JP2015136274A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2015136274A
JP2015136274A JP2014007519A JP2014007519A JP2015136274A JP 2015136274 A JP2015136274 A JP 2015136274A JP 2014007519 A JP2014007519 A JP 2014007519A JP 2014007519 A JP2014007519 A JP 2014007519A JP 2015136274 A JP2015136274 A JP 2015136274A
Authority
JP
Japan
Prior art keywords
power transmission
power
transmission
unit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014007519A
Other languages
Japanese (ja)
Inventor
淳史 田中
Junji Tanaka
淳史 田中
義弘 戸高
Yoshihiro Todaka
義弘 戸高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2014007519A priority Critical patent/JP2015136274A/en
Publication of JP2015136274A publication Critical patent/JP2015136274A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve such a problem of a non-contact power transmission device that when the voltage of a transmission section is varied, resonance frequency between the transmission section and a reception section varies, and the power transmission efficiency is reduced.SOLUTION: Since a non-contact power transmission device determines an optimum power transmission efficiency based on the transmission supply voltage, and controls the frequency and electric energy of power of a transmission section by the optimum power transmission efficiency, resonance state between a transmission resonance circuit and a reception resonance circuit can be maintained in a high state, and power can be transmitted with high efficiency even if the power requested on the power reception side varies.

Description

本発明は、送電装置に具備された送電コイルと受電装置に具備された受電コイルを介して、非接触(ワイヤレス)で電力の伝送を行う非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission device that performs non-contact (wireless) power transmission via a power transmission coil provided in a power transmission device and a power reception coil provided in the power reception device.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   As a method of transmitting power in a non-contact manner, an electromagnetic induction type by electromagnetic induction (several hundreds of kHz), an electric field / magnetic field resonance type by transmission between LC resonances via electric field or magnetic field resonance, a microwave power transmission type by radio waves (several GHz), Alternatively, a laser power transmission type using electromagnetic waves (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

一般的に、磁界共鳴型は送電装置と受電装置からなる。送電装置は少なくとも送電コイルと共振容量で構成される送電共振器と、送電共振器に電力を供給する送電部を有する。受電装置は少なくとも受電コイルと共振容量で構成される受電共振器を有する。   In general, the magnetic field resonance type includes a power transmission device and a power reception device. The power transmission device includes a power transmission resonator including at least a power transmission coil and a resonance capacitor, and a power transmission unit that supplies power to the power transmission resonator. The power receiving device includes a power receiving resonator including at least a power receiving coil and a resonant capacitor.

特許文献1には、送電装置の送電共振器と受電装置の受電共振器が、送電装置の送電部の駆動周波数で共振するとき、送電装置から受電装置へ高効率で電力を伝送できることが開示されている。   Patent Document 1 discloses that when the power transmission resonator of the power transmission device and the power reception resonator of the power reception device resonate at the drive frequency of the power transmission unit of the power transmission device, power can be transmitted from the power transmission device to the power reception device with high efficiency. ing.

特許文献2には、電磁誘導作用により送電を行う非接触電力伝送装置において、送電周波数を順次変化させて送電コイルの電流振幅が最大となる特定周波数を見つけ、この特定周波数で高効率の電力を伝送する技術が開示されている。   In Patent Document 2, in a non-contact power transmission device that performs power transmission by electromagnetic induction, a power transmission frequency is sequentially changed to find a specific frequency that maximizes the current amplitude of the power transmission coil, and high-efficiency power is generated at this specific frequency. A technique for transmitting is disclosed.

特開2010−130878号公報JP 2010-130878 A 特開2010−136464号公報JP 2010-136464 A

本発明者らは、非接触電力伝送装置において、送電電力が変わると、送電共振回路と受電共振回路の共振周波数も変化してしまう問題を発見した。この問題点については、後で詳述する。送電共振回路と受電共振回路の共振周波数が変化すると、一定の周波数で電力を送電していたのでは電力の送電効率が低下してしまう。そのため、受電側の要請等に応じて、その都度送電電力を変える必要がある非接触電力伝送装置においては、送電電力を変えた際に生じる共振周波数の変化は、電力の伝送効率の低下を招くこととなり問題となる。   In the non-contact power transmission device, the present inventors have found a problem that when the transmission power changes, the resonance frequencies of the power transmission resonance circuit and the power reception resonance circuit also change. This problem will be described in detail later. When the resonance frequency of the power transmission resonance circuit and the power reception resonance circuit is changed, power transmission efficiency is reduced if power is transmitted at a constant frequency. Therefore, in a non-contact power transmission device that needs to change the transmission power each time according to the request from the power receiving side, the change in the resonance frequency that occurs when the transmission power is changed leads to a reduction in power transmission efficiency. It becomes a problem.

