JP2015035469A - Solid-state laser device - Google Patents

Solid-state laser device Download PDF

Info

Publication number
JP2015035469A
JP2015035469A JP2013164966A JP2013164966A JP2015035469A JP 2015035469 A JP2015035469 A JP 2015035469A JP 2013164966 A JP2013164966 A JP 2013164966A JP 2013164966 A JP2013164966 A JP 2013164966A JP 2015035469 A JP2015035469 A JP 2015035469A
Authority
JP
Japan
Prior art keywords
temperature
fundamental wave
solid
resonator
state laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013164966A
Other languages
Japanese (ja)
Other versions
JP6273716B2 (en
Inventor
直也 石垣
Naoya Ishigaki
直也 石垣
東條 公資
Kimitada Tojo
公資 東條
次郎 齊川
Jiro Saikawa
次郎 齊川
進吾 宇野
Shingo Uno
進吾 宇野
廣木 知之
Tomoyuki Hiroki
知之 廣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013164966A priority Critical patent/JP6273716B2/en
Publication of JP2015035469A publication Critical patent/JP2015035469A/en
Application granted granted Critical
Publication of JP6273716B2 publication Critical patent/JP6273716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state laser device capable of preventing damage to an optical element in a resonator.SOLUTION: A solid-state laser device comprises: a semiconductor laser 1 which generates a laser beam; a solid-state laser medium 2 excited by the laser beam output from the semiconductor laser 1; an SHG element 4 and a THG element 5 arranged in the resonator including the solid-state laser medium 2, and for outputting a third harmonic wave of a fundamental wave generated in the resonator; a temperature adjusting mechanism 10 which controls a temperature of each of the SHG element 4 and the THG element 5; and a photodetector 7, which is arranged outside the resonator, detects a fundamental wave output to the outside of the resonator. The temperature adjusting mechanism 10 adjusts a temperature of a crystal 4 for generating a second harmonic wave so that an output value of the fundamental wave detected by the photodetector 7 becomes a prescribed value or lower.

Description

本発明は、固体レーザ装置に関し、特に、第3高調波を出力する固体レーザ装置に関する。   The present invention relates to a solid-state laser device, and more particularly to a solid-state laser device that outputs a third harmonic.

従来より、第3高調波のパルス出力のピーク強度を安定化できる固体レーザ装置が知られている(特許文献1)。この特許文献1に記載され且つ第3高調波を出力する固体レーザ装置は、基本波を第2高調波に変換するための第2高調波発生用結晶(以下、SHG素子と称する)と、基本波と第2高調波の和周波により第3高調波を出力する第3高調波発生用結晶(以下、THG素子と称する)とを備えている。   Conventionally, a solid-state laser device capable of stabilizing the peak intensity of the third harmonic pulse output is known (Patent Document 1). A solid-state laser device described in Patent Document 1 and outputting a third harmonic includes a second harmonic generation crystal (hereinafter referred to as an SHG element) for converting a fundamental wave into a second harmonic, A third harmonic generation crystal (hereinafter referred to as a THG element) that outputs a third harmonic by the sum frequency of the wave and the second harmonic.

各波長変換素子としてのSHG素子及びTHG素子の温度をスイープさせ、一定のエネルギーを保つ状態で、半導体レーザの駆動電流が最小となるように各波長変換素子の温度を設定している。波長変換素子の温度は、第3高調波の出力が最大、即ち光学素子の変換効率が最大になるように予め設定されている。   The temperature of each SHG element and THG element as each wavelength conversion element is swept, and the temperature of each wavelength conversion element is set so that the drive current of the semiconductor laser is minimized while maintaining constant energy. The temperature of the wavelength conversion element is set in advance so that the output of the third harmonic is maximized, that is, the conversion efficiency of the optical element is maximized.

また、特許文献2には、レーザ共振器外において、出力ミラーから漏れてくる基本波の縦モードをモニターしながらその信号をフィードバックして、出力ミラーの位置を圧電素子等により制御することで、共振器長の調整を行い、エタロンの透過ピークとレーザ発振波長を同調していた。   Further, in Patent Document 2, by feeding back the signal while monitoring the longitudinal mode of the fundamental wave leaking from the output mirror outside the laser resonator, the position of the output mirror is controlled by a piezoelectric element or the like, The cavity length was adjusted to tune the transmission peak of the etalon and the laser oscillation wavelength.

