JP2015035324A - Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery - Google Patents

Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery Download PDF

Info

Publication number
JP2015035324A
JP2015035324A JP2013165443A JP2013165443A JP2015035324A JP 2015035324 A JP2015035324 A JP 2015035324A JP 2013165443 A JP2013165443 A JP 2013165443A JP 2013165443 A JP2013165443 A JP 2013165443A JP 2015035324 A JP2015035324 A JP 2015035324A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
active material
nonaqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013165443A
Other languages
Japanese (ja)
Inventor
英行 山村
Hideyuki Yamamura
英行 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013165443A priority Critical patent/JP2015035324A/en
Publication of JP2015035324A publication Critical patent/JP2015035324A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide negative electrode active material capable of realizing a nonaqueous secondary battery having an excellent capacity maintenance rate.SOLUTION: A negative electrode mixture for a nonaqueous secondary battery comprises lithium-containing layer shape chrome oxide LiCrOor natrium-containing layer shape chrome oxide NaCrOas negative electrode active material.

Description

本発明は、リチウム又はナトリウム含有層状クロム酸化物を負極活物質として含む非水二次電池用の負極合剤及び当該負極合剤からなる層を含む負極層を含む非水二次電池に関する。   The present invention relates to a negative electrode mixture for a non-aqueous secondary battery including lithium or sodium-containing layered chromium oxide as a negative electrode active material, and a non-aqueous secondary battery including a negative electrode layer including a layer made of the negative electrode mixture.

近年、高電圧および高エネルギー密度を有するリチウム二次電池用の電極活物質について、電池の性能の更なる向上のために種々の研究が行われている。例えば、LiFeOやLiCoOなどのリチウム含有層状金属酸化物は、正極材料として広く研究されているが、負極活物質として使用することについての報告はほとんどない。特許文献1には、コンバージョン反応により充放電を行う二次電池用の負極活物質が開示されており、例えばFeなどの金属化合物にリチウムを含有させてなる負極活物質(例えばLiFeOなど)についてコンバージョン反応を行って、初期充放電効率を向上させることが記載されている。しかし、特許文献1に記載されているようなLiFeOやLiCoOなどのリチウム含有層状金属酸化物は、Li基準に対して0.01VまでLiを挿入し脱離することで大きな容量を得ることができるが、コンバージョン反応による形態変化と、膨張収縮による体積変化が大きいため、充放電サイクルを繰り返すと負極にクラックが発生して電子伝導パスが途切れてしまうため、充放電サイクル特性が乏しく、容量維持率が低いという課題がある。 In recent years, various studies have been conducted on electrode active materials for lithium secondary batteries having high voltage and high energy density in order to further improve battery performance. For example, lithium-containing layered metal oxides such as LiFeO 2 and LiCoO 2 have been widely studied as positive electrode materials, but there are few reports on their use as negative electrode active materials. Patent Document 1 discloses a negative electrode active material for a secondary battery that charges and discharges by a conversion reaction. For example, a negative electrode active material (for example, LiFeO 2) obtained by adding lithium to a metal compound such as Fe 2 O 3. Etc.) to improve the initial charge and discharge efficiency by performing a conversion reaction. However, lithium-containing layered metal oxides such as LiFeO 2 and LiCoO 2 described in Patent Document 1 obtain a large capacity by inserting and detaching Li up to 0.01 V with respect to the Li standard. However, because of the large change in morphology due to the conversion reaction and the volume change due to expansion and contraction, repeated charge / discharge cycles will cause cracks in the negative electrode and break the electron conduction path, resulting in poor charge / discharge cycle characteristics and capacity. There is a problem that the maintenance rate is low.

特開2012−028264号公報JP 2012-028264 A

従って、本発明は、優れた容量維持率を有する非水二次電池をもたらすことが可能な負極活物質を提供することを目的とする。   Therefore, an object of the present invention is to provide a negative electrode active material capable of providing a non-aqueous secondary battery having an excellent capacity retention rate.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、リチウム含有層状クロム酸化物LiCrO又はナトリウム含有層状クロム酸化物NaCrOは、負極活物質として使用された場合に、Li基準に対して0.01VまでLiを挿入してもコンバージョン反応を起こさず、繰り返し充放電しても初期の形態を維持することができることを見出し、本発明を完成するに至った。本発明の負極活物質は、コンバージョン反応を起こさないために、充放電サイクルを繰り返したとしても、充放電サイクル特性の低下を抑制することができる。 As a result of intensive studies to solve the above problems, the present inventor has found that lithium-containing layered chromium oxide LiCrO 2 or sodium-containing layered chromium oxide NaCrO 2 is based on Li standards when used as a negative electrode active material. On the other hand, even if Li was inserted up to 0.01 V, no conversion reaction was caused, and it was found that the initial form could be maintained even after repeated charge and discharge, and the present invention was completed. Since the negative electrode active material of the present invention does not cause a conversion reaction, even if the charge / discharge cycle is repeated, a decrease in charge / discharge cycle characteristics can be suppressed.

