑似負荷240は、後述する受電側制御回路260によりスイッチ素子SWのオン状態とオフ状態を切り換えて負荷221の等価抵抗値を可変させる。   The load 221 includes a rectifier circuit 210, a variable load Vload, and a pseudo load 240. The rectifier circuit 210 has a function of rectifying the AC power received by the power receiving coil L2 as in the first embodiment. The variable load Vload is connected between the output terminals of the rectifier circuit 210 as in the first embodiment, and stores or consumes the power converted from AC power to DC power by the rectifier circuit 210. The pseudo load 240 has a function of changing the equivalent resistance value of the load 221. Specifically, the pseudo load 240 includes a switch element SW and a resistance element Rd, and is connected in parallel to the variable load Vload. The switch element SW plays a role of switching connection / disconnection of the resistance element Rd to the variable load Vload. The resistance element Rd is connected in series with the switch element SW. The pseudo load 240 configured as described above changes the equivalent resistance value of the load 221 by switching the ON state and the OFF state of the switch element SW by the power receiving side control circuit 260 described later.

出力電圧検出回路250は、負荷221の両端電圧を検出している。具体的には、出力電圧検出回路250は、整流回路210と可変負荷Vloadの間に接続され、整流回路210の出力電圧値を検出している。つまり、整流回路210の出力電圧値は、負荷221の両端電圧値に相当する。このような出力電圧検出回路250としては、分圧回路や電圧検出トランスなどが挙げられる。この出力電圧検出回路250により検出された電圧値は、後述する受電側制御回路260に電圧検出信号として出力される。   The output voltage detection circuit 250 detects the voltage across the load 221. Specifically, the output voltage detection circuit 250 is connected between the rectifier circuit 210 and the variable load Vload, and detects the output voltage value of the rectifier circuit 210. That is, the output voltage value of the rectifier circuit 210 corresponds to the voltage value across the load 221. Examples of the output voltage detection circuit 250 include a voltage dividing circuit and a voltage detection transformer. The voltage value detected by the output voltage detection circuit 250 is output as a voltage detection signal to the power receiving side control circuit 260 described later.

受電側制御回路260は、制御回路140の指示に基づき、疑似負荷240のスイッチ素子SWのオン状態とオフ状態を切り換える機能を有する。また、受電側制御回路260は、出力電圧検出回路250から受信した電圧値を制御回路140に通信手段(図示しない)を介して送信する機能も有する。   The power receiving side control circuit 260 has a function of switching the on state and the off state of the switch element SW of the pseudo load 240 based on an instruction from the control circuit 140. The power receiving side control circuit 260 also has a function of transmitting the voltage value received from the output voltage detection circuit 250 to the control circuit 140 via communication means (not shown).

続いて、図5のフローチャートを参照して、本発明の第2実施形態に係るワイヤレス電力伝送システムS2の周波数探索動作について詳細に説明する。図5は、本発明の第2実施形態に係るワイヤレス電力伝送システムの周波数探索動作を示すフローチャートである。   Next, the frequency search operation of the wireless power transmission system S2 according to the second embodiment of the present invention will be described in detail with reference to the flowchart of FIG. FIG. 5 is a flowchart illustrating a frequency search operation of the wireless power transmission system according to the second embodiment of the present invention.

ここで、制御回路140が行う周波数探索動作とは、駆動回路120の駆動周波数を所定の周波数範囲内において変化させ、出力電圧検出回路250から出力される電圧検出信号をスイッチ素子SWのオン状態とオフ状態の両方の状態で駆動回路120の駆動周波数に対する周波数特性データとしてメモリに格納し、スイッチ素子SWがオン状態の場合の周波数特性データとスイッチ素子SWがオフ状態の場合の周波数特性データとを比較して、両周波数特性データの電圧差が最小となる周波数を選定することである。以下、周波数探索動作について詳述する。   Here, the frequency search operation performed by the control circuit 140 means that the drive frequency of the drive circuit 120 is changed within a predetermined frequency range, and the voltage detection signal output from the output voltage detection circuit 250 is changed to the ON state of the switch element SW. The frequency characteristic data for the drive frequency of the drive circuit 120 in both of the off states is stored in the memory, and the frequency characteristic data when the switch element SW is in the on state and the frequency characteristic data when the switch element SW is in the off state. In comparison, the frequency that minimizes the voltage difference between the two frequency characteristic data is selected. Hereinafter, the frequency search operation will be described in detail.

まず、制御回路140は、探索に係る全てのメモリをクリアし、駆動回路120の駆動周波数を探索する周波数範囲(所定の周波数範囲)における上限値の周波数に設定(初期周波数の設定)する。(ステップS100)   First, the control circuit 140 clears all the memories related to the search, and sets the drive frequency of the drive circuit 120 to the upper limit frequency in the frequency range (predetermined frequency range) to be searched (setting of the initial frequency). (Step S100)

続いて、制御回路140は、電源回路111を構成する2種類の電源のうち、高電圧大電力電源150をオフ状態とし、低電圧小電力電源160をオン状態とする。すなわち、制御回路140は、高電圧大電力電源150の出力がハイインピーダンス状態となるよう制御端子CNT1に信号を出力し、低電圧小電力電源160の出力がオン状態となるよう制御端子CNT2に信号を出力する。これにより、電源回路111から駆動回路120に対して低い初期電圧(50V〜150V程度)が供給される。(ステップS101)   Subsequently, the control circuit 140 turns off the high-voltage high-power power supply 150 and turns on the low-voltage low-power power supply 160 among the two types of power supplies that constitute the power supply circuit 111. That is, the control circuit 140 outputs a signal to the control terminal CNT1 so that the output of the high-voltage high-power power supply 150 is in a high impedance state, and outputs a signal to the control terminal CNT2 so that the output of the low-voltage low-power power supply 160 is turned on. Is output. Thereby, a low initial voltage (about 50 V to 150 V) is supplied from the power supply circuit 111 to the drive circuit 120. (Step S101)

続いて、制御回路140は、通信手段を介して受電側制御回路260に疑似負荷240のスイッチ素子SWをオン状態とする指示を送信する。受電側制御回路260は、制御回路140の指示に基づき、疑似負荷240のスイッチ素子SWをオン状態とする。これにより、可変負荷Vloadに抵抗素子Rdが並列接続された状態となり、負荷221の等価抵抗値が一時的に低い状態となる。この状態で、駆動回路120を動作させて交流電流を送電側共振回路130に供給する。(ステップS102)   Subsequently, the control circuit 140 transmits an instruction to turn on the switch element SW of the pseudo load 240 to the power receiving side control circuit 260 via the communication unit. The power receiving side control circuit 260 turns on the switch element SW of the pseudo load 240 based on an instruction from the control circuit 140. As a result, the resistance element Rd is connected in parallel to the variable load Vload, and the equivalent resistance value of the load 221 is temporarily low. In this state, the drive circuit 120 is operated to supply an alternating current to the power transmission side resonance circuit 130. (Step S102)

送電側共振回路130に駆動回路120から交流電流が供給されると、送電コイルL1が交流電流に基づく交流磁界を発生させ、この交流磁界を介して受電コイルL2が交流電力を受電する。そして、整流回路210が、受電コイルL2が受電した交流電力を直流電力に変換し、可変負荷Vloadに供給する。このとき、出力電圧検出回路250により、整流回路210の出力電圧値が検出され、受電側制御回路260に電圧検出信号として出力される。受電側制御回路260は、出力電圧検出回路250が検出した電圧値を、通信手段を介して制御回路140に送信する。(ステップS103)   When AC current is supplied from the drive circuit 120 to the power transmission side resonance circuit 130, the power transmission coil L1 generates an AC magnetic field based on the AC current, and the power receiving coil L2 receives AC power via the AC magnetic field. Then, the rectifier circuit 210 converts AC power received by the power receiving coil L2 into DC power and supplies it to the variable load Vload. At this time, the output voltage detection circuit 250 detects the output voltage value of the rectifier circuit 210 and outputs it to the power receiving side control circuit 260 as a voltage detection signal. The power receiving side control circuit 260 transmits the voltage value detected by the output voltage detection circuit 250 to the control circuit 140 via the communication means. (Step S103)

続いて、制御回路140は、ステップS103で受電側制御回路260から送信された電圧値と初期周波数の組を配列データとして制御回路140内の第一の探索用メモリに格納する。(ステップS104)   Subsequently, the control circuit 140 stores the combination of the voltage value and the initial frequency transmitted from the power receiving side control circuit 260 in step S103 in the first search memory in the control circuit 140 as array data. (Step S104)

続いて、制御回路140は、駆動回路120の駆動周波数を探索する周波数範囲において初期周波数から低い周波数に変更して、駆動回路120を駆動させる。(ステップS105)このときの整流回路210の出力電圧値が出力電圧検出回路250により検出され、受電側制御回路260に電圧検出信号として出力される。受電側制御回路260は、出力電圧検出回路250が検出した電圧値を、通信手段を介して制御回路140に送信する。(ステップS106)そして、制御回路140は、ステップS106で受電側制御回路260から送信された電圧値と変更後の周波数の組を配列データとして制御回路140内の第一の探索用メモリに配列番号順に追加格納する。(ステップS107)   Subsequently, the control circuit 140 changes the driving frequency of the driving circuit 120 from the initial frequency to a lower frequency in the frequency range for searching, and drives the driving circuit 120. (Step S105) The output voltage value of the rectifier circuit 210 at this time is detected by the output voltage detection circuit 250, and is output to the power receiving side control circuit 260 as a voltage detection signal. The power receiving side control circuit 260 transmits the voltage value detected by the output voltage detection circuit 250 to the control circuit 140 via the communication means. (Step S106) Then, the control circuit 140 uses the combination of the voltage value transmitted from the power receiving side control circuit 260 in step S106 and the changed frequency as array data in the first search memory in the control circuit 140. Store additional in order. (Step S107)

続いて、制御回路140の第一の探索用メモリに格納されている最後尾から二番目の配列番号の整流回路210の出力電圧値とステップS107で取得した整流回路210の出力電圧値を比較し(ステップS108)、ステップS107で取得した整流回路210の出力電圧値が第一の探索用メモリに格納されている最後尾から二番目の配列番号の整流回路210の出力電圧値以下になると処理動作を中止し、最後尾の配列番号を制御回路140内の記憶メモリに格納する(ステップS108Y)。ステップS107で取得した整流回路210の出力電圧値が第一の探索用メモリに格納されている最後尾から二番目の配列番号の整流回路210の出力電圧値よりも大きい場合(ステップS108N)は、変更する周波数と探索する周波数範囲における下限値の周波数を比較し(ステップS109)、変更する周波数が探索する周波数範囲における下限値の周波数に至ると処理動作を中止し、最後尾の配列番号を制御回路140内の記憶メモリに格納する(ステップS109Y)。一方、変更する周波数が探索する周波数範囲における下限値の周波数に至っていない場合(ステップS109N)、ステップS105からステップS109までの処理動作が繰り返し実行される。   Subsequently, the output voltage value of the rectifier circuit 210 having the second array element number from the tail stored in the first search memory of the control circuit 140 is compared with the output voltage value of the rectifier circuit 210 acquired in step S107. (Step S108), when the output voltage value of the rectifier circuit 210 acquired in Step S107 is equal to or lower than the output voltage value of the rectifier circuit 210 of the second array number from the last stored in the first search memory And the last array element number is stored in the storage memory in the control circuit 140 (step S108Y). When the output voltage value of the rectifier circuit 210 acquired in step S107 is larger than the output voltage value of the rectifier circuit 210 having the second array element number from the tail stored in the first search memory (step S108N), The frequency to be changed is compared with the lower limit frequency in the frequency range to be searched (step S109). When the frequency to be changed reaches the lower limit frequency in the frequency range to be searched, the processing operation is stopped and the last array number is controlled. The data is stored in the storage memory in the circuit 140 (step S109Y). On the other hand, when the frequency to be changed has not reached the lower limit frequency in the frequency range to be searched (step S109N), the processing operations from step S105 to step S109 are repeatedly executed.