また、送電周波数を順次変化させて送電コイルの電流振幅が最大となる特定周波数を見つける方法では、特定周波数を見つけるまでに時間がかかり、受電側の急激な電力変化の要請に応じて送電電力の周波数を高速に切り替えることができない問題がある。   In addition, in the method of finding the specific frequency that maximizes the current amplitude of the power transmission coil by sequentially changing the transmission frequency, it takes time until the specific frequency is found, and the transmission power is changed in response to a sudden power change request on the receiving side. There is a problem that the frequency cannot be switched at high speed.

本発明の非接触電力伝送装置は、送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、前記送電コイルと前記受電コイルの間の作用を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、前記送電装置は、更に、前記送電共振器に高周波電力を与える送電部と、前記送電部の送電供給電圧を制御する送電電圧制御部と、前記送電部の送電周波数を制御する送電周波数制御部とを備え、前記送電周波数制御部は、前記送電電圧制御部が制御する前記送電部の送電供給電圧に基づいて、前記送電部の送電周波数を制御することを特徴とする。   A non-contact power transmission device of the present invention includes a power transmission device having a power transmission resonator configured by a power transmission coil and a resonance capacitor, and a power reception device having a power reception resonator configured by a power reception coil and a resonance capacitor, the power transmission In a non-contact power transmission device that transmits power from the power transmission device to the power reception device via an action between a coil and the power reception coil, the power transmission device further includes a power transmission unit that applies high-frequency power to the power transmission resonator; A power transmission voltage control unit that controls a power transmission supply voltage of the power transmission unit; and a power transmission frequency control unit that controls a power transmission frequency of the power transmission unit, wherein the power transmission frequency control unit is controlled by the power transmission voltage control unit. A power transmission frequency of the power transmission unit is controlled based on a power transmission supply voltage of the power transmission unit.

本発明によれば、送電供給電圧に基づいて最適の送電周波数を決定し、その最適の送電周波数で送電部の電力の周波数と電力量を制御するので、受電側の要求する電力が変動する場合でも、適宜最適の送電周波数に変更できるので、常に送電共振回路と受電共振回路間の共振状態を高い状態に保つことが可能となり、高効率で電力を伝送できる。   According to the present invention, the optimum power transmission frequency is determined based on the power transmission supply voltage, and the power frequency and power amount of the power transmission unit are controlled by the optimum power transmission frequency. However, since the power transmission frequency can be changed as appropriate, the resonance state between the power transmission resonance circuit and the power reception resonance circuit can always be kept high, and power can be transmitted with high efficiency.

本発明の実施の形態1における非接触電力伝送装置の構成を示すブロック図The block diagram which shows the structure of the non-contact electric power transmission apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における送電部の概略を示す回路図The circuit diagram which shows the outline of the power transmission part in Embodiment 1 of this invention 送電供給電圧をパラメータとして送電周波数と送電電力の関係を示す図Diagram showing the relationship between transmission frequency and transmission power with transmission supply voltage as parameter 本発明の実施の形態1において送電供給電圧から送電周波数を求めるための図The figure for calculating | requiring a power transmission frequency from the power transmission supply voltage in Embodiment 1 of this invention 本発明の実施の形態2における非接触電力伝送装置の構成を示すブロック図The block diagram which shows the structure of the non-contact electric power transmission apparatus in Embodiment 2 of this invention.

図1は、本発明の非接触電力伝送装置の構成を示す。非接触電力伝送装置は、送電装置1と受電装置2により構成される。送電装置1は、高周波電力を非接触伝送するための送電コイル4を有する。受電装置2は、送電コイル4が供給する高周波電力を受電するための受電コイル10を有する。図1の構成の非接触電力伝送装置において、例えば、送電コイル4と受電コイル10の間における磁界共鳴を介して送電装置1から受電装置2へ電力を伝送するように構成することができる。なお、送電コイル4と受電コイル10の結合形態は、電磁誘導、電波、電場または磁場の共有によるもの等、適宜採用することができる。以下では、送電コイル4と受電コイル10の間における磁界共鳴を介して送電装置1から受電装置2へ電力を伝送する場合を例として説明する。   FIG. 1 shows a configuration of a non-contact power transmission apparatus according to the present invention. The non-contact power transmission device includes a power transmission device 1 and a power reception device 2. The power transmission device 1 includes a power transmission coil 4 for non-contact transmission of high-frequency power. The power receiving device 2 includes a power receiving coil 10 for receiving high frequency power supplied from the power transmitting coil 4. The non-contact power transmission apparatus having the configuration of FIG. 1 can be configured to transmit power from the power transmission apparatus 1 to the power reception apparatus 2 via magnetic field resonance between the power transmission coil 4 and the power reception coil 10, for example. Note that the coupling form of the power transmission coil 4 and the power reception coil 10 can be appropriately employed such as electromagnetic induction, radio wave, electric field or magnetic field sharing. Below, the case where electric power is transmitted from the power transmission apparatus 1 to the power receiving apparatus 2 via the magnetic field resonance between the power transmission coil 4 and the power receiving coil 10 is demonstrated as an example.