本発明によれば、リチウム含有層状クロム酸化物LiCrO又はナトリウム含有層状クロム酸化物NaCrOを負極活物質として含む非水二次電池用の負極合剤が提供される。 According to the present invention, there is provided a negative electrode mixture for a non-aqueous secondary battery containing lithium-containing layered chromium oxide LiCrO 2 or sodium-containing layered chromium oxide NaCrO 2 as a negative electrode active material.

さらに、本発明によれば、正極層と、負極層と、正極層と負極層の間に配置されたセパレータと、非水電解質とを含み、負極層が、負極集電体上に上記負極合剤からなる層を有するものである、非水二次電池が提供される。   Furthermore, according to the present invention, the negative electrode layer includes a positive electrode layer, a negative electrode layer, a separator disposed between the positive electrode layer and the negative electrode layer, and the nonaqueous electrolyte. A non-aqueous secondary battery having a layer made of an agent is provided.

本発明の負極活物質を使用して得られる非水二次電池は、充放電を繰り返しても優れた容量維持率を有する。   The non-aqueous secondary battery obtained by using the negative electrode active material of the present invention has an excellent capacity maintenance rate even after repeated charge and discharge.

図1(a)、(b)及び(c)は、それぞれ、50回の充放電サイクルの前後のLiCrO、NaCrO及びLiCoOのXRDスペクトルを示す。1 (a), (b) and (c) show XRD spectra of LiCrO 2 , NaCrO 2 and LiCoO 2 before and after 50 charge / discharge cycles, respectively.

本発明において、リチウム含有層状クロム酸化物LiCrO(以下、「LiCrO」と略記する)及びナトリウム含有層状クロム酸化物NaCrO(以下、「NaCrO」と略記する)は、公知の方法により製造することができる。LiCrO及びNaCrOは、それぞれ、例えば、硝酸クロム(III)と硝酸リチウム又は硝酸ナトリウムをモル比1:1でpH2以下の低pHに調整されたグリコール酸水溶液中で室温〜150℃の温度で撹拌しながら、溶媒を蒸発させることによりゲルを生成させ、得られたゲルを不活性雰囲気(例えばアルゴン、窒素ガスなど)下で300〜500℃の温度で3〜12時間仮焼成を行い、次に不活性雰囲気下で650〜1000℃の温度で3〜24時間本焼成を行うことにより得ることができる。仮焼成時間は、硝酸を除去できる時間であればよい。あるいは、LiCrO及びNaCrOは、市販されているものを使用できる。 In the present invention, lithium-containing layered chromium oxide LiCrO 2 (hereinafter abbreviated as “LiCrO 2 ”) and sodium-containing layered chromium oxide NaCrO 2 (hereinafter abbreviated as “NaCrO 2 ”) are produced by a known method. can do. LiCrO 2 and NaCrO 2 are, for example, chromium glycol (III) and lithium nitrate or sodium nitrate at a temperature of room temperature to 150 ° C. in a glycolic acid aqueous solution adjusted to a low pH of 2 or less at a molar ratio of 1: 1. While stirring, the solvent is evaporated to produce a gel, and the obtained gel is calcined at a temperature of 300 to 500 ° C. for 3 to 12 hours under an inert atmosphere (for example, argon or nitrogen gas). Can be obtained by performing the main baking at a temperature of 650 to 1000 ° C. for 3 to 24 hours in an inert atmosphere. The calcination time may be a time that allows removal of nitric acid. Alternatively, commercially available LiCrO 2 and NaCrO 2 can be used.

