JP2013205426A - Solid-state laser device - Google Patents

Solid-state laser device Download PDF

Info

Publication number
JP2013205426A
JP2013205426A JP2012070618A JP2012070618A JP2013205426A JP 2013205426 A JP2013205426 A JP 2013205426A JP 2012070618 A JP2012070618 A JP 2012070618A JP 2012070618 A JP2012070618 A JP 2012070618A JP 2013205426 A JP2013205426 A JP 2013205426A
Authority
JP
Japan
Prior art keywords
temperature
output
solid
shg
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070618A
Other languages
Japanese (ja)
Inventor
Naoya Ishigaki
直也 石垣
Kimitada Tojo
公資 東條
Shingo Uno
進吾 宇野
Jiro Saikawa
次郎 齊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012070618A priority Critical patent/JP2013205426A/en
Publication of JP2013205426A publication Critical patent/JP2013205426A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state laser device capable of improving the stability of third harmonic wave output for optimal temperature change of second harmonic wave.SOLUTION: The solid-state laser device comprises: a semiconductor laser 1 generating a laser beam; a solid laser medium 2 excited by the laser beam outputted from the semiconductor laser 1; an SHG element 4 and a THG element 5 which are arranged in an optical resonator including the solid laser medium 2 and output a third harmonic wave of a fundamental wave, generated in the optical resonator; and a temperature adjustment part 9 controlling the temperatures of the SHG element 4 and the THG element 5. The lengths of the SHG element 4 and the THG element 5 are set so that a plurality of output peaks of the THG element 5 for the temperature of the SHG element 4 can be obtained.

Description

本発明は、固体レーザ装置に関し、特に、第3高調波を出力する固体レーザ装置に関する。   The present invention relates to a solid-state laser device, and more particularly to a solid-state laser device that outputs a third harmonic.

従来より、第3高調波のパルス出力のピーク強度を安定化できる固体レーザ装置が知られている(特許文献1)。この特許文献1に記載され且つ第3高調波を出力する固体レーザ装置は、第2高調波を出力する第2高調波発生用結晶素子(以下、SHG素子と称する)と、第3高調波を出力する第3高調波発生用結晶素子(以下、THG素子と称する)とを備えている。   Conventionally, a solid-state laser device capable of stabilizing the peak intensity of the third harmonic pulse output is known (Patent Document 1). The solid-state laser device described in Patent Document 1 that outputs the third harmonic includes a second harmonic generation crystal element (hereinafter referred to as an SHG element) that outputs the second harmonic, and a third harmonic. And a third harmonic generation crystal element (hereinafter referred to as a THG element) for output.

THG素子から出力される第3高調波は、基本波がSHG素子により変換された第2高調波と、SHG素子により変換されずに透過した残留基本波との和周波である。   The third harmonic output from the THG element is a sum frequency of the second harmonic obtained by converting the fundamental wave by the SHG element and the residual fundamental wave transmitted without being converted by the SHG element.

図4はSHG素子長が2mmのときのSHG素子温度に対するSHG出力と残留基本波出力の特性を示す図である。図5はSHG素子長が2mmでTHG素子長が10mmのときのSHG素子温度に対するTHG出力の特性を示す図である。図4からもわかるように、SHG素子温度に対するSHG出力と残留基本波出力を測定したとき、SHG出力が最大値になる温度のときに残留基本波出力は最小値となる。   FIG. 4 is a diagram showing the characteristics of the SHG output and the residual fundamental wave output with respect to the SHG element temperature when the SHG element length is 2 mm. FIG. 5 is a graph showing the THG output characteristics with respect to the SHG element temperature when the SHG element length is 2 mm and the THG element length is 10 mm. As can be seen from FIG. 4, when the SHG output and the residual fundamental wave output with respect to the SHG element temperature are measured, the residual fundamental wave output becomes the minimum value at the temperature at which the SHG output becomes the maximum value.

SHG素子が2mmと短い場合、THG素子で和周波混合が行われるとき、基本波が常に充分に存在しているため、THG出力特性はSHG出力特性に依存し、図4に示すSHG出力特性のピークと図5に示すTHG出力特性のピークは、ほぼ一致し、シングルピークとなる。   When the SHG element is as short as 2 mm, when the sum frequency mixing is performed with the THG element, the fundamental wave is always sufficiently present. Therefore, the THG output characteristic depends on the SHG output characteristic, and the SHG output characteristic shown in FIG. The peak and the peak of the THG output characteristic shown in FIG. 5 substantially coincide with each other and become a single peak.