続いて、ステップS108YあるいはステップS109Yとなった場合、制御回路140は、駆動回路120の駆動周波数を探索する周波数範囲(所定の周波数範囲)における上限値の周波数にリセット(初期周波数の再設定)する。(ステップS110)   Subsequently, in step S108Y or step S109Y, the control circuit 140 resets (resets the initial frequency) to the upper limit frequency in the frequency range (predetermined frequency range) in which the drive frequency of the drive circuit 120 is searched. . (Step S110)

続いて、制御回路140は、通信手段を介して受電側制御回路260に疑似負荷240のスイッチ素子SWをオフ状態とする指示を送信する。受電側制御回路260は、制御回路140の指示に基づき、疑似負荷240のスイッチ素子SWをオフ状態とする。これにより、抵抗素子Rdが可変負荷Vloadに対して非接続状態となり、負荷221の等価抵抗値が高い状態に戻る。この状態で、駆動回路120を動作させて交流電流を送電側共振回路130に供給する。(ステップS111)   Subsequently, the control circuit 140 transmits an instruction to turn off the switch element SW of the pseudo load 240 to the power receiving side control circuit 260 via the communication unit. The power receiving side control circuit 260 turns off the switch element SW of the pseudo load 240 based on an instruction from the control circuit 140. Thereby, the resistance element Rd is disconnected from the variable load Vload, and the equivalent resistance value of the load 221 returns to a high state. In this state, the drive circuit 120 is operated to supply an alternating current to the power transmission side resonance circuit 130. (Step S111)

続いて、送電側共振回路130に駆動回路120から交流電流が供給されると、送電コイルL1が交流電流に基づく交流磁界を発生させ、この交流磁界を介して受電コイルL2が交流電力を受電する。そして、整流回路210が、受電コイルL2が受電した交流電力を直流電力に変換し、可変負荷Vloadに供給する。このとき、出力電圧検出回路250により、整流回路210の出力電圧値が検出され、受電側制御回路260に電圧検出信号として出力される。受電側制御回路260は、出力電圧検出回路250が検出した電圧値を、通信手段を介して制御回路140に送信する。(ステップS112)   Subsequently, when AC current is supplied from the drive circuit 120 to the power transmission side resonance circuit 130, the power transmission coil L1 generates an AC magnetic field based on the AC current, and the power receiving coil L2 receives AC power via the AC magnetic field. . Then, the rectifier circuit 210 converts AC power received by the power receiving coil L2 into DC power and supplies it to the variable load Vload. At this time, the output voltage detection circuit 250 detects the output voltage value of the rectifier circuit 210 and outputs it to the power receiving side control circuit 260 as a voltage detection signal. The power receiving side control circuit 260 transmits the voltage value detected by the output voltage detection circuit 250 to the control circuit 140 via the communication means. (Step S112)

続いて、制御回路140は、ステップS112で受電側制御回路260から送信された電圧値と初期周波数の組を配列データとして制御回路140内の第二の探索用メモリに格納する。(ステップS113)   Subsequently, the control circuit 140 stores the set of the voltage value and the initial frequency transmitted from the power receiving side control circuit 260 in step S112 in the second search memory in the control circuit 140 as array data. (Step S113)

続いて、制御回路140は、駆動回路120の駆動周波数を探索する周波数範囲において初期周波数から低い周波数に変更して、駆動回路120を駆動させる。(ステップS114)このときの整流回路210の出力電圧値が出力電圧検出回路250により検出され、受電側制御回路260に電圧検出信号として出力される。受電側制御回路260は、出力電圧検出回路250が検出した電圧値を、通信手段を介して制御回路140に送信する。(ステップS115)そして、制御回路140は、ステップS115で受電側制御回路260から送信された電圧値と変更後の周波数の組を配列データとして制御回路140内の第二の探索用メモリに配列番号順に追加格納する。(ステップS116)   Subsequently, the control circuit 140 changes the driving frequency of the driving circuit 120 from the initial frequency to a lower frequency in the frequency range for searching, and drives the driving circuit 120. (Step S114) The output voltage value of the rectifier circuit 210 at this time is detected by the output voltage detection circuit 250 and output to the power receiving side control circuit 260 as a voltage detection signal. The power receiving side control circuit 260 transmits the voltage value detected by the output voltage detection circuit 250 to the control circuit 140 via the communication means. (Step S115) Then, the control circuit 140 uses the combination of the voltage value transmitted from the power receiving side control circuit 260 in step S115 and the changed frequency as array data in the second search memory in the control circuit 140. Store additional in order. (Step S116)

続いて、第二の探索用メモリに格納される配列番号と、制御回路140の記憶メモリに格納された最後尾の配列番号を比較し(ステップS117)、第二の探索用メモリに格納される配列番号が、制御回路140の記憶メモリに格納された最後尾の配列番号と一致しない場合(ステップS117N)は、第二の探索用メモリに格納される配列番号が、制御回路140の記憶メモリに格納された最後尾の配列番号に至るまでステップS114からステップS117まで繰り返し実行される。一方、第二の探索用メモリに格納される配列番号が、制御回路140の記憶メモリに格納された最後尾の配列番号と一致した場合(ステップS117Y)、制御回路140は、第一の探索用メモリに格納されている整流回路210の出力電圧値と周波数の配列データと第二の探索用メモリに格納されている整流回路210の出力電圧値と周波数の配列データを比較して、第一の探索用メモリに格納されている整流回路210の出力電圧値と第二の探索用メモリに格納されている整流回路210の出力電圧値の差が最も小さくなる周波数を探索する。(ステップS118)   Subsequently, the array element number stored in the second search memory and the last array element number stored in the storage memory of the control circuit 140 are compared (step S117) and stored in the second search memory. If the array element number does not match the last array element stored in the storage memory of the control circuit 140 (step S117N), the array element number stored in the second search memory is stored in the storage memory of the control circuit 140. Steps S114 to S117 are repeatedly executed until the stored last array element number is reached. On the other hand, when the array element number stored in the second search memory matches the last array element number stored in the storage memory of the control circuit 140 (step S117Y), the control circuit 140 causes the first search element to be searched. The output voltage value and frequency array data of the rectifier circuit 210 stored in the memory and the output voltage value and frequency array data of the rectifier circuit 210 stored in the second search memory are compared, and the first The frequency that minimizes the difference between the output voltage value of the rectifier circuit 210 stored in the search memory and the output voltage value of the rectifier circuit 210 stored in the second search memory is searched. (Step S118)

続いて、制御回路140は、ステップS118で探索した整流回路210の出力電圧値の差が最も小さくなる周波数を制御回路140内の設定用メモリに格納する。(ステップS119)   Subsequently, the control circuit 140 stores the frequency at which the difference between the output voltage values of the rectifier circuit 210 searched in step S118 is the smallest in the setting memory in the control circuit 140. (Step S119)

そして、制御回路140は、設定用メモリに格納された周波数を駆動回路120の駆動周波数に設定する。このように、駆動回路120の駆動周波数が設定用メモリに格納された周波数に設定されると、周波数探索動作が終了する。(ステップS120)以上のように、制御回路140が行う周波数探索動作とは、スイッチ素子SWがオン状態のときに出力電圧検出回路250が検出した電圧値とスイッチ素子SWがオフ状態のときに出力電圧検出回路250が検出した電圧値の差が最小となる周波数に駆動周波数を設定することである。   Then, the control circuit 140 sets the frequency stored in the setting memory to the drive frequency of the drive circuit 120. Thus, when the drive frequency of the drive circuit 120 is set to the frequency stored in the setting memory, the frequency search operation ends. (Step S120) As described above, the frequency search operation performed by the control circuit 140 is the voltage value detected by the output voltage detection circuit 250 when the switch element SW is on and the output when the switch element SW is off. The drive frequency is set to a frequency at which the difference between the voltage values detected by the voltage detection circuit 250 is minimized.

上記周波数探索動作が終了し、制御回路140が設定用メモリに格納された周波数を駆動回路120の駆動周波数に設定すると、制御回路140は、電源回路111を構成する2種類の電源のうち、高電圧大電力電源150をオン状態とし、低電圧小電力電源160をオフ状態とする。すなわち、制御回路140は、高電圧大電力電源150の出力がオン状態となるよう制御端子CNT1に信号を出力し、低電圧小電力電源160の出力がハイインピーダンス状態となるよう制御端子CNT2に信号を出力する。これにより、ワイヤレス電力伝送システムS2において、負荷221の両端電圧(整流回路210の出力電圧)を所望の電圧値に昇圧し、負荷変動に対して負荷221の両端電圧が変化しにくい状態で、大電力の電力伝送をすることが可能となる。   When the frequency search operation is finished and the control circuit 140 sets the frequency stored in the setting memory as the drive frequency of the drive circuit 120, the control circuit 140 is the high power source among the two types of power supplies constituting the power supply circuit 111. The high voltage power source 150 is turned on, and the low voltage low power source 160 is turned off. That is, the control circuit 140 outputs a signal to the control terminal CNT1 so that the output of the high voltage high power source 150 is turned on, and outputs a signal to the control terminal CNT2 so that the output of the low voltage low power source 160 is in a high impedance state. Is output. As a result, in the wireless power transmission system S2, the voltage across the load 221 (the output voltage of the rectifier circuit 210) is boosted to a desired voltage value, and the voltage across the load 221 is unlikely to change due to load fluctuations. It becomes possible to transmit electric power.