送電装置1において、送電コイル4と送電共振容量5は送電共振器を構成し、受電装置2において、受電コイル10と受電共振容量11は受電共振器を構成する。送電部3は高周波電力を送電共振器に供給する。送電共振器を構成する送電コイル4と受電共振器を構成する受電コイル10の間における磁界共鳴を介して、送電コイル4から受電コイル10に電力が伝送される。受電共振器には電力変換部12が接続される。電力変換部12は、受電コイル10が受電した高周波電力の検波や平滑化を行って、電力出力端子13に接続される負荷が必要とする電力形式に変換する。   In the power transmission device 1, the power transmission coil 4 and the power transmission resonance capacitor 5 constitute a power transmission resonator. In the power reception device 2, the power reception coil 10 and the power reception resonance capacitor 11 constitute a power reception resonator. The power transmission unit 3 supplies high-frequency power to the power transmission resonator. Electric power is transmitted from the power transmission coil 4 to the power reception coil 10 through magnetic field resonance between the power transmission coil 4 constituting the power transmission resonator and the power reception coil 10 constituting the power reception resonator. The power converter 12 is connected to the power receiving resonator. The power conversion unit 12 performs detection and smoothing of the high-frequency power received by the power receiving coil 10 and converts it into a power format required by the load connected to the power output terminal 13.

送電装置1の送電部3は、送電共振器に比較的大きな交流電力を供給する。そのため、送電部3には半導体のスイッチング素子を用いたパワー回路を用い、直流をスイッチングにより交流に変換される。図2は、2個のFET21、22をスイッチング素子として用いたハーフブリッジ回路を示す。以下では、図2に示したハーフブリッジ回路が送電部3を構成する場合について説明する。なお、送電部3は4個のFETを使ったフルブリッジ回路を用いてもよい。送電時の電圧は図2の送電供給電圧Vcによって決まり、送電時の周波数は図2のスイッチング制御電源20の送電周波数f0によって決まる。Vcは送電電圧制御部6からの指令に基づき設定され、f0は送電周波数制御部7からの指令に基づき設定される。   The power transmission unit 3 of the power transmission device 1 supplies relatively large AC power to the power transmission resonator. Therefore, a power circuit using a semiconductor switching element is used for the power transmission unit 3, and direct current is converted into alternating current by switching. FIG. 2 shows a half bridge circuit using two FETs 21 and 22 as switching elements. Below, the case where the half bridge circuit shown in FIG. 2 comprises the power transmission part 3 is demonstrated. The power transmission unit 3 may use a full bridge circuit using four FETs. The voltage during power transmission is determined by the power transmission supply voltage Vc in FIG. 2, and the frequency during power transmission is determined by the power transmission frequency f0 of the switching control power supply 20 in FIG. Vc is set based on a command from the power transmission voltage control unit 6, and f0 is set based on a command from the power transmission frequency control unit 7.

ところで、高効率の電力伝送を実現するためには、送電コイル4と送電共振容量5による送電共振器と、受電コイル10と受電共振容量11による受電共振器の間の共振周波数と、送電部3が送電共振器に供給する高周波電力の送電周波数を概略一致させることが好ましい。   By the way, in order to realize high-efficiency power transmission, the power transmission resonator by the power transmission coil 4 and the power transmission resonance capacitor 5, the resonance frequency between the power reception resonator by the power reception coil 10 and the power reception resonance capacitor 11, and the power transmission unit 3 It is preferable to substantially match the transmission frequency of the high-frequency power supplied to the power transmission resonator.

しかし、送電共振器と受電共振器の間の共振周波数は変動することがある。図3は、送電供給電圧Vcをパラメータとして、送電周波数f0と送電電力の関係を測定し、グラフにしたものである。送電コイル4のインダクタンスは425μH、共振容量5のキャパシタンスは4950pFである。これらの値の送電コイルと共振容量を直列接続したとき、計算上の共振周波数は約110kHzである。しかしながら、求められた共振周波数は、送電供給電圧Vcが24Vのときは102.5kHz、60Vのときは105.5kHzであった。   However, the resonance frequency between the power transmission resonator and the power reception resonator may fluctuate. FIG. 3 is a graph obtained by measuring the relationship between the transmission frequency f0 and the transmission power using the transmission supply voltage Vc as a parameter. The inductance of the power transmission coil 4 is 425 μH, and the capacitance of the resonance capacitor 5 is 4950 pF. When these values of the power transmission coil and the resonant capacitor are connected in series, the calculated resonant frequency is about 110 kHz. However, the obtained resonance frequency was 102.5 kHz when the power transmission supply voltage Vc was 24V, and 105.5 kHz when it was 60V.