特開2010−251448号公報JP 2010-251448 A

しかしながら、図5に示すように、SHG温度変化に対するTHG出力の変化率が大きいため、環境変化によりSHG最適温度が予め設定されている温度から変化した場合に、出力が大きく低下する要因となる。   However, as shown in FIG. 5, since the rate of change of the THG output with respect to the SHG temperature change is large, when the SHG optimum temperature changes from a preset temperature due to environmental changes, it becomes a factor that the output is greatly reduced.

また、連続波駆動のレーザの場合、フォトダイオードを使用した出力フィードバック機構により自動的に駆動電流を調整して、出力を安定化させる方法がある。しかし、繰り返し周波数を可変するパルス駆動レーザでは、繰り返し周波数がシングルショットから数kHz以上まで変化すると、パルスエネルギーが一定であっても平均パワーが大きく変化する。このため、フォトダイオードのダイナミックレンジが不足してしまうので、フォトダイオードによる自動出力安定化は難しい。   In the case of a continuous wave drive laser, there is a method of stabilizing the output by automatically adjusting the drive current by an output feedback mechanism using a photodiode. However, in a pulse drive laser with a variable repetition frequency, when the repetition frequency changes from a single shot to several kHz or more, the average power changes greatly even if the pulse energy is constant. For this reason, since the dynamic range of the photodiode is insufficient, automatic output stabilization by the photodiode is difficult.

本発明の課題は、第2高調波最適温度変化に対する第3高調波出力の安定性を向上できる固体レーザ装置を提供することにある。   The subject of this invention is providing the solid-state laser apparatus which can improve the stability of the 3rd harmonic output with respect to a 2nd harmonic optimal temperature change.

上記の課題を解決するために、本発明に係る固体レーザ装置は、レーザ光を発生する半導体レーザと、前記半導体レーザから出力されるレーザ光により励起される固体レーザ媒質と、前記固体レーザ媒質を含む光共振器内に配置され、前記光共振器内で発生する基本波の第3高調波を出力するための第2高調波発生用結晶および第3高調波発生用結晶と、前記第2高調波発生用結晶および前記第3高調波発生用結晶の各々の温度を制御する温度調整部とを備え、前記第2高調波発生用結晶の温度に対する前記第3高調波発生用結晶出力のピークが複数得られるように、前記第2高調波発生用結晶および前記第3高調波発生用結晶の各々の長さを設定することを特徴とする。   In order to solve the above problems, a solid-state laser device according to the present invention includes a semiconductor laser that generates laser light, a solid-state laser medium that is excited by laser light output from the semiconductor laser, and the solid-state laser medium. A second harmonic generation crystal and a third harmonic generation crystal disposed in the optical resonator for outputting the third harmonic of the fundamental wave generated in the optical resonator, and the second harmonic A temperature adjusting unit that controls the temperatures of the wave generating crystal and the third harmonic generating crystal, and the peak of the third harmonic generating crystal output with respect to the temperature of the second harmonic generating crystal is The length of each of the second harmonic generation crystal and the third harmonic generation crystal is set so as to obtain a plurality.

また、前記温度調整部は、前記第2高調波発生用結晶の温度を、前記第3高調波発生用結晶出力の複数のピーク温度の中間の温度に設定することを特徴とする。   Further, the temperature adjusting unit sets the temperature of the second harmonic generation crystal to a temperature intermediate between a plurality of peak temperatures of the third harmonic generation crystal output.

本発明に係る固体レーザ装置によれば、第2高調波発生用結晶の温度に対する第3高調波発生用結晶出力のピークが複数得られるように、第2高調波発生用結晶および第3高調波発生用結晶の各々の長さを設定したので、第2高調波最適温度変化に対する第3高調波出力の安定性を向上できる。   According to the solid-state laser device of the present invention, the second harmonic generation crystal and the third harmonic wave are obtained so that a plurality of peaks of the third harmonic generation crystal output with respect to the temperature of the second harmonic generation crystal are obtained. Since the lengths of the generating crystals are set, the stability of the third harmonic output with respect to the second harmonic optimum temperature change can be improved.