以上のように、本実施形態に係るワイヤレス電力伝送システムS2は、送電装置100が、駆動周波数を制御する制御回路140をさらに備え、受電装置200が、負荷221の両端電圧を検出する出力電圧検出回路250をさらに備え、負荷221は、受電コイルL2が受電した交流電力を整流する整流回路210と、整流回路210の出力端子間に接続される可変負荷Vloadと、可変負荷Vloadに対して並列に接続されるスイッチ素子SWとスイッチ素子SWに直列に接続される抵抗素子Rdで構成される疑似負荷240と、を含み、制御回路140は、スイッチ素子SWがオン状態のときに出力電圧検出回路250が検出した電圧値とスイッチ素子SWがオフ状態のときに出力電圧検出回路250が検出した電圧値との差が最小となる周波数に駆動周波数を設定する周波数探索動作を行っている。そのため、スイッチ素子SWをオン状態とオフ状態に切り替えることによって負荷抵抗を変化させて、負荷221の両端電圧の変化が最小になる周波数を探索する周波数探索動作により、送電装置100と受電装置200との距離や角度を所望の範囲内に収めることができない場合でも、スイッチ素子SWと抵抗素子Rdという簡単で安価な手段で負荷変動に対して負荷221の両端電圧の変動を最小に抑制することができる。   As described above, in the wireless power transmission system S2 according to the present embodiment, the power transmission device 100 further includes the control circuit 140 that controls the drive frequency, and the power reception device 200 detects the output voltage across the load 221. The circuit 250 further includes a load 221 that rectifies the AC power received by the power receiving coil L2, a variable load Vload connected between the output terminals of the rectifier circuit 210, and the variable load Vload in parallel. The control circuit 140 includes an output voltage detection circuit 250 when the switch element SW is in an ON state. The pseudo load 240 includes a switch element SW connected and a resistance element Rd connected in series to the switch element SW. The difference between the voltage value detected by the output voltage detection circuit 250 and the voltage value detected by the output voltage detection circuit 250 when the switch element SW is in the OFF state is the largest. And performing frequency search operation for setting the driving frequency to a frequency at which. Therefore, by changing the load resistance by switching the switch element SW between the on state and the off state, the frequency search operation for searching for the frequency at which the change in the voltage across the load 221 is minimized, Even when the distance or angle cannot be within the desired range, the fluctuation of the voltage across the load 221 can be minimized with respect to the load fluctuation by a simple and inexpensive means such as the switch element SW and the resistance element Rd. it can.

また、本実施形態に係るワイヤレス電力伝送システムS2においては、送電装置100が、高電圧大電力電源150と低電圧小電力電源160をさらに備え、駆動回路120は、高電圧大電力電源150あるいは低電圧小電力電源160から供給された直流電圧を交流電圧に変換し、高電圧大電力電源150は、周波数探索動作中に駆動回路120に直流電圧の供給を停止している。そのため、高電圧大電力電源150の出力を停止させた状態で低電圧小電力電源160によって周波数探索動作を行うことによって、周波数探索動作中に送電装置100から漏れる不要輻射を低く抑えることができる。   In the wireless power transmission system S2 according to the present embodiment, the power transmission device 100 further includes a high voltage high power power source 150 and a low voltage low power power source 160, and the drive circuit 120 includes the high voltage high power power source 150 or a low power source. The DC voltage supplied from the low voltage power source 160 is converted into an AC voltage, and the high voltage high power source 150 stops supplying the DC voltage to the drive circuit 120 during the frequency search operation. Therefore, unnecessary radiation leaking from the power transmission device 100 during the frequency search operation can be suppressed to a low level by performing the frequency search operation by the low-voltage low-power power supply 160 in a state where the output of the high-voltage high-power power supply 150 is stopped.

(第3実施形態)
次に、図6を参照して、本発明の第3実施形態に係るワイヤレス電力伝送システムS3の構成について説明する。図6は、本発明の第3実施形態に係るワイヤレス電力伝送システムを示す構成図である。
(Third embodiment)
Next, the configuration of the wireless power transmission system S3 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a configuration diagram showing a wireless power transmission system according to the third embodiment of the present invention.

ワイヤレス電力伝送システムS3は、第1実施形態と同様に、送電装置100と、受電装置200を有する。このワイヤレス電力伝送システムS3では、送電装置100から受電装置200に向けて、ワイヤレスにて電力が伝送されることとなる。本実施形態では、送電装置100は、電源回路111と、駆動回路120と、送電側共振回路130と、制御回路141を有する。受電装置200は、受電側共振回路230と、負荷222と、出力電圧検出回路250と、受電側制御回路260と、を有する。駆動回路120、送電側共振回路130、受電側共振回路230の構成は、第1実施形態に係るワイヤレス電力伝送システムS1と同様である。すなわち、第3実施形態に係るワイヤレス電力伝送システムS3は、電源回路110、負荷220に代えて電源回路111、負荷222を備えている点、制御回路141、出力電圧検出回路250、受電側制御回路260を備えている点において、第1実施形態と相違する。なお、電源回路111、出力電圧検出回路250、受電側制御回路260の構成は、第2実施形態に係るワイヤレス電力伝送システムS2と同様のため説明は省略する。以下、第1および第2実施形態と異なる点を中心に説明する。   The wireless power transmission system S3 includes a power transmission device 100 and a power reception device 200, as in the first embodiment. In the wireless power transmission system S <b> 3, power is transmitted wirelessly from the power transmission device 100 to the power reception device 200. In the present embodiment, the power transmission device 100 includes a power supply circuit 111, a drive circuit 120, a power transmission resonance circuit 130, and a control circuit 141. The power receiving device 200 includes a power receiving side resonance circuit 230, a load 222, an output voltage detection circuit 250, and a power receiving side control circuit 260. The configuration of the drive circuit 120, the power transmission side resonance circuit 130, and the power reception side resonance circuit 230 is the same as that of the wireless power transmission system S1 according to the first embodiment. That is, the wireless power transmission system S3 according to the third embodiment includes a power supply circuit 111 and a load 222 instead of the power supply circuit 110 and the load 220, a control circuit 141, an output voltage detection circuit 250, and a power receiving side control circuit. The second embodiment is different from the first embodiment in that 260 is provided. Note that the configurations of the power supply circuit 111, the output voltage detection circuit 250, and the power receiving side control circuit 260 are the same as those of the wireless power transmission system S2 according to the second embodiment, and thus description thereof is omitted. Hereinafter, a description will be given focusing on differences from the first and second embodiments.

制御回路141は、駆動回路120から送電側共振回路130に供給する交流電流の駆動周波数を制御する機能を有する。つまり、制御回路141は、駆動周波数の周波数探索動作を行うように構成されている。なお、具体的な周波数探索動作については後述する。また、制御回路141は、電源回路111の高電圧大電力電源150と低電圧小電力電源160の出力を切り換える機能も有している。本実施形態では、制御回路141は、駆動周波数の周波数探索動作中に、高電圧大電力電源150から駆動回路120への直流電圧の供給を停止するよう制御している。つまり、制御回路141は、駆動周波数の周波数探索動作中においては、高電圧大電力電源150の出力がハイインピーダンス状態となるよう制御端子CNT1に信号を出力し、低電圧小電力電源160の出力がオン状態となるよう制御端子CNT2に信号を出力している。これにより、高電圧大電力電源150の出力を停止させた状態で低電圧小電力電源160によって周波数探索動作を行うことによって、周波数探索動作中に送電装置100から漏れる不要輻射を低く抑えることができる。さらに、制御回路141は、後述する負荷222のスイッチ素子SWをオン状態あるいはオフ状態とする指示を後述する受電側制御回路260に通信手段(図示しない)を介して送信する。   The control circuit 141 has a function of controlling the drive frequency of the alternating current supplied from the drive circuit 120 to the power transmission side resonance circuit 130. That is, the control circuit 141 is configured to perform a frequency search operation for the drive frequency. A specific frequency search operation will be described later. The control circuit 141 also has a function of switching the output of the high voltage high power power supply 150 and the low voltage low power power supply 160 of the power supply circuit 111. In the present embodiment, the control circuit 141 controls to stop the supply of the DC voltage from the high-voltage high-power power source 150 to the drive circuit 120 during the frequency search operation of the drive frequency. That is, during the frequency search operation of the drive frequency, the control circuit 141 outputs a signal to the control terminal CNT1 so that the output of the high voltage high power power supply 150 is in a high impedance state, and the output of the low voltage low power power supply 160 is A signal is output to the control terminal CNT2 so as to be turned on. Thus, by performing the frequency search operation by the low voltage low power power supply 160 with the output of the high voltage high power power supply 150 stopped, unnecessary radiation leaking from the power transmission device 100 during the frequency search operation can be suppressed to a low level. . Further, the control circuit 141 transmits an instruction to turn on or off a switch element SW of a load 222 described later to a power receiving side control circuit 260 described later via a communication unit (not shown).

負荷222は、整流回路210と、可変負荷Vloadと、疑似負荷241を有する。整流回路210は、第1実施形態と同様、受電コイルL2が受電した交流電力を整流する機能を有する。可変負荷Vloadは、第1実施形態と同様、整流回路210の出力端子間に接続され、整流回路210で交流電力から直流電力に変換された電力を貯蔵または消費する。疑似負荷241は、負荷222の等価抵抗値を10Ω以下に可変する機能を有する。具体的には、疑似負荷241は、スイッチ素子SWと抵抗素子Rd1で構成され、可変負荷Vloadに対して並列接続されている。スイッチ素子SWは、抵抗素子Rd1の可変負荷Vloadへの接続/非接続を切り換える役割を果たす。抵抗素子Rd1は、スイッチ素子SWに直列に接続されている。本実施形態においては、抵抗素子Rd1は、10Ω以下に設定されている。このように構成される疑似負荷241は、後述する受電側制御回路260によりスイッチ素子SWをオン状態に切り換えて負荷222の等価抵抗値を10Ω以下に可変させる。   The load 222 includes a rectifier circuit 210, a variable load Vload, and a pseudo load 241. The rectifier circuit 210 has a function of rectifying the AC power received by the power receiving coil L2 as in the first embodiment. The variable load Vload is connected between the output terminals of the rectifier circuit 210 as in the first embodiment, and stores or consumes the power converted from AC power to DC power by the rectifier circuit 210. The pseudo load 241 has a function of changing the equivalent resistance value of the load 222 to 10Ω or less. Specifically, the pseudo load 241 includes a switch element SW and a resistance element Rd1, and is connected in parallel to the variable load Vload. The switch element SW plays a role of switching connection / disconnection of the resistance element Rd1 to the variable load Vload. The resistance element Rd1 is connected in series to the switch element SW. In the present embodiment, the resistance element Rd1 is set to 10Ω or less. The pseudo load 241 configured in this manner changes the equivalent resistance value of the load 222 to 10Ω or less by switching the switch element SW to an on state by a power receiving side control circuit 260 described later.

ここで、図8〜図10を参照して、擬似負荷241の抵抗素子Rd1を10Ω以下とする理由について詳細に説明する。   Here, the reason why the resistance element Rd1 of the pseudo load 241 is 10Ω or less will be described in detail with reference to FIGS.