送電供給電圧Vcが24Vの時と60Vの時で共振周波数が異なるのは、Vcが24Vの時と60Vの時で送電側および受電側のインピーダンス整合が変化するためと考えられる。   The reason why the resonance frequency is different between the power transmission supply voltage Vc of 24V and 60V is that the impedance matching on the power transmission side and the power reception side changes between Vc of 24V and 60V.

まず、送電側については、本実施の形態では、送電装置1の送電部3がFET21、22をスイッチング素子として用いたハーフブリッジ回路からなり、ハーフブリッジ回路を送電コイル4と送電共振容量5で構成される送電側共振器に直結する。スイッチング素子による送電回路のインピーダンスは理論的には0Ωであり、現実的にも非常に低いインピーダンスとなるため、送電電力が変動することによりインピーダンスが変化してしまう。送電コイル4と送電共振容量5で構成される送電側共振器のインピーダンスも周波数により変化する。   First, on the power transmission side, in the present embodiment, the power transmission unit 3 of the power transmission device 1 includes a half bridge circuit using FETs 21 and 22 as switching elements, and the half bridge circuit is configured by a power transmission coil 4 and a power transmission resonance capacitor 5. Directly connected to the power transmission resonator. The impedance of the power transmission circuit by the switching element is theoretically 0Ω, which is actually very low impedance, so that the impedance changes due to fluctuations in the transmission power. The impedance of the power transmission side resonator composed of the power transmission coil 4 and the power transmission resonance capacitor 5 also varies with the frequency.

さらに、受電側についても、受電コイル10と受電共振容量11で構成される受電側共振器のインピーダンスは周波数により変化し、高周波電力の検波や平滑化を行う電力変換部12の受電回路も受電電力によりインピーダンスが変動する。   Further, also on the power receiving side, the impedance of the power receiving side resonator constituted by the power receiving coil 10 and the power receiving resonance capacitor 11 varies depending on the frequency, and the power receiving circuit of the power conversion unit 12 that performs detection and smoothing of the high frequency power is also received power. Impedance varies due to.

以上のように、送電側および受電側のインピーダンスが、送電供給電圧に応じて変化してしまうことにより共振周波数が異なると考えられる。   As described above, it is considered that the resonance frequency differs when the impedances on the power transmission side and the power reception side change according to the power transmission supply voltage.

ところで、図3から明らかなように、送電供給電圧Vcに応じて送電周波数f0を適切な周波数に設定しなければ、高効率の非接触電力伝送を行うことができない。したがって、受電装置2の電力出力端子13に接続される負荷の状況に応じて受電装置2で必要とする受電電力が変動する場合、送電装置1では送電部3の送電供給電圧Vcを変化させるとともに、送電周波数f0を適切な値に設定する必要がある。   Incidentally, as is apparent from FIG. 3, high-efficiency non-contact power transmission cannot be performed unless the power transmission frequency f0 is set to an appropriate frequency in accordance with the power transmission supply voltage Vc. Therefore, when the received power required by the power receiving device 2 varies depending on the state of the load connected to the power output terminal 13 of the power receiving device 2, the power transmission device 1 changes the power transmission supply voltage Vc of the power transmission unit 3. Therefore, it is necessary to set the power transmission frequency f0 to an appropriate value.

本発明の非接触電力伝送装置は、送電装置1において送電電圧と送電周波数を関連付けて制御することに特徴がある。送電電圧制御部6から送電供給電圧Vcの値を、送電部3に送信するとともに、送電周波数制御部7にも送信する。送電周波数制御部7は送電供給電圧Vcの値に基づいて最適な送電周波数f0を送電部3に送信する。送電部3は、送電電圧制御部6からの指令に基づいて送電供給電圧Vcの値を設定し、送電周波数制御部7からの指令に基づいて送電周波数f0の値を設定する。   The contactless power transmission device of the present invention is characterized in that the power transmission device 1 controls the transmission voltage and the transmission frequency in association with each other. The value of the power transmission supply voltage Vc is transmitted from the power transmission voltage control unit 6 to the power transmission unit 3 and also transmitted to the power transmission frequency control unit 7. The power transmission frequency control unit 7 transmits the optimum power transmission frequency f0 to the power transmission unit 3 based on the value of the power transmission supply voltage Vc. The power transmission unit 3 sets the value of the power transmission supply voltage Vc based on the command from the power transmission voltage control unit 6, and sets the value of the power transmission frequency f0 based on the command from the power transmission frequency control unit 7.

なお、送電電圧制御部6および送電周波数制御部7はマイコンによって構成することが好ましいが、FPGAや電子回路によって構成することもできる。   In addition, although it is preferable to comprise the power transmission voltage control part 6 and the power transmission frequency control part 7 with a microcomputer, it can also be comprised with FPGA and an electronic circuit.