本発明の実施例1に係る固体レーザ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the solid-state laser apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る固体レーザ装置内のSHG素子長が5mmのときのSHG素子温度に対するSHG出力と残留基本波出力の特性を示す図である。It is a figure which shows the characteristic of SHG output and a residual fundamental wave output with respect to SHG element temperature in case the SHG element length in the solid-state laser apparatus which concerns on Example 1 of this invention is 5 mm. 本発明の実施例1に係る固体レーザ装置内のSHG素子長が5mmでTHG素子長が10mmのときのSHG素子温度に対するTHG出力の特性を示す図である。It is a figure which shows the characteristic of the THG output with respect to SHG element temperature when the SHG element length in the solid-state laser apparatus which concerns on Example 1 of this invention is 5 mm, and a THG element length is 10 mm. 従来の固体レーザ装置内のSHG素子長が2mmのときのSHG素子温度に対するSHG出力と残留基本波出力の特性を示す図である。It is a figure which shows the characteristic of SHG output and a residual fundamental wave output with respect to SHG element temperature when the SHG element length in the conventional solid-state laser apparatus is 2 mm. 従来の固体レーザ装置内のSHG素子長が2mmでTHG素子長が10mmのときのSHG素子温度に対するTHG出力の特性を示す図である。It is a figure which shows the characteristic of the THG output with respect to SHG element temperature when the SHG element length in the conventional solid-state laser apparatus is 2 mm and the THG element length is 10 mm.

以下、本発明の固体レーザ装置の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the solid-state laser device of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る固体レーザ装置の構成を示すブロック図である。この固体レーザ装置は、半導体レーザ1、固体レーザ媒質2、2つのミラー3、SHG素子4、THG素子5、ビームスプリッタ6、光検出器7、読み出し回路8、温度調整部9、温度調整部9を有するCPU(中央処理装置)10を備えている。   FIG. 1 is a block diagram showing a configuration of a solid-state laser apparatus according to Embodiment 1 of the present invention. This solid-state laser device includes a semiconductor laser 1, a solid-state laser medium 2, two mirrors 3, an SHG element 4, a THG element 5, a beam splitter 6, a photodetector 7, a readout circuit 8, a temperature adjustment unit 9, and a temperature adjustment unit 9. CPU (Central Processing Unit) 10 having

なお、固体レーザ媒質2、2つのミラー3、SHG素子4、THG素子5から構成される部分を共振器20と呼ぶ。   A portion composed of the solid-state laser medium 2, the two mirrors 3, the SHG element 4, and the THG element 5 is called a resonator 20.

半導体レーザ1は、例えばレーザダイオードによって構成されており、レーザ光を発生する。半導体レーザ1で発生されたレーザ光は、一方のミラー3を透過して固体レーザ媒質2に照射される。   The semiconductor laser 1 is constituted by a laser diode, for example, and generates laser light. Laser light generated by the semiconductor laser 1 passes through one mirror 3 and is irradiated onto the solid-state laser medium 2.

固体レーザ媒質2は、レーザ発振の元となる物質であり、例えば、YAGレーザと呼ばれる固体レーザにおいては、イットリウム、アルミニウムおよびガーネット(Yttrium Aluminum Garnet)などといった物質が用いられる。この固体レーザ媒質2は、半導体レーザ1からレーザ光が照射されることにより誘導放出光を発生する。この固体レーザ媒質2で発生された誘導放出光は、SHG素子子4に送られる。   The solid-state laser medium 2 is a material that causes laser oscillation. For example, in a solid-state laser called a YAG laser, materials such as yttrium, aluminum, and garnet (Yttrium Aluminum Garnet) are used. The solid-state laser medium 2 generates stimulated emission light when irradiated with laser light from the semiconductor laser 1. The stimulated emission light generated by the solid-state laser medium 2 is sent to the SHG element 4.

SHG素子4は、LBO(type1)であり、固体レーザ媒質2からの基本波から第2高調波を発生する。THG素子5は、LBO(type2)であり、基本波およびSHG素子4で発生した第2高調波から第3高調波を発生し、他方のミラー3を通してビームスプリッタ6に導く。   The SHG element 4 is LBO (type 1), and generates a second harmonic from the fundamental wave from the solid-state laser medium 2. The THG element 5 is LBO (type 2), generates a third harmonic from the fundamental wave and the second harmonic generated by the SHG element 4, and guides it to the beam splitter 6 through the other mirror 3.