特開2010−251448号公報JP 2010-251448 A 特開2003−163400号公報JP 2003-163400 A

しかしながら、特許文献1では、環境温度や経時変化などにより第3高調波の出力が最大となる波長変換素子の最適温度が変化する可能性がある。このため、波長変換素子の温度をスイープさせて、波長変換素子に対する最適温度を割り出すための温度チューニングを行う。しかし、SHG素子やTHG素子の変換効率が低下している場合には、共振器内で波長が基本波から高調波に変換されず、残存する基本波のパワーが増加する。このため、共振器を構成している光学素子のコーティング損傷が生じてしまう。   However, in Patent Document 1, there is a possibility that the optimum temperature of the wavelength conversion element that maximizes the output of the third harmonic may change due to the environmental temperature, changes with time, and the like. Therefore, the temperature of the wavelength conversion element is swept to perform temperature tuning for determining the optimum temperature for the wavelength conversion element. However, when the conversion efficiency of the SHG element or THG element is lowered, the wavelength is not converted from the fundamental wave to the harmonic wave in the resonator, and the power of the remaining fundamental wave increases. For this reason, the coating damage of the optical element which comprises the resonator will arise.

また、特許文献2の技術を用いても、共振器を構成している光学素子のコーティング損傷が生じるという課題を解決することができなかった。   Moreover, even if the technique of Patent Document 2 is used, the problem that the coating damage of the optical element constituting the resonator occurs cannot be solved.

本発明の課題は、共振器内の光学素子の損傷を防止することができる固体レーザ装置を提供することにある。   An object of the present invention is to provide a solid-state laser device capable of preventing damage to an optical element in a resonator.

上記の課題を解決するために、本発明に係る固体レーザ装置は、レーザ光を発生する半導体レーザと、前記半導体レーザから出力されるレーザ光により励起される固体レーザ媒質と、前記固体レーザ媒質を含む共振器内に配置され、前記共振器内で発生する基本波の第3高調波を出力するための第2高調波発生用結晶および第3高調波発生用結晶と、前記第2高調波発生用結晶および前記第3高調波発生用結晶の各々の温度を制御する温度調整機構と、共振器外に配置され、前記共振器外に出力される基本波を検出する光検出器とを備え、前記温度調整機構は、前記光検出器で検出された基本波の出力値が所定値以下となるように前記第2高調波発生用結晶の温度を調整することを特徴とする。   In order to solve the above problems, a solid-state laser device according to the present invention includes a semiconductor laser that generates laser light, a solid-state laser medium that is excited by laser light output from the semiconductor laser, and the solid-state laser medium. A second harmonic generation crystal and a third harmonic generation crystal disposed in a resonator including the second harmonic generation crystal for outputting a third harmonic of a fundamental wave generated in the resonator, and the second harmonic generation A temperature adjusting mechanism that controls the temperature of each of the crystal for crystal generation and the third harmonic generation crystal, and a photodetector that is disposed outside the resonator and detects a fundamental wave output to the outside of the resonator, The temperature adjustment mechanism adjusts the temperature of the second harmonic generation crystal so that the output value of the fundamental wave detected by the photodetector is not more than a predetermined value.

また、前記温度調整機構は、前記光検出器で検出された基本波の出力値が所定値以下となるように前記第3高調波発生用結晶の温度を調整することを特徴とする。   In addition, the temperature adjustment mechanism adjusts the temperature of the third harmonic generation crystal so that the output value of the fundamental wave detected by the photodetector is not more than a predetermined value.

また、前記光検出器で検出された基本波の出力値が一定値を超えないように、前記半導体レーザを駆動する駆動電流の電流値を制御することを特徴とする。   The current value of the drive current for driving the semiconductor laser is controlled so that the output value of the fundamental wave detected by the photodetector does not exceed a certain value.