図8は、負荷の等価抵抗値に対する負荷の両端電圧の周波数特性を示すグラフである。図8に示すグラフは、X軸に駆動周波数(kHz)を表示し、Y軸に負荷の両端電圧Vo(V)を表示している。図8に示す例においては、送受電コイル間の結合係数kを固定値0.3に設定し、負荷の等価抵抗値を5Ω、10Ω、20Ω、100Ω、1kΩに変化させた場合の負荷の両端電圧Voを示している。   FIG. 8 is a graph showing frequency characteristics of the voltage across the load with respect to the equivalent resistance value of the load. In the graph shown in FIG. 8, the drive frequency (kHz) is displayed on the X axis, and the both-ends voltage Vo (V) of the load is displayed on the Y axis. In the example shown in FIG. 8, the coupling coefficient k between the power transmitting and receiving coils is set to a fixed value of 0.3, and both ends of the load when the equivalent resistance value of the load is changed to 5Ω, 10Ω, 20Ω, 100Ω, and 1 kΩ. The voltage Vo is shown.

図8に示すように、負荷の等価抵抗値が10Ω以下の場合、低周波数側と高周波数側の両方に負荷の両端電圧Voの極大点があり、特に高周波数側の極大点の周波数近傍には、負荷の等価抵抗値が5Ωから1kΩまで変化しても負荷の両端電圧Voの変化が小さい周波数域Pがあることが読み取れる。一方、負荷の等価抵抗値が20Ω以上では、周波数域Pにおける負荷の両端電圧Voの極大点は消失する。   As shown in FIG. 8, when the equivalent resistance value of the load is 10Ω or less, there is a maximum point of the voltage Vo at both ends of the load on both the low frequency side and the high frequency side, particularly near the frequency of the maximum point on the high frequency side. It can be read that there is a frequency region P in which the change in the voltage Vo across the load is small even when the equivalent resistance value of the load changes from 5Ω to 1 kΩ. On the other hand, when the equivalent resistance value of the load is 20Ω or more, the maximum point of the voltage Vo across the load in the frequency region P disappears.

図9は、負荷の等価抵抗値に対する送電側共振回路と受電側共振回路と負荷で構成されるワイヤレス電力伝送網のインピーダンスの虚部の周波数特性を示すグラフである。図9に示すグラフは、X軸に駆動周波数(kHz)を表示し、Y軸にインピーダンスZの虚部X(Ω)を表示している。図9に示す例においては、送受電コイル間の結合係数kを固定値0.3に設定し、負荷の等価抵抗値を5Ω、10Ω、20Ω、100Ω、1kΩに変化させた場合のインピーダンスZの虚部Xを示している。   FIG. 9 is a graph showing the frequency characteristics of the imaginary part of the impedance of the wireless power transmission network including the power transmission side resonance circuit, the power reception side resonance circuit, and the load with respect to the equivalent resistance value of the load. The graph shown in FIG. 9 displays the drive frequency (kHz) on the X axis and the imaginary part X (Ω) of the impedance Z on the Y axis. In the example shown in FIG. 9, the coupling coefficient k between the power transmitting and receiving coils is set to a fixed value of 0.3, and the impedance Z when the equivalent resistance value of the load is changed to 5Ω, 10Ω, 20Ω, 100Ω, and 1 kΩ. An imaginary part X is shown.

図9に示すように、負荷の両端電圧の極大点が存在する周波数域P近傍における送電側共振回路と受電側共振回路と負荷で構成されるワイヤレス電力伝送網のインピーダンスZの虚部Xが、式(5)および式(6)を満たすことが読み取れる。このことにより、負荷抵抗の等価抵抗値を10Ω以下とすると、負荷の両端電圧Voは、周波数域P近傍において極大点を持ち、この極大点において、負荷の両端電圧Voの負荷変動による変化量は最小となる。また、付随的特性として、この極大点において、送電側共振回路と受電側共振回路と負荷で構成されるワイヤレス電力伝送網のインピーダンスZの虚部Xは、式(5)および式(6)を満たしている。したがって、擬似負荷241の抵抗素子Rd1を10Ω以下に設定し、負荷222の等価抵抗値を10Ω以下に可変させるとともに、負荷222の両端電圧が極大を示す周波数を周波数探索動作により見出し、その周波数を駆動周波数に設定することで負荷変動に対して負荷222の両端電圧の変化が小さなワイヤレス電力伝送システムを得ることができる。   As shown in FIG. 9, the imaginary part X of the impedance Z of the wireless power transmission network composed of the power transmission side resonance circuit, the power reception side resonance circuit, and the load in the vicinity of the frequency region P where the maximum point of the voltage across the load exists exists. It can be read that the expressions (5) and (6) are satisfied. As a result, when the equivalent resistance value of the load resistance is 10Ω or less, the voltage Vo across the load has a local maximum in the vicinity of the frequency region P. At this local maximum, the amount of change due to load fluctuation of the voltage Vo across the load is Minimal. Further, as an incidental characteristic, at this maximum point, the imaginary part X of the impedance Z of the wireless power transmission network composed of the power transmission side resonance circuit, the power reception side resonance circuit, and the load is expressed by the following equations (5) and (6). Satisfies. Therefore, the resistance element Rd1 of the pseudo load 241 is set to 10Ω or less, the equivalent resistance value of the load 222 is varied to 10Ω or less, and the frequency at which the voltage across the load 222 exhibits a maximum is found by the frequency search operation. By setting the drive frequency, it is possible to obtain a wireless power transmission system in which a change in the voltage across the load 222 is small with respect to a load change.

続いて、図10を参照して、送受電コイル間の結合係数kが変化した場合であっても負荷の等価抵抗値が10Ω以下であることが好ましい理由について説明する。図10は、送受電コイル間の結合係数の変化に対する負荷の両端電圧が周波数域P近傍に極大点を持つ負荷の等価抵抗値の最大値を示すグラフである。図10に示すグラフは、X軸に結合係数kを表示し、Y軸に負荷の両端電圧が周波数域P近傍に極大点を持つ負荷の等価抵抗値の最大値を表示している。ここで、本例においては、負荷の両端電圧が周波数域P近傍に極大点を持つように送電側共振回路130のコンデンサC11,C12と受電側共振回路230のコンデンサC21,C22を調整した。図10に示す例においては、送電コイルL1のインダクタンス値L10と受電コイルL2のインダクタンス値L20が、L10=L20=55μH、L10=L20=74.7μH、L10=L20=95.8μH、L10=L20=141.4μH、L10=128.3μHおよびL20=93.4μHの組み合わせに変化させた場合の負荷の両端電圧が周波数域P近傍に極大点を持つ負荷の等価抵抗値の最大値を示している。なお、送受電コイル間の最小結合係数kは、送電コイルと受電コイルの対向方向の距離が20cmの場合とした。   Next, the reason why the equivalent resistance value of the load is preferably 10Ω or less even when the coupling coefficient k between the power transmitting and receiving coils is changed will be described with reference to FIG. FIG. 10 is a graph showing the maximum value of the equivalent resistance value of a load in which the voltage across the load has a local maximum in the vicinity of the frequency region P with respect to the change in the coupling coefficient between the power transmitting and receiving coils. In the graph shown in FIG. 10, the coupling coefficient k is displayed on the X axis, and the maximum value of the equivalent resistance value of the load having the maximum point near the frequency region P is displayed on the Y axis. Here, in this example, the capacitors C11 and C12 of the power transmission side resonance circuit 130 and the capacitors C21 and C22 of the power reception side resonance circuit 230 are adjusted so that the voltage across the load has a maximum point near the frequency region P. In the example shown in FIG. 10, the inductance value L10 of the power transmission coil L1 and the inductance value L20 of the power reception coil L2 are L10 = L20 = 55 μH, L10 = L20 = 74.7 μH, L10 = L20 = 95.8 μH, L10 = L20. = 141.4 μH, L10 = 128.3 μH, and L20 = 93.4 μH, the voltage across the load shows the maximum value of the equivalent resistance value of the load having a local maximum near the frequency range P . Note that the minimum coupling coefficient k between the power transmission and reception coils was set to a distance of 20 cm between the power transmission coil and the power reception coil in the facing direction.

図10に示すように、送受電コイル間の結合係数kが減少すると、負荷の両端電圧が周波数域P近傍に極大点を持つ負荷の等価抵抗値の最大値も減少する。送受電コイル間の結合係数kが最小の場合、図10の領域Qで示すように、負荷の等価抵抗値はほぼ同じ値となる。具体的には、領域Qは、各送受電コイルの組み合わせの結合係数kが最小となる場合において、負荷の両端電圧が周波数域P近傍に極大点を持つ負荷の等価抵抗値の最大値を示しており、その値は約10Ωである。したがって、負荷の等価抵抗値を10Ω以下に設定すると、送受電コイル間の結合係数kが最小の場合であっても、負荷の両端電圧が周波数域P近傍に極大点を持つこととなり、この極大点を示す周波数を周波数探索動作により見出し、その周波数を駆動周波数に設定することで負荷変動に対して負荷の両端電圧の変化が小さなワイヤレス電力伝送システムを得ることができる。   As shown in FIG. 10, when the coupling coefficient k between the power transmitting and receiving coils decreases, the maximum value of the equivalent resistance value of the load having a local maximum point near the frequency region P is also reduced. When the coupling coefficient k between the power transmitting and receiving coils is the minimum, as shown by the region Q in FIG. Specifically, the region Q indicates the maximum value of the equivalent resistance value of the load having a maximum point near the frequency region P where the voltage at both ends of the load is the minimum when the coupling coefficient k of each combination of the power transmitting and receiving coils is minimum. The value is about 10Ω. Therefore, when the equivalent resistance value of the load is set to 10Ω or less, the voltage at both ends of the load has a maximum point near the frequency region P even when the coupling coefficient k between the power transmission and reception coils is minimum. A frequency indicating a point is found by a frequency search operation, and by setting the frequency as a driving frequency, a wireless power transmission system in which a change in voltage across the load is small with respect to a load change can be obtained.

続いて、図7のフローチャートを参照して、本発明の第3実施形態に係るワイヤレス電力伝送システムS3の周波数探索動作について詳細に説明する。図7は、本発明の第3実施形態に係るワイヤレス電力伝送システムの周波数探索動作を示すフローチャートである。   Next, the frequency search operation of the wireless power transmission system S3 according to the third embodiment of the present invention will be described in detail with reference to the flowchart of FIG. FIG. 7 is a flowchart showing a frequency search operation of the wireless power transmission system according to the third embodiment of the present invention.

ここで、制御回路141が行う周波数探索動作とは、駆動回路120の駆動周波数を所定の周波数範囲内において変化させ、出力電圧検出回路250から出力される電圧検出信号をスイッチ素子SWのオン状態で駆動回路120の駆動周波数に対する周波数特性データとしてメモリに格納し、スイッチ素子SWがオン状態の場合の出力電圧検出回路250から出力される電圧検出信号の極大値に相当する周波数を選定することである。以下、周波数探索動作について詳述する。   Here, the frequency search operation performed by the control circuit 141 is to change the drive frequency of the drive circuit 120 within a predetermined frequency range, and to change the voltage detection signal output from the output voltage detection circuit 250 when the switch element SW is on. The frequency characteristic data corresponding to the drive frequency of the drive circuit 120 is stored in the memory, and the frequency corresponding to the maximum value of the voltage detection signal output from the output voltage detection circuit 250 when the switch element SW is in the on state is selected. . Hereinafter, the frequency search operation will be described in detail.