ビームスプリッタ6は、基本波および第2高調波を透過してパルスレーザとして出力し、第3高調波を反射して光検出器7に導く。光検出器7は、ビームスプリッタ6からの第3高調波を検出する。読み出し回路8は、光検出器7で検出された第3高調波を読み出して、第3高調波のパルスエネルギー又はパワーを温度調整部9に出力する。   The beam splitter 6 transmits the fundamental wave and the second harmonic and outputs it as a pulse laser, reflects the third harmonic and guides it to the photodetector 7. The photodetector 7 detects the third harmonic from the beam splitter 6. The readout circuit 8 reads out the third harmonic detected by the photodetector 7 and outputs the pulse energy or power of the third harmonic to the temperature adjustment unit 9.

温度調整部9は、SHG素子4及びTHG素子5の各々の温度を制御する。   The temperature adjustment unit 9 controls the temperature of each of the SHG element 4 and the THG element 5.

また、温度調整部9は、読み出し回路8からの第3高調波のパルスエネルギー又はパワーに基づきSHG素子4の温度をTHG出力の2つのピークの中間の温度に設定する。 Further, the temperature adjustment unit 9 sets the temperature of the SHG element 4 to a temperature intermediate between the two peaks of the THG output based on the pulse energy or power of the third harmonic from the readout circuit 8.

次に、上記のように構成される本発明の実施例1に係る固体レーザ装置の動作を説明する。   Next, the operation of the solid-state laser device according to the first embodiment of the present invention configured as described above will be described.

図2は、本発明の実施例1に係る固体レーザ装置内のSHG素子長が5mmのときのSHG素子温度に対するSHG出力と残留基本波出力の特性を示す図である。図3は、本発明の実施例1に係る固体レーザ装置内のSHG素子長が5mmでTHG素子長が10mmのときのSHG素子温度に対するTHG出力の特性を示す図である。   FIG. 2 is a diagram showing the characteristics of the SHG output and the residual fundamental wave output with respect to the SHG element temperature when the SHG element length in the solid-state laser apparatus according to Example 1 of the present invention is 5 mm. FIG. 3 is a graph showing the THG output characteristics with respect to the SHG element temperature when the SHG element length is 5 mm and the THG element length is 10 mm in the solid-state laser device according to the first embodiment of the present invention.

図2に示すように、SHG素子4を5mmと長くすると、基本波からSHGへの変換効率が向上し、SHG出力が増加するとともに、変換されずにSHG素子を透過する残留基本波出力は減少する。このとき、SHG出力がピークになる温度付近では和周波混合に充分な基本波が残っておらず、THG出力は残留基本波出力に依存する。   As shown in FIG. 2, when the SHG element 4 is lengthened to 5 mm, the conversion efficiency from the fundamental wave to the SHG is improved, the SHG output is increased, and the residual fundamental wave output that is transmitted through the SHG element without being reduced is decreased. To do. At this time, the fundamental wave sufficient for sum frequency mixing does not remain near the temperature at which the SHG output reaches a peak, and the THG output depends on the residual fundamental wave output.

図3に示すように、SHG温度に対するTHG出力特性のピークは、SHG出力のピーク温度から外れた温度に依存する。この温度は、SHG出力に対する残留基本波出力が充分に存在する温度であり、図3に示すように、SHG出力のピーク温度の両側に2箇所存在する。THG出力のピークは、30℃と38℃の2箇所存在する。   As shown in FIG. 3, the peak of the THG output characteristic with respect to the SHG temperature depends on the temperature deviating from the peak temperature of the SHG output. This temperature is a temperature at which the residual fundamental wave output is sufficiently present with respect to the SHG output, and there are two locations on both sides of the peak temperature of the SHG output as shown in FIG. There are two THG output peaks at 30 ° C. and 38 ° C.

この場合、SHG素子温度をTHG出力の2つのピーク温度の一方に設定するのではなく、温度調整部9により、SHG素子4の制御温度をTHG素子5の2つのピークの中間の温度である34℃に設定する。   In this case, the SHG element temperature is not set to one of the two peak temperatures of the THG output, but the temperature adjustment unit 9 sets the control temperature of the SHG element 4 to an intermediate temperature between the two peaks of the THG element 5. Set to ° C.