本発明に係る固体レーザ装置によれば、温度調整機構は、光検出器で検出された基本波の出力値が所定値以下となるように第2高調波発生用結晶の温度を調整するので、共振器内で波長が基本波から高調波に変換され、残存する基本波のパワーが減少して、共振器内の光学素子の損傷を防止することができる。   According to the solid-state laser device of the present invention, the temperature adjustment mechanism adjusts the temperature of the second harmonic generation crystal so that the output value of the fundamental wave detected by the photodetector is not more than a predetermined value. In the resonator, the wavelength is converted from the fundamental wave to the harmonic, and the power of the remaining fundamental wave is reduced, so that damage to the optical element in the resonator can be prevented.

本発明の実施例1に係る固体レーザ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the solid-state laser apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る固体レーザ装置内のSHG素子の共振器内での温度パワー特性及び温度チューニングを示す図である。It is a figure which shows the temperature power characteristic and temperature tuning in the resonator of the SHG element in the solid-state laser apparatus concerning Example 1 of this invention. 本発明の実施例1に係る固体レーザ装置内のTHG素子の共振器内での温度パワー特性及び温度チューニングを示す図である。It is a figure which shows the temperature power characteristic and temperature tuning in the resonator of the THG element in the solid-state laser apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る固体レーザ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the solid-state laser apparatus which concerns on Example 2 of this invention.

以下、本発明の固体レーザ装置の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the solid-state laser device of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る固体レーザ装置の構成を示すブロック図である。この固体レーザ装置は、半導体レーザ1、固体レーザ媒質2、入射ミラー3、SHG素子4、ペルチェ素子4a、THG素子5、ペルチェ素子5a、ビームスプリッタ6、光検出器7、読出回路8、温度調整機構10を有するCPU(中央処理装置)9、出射ミラー11を備えている。   FIG. 1 is a block diagram showing a configuration of a solid-state laser apparatus according to Embodiment 1 of the present invention. This solid-state laser device includes a semiconductor laser 1, a solid-state laser medium 2, an incident mirror 3, an SHG element 4, a Peltier element 4a, a THG element 5, a Peltier element 5a, a beam splitter 6, a photodetector 7, a readout circuit 8, and temperature adjustment. A CPU (central processing unit) 9 having a mechanism 10 and an exit mirror 11 are provided.

なお、固体レーザ媒質2、2つのミラー3,11、SHG素子4、THG素子5から構成される部分を共振器20と呼ぶ。   A portion composed of the solid-state laser medium 2, the two mirrors 3, 11, the SHG element 4, and the THG element 5 is called a resonator 20.

半導体レーザ1は、例えばレーザダイオードによって構成されており、レーザ光を発生する。半導体レーザ1で発生されたレーザ光は、入射ミラー3を透過して固体レーザ媒質2に照射される。   The semiconductor laser 1 is constituted by a laser diode, for example, and generates laser light. Laser light generated by the semiconductor laser 1 passes through the incident mirror 3 and is irradiated onto the solid-state laser medium 2.

固体レーザ媒質2は、レーザ発振の元となる物質であり、例えば、YAGレーザと呼ばれる固体レーザにおいては、イットリウム、アルミニウムおよびガーネット(Yttrium Aluminum Garnet)などといった物質が用いられる。この固体レーザ媒質2は、半導体レーザ1からレーザ光が照射されることにより励起されて誘導放出光を発生する。この固体レーザ媒質2で発生された誘導放出光は、SHG素子4に送られる。   The solid-state laser medium 2 is a material that causes laser oscillation. For example, in a solid-state laser called a YAG laser, materials such as yttrium, aluminum, and garnet (Yttrium Aluminum Garnet) are used. The solid-state laser medium 2 is excited by being irradiated with laser light from the semiconductor laser 1 to generate stimulated emission light. The stimulated emission light generated by the solid-state laser medium 2 is sent to the SHG element 4.