まず、制御回路141は、探索に係る全てのメモリをクリアし、駆動回路120の駆動周波数を探索する周波数範囲(所定の周波数範囲)における上限値の周波数に設定(初期周波数の設定)する。(ステップS200)   First, the control circuit 141 clears all the memories related to the search, and sets the drive frequency of the drive circuit 120 to the upper limit frequency in the frequency range (predetermined frequency range) to be searched (set the initial frequency). (Step S200)

続いて、制御回路141は、電源回路111を構成する2種類の電源のうち、高電圧大電力電源150をオフ状態とし、低電圧小電力電源160をオン状態とする。すなわち、制御回路140は、高電圧大電力電源150の出力がハイインピーダンス状態となるよう制御端子CNT1に信号を出力し、低電圧小電力電源160の出力がオン状態となるよう制御端子CNT2に信号を出力する。これにより、電源回路111から駆動回路120に対して低い初期電圧(50V〜150V程度)が供給される。(ステップS201)   Subsequently, the control circuit 141 turns off the high-voltage high-power power supply 150 and turns on the low-voltage low-power power supply 160 among the two types of power supplies constituting the power supply circuit 111. That is, the control circuit 140 outputs a signal to the control terminal CNT1 so that the output of the high-voltage high-power power supply 150 is in a high impedance state, and outputs a signal to the control terminal CNT2 so that the output of the low-voltage low-power power supply 160 is turned on. Is output. Thereby, a low initial voltage (about 50 V to 150 V) is supplied from the power supply circuit 111 to the drive circuit 120. (Step S201)

続いて、制御回路141は、通信手段を介して受電側制御回路260に疑似負荷241のスイッチ素子SWをオン状態とする指示を送信する。受電側制御回路260は、制御回路141の指示に基づき、疑似負荷241のスイッチ素子SWをオン状態とする。これにより、可変負荷Vloadに抵抗素子Rd1が並列接続された状態となり、負荷222の等価抵抗値が一時的に10Ω以下となる。この状態で、駆動回路120を動作させて交流電流を送電側共振回路130に供給する。(ステップS202)   Subsequently, the control circuit 141 transmits an instruction to turn on the switch element SW of the pseudo load 241 to the power receiving side control circuit 260 via the communication unit. The power receiving side control circuit 260 turns on the switch element SW of the pseudo load 241 based on an instruction from the control circuit 141. As a result, the resistance element Rd1 is connected in parallel to the variable load Vload, and the equivalent resistance value of the load 222 temporarily becomes 10Ω or less. In this state, the drive circuit 120 is operated to supply an alternating current to the power transmission side resonance circuit 130. (Step S202)

送電側共振回路130に駆動回路120から交流電流が供給されると、送電コイルL1が交流電流に基づく交流磁界を発生させ、この交流磁界を介して受電コイルL2が交流電力を受電する。そして、整流回路210が、受電コイルL2が受電した交流電力を直流電力に変換し、可変負荷Vloadに供給する。このとき、出力電圧検出回路250により、整流回路210の出力電圧値が検出され、受電側制御回路260に電圧検出信号として出力される。受電側制御回路260は、出力電圧検出回路250が検出した電圧値を、通信手段を介して制御回路141に送信する。(ステップS203)   When AC current is supplied from the drive circuit 120 to the power transmission side resonance circuit 130, the power transmission coil L1 generates an AC magnetic field based on the AC current, and the power receiving coil L2 receives AC power via the AC magnetic field. Then, the rectifier circuit 210 converts AC power received by the power receiving coil L2 into DC power and supplies it to the variable load Vload. At this time, the output voltage detection circuit 250 detects the output voltage value of the rectifier circuit 210 and outputs it to the power receiving side control circuit 260 as a voltage detection signal. The power receiving side control circuit 260 transmits the voltage value detected by the output voltage detection circuit 250 to the control circuit 141 via the communication means. (Step S203)

続いて、制御回路141は、ステップS203で受電側制御回路260から送信された電圧値と初期周波数の組を配列データとして制御回路141内の探索用メモリに格納する。(ステップS204)   Subsequently, the control circuit 141 stores the set of the voltage value and the initial frequency transmitted from the power receiving side control circuit 260 in step S203 in the search memory in the control circuit 141 as array data. (Step S204)

続いて、制御回路141は、駆動回路120の駆動周波数を探索する周波数範囲において初期周波数から低い周波数に変更して、駆動回路120を駆動させる。(ステップS205)このときの整流回路210の出力電圧値が出力電圧検出回路250により検出され、受電側制御回路260に電圧検出信号として出力される。受電側制御回路260は、出力電圧検出回路250が検出した電圧値を、通信手段を介して制御回路141に送信する。(ステップS206)そして、制御回路141は、ステップS206で受電側制御回路260から送信された電圧値と変更後の周波数の組を配列データとして制御回路141内の探索用メモリに配列番号順に追加格納する。(ステップS207)   Subsequently, the control circuit 141 drives the drive circuit 120 by changing the drive frequency of the drive circuit 120 from the initial frequency to a lower frequency in the frequency range in which the drive circuit 120 is searched. (Step S205) The output voltage value of the rectifier circuit 210 at this time is detected by the output voltage detection circuit 250, and is output to the power receiving side control circuit 260 as a voltage detection signal. The power receiving side control circuit 260 transmits the voltage value detected by the output voltage detection circuit 250 to the control circuit 141 via the communication means. (Step S206) Then, the control circuit 141 additionally stores the set of the voltage value and the changed frequency transmitted from the power receiving side control circuit 260 in step S206 as array data in the search memory in the control circuit 141 in the order of array numbers. To do. (Step S207)

続いて、制御回路141の探索用メモリに格納されている最後尾から二番目の配列番号の整流回路210の出力電圧値とステップS207で取得した整流回路210の出力電圧値を比較し(ステップS208)、ステップS207で取得した整流回路210の出力電圧値が探索用メモリに格納されている最後尾から二番目の配列番号の整流回路210の出力電圧値以下になると処理動作を中止し、最後尾から二番目の配列番号の周波数を制御回路141内の設定用メモリに格納する(ステップS208Y)。ステップS207で取得した整流回路210の出力電圧値が探索用メモリに格納されている最後尾から二番目の配列番号の整流回路210の出力電圧値よりも大きい場合(ステップS208N)は、変更する周波数と探索する周波数範囲における下限値の周波数を比較し(ステップS209)、変更する周波数が探索する周波数範囲における下限値の周波数に至ると処理動作を中止し、最後尾の配列番号の周波数を制御回路141内の設定用メモリに格納する(ステップS209Y)。一方、変更する周波数が探索する周波数範囲における下限値の周波数に至っていない場合(ステップS209N)、ステップS205からステップS209までの処理動作が繰り返し実行される。   Subsequently, the output voltage value of the rectifier circuit 210 with the array element number second from the tail stored in the search memory of the control circuit 141 is compared with the output voltage value of the rectifier circuit 210 acquired in step S207 (step S208). ), The processing operation is stopped when the output voltage value of the rectifier circuit 210 acquired in step S207 is equal to or lower than the output voltage value of the rectifier circuit 210 having the second array element number stored in the search memory. Are stored in the setting memory in the control circuit 141 (step S208Y). When the output voltage value of the rectifier circuit 210 acquired in step S207 is larger than the output voltage value of the rectifier circuit 210 having the second array element number from the last stored in the search memory (step S208N), the frequency to be changed The lower limit frequency in the frequency range to be searched is compared (step S209), and when the frequency to be changed reaches the lower limit frequency in the frequency range to be searched, the processing operation is stopped and the frequency of the last array element number is controlled by the control circuit. 141 is stored in the setting memory in step 141 (step S209Y). On the other hand, when the frequency to be changed does not reach the lower limit frequency in the frequency range to be searched (step S209N), the processing operations from step S205 to step S209 are repeatedly executed.

そして、制御回路141は、設定用メモリに格納された周波数を駆動回路120の駆動周波数に設定する(ステップS210)。このように、駆動回路120の駆動周波数が設定用メモリに格納された周波数に設定されると、制御回路141は、通信手段を介して受電側制御回路260に擬似負荷241のスイッチ素子SWをオフ状態とする指示を送信する。受電側制御回路260は、制御回路141の指示の基づき、擬似負荷241のスイッチ素子SWをオフ状態とする。これにより、抵抗素子Rd1が可変負荷Vloadに対して非接続状態となり、負荷222の等価抵抗値が元の高い状態に戻って、周波数探索動作が終了する(ステップS211)。以上のように、制御回路141が行う周波数探索動作とは、スイッチ素子SWがオン状態のときに出力電圧検出回路250が検出した電圧値の極大値に相当する周波数に駆動周波数を設定することである。   Then, the control circuit 141 sets the frequency stored in the setting memory to the drive frequency of the drive circuit 120 (step S210). In this way, when the drive frequency of the drive circuit 120 is set to the frequency stored in the setting memory, the control circuit 141 turns off the switch element SW of the pseudo load 241 to the power receiving side control circuit 260 via the communication unit. Send an instruction to set the status. The power receiving side control circuit 260 turns off the switch element SW of the pseudo load 241 based on an instruction from the control circuit 141. As a result, the resistance element Rd1 is disconnected from the variable load Vload, the equivalent resistance value of the load 222 returns to the original high state, and the frequency search operation ends (step S211). As described above, the frequency search operation performed by the control circuit 141 is to set the drive frequency to a frequency corresponding to the maximum value of the voltage value detected by the output voltage detection circuit 250 when the switch element SW is in the ON state. is there.

上記周波数探索動作が終了し、制御回路141が設定用メモリに格納された周波数を駆動回路120の駆動周波数に設定すると、制御回路141は、電源回路111を構成する2種類の電源のうち、高電圧大電力電源150をオン状態とし、低電圧小電力電源160をオフ状態とする。すなわち、制御回路140は、高電圧大電力電源150の出力がオン状態となるよう制御端子CNT1に信号を出力し、低電圧小電力電源160の出力がハイインピーダンス状態となるよう制御端子CNT2に信号を出力する。これにより、ワイヤレス電力伝送システムS3において、負荷222の両端電圧(整流回路210の出力電圧)を所望の電圧値に昇圧し、負荷変動に対して負荷222の両端電圧が変化しにくい状態で、大電力の電力伝送をすることが可能となる。   When the frequency search operation is completed and the control circuit 141 sets the frequency stored in the setting memory to the drive frequency of the drive circuit 120, the control circuit 141 is the high power source among the two types of power supplies constituting the power supply circuit 111. The high voltage power source 150 is turned on, and the low voltage low power source 160 is turned off. That is, the control circuit 140 outputs a signal to the control terminal CNT1 so that the output of the high voltage high power source 150 is turned on, and outputs a signal to the control terminal CNT2 so that the output of the low voltage low power source 160 is in a high impedance state. Is output. As a result, in the wireless power transmission system S3, the voltage across the load 222 (the output voltage of the rectifier circuit 210) is boosted to a desired voltage value, and the voltage across the load 222 is unlikely to change due to load fluctuations. It becomes possible to transmit electric power.