以下では、本発明の送電電圧と送電周波数を関連付けた非接触電力伝送装置について、実施の形態に分けて詳説する。
<実施の形態1>
図1は、本発明の実施の形態1における非接触電力伝送装置の構成を示す。送電電圧制御部6は、送電部3のスイッチング素子に供給する送電供給電圧Vcを制御する。この実施の形態1では、供給する送電供給電圧は24Vと60Vの切換えとするが、3以上の電圧値の切換えとしても良く、連続的な電圧制御としても良い。
Below, the non-contact power transmission apparatus in which the transmission voltage and the transmission frequency of the present invention are associated will be described in detail by dividing them into embodiments.
<Embodiment 1>
FIG. 1 shows a configuration of a non-contact power transmission apparatus according to Embodiment 1 of the present invention. The power transmission voltage control unit 6 controls the power transmission supply voltage Vc supplied to the switching element of the power transmission unit 3. In the first embodiment, the power transmission supply voltage to be supplied is switched between 24 V and 60 V, but it may be switched between three or more voltage values or may be continuous voltage control.

図4は、送電供給電圧Vcが24Vの時と60Vのそれぞれで、送電供給電圧Vcに対応した最適な送電周波数f0周波数を定めた表である。この表は、例えば非接触電力伝送装置の出荷前の初期動作時に図3の測定を行い、その結果から予め求めておくことができる。図3の測定は、例えば、送電供給電圧Vc毎に前記引用文献2の方法を用いればよい。送電供給電圧Vcに対応した最適な送電周波数f0周波数の関係は、環境温度等の変化により変動する場合もあるので、図4に示した送電供給電圧Vcに対応した最適な送電周波数f0周波数の関係は、非接触電力伝送装置の動作中に適宜校正してもよい。校正は、例えば、送電供給電圧Vc毎に前記引用文献2の方法を用いればよい。   FIG. 4 is a table in which the optimum power transmission frequency f0 frequency corresponding to the power transmission supply voltage Vc is determined when the power transmission supply voltage Vc is 24V and 60V, respectively. This table can be obtained in advance, for example, by performing the measurement of FIG. 3 during the initial operation before shipping of the non-contact power transmission apparatus. The measurement of FIG. 3 may use the method of the cited reference 2 for every power transmission supply voltage Vc, for example. Since the relationship of the optimal power transmission frequency f0 corresponding to the power transmission supply voltage Vc may fluctuate due to changes in the environmental temperature or the like, the relationship of the optimal power transmission frequency f0 frequency corresponding to the power transmission supply voltage Vc shown in FIG. May be appropriately calibrated during operation of the non-contact power transmission apparatus. For the calibration, for example, the method of the cited document 2 may be used for each power transmission supply voltage Vc.

送電周波数制御部7は、図4の表に基づいて送電部3が出力する高周波電力の送電周波数f0を制御する。送電周波数制御部7は、送電電圧制御部6から送電供給電圧Vcの値を受け、送電供給電圧Vcに対応した送電周波数f0で送電部3のスイッチング制御電源20の送電周波数f0を制御する。送電周波数制御部7は、図4の表に基づいて、送電供給電圧Vcが24Vの時には、送電部3におけるスイッチング制御電源20の送電周波数f0を102.5kHzに制御し、送電供給電圧Vcが60Vの時には、送電部3におけるスイッチング制御電源20の送電周波数f0を105.5kHzに制御する。   The power transmission frequency control unit 7 controls the power transmission frequency f0 of the high frequency power output from the power transmission unit 3 based on the table of FIG. The power transmission frequency control unit 7 receives the value of the power transmission supply voltage Vc from the power transmission voltage control unit 6 and controls the power transmission frequency f0 of the switching control power source 20 of the power transmission unit 3 with the power transmission frequency f0 corresponding to the power transmission supply voltage Vc. The power transmission frequency control unit 7 controls the power transmission frequency f0 of the switching control power supply 20 in the power transmission unit 3 to 102.5 kHz when the power transmission supply voltage Vc is 24 V based on the table of FIG. At the time, the power transmission frequency f0 of the switching control power supply 20 in the power transmission unit 3 is controlled to 105.5 kHz.

その結果、送電装置1において、送電供給電圧Vcが24Vの時には送電周波数f0が102.5kHzで送電が行われ、送電供給電圧Vcが60Vの時には送電周波数f0が105.5kHzで送電が行われる。すなわち、本実施の形態では送電供給電圧Vcが高くなると送電周波数f0が高くなるように制御する。   As a result, in the power transmission device 1, power transmission is performed at a power transmission frequency f0 of 102.5 kHz when the power transmission supply voltage Vc is 24V, and power transmission is performed at a power transmission frequency f0 of 105.5 kHz when the power transmission supply voltage Vc is 60V. That is, in the present embodiment, control is performed so that the power transmission frequency f0 increases as the power transmission supply voltage Vc increases.