SHG素子4は、第2高調波発生用結晶からなるLBO(type1)であり、固体レーザ媒質2からの基本波から第2高調波を発生する。THG素子5は、第3高調波発生用結晶からなるLBO(type2)であり、基本波およびSHG素子4で発生した第2高調波から第3高調波を発生し、出射ミラー11を通してビームスプリッタ6に導く。   The SHG element 4 is an LBO (type 1) made of a second harmonic generation crystal, and generates a second harmonic from the fundamental wave from the solid-state laser medium 2. The THG element 5 is an LBO (type 2) made of a third harmonic generation crystal, generates a third harmonic from the fundamental wave and the second harmonic generated by the SHG element 4, and passes through the output mirror 11 to the beam splitter 6. Lead to.

出射ミラー11には、基本波と第2高調波とを反射し且つ第3高調波を透過するコーティングが施されている。このコーティングの基本波反射率は、99.9%であり、約0.1%の基本波は共振器外に透過するように設計されている。   The exit mirror 11 is provided with a coating that reflects the fundamental wave and the second harmonic wave and transmits the third harmonic wave. The fundamental wave reflectance of this coating is 99.9%, and about 0.1% of the fundamental wave is designed to be transmitted outside the resonator.

ビームスプリッタ6は、共振器外に配置され、出射ミラー11からの第3高調波を透過してパルスレーザとして出力し、出射ミラー11からの基本波を反射して光検出器7に導く。   The beam splitter 6 is arranged outside the resonator, transmits the third harmonic from the output mirror 11 and outputs it as a pulse laser, reflects the fundamental wave from the output mirror 11 and guides it to the photodetector 7.

光検出器7は、フォトダイオードなどからなり、ビームスプリッタ6からの基本波のパワーを検出する。読出回路8は、光検出器7で検出された基本波のパワーを読み出して、基本波のパワーを温度調整機構10に出力する。   The photodetector 7 is composed of a photodiode or the like, and detects the power of the fundamental wave from the beam splitter 6. The reading circuit 8 reads the fundamental wave power detected by the photodetector 7 and outputs the fundamental wave power to the temperature adjustment mechanism 10.

温度調整機構10は、ペルチェ素子4a,5aによりSHG素子4及びTHG素子5の各々の温度を制御する。また、温度調整機構10は、読出回路8からの基本波のパワーに基づき基本波のパワーが所定値以下となるようにSHG素子4の温度チューニング(温度調整)を行う。   The temperature adjustment mechanism 10 controls the temperature of each of the SHG element 4 and the THG element 5 by the Peltier elements 4a and 5a. Further, the temperature adjustment mechanism 10 performs temperature tuning (temperature adjustment) of the SHG element 4 based on the fundamental wave power from the readout circuit 8 so that the fundamental wave power becomes a predetermined value or less.

また、温度調整機構10は、SHG素子4の温度チューニングを行った後に、光検出器7で検出された基本波の出力値が所定値以下となるようにTHG素子5の温度チューニングを行う。   Further, the temperature adjustment mechanism 10 performs temperature tuning of the THG element 5 so that the output value of the fundamental wave detected by the photodetector 7 is equal to or less than a predetermined value after performing temperature tuning of the SHG element 4.

次に、上記のように構成される本発明の実施例1に係る固体レーザ装置の動作を説明する。   Next, the operation of the solid-state laser device according to the first embodiment of the present invention configured as described above will be described.

まず、波長変換素子の温度は、第3高調波の出力が最大になるように予め設定されているが、環境温度や経時変化などにより波長変換素子の最適温度が変化する。このとき、SHG素子4やTHG素子5の変換効率が低下し、共振器内で波長が基本波から高調波に変換されず、残存する基本波のパワーが増加する。   First, the temperature of the wavelength conversion element is set in advance so that the output of the third harmonic is maximized. However, the optimum temperature of the wavelength conversion element changes depending on the environmental temperature, changes with time, and the like. At this time, the conversion efficiency of the SHG element 4 and the THG element 5 decreases, the wavelength is not converted from the fundamental wave to the harmonic wave in the resonator, and the power of the remaining fundamental wave increases.