以上のように、本実施形態に係るワイヤレス電力伝送システムS3は、送電装置100が、駆動周波数を制御する制御回路141をさらに備え、受電装置200が、負荷222の両端電圧を検出する出力電圧検出回路250をさらに備え、負荷222は、受電コイルL2が受電した交流電力を整流する整流回路210と、整流回路210の出力端子間に接続される可変負荷Vloadと、可変負荷Vloadに対して並列に接続されるスイッチ素子SWとスイッチ素子SWに直列に接続される抵抗素子Rd1で構成される疑似負荷241と、を含み、抵抗素子Rd1は、10Ω以下であり、制御回路141は、スイッチ素子SWがオン状態で出力電圧検出回路250が検出した電圧値が極大値となる周波数に駆動周波数を設定する周波数探索動作を行っている。そのため、擬似負荷241のスイッチ素子SWをオン状態とすると、負荷222が小さな場合(負荷222の等価抵抗値が大きい場合)や送受電コイル間の離間距離が大きく磁気的結合が弱い場合でも、出力電圧検出回路250は負荷222の両端電圧の極大値を検出することができ、且つ、その極大値に対応する周波数は負荷変動に対して負荷222の両端電圧の変化が最小となる周波数とほぼ同じとなる。そのため、当該極大値に対応する周波数を駆動回路120の周波数に設定してスイッチ素子SWをオフ状態(遮断状態)に戻した後に電力伝送を行うと、負荷変動に対して負荷222の両端電圧の変動を抑制することができる。   As described above, in the wireless power transmission system S3 according to the present embodiment, the power transmission device 100 further includes the control circuit 141 that controls the drive frequency, and the power receiving device 200 detects the voltage across the load 222. The load 222 further includes a circuit 250. The load 222 rectifies the AC power received by the power receiving coil L2, a variable load Vload connected between the output terminals of the rectifier circuit 210, and the variable load Vload in parallel. A switching element SW connected and a pseudo load 241 composed of a resistance element Rd1 connected in series to the switching element SW, the resistance element Rd1 is 10Ω or less, and the control circuit 141 includes a switching element SW Frequency search for setting the drive frequency to a frequency at which the voltage value detected by the output voltage detection circuit 250 becomes a maximum value in the ON state It is doing the work. Therefore, when the switch element SW of the pseudo load 241 is turned on, the output is output even when the load 222 is small (when the equivalent resistance value of the load 222 is large) or when the separation distance between the power transmitting and receiving coils is large and the magnetic coupling is weak. The voltage detection circuit 250 can detect the maximum value of the voltage across the load 222, and the frequency corresponding to the maximum value is substantially the same as the frequency at which the change in the voltage across the load 222 is minimized with respect to the load fluctuation. It becomes. Therefore, when the frequency corresponding to the maximum value is set to the frequency of the drive circuit 120 and the power is transmitted after the switch element SW is returned to the off state (shut off state), the voltage across the load 222 against the load fluctuation Variations can be suppressed.

また、本実施形態に係るワイヤレス電力伝送システムS3においては、送電装置100が、高電圧大電力電源150と低電圧小電力電源160をさらに備え、駆動回路120は、高電圧大電力電源150あるいは低電圧小電力電源160から供給された直流電圧を交流電圧に変換し、高電圧大電力電源150は、周波数探索動作中に駆動回路120に直流電圧の供給を停止している。そのため、高電圧大電力電源150の出力を停止させた状態で低電圧小電力電源160によって周波数探索動作を行うことによって、周波数探索動作中に送電装置100から漏れる不要輻射を低く抑えることができる。   In the wireless power transmission system S3 according to the present embodiment, the power transmission apparatus 100 further includes a high voltage high power power source 150 and a low voltage low power power source 160, and the drive circuit 120 includes the high voltage high power power source 150 or a low power source. The DC voltage supplied from the low voltage power source 160 is converted into an AC voltage, and the high voltage high power source 150 stops supplying the DC voltage to the drive circuit 120 during the frequency search operation. Therefore, unnecessary radiation leaking from the power transmission device 100 during the frequency search operation can be suppressed to a low level by performing the frequency search operation by the low-voltage low-power power supply 160 in a state where the output of the high-voltage high-power power supply 150 is stopped.

(第4実施形態)
次に、図11を参照して、本発明の第4実施形態に係るワイヤレス電力伝送システムS4の構成について説明する。図11は、本発明の第4実施形態に係るワイヤレス電力伝送システムを示す構成図である。
(Fourth embodiment)
Next, the configuration of the wireless power transmission system S4 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a configuration diagram illustrating a wireless power transmission system according to the fourth embodiment of the present invention.

ワイヤレス電力伝送システムS4は、第2実施形態と同様に、送電装置100と、受電装置200を有する。このワイヤレス電力伝送システムS4では、送電装置100から受電装置200に向けて、ワイヤレスにて電力が伝送されることとなる。本実施形態では、送電装置100は、電源回路111と、駆動回路120と、送電側共振回路130と、制御回路142と、位置調整手段170を有する。受電装置200は、受電側共振回路230と、負荷221と、出力電圧検出回路250と、受電側制御回路260と、を有する。電源回路111、駆動回路120、送電側共振回路130、受電側共振回路230、負荷221、出力電圧検出回路250、受電側制御回路260の構成は、第2実施形態に係るワイヤレス電力伝送システムS2と同様である。すなわち、第4実施形態に係るワイヤレス電力伝送システムS4は、制御回路140に代えて制御回路142を備えている点、位置調整手段170を備えている点において、第2実施形態と相違する。なお、第4実施形態に係るワイヤレス電力伝送システムS4は、第3実施形態に係るワイヤレス電力伝送システムS3における制御回路141に代えて制御回路142を備え、位置調整手段170を備えたものとしてもよい。以下、第2実施形態と異なる点を中心に説明する。   The wireless power transmission system S4 includes a power transmission device 100 and a power reception device 200, as in the second embodiment. In the wireless power transmission system S <b> 4, power is transmitted wirelessly from the power transmission device 100 to the power reception device 200. In the present embodiment, the power transmission device 100 includes a power supply circuit 111, a drive circuit 120, a power transmission side resonance circuit 130, a control circuit 142, and a position adjustment unit 170. The power receiving device 200 includes a power receiving side resonance circuit 230, a load 221, an output voltage detection circuit 250, and a power receiving side control circuit 260. The configuration of the power supply circuit 111, the drive circuit 120, the power transmission side resonance circuit 130, the power reception side resonance circuit 230, the load 221, the output voltage detection circuit 250, and the power reception side control circuit 260 is the same as that of the wireless power transmission system S2 according to the second embodiment. It is the same. That is, the wireless power transmission system S4 according to the fourth embodiment is different from the second embodiment in that a control circuit 142 is provided instead of the control circuit 140 and a position adjusting unit 170 is provided. The wireless power transmission system S4 according to the fourth embodiment may include a control circuit 142 instead of the control circuit 141 in the wireless power transmission system S3 according to the third embodiment, and may include a position adjusting unit 170. . Hereinafter, a description will be given focusing on differences from the second embodiment.

制御回路142は、第2実施形態に係る制御回路140と同様、駆動回路120から送電側共振回路130に供給する交流電流の駆動周波数を制御する機能を有する。つまり、制御回路142は、駆動周波数の周波数探索動作を行うように構成されている。また、制御回路142は、高電圧大電力電源150と低電圧小電力電源160の出力を切り換える機能も有している。本実施形態では、制御回路142は、周波数探索動作によって得られた駆動周波数が最も高くなるように後述する位置調整手段170に送電コイルL1または受電コイルL2の位置を移動させるよう制御信号を出力する。ここでいう「駆動周波数が最も高くなる」とは、駆動周波数の最大値に加えて、最大値の±0.5kHz程度の誤差範囲を含んでいることを意味する。具体的な位置調整動作については後述する。   Similar to the control circuit 140 according to the second embodiment, the control circuit 142 has a function of controlling the drive frequency of the alternating current supplied from the drive circuit 120 to the power transmission side resonance circuit 130. That is, the control circuit 142 is configured to perform a frequency search operation for the drive frequency. The control circuit 142 also has a function of switching the outputs of the high voltage high power power supply 150 and the low voltage low power power supply 160. In the present embodiment, the control circuit 142 outputs a control signal to move the position of the power transmission coil L1 or the power reception coil L2 to the position adjustment unit 170 described later so that the drive frequency obtained by the frequency search operation becomes the highest. . Here, “the drive frequency is the highest” means that an error range of about ± 0.5 kHz of the maximum value is included in addition to the maximum value of the drive frequency. A specific position adjustment operation will be described later.

位置調整手段170は、送電コイルL1または受電コイルL2の位置を移動させる機能を有する。本実施形態では、位置調整手段170は、送電コイルL1の物理的位置を移動させる機能を有しているが、送電コイルL1が移動するのであれば特に制限されず、送電コイルL1を備える送電側共振回路130の物理的位置を移動させてもよく、送電装置100全体の物理的位置を移動させてもよい。なお、位置調整手段170が受電コイルL2の位置を移動させる機能を有する場合も同様に、受電コイルL2が移動するのであれば特に制限されず、受電コイルL2の物理的位置を移動させてもよく、受電コイルL2を備える受電側共振回路230の物理的位置を移動させてもよく、受電装置200全体の物理的位置を移動させてもよい。この位置調整手段170は、制御回路142からの制御信号に基づいて駆動するアクチュエータなどから構成され、送電コイルL1または受電コイルL2を面内方向(送電コイルL1と受電コイルL2の対向方向と直交する方向)に移動させる。なお、位置調整手段170は、送電装置100または受電装置200内に配置されてもよく、送電装置100または受電装置200の外部に配置されていてもよい。   The position adjusting unit 170 has a function of moving the position of the power transmission coil L1 or the power reception coil L2. In the present embodiment, the position adjusting unit 170 has a function of moving the physical position of the power transmission coil L1, but is not particularly limited as long as the power transmission coil L1 moves, and the power transmission side provided with the power transmission coil L1. The physical position of the resonance circuit 130 may be moved, or the physical position of the entire power transmission device 100 may be moved. Similarly, when the position adjusting unit 170 has a function of moving the position of the power receiving coil L2, there is no particular limitation as long as the power receiving coil L2 moves, and the physical position of the power receiving coil L2 may be moved. The physical position of the power receiving resonance circuit 230 including the power receiving coil L2 may be moved, or the physical position of the entire power receiving apparatus 200 may be moved. The position adjusting unit 170 is configured by an actuator or the like that is driven based on a control signal from the control circuit 142, and the power transmission coil L1 or the power reception coil L2 is in an in-plane direction (perpendicular to the facing direction of the power transmission coil L1 and the power reception coil L2) Direction). Note that the position adjustment unit 170 may be disposed in the power transmission device 100 or the power reception device 200, or may be disposed outside the power transmission device 100 or the power reception device 200.