これにより、THG出力の最大値に対する一定値以上の値(例えば80%)が得られるSHG素子温度の許容範囲は、2つのピークの一方に設定した場合やSHG素子長が短くTHG出力特性がシングルピークの場合よりも広がる。従ってSHG最適温度変化に対するTHG出力の安定性を向上できる。即ち、温度変化に対する出力変動が小さく抑制され、安定性が向上する。   As a result, the allowable range of the SHG element temperature at which a value greater than a certain value (for example, 80%) with respect to the maximum value of the THG output is obtained is set to one of the two peaks, or the SHG element length is short and the THG output characteristics are single. More than the peak case. Therefore, the stability of the THG output with respect to the SHG optimum temperature change can be improved. That is, the output fluctuation with respect to the temperature change is suppressed to be small, and the stability is improved.

図5に示す従来例では、SHG温度を33℃に設定したとき、100μJ以上が得られる温度範囲は±3℃である。これに対して、図3に示す実施例1では、SHG温度を34℃に設定したとき、100μJ以上が得られる温度範囲は±5℃である。従って、自動出力安定機能を使用しなくても環境温度変化に対する安定性を向上させることができる。   In the conventional example shown in FIG. 5, when the SHG temperature is set to 33 ° C., the temperature range in which 100 μJ or more is obtained is ± 3 ° C. On the other hand, in Example 1 shown in FIG. 3, when the SHG temperature is set to 34 ° C., the temperature range in which 100 μJ or more is obtained is ± 5 ° C. Therefore, the stability against environmental temperature changes can be improved without using the automatic output stabilization function.

なお、本発明は前述した実施例1の固体レーザ装置に限定されるものではない。実施例1では、図3に示すように、THG出力のピークが2つであったが、THG出力のピークが3つ以上ある場合には、SHG素子4の制御温度を、3つ以上のピークの中間の温度に設定しても良い。   In addition, this invention is not limited to the solid-state laser apparatus of Example 1 mentioned above. In Example 1, there are two THG output peaks as shown in FIG. 3, but when there are three or more THG output peaks, the control temperature of the SHG element 4 is set to three or more peaks. The temperature may be set to an intermediate temperature.

また、実施例1では、SHG素子4の長さを5mmとしたが、SHG素子4の長さは5mmに限定されるものではなく、SHG素子4の温度に対するTHG素子5の出力のピークが複数得られるように、SHG素子4およびTHG素子5の各々の長さを設定すれば良い。   In the first embodiment, the length of the SHG element 4 is 5 mm. However, the length of the SHG element 4 is not limited to 5 mm, and there are a plurality of output peaks of the THG element 5 with respect to the temperature of the SHG element 4. What is necessary is just to set each length of the SHG element 4 and the THG element 5 so that it may be obtained.

本発明は、固体パルスレーザ装置に利用できる。   The present invention can be used for a solid-state pulse laser device.

1 半導体レーザ
2 固体レーザ媒質
3 ミラー
4 SHG素子
5 THG素子
6 ビームスプリッタ
7 光検出器
8 読み出し回路
9 温度調整部
10 CPU
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Solid-state laser medium 3 Mirror 4 SHG element 5 THG element 6 Beam splitter 7 Photo detector 8 Reading circuit 9 Temperature adjustment part 10 CPU

Claims (2)