共振器外に配置した光検出器7は、増加された基本波のパワーを検出し、読出回路8は、光検出器7で検出された基本波のパワーを読み出して、基本波のパワーを温度調整機構10に出力する。   The photodetector 7 arranged outside the resonator detects the increased fundamental wave power, and the readout circuit 8 reads the fundamental wave power detected by the photodetector 7 and converts the fundamental wave power to the temperature. Output to the adjustment mechanism 10.

温度調整機構10は、読出回路8からの基本波のパワーに基づき基本波のパワーが所定値以下となるようにSHG素子4の温度チューニングを行う。SHG素子4の共振器内での温度パワー特性は、図2に示すように、例えば35℃から45℃までの温度範囲が平坦特性であるが、この温度範囲外の温度では急激にパワーが低下している。   The temperature adjustment mechanism 10 performs temperature tuning of the SHG element 4 based on the fundamental wave power from the readout circuit 8 so that the fundamental wave power becomes a predetermined value or less. As shown in FIG. 2, the temperature power characteristic in the resonator of the SHG element 4 is a flat characteristic in a temperature range from 35 ° C. to 45 ° C., for example, but the power sharply decreases at a temperature outside this temperature range. doing.

経時変化によりSHG素子4の温度パワー特性が変化した場合、例えば、温度パワー特性が矢印の方向(右方向)にシフトした場合には、同じ温度例えば35℃では、パワーが低下する。このため、高調波に変換されなかった残存する基本波が共振器外に出ることから、読出回路8からの基本波のパワーを所定値以下となるようにSHG素子4の温度を上昇させる温度チューニングを行う。   When the temperature power characteristic of the SHG element 4 changes with time, for example, when the temperature power characteristic shifts in the direction of the arrow (rightward), the power decreases at the same temperature, for example, 35 ° C. For this reason, since the remaining fundamental wave that has not been converted into the harmonic wave goes out of the resonator, the temperature tuning is performed to increase the temperature of the SHG element 4 so that the fundamental wave power from the readout circuit 8 becomes a predetermined value or less. I do.

この温度チューニングにより、例えば、40℃でのSHG素子4の共振器内でのパワーが上昇し、例えば、40℃〜50℃の温度範囲を平坦特性にすることができる。従って、共振器内で波長が基本波から高調波に変換され、残存する基本波のパワーが減少して、共振器内の光学素子の損傷を防止することができる。   By this temperature tuning, for example, the power in the resonator of the SHG element 4 at 40 ° C. increases, and for example, a temperature range of 40 ° C. to 50 ° C. can be made flat. Accordingly, the wavelength is converted from the fundamental wave to the harmonic wave in the resonator, and the power of the remaining fundamental wave is reduced, so that damage to the optical element in the resonator can be prevented.

また、読出回路8からの基本波のパワーがさらに増加した場合には、温度調整機構10は、読出回路8からの基本波のパワーに基づき基本波のパワーが所定値以下となるようにTHG素子5の温度チューニングを行う。   When the fundamental wave power from the readout circuit 8 further increases, the temperature adjustment mechanism 10 causes the THG element to reduce the fundamental wave power to a predetermined value or less based on the fundamental wave power from the readout circuit 8. Perform 5 temperature tuning.

THG素子5の温度パワー特性は、図3に示すように、例えば、40℃を中心とする単峰特性であり、40℃から離れると急激にパワーが低下している。   As shown in FIG. 3, the temperature power characteristic of the THG element 5 is, for example, a single-peak characteristic centered on 40 ° C., and the power sharply decreases when moving away from 40 ° C.

経時変化によりTHG素子5の温度パワー特性が変化した場合、例えば、温度パワー特性が矢印の方向(左方向)にシフトした場合には、同じ温度例えば40℃では、パワーが低下する。このため、高調波に変換されなかった残存する基本波が共振器外に出ることから、読出回路8からの基本波のパワーを所定値以下となるようにTHG素子5の温度を上昇させる温度チューニングを行う。   When the temperature power characteristic of the THG element 5 changes with time, for example, when the temperature power characteristic shifts in the direction of the arrow (left direction), the power decreases at the same temperature, for example, 40 ° C. For this reason, since the remaining fundamental wave that has not been converted into the harmonic wave goes out of the resonator, the temperature tuning is performed to raise the temperature of the THG element 5 so that the fundamental wave power from the readout circuit 8 becomes a predetermined value or less. I do.