ここで、本実施形態に係る位置調整動作について詳述する。本説明においては、本実施形態に係るワイヤレス電力伝送システムS4を電気自動車などの車両への給電設備に適用した場合を用いて説明する。まず、車両が給電エリアに駐車すると、制御回路142が周波数探索動作を行い駆動周波数が得られる。この駆動周波数を基準周波数とする。次に、制御回路142は、送電コイルL1の車両幅方向の位置を移動させるよう位置調整手段170に制御信号を出力する。位置調整手段170は、制御回路142の制御信号に基づき、送電コイルL1の位置を移動させる。次に、制御回路142は、再度周波数探索動作を行い、得られた駆動周波数と基準周波数を比較し、得られた駆動周波数が高ければ、送電コイルL1の車両幅方向の位置を移動させた方向に更に移動させる。一方、基準周波数が高ければ、送電コイルL1の車両幅方向の位置を移動させた方向とは反対方向に移動させる。制御回路142は、この動作を繰り返し、駆動周波数が最も高くなる車両幅方向の送電コイルL1の位置が特定されると車両幅方向の位置調整動作を終了する。次に、制御回路142は、車両幅方向の位置調整動作と同様の手法を用いて、駆動周波数が最も高くなる車両長さ方向の送電コイルL1の位置を特定し、位置が特定されると車両長さ方向の位置調整動作を終了する。これにより、駆動周波数が最も高くなる送電コイルL1の位置が特定される。言い換えれば、位置調整手段170により、駆動周波数が最も高くなるように送電コイルL1の位置を移動させることとなる。なお、本説明では、車両幅方向と車両長さ方向の2段階に分けて位置調整を行っているがこれに限られることなく、面内方向に送電コイルL1を自由に移動させて位置調整を行ってもよい。   Here, the position adjustment operation according to the present embodiment will be described in detail. In this description, the case where the wireless power transmission system S4 according to the present embodiment is applied to a power supply facility for a vehicle such as an electric vehicle will be described. First, when the vehicle is parked in the power feeding area, the control circuit 142 performs a frequency search operation to obtain a driving frequency. This drive frequency is set as a reference frequency. Next, the control circuit 142 outputs a control signal to the position adjusting unit 170 so as to move the position of the power transmission coil L1 in the vehicle width direction. The position adjusting unit 170 moves the position of the power transmission coil L <b> 1 based on the control signal of the control circuit 142. Next, the control circuit 142 performs a frequency search operation again, compares the obtained drive frequency with the reference frequency, and if the obtained drive frequency is high, the direction in which the position of the power transmission coil L1 in the vehicle width direction is moved. Move further. On the other hand, if the reference frequency is high, the power transmission coil L1 is moved in the direction opposite to the direction in which the position in the vehicle width direction is moved. The control circuit 142 repeats this operation, and ends the position adjustment operation in the vehicle width direction when the position of the power transmission coil L1 in the vehicle width direction where the drive frequency is highest is specified. Next, the control circuit 142 specifies the position of the power transmission coil L1 in the vehicle length direction where the drive frequency is highest, using the same method as the position adjustment operation in the vehicle width direction. The position adjustment operation in the length direction is terminated. Thereby, the position of the power transmission coil L1 with the highest drive frequency is specified. In other words, the position of the power transmission coil L1 is moved by the position adjusting means 170 so that the drive frequency becomes the highest. In this description, the position adjustment is performed in two stages of the vehicle width direction and the vehicle length direction. However, the position adjustment is not limited to this, and the position adjustment is performed by freely moving the power transmission coil L1 in the in-plane direction. You may go.

このように、位置調整手段170により駆動周波数が最も高くなる位置に送電コイルL1を移動させると、送電コイルL1と受電コイルL2の相対的離間距離が最も小さくなる。したがって、送電コイルL1が発生する磁束が受電コイルL2に効率的に鎖交し、送電コイルL1から漏洩する磁束も少なくなる。その結果、電力伝送効率を高く維持しつつ、不要輻射を低い状態とすることが可能となる。   As described above, when the power transmission coil L1 is moved to the position where the drive frequency becomes the highest by the position adjusting unit 170, the relative separation distance between the power transmission coil L1 and the power reception coil L2 becomes the smallest. Therefore, the magnetic flux generated by the power transmission coil L1 is efficiently linked to the power reception coil L2, and the magnetic flux leaking from the power transmission coil L1 is also reduced. As a result, it is possible to reduce unnecessary radiation while maintaining high power transmission efficiency.

以上のように、本実施形態に係るワイヤレス電力伝送システムS4は、送電コイルL1または受電コイルL2の位置を移動させる位置調整手段170をさらに備え、位置調整手段170は、駆動周波数が最も高くなるように送電コイルL1または受電コイルL2の位置を移動させている。そのため、送電コイルL1と受電コイルL2の相対的な位置ずれを小さくすることができるので、電力伝送効率を高く維持しつつ、不要輻射も低い状態で、負荷変動に対して負荷の両端電圧の変化を抑制した安定給電を実現できる。   As described above, the wireless power transmission system S4 according to the present embodiment further includes the position adjustment unit 170 that moves the position of the power transmission coil L1 or the power reception coil L2, and the position adjustment unit 170 has the highest drive frequency. The position of the power transmission coil L1 or the power reception coil L2 is moved. Therefore, since the relative positional deviation between the power transmission coil L1 and the power reception coil L2 can be reduced, the change in the voltage at both ends of the load with respect to load fluctuations while maintaining high power transmission efficiency and low unnecessary radiation. It is possible to realize a stable power supply with reduced noise.

本発明に係るワイヤレス電力伝送システムによれば、負荷の等価抵抗の変動に対する負荷の両端電圧の変動を抑制したワイヤレス電力伝送システムを実現できる。   According to the wireless power transmission system of the present invention, it is possible to realize a wireless power transmission system in which the fluctuation of the voltage across the load with respect to the fluctuation of the equivalent resistance of the load is suppressed.

100…送電装置、110,111…電源回路、120…駆動回路、130…送電側共振回路、140,141,142…制御回路、150…高電圧大電力電源、160…低電圧小電力電源、170…位置調整手段、180…商用電源、L1…送電コイル、C1…送電側コンデンサ部、C11,C12…送電側コンデンサ部のコンデンサ、T1,T3…高圧出力端子、T2,T4…GND端子、T5…高圧入力端子、T6…低圧入力端子、CNT1,CNT2…制御端子、D1…ダイオード、200…受電装置、210…整流回路、220,221,222…負荷、230…受電側共振回路、240,241…擬似負荷、250…出力電圧検出回路、260…受電側制御回路、L2…受電コイル、C2…受電側コンデンサ部、C21,C22…受電側コンデンサ部のコンデンサ、Vload…可変負荷、SW…スイッチ素子、Rd,Rd1…抵抗素子、S1〜S4…ワイヤレス電力伝送システム。   DESCRIPTION OF SYMBOLS 100 ... Power transmission apparatus, 110, 111 ... Power supply circuit, 120 ... Drive circuit, 130 ... Power transmission side resonance circuit, 140, 141, 142 ... Control circuit, 150 ... High voltage high power power source, 160 ... Low voltage low power power source, 170 ... Position adjusting means, 180 ... Commercial power supply, L1 ... Power transmission coil, C1 ... Power transmission side capacitor part, C11, C12 ... Capacitor of power transmission side capacitor part, T1, T3 ... High voltage output terminal, T2, T4 ... GND terminal, T5 ... High voltage input terminal, T6: Low voltage input terminal, CNT1, CNT2 ... Control terminal, D1 ... Diode, 200 ... Power receiving device, 210 ... Rectifier circuit, 220, 221, 222 ... Load, 230 ... Power receiving side resonance circuit, 240, 241 ... Pseudo load, 250 ... output voltage detection circuit, 260 ... power reception side control circuit, L2 ... power reception coil, C2 ... power reception side capacitor section, C21, C22 Receiving-side capacitor of the capacitor, Vload ... variable load, SW ... switching device, Rd, Rd1 ... resistance element, S1 to S4 ... wireless power transmission system.

Claims (6)