レーザ光を発生する半導体レーザと、
前記半導体レーザから出力されるレーザ光により励起される固体レーザ媒質と、
前記固体レーザ媒質を含む光共振器内に配置され、前記光共振器内で発生する基本波の第3高調波を出力するための第2高調波発生用結晶および第3高調波発生用結晶と、
前記第2高調波発生用結晶および前記第3高調波発生用結晶の各々の温度を制御する温度調整部とを備え、
前記第2高調波発生用結晶の温度に対する前記第3高調波発生用結晶出力のピークが複数得られるように、前記第2高調波発生用結晶および前記第3高調波発生用結晶の各々の長さを設定することを特徴とする固体レーザ装置。
A semiconductor laser for generating laser light;
A solid-state laser medium excited by laser light output from the semiconductor laser;
A second harmonic generation crystal and a third harmonic generation crystal disposed in an optical resonator including the solid-state laser medium and outputting a third harmonic of a fundamental wave generated in the optical resonator; ,
A temperature adjustment unit for controlling the temperature of each of the second harmonic generation crystal and the third harmonic generation crystal;
Each length of the second harmonic generation crystal and the third harmonic generation crystal is such that a plurality of peaks of the third harmonic generation crystal output with respect to the temperature of the second harmonic generation crystal are obtained. A solid-state laser device characterized by setting the thickness.
前記温度調整部は、前記第2高調波発生用結晶の温度を、前記第3高調波発生用結晶出力の複数のピーク温度の中間の温度に設定することを特徴とする請求項1記載の固体レーザ装置。   2. The solid according to claim 1, wherein the temperature adjusting unit sets the temperature of the second harmonic generation crystal to a temperature intermediate between a plurality of peak temperatures of the third harmonic generation crystal output. Laser device.
JP2012070618A 2012-03-27 2012-03-27 Solid-state laser device Pending JP2013205426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070618A JP2013205426A (en) 2012-03-27 2012-03-27 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070618A JP2013205426A (en) 2012-03-27 2012-03-27 Solid-state laser device

Publications (1)

Publication Number Publication Date
JP2013205426A true JP2013205426A (en) 2013-10-07

Family

ID=49524616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070618A Pending JP2013205426A (en) 2012-03-27 2012-03-27 Solid-state laser device

Country Status (1)

Country Link
JP (1) JP2013205426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190068635A (en) 2017-05-17 2019-06-18 미쓰비시덴키 가부시키가이샤 Wavelength converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150999A (en) * 1998-11-18 2000-05-30 Mitsubishi Electric Corp Wavelength-converting laser device and laser beam machining device
JP2006330518A (en) * 2005-05-27 2006-12-07 Laserfront Technologies Inc Harmonic generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150999A (en) * 1998-11-18 2000-05-30 Mitsubishi Electric Corp Wavelength-converting laser device and laser beam machining device
JP2006330518A (en) * 2005-05-27 2006-12-07 Laserfront Technologies Inc Harmonic generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190068635A (en) 2017-05-17 2019-06-18 미쓰비시덴키 가부시키가이샤 Wavelength converter
TWI675247B (en) * 2017-05-17 2019-10-21 日商三菱電機股份有限公司 Wavelength conversion device

Similar Documents

Publication Publication Date Title
US6693927B1 (en) Method and apparatus for oscillator start-up control for mode-locked laser
JP4891526B2 (en) Laser welding equipment
JP2007086101A (en) Deep ultraviolet laser device
JP2011128330A (en) Laser device
JP2009253068A (en) Laser oscillating device and laser processing device
JP2006330518A (en) Harmonic generator
JP5895543B2 (en) Pulse laser equipment
JP2013205426A (en) Solid-state laser device
JP6273716B2 (en) Solid state laser equipment
TWI675247B (en) Wavelength conversion device
JP2008130848A (en) Laser frequency stabilizing apparatus, and laser frequency stabilizing method
JP2012038895A (en) Fiber laser light source and wavelength conversion laser light source using the same
US10256599B2 (en) Laser light-source apparatus and laser pulse light generating method
JP2013201328A (en) Fiber amplification device, method of adjusting spectral band width thereof, laser processing system equipped with fiber amplification device, and method of reducing optical loss thereof
Evangelatos et al. Actively Q-switched multisegmented Nd: YAG laser pumped at 885 nm for remote sensing
Lührmann et al. High-average power Nd: YVO4 regenerative amplifier seeded by a gain switched diode laser
JP5834981B2 (en) Solid state laser equipment
Lu et al. Highly efficient single longitudinal mode-pulsed green laser
JP6862106B2 (en) Current control device and laser device
JP2018056146A (en) Laser light source device and laser pulse light generation method
JP2008070472A (en) Higher harmonic laser device and control method thereof
CN109066281A (en) Controllable passive Q-adjusted ultraviolet laser
JP4238530B2 (en) Laser light generating apparatus and laser light generating method
JP2014225542A (en) Solid-state pulse laser device
US20230344190A1 (en) Intracavity frequency conversion in solid-state laser resonator with end-pumping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602