この温度チューニングにより、例えば、35℃でのTHG素子5の共振器内でのパワーが上昇し、例えば、35℃で単峰特性とすることができる。従って、共振器内で波長が基本波から高調波に変換され、残存する基本波のパワーが減少して、共振器内の光学素子の損傷を防止することができる。   By this temperature tuning, for example, the power in the resonator of the THG element 5 at 35 ° C. increases, and for example, a single peak characteristic can be obtained at 35 ° C. Accordingly, the wavelength is converted from the fundamental wave to the harmonic wave in the resonator, and the power of the remaining fundamental wave is reduced, so that damage to the optical element in the resonator can be prevented.

(第2の実施形態)
図4は、本発明の実施例2に係る固体レーザ装置の構成を示すブロック図である。図4に示す実施例2に係る固体レーザ装置は、図1に示す実施例1に係る固体レーザ装置に対して、さらに、光検出器7で検出された基本波の出力値に基づき半導体レーザ1の駆動電流を制御するLD駆動回路12を設けたことを特徴とする。
(Second Embodiment)
FIG. 4 is a block diagram showing the configuration of the solid-state laser apparatus according to Embodiment 2 of the present invention. The solid-state laser device according to the second embodiment shown in FIG. 4 is further different from the solid-state laser device according to the first embodiment shown in FIG. An LD driving circuit 12 for controlling the driving current is provided.

このように構成された実施例2の固体レーザ装置によれば、SHG素子4による温度チューニングを行っても、光検出器7で検出された基本波の出力値がさらに増加した場合には、LD駆動回路12は、読出回路8からの基本波のパワーが一定値を超えないように半導体レーザ1の駆動電流を減少させる。   According to the solid-state laser device of Example 2 configured in this way, even if the temperature tuning by the SHG element 4 is performed, if the output value of the fundamental wave detected by the photodetector 7 further increases, the LD The drive circuit 12 reduces the drive current of the semiconductor laser 1 so that the power of the fundamental wave from the readout circuit 8 does not exceed a certain value.

そして、SHG素子4による温度チューニングとTHG素子5による温度チューニングとを行う。SHG素子4の温度とTHG素子5の温度とが最適温度になった後に、半導体レーザ1の駆動電流を元の電流値に戻し、温度チューニングを完了する。   Then, temperature tuning by the SHG element 4 and temperature tuning by the THG element 5 are performed. After the temperature of the SHG element 4 and the temperature of the THG element 5 reach the optimum temperature, the drive current of the semiconductor laser 1 is returned to the original current value, and the temperature tuning is completed.

即ち、読出回路8からの基本波のパワーが一定値を超えないように駆動電流の値を制御しながら、SHG素子4とTHG素子5との温度チューニングを行うので、共振器内の光学素子の損傷を防止することができる。   That is, the temperature tuning of the SHG element 4 and the THG element 5 is performed while controlling the value of the drive current so that the power of the fundamental wave from the readout circuit 8 does not exceed a certain value. Damage can be prevented.

なお、本発明は前述した実施例1及び実施例2の固体レーザ装置に限定されるものではない。   In addition, this invention is not limited to the solid-state laser apparatus of Example 1 and Example 2 mentioned above.

本発明は、固体パルスレーザ装置に利用できる。   The present invention can be used for a solid-state pulse laser device.

1 半導体レーザ
2 固体レーザ媒質
3 入射ミラー
4 SHG素子
4a,5a ペルチェ素子
5 THG素子
6 ビームスプリッタ
7 光検出器
8 読出回路
9 CPU
10 温度調整機構
11 出射ミラー
12 LD駆動回路
20 共振器
100 固体レーザ装置
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Solid state laser medium 3 Incident mirror 4 SHG element 4a, 5a Peltier element 5 THG element 6 Beam splitter 7 Photodetector 8 Reading circuit 9 CPU
DESCRIPTION OF SYMBOLS 10 Temperature adjustment mechanism 11 Output mirror 12 LD drive circuit
20 Resonator 100 Solid-state laser device