送電装置から受電装置に対してワイヤレスにて交流電力を伝送するワイヤレス電力伝送システムであって、
前記送電装置は、送電コイルと送電側コンデンサ部を有する送電側共振回路と、前記送電側共振回路に駆動周波数にて交流電流を供給する駆動回路と、を備え、
前記受電装置は、受電コイルと受電側コンデンサ部を有する受電側共振回路と、前記受電側共振回路から電力が供給される負荷と、を備え、
前記駆動回路から前記送電側共振回路を見たときに、前記送電側共振回路と前記受電側共振回路で構成される四端子回路網のFマトリックスを式(1)、前記四端子回路網のFマトリックスのAの実部をRa、虚部をXa、前記四端子回路網のFマトリックスのBの実部をRb、虚部をXb、前記負荷の等価抵抗をRL0とすると、
前記FマトリックスのAおよびBは、以下の式(2)、(3)、(4)を満たすことを特徴とするワイヤレス電力伝送システム。
Figure 2017005790
(但し、j=−1である。)
Figure 2017005790
Figure 2017005790
Figure 2017005790
A wireless power transmission system for transmitting AC power wirelessly from a power transmitting device to a power receiving device,
The power transmission device includes a power transmission side resonance circuit having a power transmission coil and a power transmission side capacitor unit, and a drive circuit that supplies an alternating current to the power transmission side resonance circuit at a drive frequency,
The power receiving device includes a power receiving side resonance circuit having a power receiving coil and a power receiving side capacitor, and a load to which power is supplied from the power receiving side resonance circuit,
When the power transmission side resonance circuit is viewed from the drive circuit, an F matrix of a four-terminal network composed of the power transmission side resonance circuit and the power reception side resonance circuit is expressed by Equation (1), and F of the four-terminal circuit network If the real part of A in the matrix is Ra, the imaginary part is Xa, the real part of B in the F matrix of the four-terminal network is Rb, the imaginary part is Xb, and the equivalent resistance of the load is RL0,
A wireless power transmission system, wherein A and B of the F matrix satisfy the following expressions (2), (3), and (4):
Figure 2017005790
(However, j 2 = −1.)
Figure 2017005790
Figure 2017005790
Figure 2017005790
前記駆動周波数をf、前記駆動周波数の変化分をδf、前記送電側共振回路と前記受電側共振回路と前記負荷で構成されるワイヤレス電力伝送網のインピーダンスの虚部をX、前記虚部の前記駆動周波数に対する変化分をδXとすると、
前記駆動周波数fは、以下の式(5)および式(6)を満たすことを特徴とする請求項1に記載のワイヤレス電力伝送システム。
Figure 2017005790
Figure 2017005790
The drive frequency is f, the change in the drive frequency is δf, the imaginary part of the impedance of the wireless power transmission network composed of the power transmission side resonance circuit, the power reception side resonance circuit and the load is X, and the imaginary part is If the change with respect to the drive frequency is δX,
The wireless power transmission system according to claim 1, wherein the drive frequency f satisfies the following expressions (5) and (6).
Figure 2017005790
Figure 2017005790
前記送電装置は、前記駆動周波数を制御する制御回路をさらに備え、
前記受電装置は、前記負荷の両端電圧を検出する出力電圧検出回路をさらに備え、
前記負荷は、前記受電コイルが受電した交流電力を整流する整流回路と、前記整流回路の出力端子間に接続される可変負荷と、前記可変負荷に対して並列に接続されるスイッチ素子と前記スイッチ素子に直列に接続される抵抗素子で構成される疑似負荷と、を含み、
前記制御回路は、前記スイッチ素子がオン状態のときに前記出力電圧検出回路が検出した電圧値と前記スイッチ素子がオフ状態のときに前記出力電圧検出回路が検出した電圧値との差が最小となる周波数に前記駆動周波数を設定する周波数探索動作を行うことを特徴とする請求項1または2に記載のワイヤレス電力伝送システム。
The power transmission device further includes a control circuit that controls the drive frequency,
The power receiving device further includes an output voltage detection circuit that detects a voltage across the load,
The load includes a rectifier circuit that rectifies AC power received by the power receiving coil, a variable load connected between output terminals of the rectifier circuit, a switch element connected in parallel to the variable load, and the switch Including a pseudo load composed of a resistance element connected in series to the element,
The control circuit has a minimum difference between a voltage value detected by the output voltage detection circuit when the switch element is on and a voltage value detected by the output voltage detection circuit when the switch element is off. The wireless power transmission system according to claim 1, wherein a frequency search operation for setting the drive frequency to a frequency is performed.
前記送電装置は、前記駆動周波数を制御する制御回路をさらに備え、
前記受電装置は、前記負荷の両端電圧を検出する出力電圧検出回路をさらに備え、
前記負荷は、前記受電コイルが受電した交流電力を整流する整流回路と、前記整流回路の出力端子間に接続される可変負荷と、前記可変負荷に対して並列に接続されるスイッチ素子と前記スイッチ素子に直列に接続される抵抗素子で構成される疑似負荷と、を含み、
前記抵抗素子は、10Ω以下であり、
前記制御回路は、前記スイッチ素子がオン状態で前記出力電圧検出回路が検出した電圧値が極大値となる周波数に前記駆動周波数を設定する周波数探索動作を行うことを特徴とする請求項1または2に記載のワイヤレス電力伝送システム。
The power transmission device further includes a control circuit that controls the drive frequency,
The power receiving device further includes an output voltage detection circuit that detects a voltage across the load,
The load includes a rectifier circuit that rectifies AC power received by the power receiving coil, a variable load connected between output terminals of the rectifier circuit, a switch element connected in parallel to the variable load, and the switch Including a pseudo load composed of a resistance element connected in series to the element,
The resistance element is 10Ω or less,
The control circuit performs a frequency search operation for setting the drive frequency to a frequency at which the voltage value detected by the output voltage detection circuit becomes a maximum value when the switch element is on. Wireless power transmission system as described in.
前記送電装置は、高電圧大電力電源と低電圧小電力電源をさらに備え、
前記駆動回路は、前記高電圧大電力電源あるいは前記低電圧小電力電源から供給された直流電圧を交流電圧に変換し、
前記高電圧大電力電源は、前記周波数探索動作中に前記駆動回路に直流電圧の供給を停止することを特徴とする請求項3または4に記載のワイヤレス電力伝送システム。
The power transmission device further includes a high voltage high power power source and a low voltage low power power source,
The drive circuit converts a DC voltage supplied from the high voltage high power power source or the low voltage low power power source into an AC voltage,
5. The wireless power transmission system according to claim 3, wherein the high-voltage high-power power supply stops the supply of a DC voltage to the drive circuit during the frequency search operation.
前記送電コイルまたは前記受電コイルの位置を移動させる位置調整手段をさらに備え、
前記位置調整手段は、前記駆動周波数が最も高くなるように前記送電コイルまたは前記受電コイルの位置を移動させることを特徴とする請求項3〜5のいずれか一項に記載のワイヤレス電力伝送システム。
A position adjusting means for moving the position of the power transmission coil or the power reception coil;
The wireless power transmission system according to any one of claims 3 to 5, wherein the position adjusting unit moves the position of the power transmission coil or the power reception coil so that the drive frequency becomes the highest.
JP2015114626A 2015-06-05 2015-06-05 Wireless power transmission system Pending JP2017005790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114626A JP2017005790A (en) 2015-06-05 2015-06-05 Wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114626A JP2017005790A (en) 2015-06-05 2015-06-05 Wireless power transmission system

Publications (1)

Publication Number Publication Date
JP2017005790A true JP2017005790A (en) 2017-01-05

Family

ID=57751956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114626A Pending JP2017005790A (en) 2015-06-05 2015-06-05 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP2017005790A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126245A (en) * 2017-11-17 2019-07-25 アプティブ・テクノロジーズ・リミテッド Wireless battery charger having automatic impedance characterization and frequency adjustment
JP2019154196A (en) * 2018-03-06 2019-09-12 オムロン株式会社 Non-contact power supply device
JP2020099146A (en) * 2018-12-19 2020-06-25 昭和飛行機工業株式会社 Communication device of non-contact power supply device
US10881002B2 (en) 2017-11-06 2020-12-29 Tdk Corporation Capacitor module, resonator, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP2021502793A (en) * 2017-11-13 2021-01-28 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Dynamic transmission coil positioning system, wireless power transmission system and transmission coil positioning method
JP2021511774A (en) * 2018-01-26 2021-05-06 インディゴ テクノロジーズ, インク.Indigo Technologies, Inc. A wireless power transfer system with integrated impedance matching and how to use it
CN113972754A (en) * 2021-11-19 2022-01-25 宁波道充科技有限公司 Series-parallel compensation wireless power transmission coil structure
US11245291B2 (en) 2017-05-19 2022-02-08 Omron Corporation Non-contact power supply device capable of performing constant voltage output operation
JP7477346B2 (en) 2020-03-31 2024-05-01 Tdk株式会社 Wireless power transmission device and wireless power transmission system
JP7477347B2 (en) 2020-03-31 2024-05-01 Tdk株式会社 Wireless power transmission device and wireless power transmission system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538478A (en) * 2004-05-04 2007-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Wireless resonant power supply device, wireless inductive power supply device, excitable load, wireless system, wireless energy transmission method
WO2012172929A1 (en) * 2011-06-13 2012-12-20 株式会社村田製作所 Power transmission system and power reception device
JP2014124020A (en) * 2012-12-20 2014-07-03 Tdk Corp Wireless power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538478A (en) * 2004-05-04 2007-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Wireless resonant power supply device, wireless inductive power supply device, excitable load, wireless system, wireless energy transmission method
WO2012172929A1 (en) * 2011-06-13 2012-12-20 株式会社村田製作所 Power transmission system and power reception device
JP2014124020A (en) * 2012-12-20 2014-07-03 Tdk Corp Wireless power transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
今野 純也: "非接触給電の定電圧出力および定電流出力を電源周波数の変更だけで逆特性にする方法", 平成26年電気学会全国大会, JPN7018004158, 18 March 2014 (2014-03-18), pages 147 - 148, ISSN: 0004067683 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11245291B2 (en) 2017-05-19 2022-02-08 Omron Corporation Non-contact power supply device capable of performing constant voltage output operation
US10881002B2 (en) 2017-11-06 2020-12-29 Tdk Corporation Capacitor module, resonator, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP2021502793A (en) * 2017-11-13 2021-01-28 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Dynamic transmission coil positioning system, wireless power transmission system and transmission coil positioning method
US11462953B2 (en) 2017-11-13 2022-10-04 Tdk Electronics Ag Dynamic transmission coil positioning system, wireless power transfer system and method of positioning a transmit coil
JP2019126245A (en) * 2017-11-17 2019-07-25 アプティブ・テクノロジーズ・リミテッド Wireless battery charger having automatic impedance characterization and frequency adjustment
JP2021511774A (en) * 2018-01-26 2021-05-06 インディゴ テクノロジーズ, インク.Indigo Technologies, Inc. A wireless power transfer system with integrated impedance matching and how to use it
US11139693B2 (en) 2018-03-06 2021-10-05 Omron Corporation Contactless power transmission apparatus
WO2019171786A1 (en) * 2018-03-06 2019-09-12 オムロン株式会社 Contactless feeding apparatus
JP2019154196A (en) * 2018-03-06 2019-09-12 オムロン株式会社 Non-contact power supply device
JP2020099146A (en) * 2018-12-19 2020-06-25 昭和飛行機工業株式会社 Communication device of non-contact power supply device
JP7477346B2 (en) 2020-03-31 2024-05-01 Tdk株式会社 Wireless power transmission device and wireless power transmission system
JP7477347B2 (en) 2020-03-31 2024-05-01 Tdk株式会社 Wireless power transmission device and wireless power transmission system
CN113972754A (en) * 2021-11-19 2022-01-25 宁波道充科技有限公司 Series-parallel compensation wireless power transmission coil structure

Similar Documents

Publication Publication Date Title
JP2017005790A (en) Wireless power transmission system
US9143011B2 (en) Power receiving device and contactless power feeding system
JP6601538B2 (en) Wireless power supply device
EP2675038B1 (en) Contactless electrical-power-supplying device
US10833538B2 (en) Electronic unit and power feeding system
US9680311B2 (en) Wireless power supply system
US9954397B2 (en) Feed unit including power transmission coil and feed system
US9466987B2 (en) Power transmission device and wireless power transmission system using the power transmission device
US10432022B2 (en) Wireless power transmission system and power transmission apparatus
JPWO2014038148A1 (en) Contactless power supply system and contactless extension plug
WO2016007674A1 (en) Resonator balancing in wireless power transfer systems
WO2014178345A1 (en) Power supply system and resonant circuit
CN115088196A (en) System and method for wireless power and data transfer using multiple antenna receivers
JP6535003B2 (en) Wireless power receiver
JP5674013B2 (en) Power supply device and power supply system
JP2014176122A (en) Magnetic resonance-type wireless power-feeding system
JP2018170838A (en) Power receiver, power transmission system, and control method for power receiver
JP7031448B2 (en) Wireless power transmission equipment and wireless power transmission system
US20170291495A1 (en) Adjustable Capacitance Value For Tuning Oscillatory Systems
Mur-Miranda et al. Peak wireless power transfer using magnetically coupled series resonators
KR101905882B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
WO2015098747A1 (en) Power transmission device and non-contact power transmission apparatus
JP2019170034A (en) Resonance matching circuit
JP2022131628A (en) High frequency rectifier circuit
Lee et al. Development of a Wireless Power Supply System for an E-Bike

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702