以上の動作により、送電供給電圧Vcが24Vおよび60Vどちらでも共振状態が高い状態で電力の伝送ができるので、送電供給電圧Vcの電圧値によらず高い効率で非接触電力伝送が実現できる。なお、本実施の形態では、説明の簡単のために送電供給電圧を24Vと60Vに切り替える場合を例に挙げて説明したが、3以上の電圧の切換えとしても良く、連続的な電圧制御としても良い。
<実施の形態2>
実施の形態1では送電装置1のみで送電供給電圧Vcと送電周波数f0を制御したが、実施の形態2は受電装置2からの情報に基づいて、送電装置1が送電供給電圧Vcと送電周波数f0を制御する。
With the above operation, power transmission can be performed in a state where the resonance state is high regardless of whether the power transmission supply voltage Vc is 24 V or 60 V. Therefore, contactless power transmission can be realized with high efficiency regardless of the voltage value of the power transmission supply voltage Vc. In this embodiment, the case where the power transmission supply voltage is switched between 24 V and 60 V has been described as an example for the sake of simplicity. However, switching between three or more voltages may be performed, and continuous voltage control may be performed. good.
<Embodiment 2>
In the first embodiment, the power transmission supply voltage Vc and the power transmission frequency f0 are controlled only by the power transmission device 1, but in the second embodiment, the power transmission device 1 uses the power transmission supply voltage Vc and the power transmission frequency f0 based on information from the power receiving device 2. To control.

図5は、本発明の実施の形態2における非接触電力伝送装置の構成を示す。受電装置2の要求電力計算部14は、電力変換部12の出力電力、または受電装置2の外部から入力される情報に基づいて、送電装置1へ要求する送電電力を決定する。要求する送電電力については、例えば、電源出力部13から負荷へ出力される電力が大きい時は送電装置1へ要求する電力を小さく、電源出力部13から負荷へ出力される電力が小さい時は送電装置1へ要求する電力は大きくすることができる。要求電力計算部14は、要求する送電電力情報を通信送信部15へ送る。要求電力計算部14はマイコンによって構成することが好ましいが、FPGAや電子回路によって構成してもよい。   FIG. 5 shows a configuration of a non-contact power transmission apparatus according to Embodiment 2 of the present invention. The required power calculation unit 14 of the power reception device 2 determines the transmission power required for the power transmission device 1 based on the output power of the power conversion unit 12 or information input from the outside of the power reception device 2. As for the requested transmission power, for example, when the power output from the power output unit 13 to the load is large, the required power to the power transmission device 1 is small, and when the power output from the power output unit 13 to the load is small, the power is transmitted. The power required for the device 1 can be increased. The required power calculation unit 14 sends the requested transmission power information to the communication transmission unit 15. The required power calculation unit 14 is preferably configured by a microcomputer, but may be configured by an FPGA or an electronic circuit.

通信送信部15は要求する送電電力情報をワイヤレス通信によって送電装置1へ送信する。   The communication transmission unit 15 transmits the requested transmission power information to the power transmission device 1 by wireless communication.

送電装置1の通信受信部8は受電装置2の通信送信部15から送信された送電電力情報をワイヤレス通信によって受信する。   The communication reception unit 8 of the power transmission device 1 receives the transmission power information transmitted from the communication transmission unit 15 of the power reception device 2 by wireless communication.

通信送信部15及び通信受信部8を実現するための通信手段としては、例えば、ZigBee(登録商標)やBluetooth(登録商標)を用いることができ、若しくは、小電力無線局や微弱無線を用いてもよい。   As communication means for realizing the communication transmitter 15 and the communication receiver 8, for example, ZigBee (registered trademark) or Bluetooth (registered trademark) can be used, or a low-power radio station or weak radio is used. Also good.

通信受信部8は、ワイヤレス通信によって受信した受電装置からの送電電力情報により、送電電圧制御部6へ送電供給電圧Vcを指示する。以後の送電装置1における送電電圧制御部6、送電周波数制御部7、及び送電部3の動作は実施の形態1と同じであるので詳細な説明は省略する。   The communication receiving unit 8 instructs the power transmission voltage control unit 6 on the power transmission supply voltage Vc based on the power transmission power information received from the power receiving device by wireless communication. Since the subsequent operations of the power transmission voltage control unit 6, the power transmission frequency control unit 7, and the power transmission unit 3 in the power transmission device 1 are the same as those in the first embodiment, detailed description thereof is omitted.

以下、実施の形態1と同様の動作により、受電装置の要求する電力に応じて、共振状態が高い状態で非接触電力伝送を行うことができる。   Hereinafter, non-contact power transmission can be performed in a state where the resonance state is high, according to the power required by the power receiving device, by the same operation as in the first embodiment.

以上の動作により、受電側の情報に基づいて送電供給電圧Vcを決定し、最適の送電周波数f0を求めることができるので、負荷の電力要求に基づいた高効率の非接触電力伝送が実現できる。   With the above operation, the power transmission supply voltage Vc can be determined based on the information on the power receiving side and the optimum power transmission frequency f0 can be obtained, so that highly efficient non-contact power transmission based on the power demand of the load can be realized.