Claims (3)

レーザ光を発生する半導体レーザと、
前記半導体レーザから出力されるレーザ光により励起される固体レーザ媒質と、
前記固体レーザ媒質を含む共振器内に配置され、前記共振器内で発生する基本波の第3高調波を出力するための第2高調波発生用結晶および第3高調波発生用結晶と、
前記第2高調波発生用結晶および前記第3高調波発生用結晶の各々の温度を制御する温度調整機構と、
共振器外に配置され、前記共振器外に出力される基本波を検出する光検出器とを備え、
前記温度調整機構は、前記光検出器で検出された基本波の出力値が所定値以下となるように前記第2高調波発生用結晶の温度を調整することを特徴とする固体レーザ装置。
A semiconductor laser for generating laser light;
A solid-state laser medium excited by laser light output from the semiconductor laser;
A second harmonic generation crystal and a third harmonic generation crystal disposed in a resonator including the solid-state laser medium and outputting a third harmonic of a fundamental wave generated in the resonator;
A temperature adjustment mechanism for controlling the temperature of each of the second harmonic generation crystal and the third harmonic generation crystal;
A photodetector that is disposed outside the resonator and detects a fundamental wave that is output outside the resonator;
The temperature adjustment mechanism adjusts the temperature of the second harmonic generation crystal so that an output value of a fundamental wave detected by the photodetector is not more than a predetermined value.
前記温度調整機構は、前記光検出器で検出された基本波の出力値が所定値以下となるように前記第3高調波発生用結晶の温度を調整することを特徴とする請求項1記載の固体レーザ装置。   The temperature adjusting mechanism adjusts the temperature of the third harmonic generation crystal so that an output value of a fundamental wave detected by the photodetector is equal to or lower than a predetermined value. Solid state laser device. 前記光検出器で検出された基本波の出力値が一定値を超えないように、前記半導体レーザを駆動する駆動電流の電流値を制御することを特徴とする請求項1又は請求項2記載の固体レーザ装置。   The current value of the drive current for driving the semiconductor laser is controlled so that the output value of the fundamental wave detected by the photodetector does not exceed a certain value. Solid state laser device.
JP2013164966A 2013-08-08 2013-08-08 Solid state laser equipment Active JP6273716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013164966A JP6273716B2 (en) 2013-08-08 2013-08-08 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164966A JP6273716B2 (en) 2013-08-08 2013-08-08 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2015035469A true JP2015035469A (en) 2015-02-19
JP6273716B2 JP6273716B2 (en) 2018-02-07

Family

ID=52543814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164966A Active JP6273716B2 (en) 2013-08-08 2013-08-08 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP6273716B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549295A (en) * 2016-03-14 2016-05-04 山东大学 Ultraviolet laser frequency converter with noncritical phase matching frequency doubling and three-frequency doubling performance and work method of ultraviolet laser frequency converter