なお、図5では電力変換部12の出力電力に基づいて、送電装置1へ要求する送電電力を決定しているが、電力変換部12の入力電力に基づいて、送電装置1へ要求する送電電力を決定してもよい。   In FIG. 5, the transmission power requested to the power transmission device 1 is determined based on the output power of the power conversion unit 12. However, the transmission power requested to the power transmission device 1 based on the input power of the power conversion unit 12. May be determined.

本発明の非接触電力伝送装置は、送電電圧が変動した場合でも高効率の電力伝送が可能であり、受電装置側で要求される電力が変動する場合の非接触電力伝送に好適である。   The contactless power transmission device of the present invention is capable of highly efficient power transmission even when the transmission voltage fluctuates, and is suitable for contactless power transmission when the power required on the power receiving device side fluctuates.

1 送電装置
2 充電装置
3 送電部
4 送電コイル
5 共振容量
6 送電電圧制御部
7 送電周波数制御部
8 通信受信部
10 受電コイル
11 共振容量
12 電力変換部
13 電力出力部
14 要求電力計算部
15 通信送信部
20 スイッチング制御電源
21 スイッチング素子
22 スイッチング素子
23 コイル
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Charging apparatus 3 Power transmission part 4 Power transmission coil 5 Resonance capacity 6 Power transmission voltage control part 7 Power transmission frequency control part 8 Communication receiving part 10 Power receiving coil 11 Resonance capacity 12 Power conversion part 13 Power output part 14 Required power calculation part 15 Communication Transmitter 20 Switching control power supply 21 Switching element 22 Switching element 23 Coil

Claims (7)

送電コイル及び共振容量により構成された送電共振器を有する送電装置と、
受電コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、
前記送電コイルと前記受電コイルの間の作用を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
前記送電装置は、更に、
前記送電共振器に高周波電力を与える送電部と、
前記送電部の送電供給電圧を制御する送電電圧制御部と、
前記送電部の送電周波数を制御する送電周波数制御部とを備え、
前記送電周波数制御部は、前記送電電圧制御部が制御する前記送電部の送電供給電圧に基づいて、前記送電部の送電周波数を制御することを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonant capacitor;
A power receiving device having a power receiving resonator composed of a power receiving coil and a resonant capacitor;
In the non-contact power transmission device that transmits power from the power transmission device to the power reception device through the action between the power transmission coil and the power reception coil,
The power transmission device further includes:
A power transmission unit that applies high-frequency power to the power transmission resonator;
A power transmission voltage control unit for controlling a power transmission supply voltage of the power transmission unit;
A power transmission frequency control unit for controlling a power transmission frequency of the power transmission unit,
The non-contact power transmission device, wherein the power transmission frequency control unit controls a power transmission frequency of the power transmission unit based on a power transmission supply voltage of the power transmission unit controlled by the power transmission voltage control unit.
前記受電装置は、前記送電装置が送電すべき送電電力情報を算出する要求電力計算部と、
前記要求電力計算部が出力する送電電力情報を前記送電装置に非接触で送信する通信送信部とを備え、
前記送電装置は、前記通信送信部が送信した情報を受信して前記周波数制御部へ送電電力情報を伝達する通信受信部を備え、
前記送電周波数制御部は、前記通信受信部が受信した送電電力情報に基づき前記送電部の送電供給電圧を決定し、
前記送電周波数制御部は、前記送電電圧制御部が制御する前記送電部の送電供給電圧に基づいて、前記送電部の送電周波数を制御することを特徴とする請求項1に記載の非接触電力伝送装置。
The power receiving device, a required power calculation unit that calculates transmission power information to be transmitted by the power transmission device,
A communication transmission unit that transmits the transmission power information output by the required power calculation unit to the power transmission device in a contactless manner;
The power transmission device includes a communication reception unit that receives information transmitted by the communication transmission unit and transmits transmission power information to the frequency control unit,
The power transmission frequency control unit determines a power transmission supply voltage of the power transmission unit based on transmission power information received by the communication reception unit,
The contactless power transmission according to claim 1, wherein the power transmission frequency control unit controls a power transmission frequency of the power transmission unit based on a power transmission supply voltage of the power transmission unit controlled by the power transmission voltage control unit. apparatus.
前記送電周波数制御部は、前記送電供給電圧が高くなると前記送電周波数が高くなるように制御することを特徴とする請求項1又は2に記載の非接触電力伝送装置。   The non-contact power transmission apparatus according to claim 1, wherein the power transmission frequency control unit performs control so that the power transmission frequency is increased when the power transmission supply voltage is increased. 前記非接触電力伝送装置の初期動作時に、前記送電供給電圧に対応した最適な前記送電周波数の関係を測定することを特徴とする請求項1乃至3のいずれかに記載の非接触電力伝送装置。   4. The contactless power transmission apparatus according to claim 1, wherein an optimum relationship of the transmission frequency corresponding to the power transmission supply voltage is measured during an initial operation of the contactless power transmission apparatus. 5. 前記送電供給電圧に対応した最適な前記送電周波数の関係は、非接触電力伝送装置の動作中に適宜校正することを特徴とする請求項4に記載の非接触電力伝送装置。   The contactless power transmission apparatus according to claim 4, wherein the optimum relationship between the power transmission frequencies corresponding to the power transmission supply voltage is appropriately calibrated during operation of the contactless power transmission apparatus. 前記受電装置は、前記受電コイルが受電した電力を入力し、所定の形式に変換して電力を出力する電力変換部を備え、
前記要求電力計算部は、前記電力変換部の入力電力、前記電力変換部の出力電力、前記受電装置の外部から入力される情報に基づいて送電電力情報を算出することを特徴とする請求項2に記載の非接触電力伝送装置。
The power receiving device includes a power conversion unit that inputs power received by the power receiving coil, converts the power into a predetermined format, and outputs power.
3. The required power calculation unit calculates transmission power information based on input power of the power conversion unit, output power of the power conversion unit, and information input from the outside of the power receiving apparatus. The non-contact power transmission device described in 1.
前記送電コイルと前記受電コイルの間の作用は、磁界共鳴を用いることを特徴とする請求項1乃至6のいずれかに記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein magnetic resonance is used as an action between the power transmission coil and the power reception coil.
JP2014007519A 2014-01-20 2014-01-20 Non-contact power transmission device Pending JP2015136274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007519A JP2015136274A (en) 2014-01-20 2014-01-20 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007519A JP2015136274A (en) 2014-01-20 2014-01-20 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2015136274A true JP2015136274A (en) 2015-07-27