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252516A (en) * 1993-02-26 1994-09-09 Asahi Glass Co Ltd Harmonic generator
JPH075506A (en) * 1992-12-24 1995-01-10 Fuji Photo Film Co Ltd Optical wavelength conversion element
JPH1070333A (en) * 1996-08-27 1998-03-10 Shimadzu Corp Wavelength converting solid-state laser equipment
JP2000503480A (en) * 1996-03-19 2000-03-21 シュミット,ニコラウス Method for reducing the amplitude noise of a solid-state laser with doubled frequency inside a resonator and arrangement for implementing this method
JP2000284333A (en) * 1999-03-29 2000-10-13 Ushio Sogo Gijutsu Kenkyusho:Kk High power third higher harmonic generating device
JP2003046173A (en) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd Laser, wavelength changing element, laser oscillator, wavelength changing device, and method for laser beam machining
JP2006330518A (en) * 2005-05-27 2006-12-07 Laserfront Technologies Inc Harmonic generator
WO2007097177A1 (en) * 2006-02-24 2007-08-30 Matsushita Electric Industrial Co., Ltd. Wavelength converter and image display
US20090290605A1 (en) * 2006-05-09 2009-11-26 Stepan Essaian Compact, Efficient and Robust Ultraviolet Solid-State Laser Sources Based on Nonlinear Frequency Conversion in Periodically Poled Materials
JP2012068352A (en) * 2010-09-22 2012-04-05 Panasonic Corp Light source device
JP2013065753A (en) * 2011-09-20 2013-04-11 Shimadzu Corp Solid-state laser device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075506A (en) * 1992-12-24 1995-01-10 Fuji Photo Film Co Ltd Optical wavelength conversion element
JPH06252516A (en) * 1993-02-26 1994-09-09 Asahi Glass Co Ltd Harmonic generator
JP2000503480A (en) * 1996-03-19 2000-03-21 シュミット,ニコラウス Method for reducing the amplitude noise of a solid-state laser with doubled frequency inside a resonator and arrangement for implementing this method
JPH1070333A (en) * 1996-08-27 1998-03-10 Shimadzu Corp Wavelength converting solid-state laser equipment
JP2000284333A (en) * 1999-03-29 2000-10-13 Ushio Sogo Gijutsu Kenkyusho:Kk High power third higher harmonic generating device
JP2003046173A (en) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd Laser, wavelength changing element, laser oscillator, wavelength changing device, and method for laser beam machining
JP2006330518A (en) * 2005-05-27 2006-12-07 Laserfront Technologies Inc Harmonic generator
WO2007097177A1 (en) * 2006-02-24 2007-08-30 Matsushita Electric Industrial Co., Ltd. Wavelength converter and image display
US20090290605A1 (en) * 2006-05-09 2009-11-26 Stepan Essaian Compact, Efficient and Robust Ultraviolet Solid-State Laser Sources Based on Nonlinear Frequency Conversion in Periodically Poled Materials
JP2012068352A (en) * 2010-09-22 2012-04-05 Panasonic Corp Light source device
JP2013065753A (en) * 2011-09-20 2013-04-11 Shimadzu Corp Solid-state laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549295A (en) * 2016-03-14 2016-05-04 山东大学 Ultraviolet laser frequency converter with noncritical phase matching frequency doubling and three-frequency doubling performance and work method of ultraviolet laser frequency converter
CN105549295B (en) * 2016-03-14 2019-01-04 山东大学 It is a kind of to have both noncritical phase matching frequency multiplication, the ultraviolet laser frequency conversion device of frequency tripling performance and its working method

Also Published As

Publication number Publication date
JP6273716B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
CA2758762C (en) Intra-cavity optical parametric oscillator
CA2731163C (en) Control of relaxation oscillations in intracavity optical parametric oscillators
JP2004342770A (en) Laser beam stabilization method, laser beam generator
JP6273716B2 (en) Solid state laser equipment
JP2008130848A (en) Laser frequency stabilizing apparatus, and laser frequency stabilizing method
JP4763337B2 (en) Semiconductor laser pumped solid-state laser device
JP6311619B2 (en) Laser module and laser device
JP2012038895A (en) Fiber laser light source and wavelength conversion laser light source using the same
US9905991B2 (en) Optically pumped semiconductor laser with mode tracking
JP2013205426A (en) Solid-state laser device
WO2020134323A1 (en) Radiation output apparatus and method
JP2000208849A (en) Semiconductor laser exciting solid-state laser device
JP4968149B2 (en) Solid state laser equipment
JP2007242974A (en) Semiconductor-laser exciting solid laser device
JP5087919B2 (en) Laser pointer using semiconductor laser pumped solid-state laser
JP5834981B2 (en) Solid state laser equipment
Lührmann et al. High-average power Nd: YVO4 regenerative amplifier seeded by a gain switched diode laser
JP2001185795A (en) Ultraviolet laser device
JP4238530B2 (en) Laser light generating apparatus and laser light generating method
JP2000357833A (en) Wavelength conversion laser device
JP2018006365A (en) Current controller and laser device
JP5875251B2 (en) Manufacturing method of semiconductor laser pumped solid-state laser device
JP2019016639A (en) Solid-state laser device
JP2001036175A (en) Laser-diode pumped solid-state laser
JPH10303491A (en) Ld-excited wavelength converting solid laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151