Family

ID=53767749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007519A Pending JP2015136274A (en) 2014-01-20 2014-01-20 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2015136274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3349329A1 (en) 2017-01-13 2018-07-18 Panasonic Intellectual Property Management Co., Ltd. Power transmitter and wireless power transmission system
JP2019176684A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power reception device and wireless power transmission system
KR20200120953A (en) * 2018-05-25 2020-10-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Wireless charging receiver and mobile terminal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3349329A1 (en) 2017-01-13 2018-07-18 Panasonic Intellectual Property Management Co., Ltd. Power transmitter and wireless power transmission system
US10348133B2 (en) 2017-01-13 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Power transmitter and wireless power transmission system including the power transmitter
JP2019176684A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power reception device and wireless power transmission system
KR20200120953A (en) * 2018-05-25 2020-10-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Wireless charging receiver and mobile terminal
JP2021516944A (en) * 2018-05-25 2021-07-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charge receiver and mobile terminal
JP7092885B2 (en) 2018-05-25 2022-06-28 オッポ広東移動通信有限公司 Wireless charge receiver and mobile terminal
KR102506348B1 (en) * 2018-05-25 2023-03-06 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Wireless charging receiving device and mobile terminal
US11611237B2 (en) 2018-05-25 2023-03-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless power reception apparatus and mobile terminal

Similar Documents

Publication Publication Date Title
JP6607289B2 (en) Wireless power transmission system and power transmission device
US10097047B2 (en) Wireless power transmission system and power transmission device of wireless power transmission system
US9787105B2 (en) Apparatus and method for high efficiency variable power transmission
JP6440519B2 (en) Wireless power transmission system and power transmission device
JP5365306B2 (en) Wireless power supply system
US10284018B2 (en) System, apparatus and method for adaptive tuning for wireless power transfer
JP5238884B2 (en) Wireless power transmission device
US9680336B2 (en) Wireless power repeater and method thereof
JP2013099249A (en) Radio power transmission device and its power transmission method
JP2010233442A (en) Apparatus and method for supplying power in non-contact manner
KR102019064B1 (en) Wireless power transmitting apparatus and method
US10447165B2 (en) Adaptive power amplifier for optimizing wireless power transfer
KR20150017637A (en) Wireless power transmitting device
JP2015136274A (en) Non-contact power transmission device
JP6211219B2 (en) Non-contact power transmission device
KR20130070612A (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
KR101360550B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
JP2015109762A (en) Device and method for non-contact power transmission
KR102019079B1 (en) Wireless power transmitting apparatus and method
KR20160063004A (en) Apparatus for wireless power transmission
KR20140129915A (en) Apparatus and method for receiving wireless power
JP2013233053A (en) Wireless power transmission system
KR102297354B1 (en) Wireless power transmission systme which enables to transmit and receive induced power signal and resonance power signal
KR102315924B1 (en) Apparatus and method for wirless power transfer
WO2014030689A1 (en) Non-contact power transmission device and power-receiving apparatus