本発明の負極合剤は、LiCrO又はNaCrOの他に、必要に応じて、非水二次電池用負極合剤の構成成分として当該技術分野で知られている任意成分、例えば、導電剤(例えば黒鉛、カーボンブラック(アセチレンブラック、ケッチェンブラックなど)、カーボンナノチューブ、カーボンナノファイバー、フラーレンなどのうちの1種又は2種以上)、バインダー(例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などのフッ素系バインダー、及び、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などのゴム系バインダーなど、カルボキシメチルセルロース、ポリアミック酸、ポリイミド、ポリアミドイミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウムのうちの1種又は2種以上)などを含んでもよい。負極合剤中の総固形分に占める各成分の割合は、LiCrO又はNaCrO(負極活物質)が60質量%以上98.5質量%以下、バインダーが1質量%以上20質量%以下、導電剤が0.5質量%以上30質量%以下であることが好適である。本発明の上記負極合剤の層を負極集電体の片面に形成することにより負極層を得ることができる。 In addition to LiCrO 2 or NaCrO 2 , the negative electrode mixture of the present invention may be an optional component known in the art as a constituent component of the negative electrode mixture for non-aqueous secondary batteries, for example, a conductive agent. (Eg, graphite, carbon black (acetylene black, ketjen black, etc.), carbon nanotube, carbon nanofiber, fullerene, etc.), binder (eg, polyvinylidene fluoride (PVDF), polytetrafluoroethylene, etc.) (PTFE) and other fluorine-based binders, and styrene-butadiene rubber (SBR) and rubber-based binders such as butadiene rubber (BR), such as carboxymethyl cellulose, polyamic acid, polyimide, polyamideimide, polyacrylic acid, lithium polyacrylate, Polyacrylic acid sodium One or more of the beam) and the like. The proportion of each component in the total solid content in the negative electrode mixture is such that LiCrO 2 or NaCrO 2 (negative electrode active material) is 60% by mass to 98.5% by mass, the binder is 1% by mass to 20% by mass, and the conductivity. The agent is preferably 0.5% by mass or more and 30% by mass or less. A negative electrode layer can be obtained by forming the negative electrode mixture layer of the present invention on one surface of a negative electrode current collector.

前記負極活物質としてのLiCrO又はNaCrOの割合が60質量%を下回ると、十分な放電容量を得ることが難しくなる場合があり、98.5質量%を超えると、バインダーの割合が低下するため、集電体への密着性が低下し、負極活物質が脱離しやすくなる場合があり且つ導電性の低下により出力が得られない場合がある。バインダーの割合が1質量%を下回ると、結着性が低下するため集電体から負極活物質や導電剤としての炭素材料等が脱離しやすくなる場合があり、20質量%を超えると、負極活物質および導電剤としての炭素材料の割合が低下するため、電池性能の低下をもたらす可能性がある。導電剤の割合が0.5質量%を下回ると、十分な導電性を得ることが難しくなる場合があり、30質量%を超えると、電池性能に大きく関与する負極活物質の割合が低下するため、放電容量が低下する等の問題が発生する場合がある。 When the ratio of LiCrO 2 or NaCrO 2 as the negative electrode active material is less than 60% by mass, it may be difficult to obtain a sufficient discharge capacity, and when it exceeds 98.5% by mass, the ratio of the binder is decreased. Therefore, the adhesion to the current collector is reduced, the negative electrode active material may be easily detached, and the output may not be obtained due to the decrease in conductivity. When the ratio of the binder is less than 1% by mass, the binding property is reduced, and thus the negative electrode active material and the carbon material as the conductive agent may be easily detached from the current collector. Since the ratio of the carbon material as the active material and the conductive agent is lowered, there is a possibility that the battery performance is lowered. If the proportion of the conductive agent is less than 0.5% by mass, it may be difficult to obtain sufficient conductivity, and if it exceeds 30% by mass, the proportion of the negative electrode active material that greatly contributes to battery performance decreases. In some cases, the discharge capacity may be reduced.

本発明の負極活物質を含む負極層は、当該技術分野で負極層を得る方法として知られている方法を使用して得ることができ、特に限定されず、例えば、塗布法(メタルマスク印刷法、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン法など)、圧粉法(圧着法、ペレット法など)などの方法により得ることができる。例えば、LiCrO又はNaCrOと、導電剤、バインダーなどの任意成分と、さらに溶剤を含むペーストを調製し、得られたペーストを箔状の負極集電体上に塗布した後、乾燥し、プレスして、負極集電体上に負極合剤層を形成する方法、あるいは、LiCrO又はNaCrOと、導電剤、バインダーなどの任意成分を含む負極合剤をプレス成形して予備成形体を形成し、得られた予備成形体の片面に、蒸着、スパッタリング又は積層などの適用法により集電体材料を適用する方法により負極層を得ることができる。このようにして得られた負極層を、電池の他の構成部材、例えば正極層、セパレータ及び非水電解質と組み合わせて非水二次電池を構成することができる。負極集電体は、例えば、圧延金属箔、電解金属箔、又は金属メッシュであることができるが、ただし、Li基準電位で3.0V以下でLiと合金化反応を起こさない金属に限られる。 The negative electrode layer containing the negative electrode active material of the present invention can be obtained using a method known as a method for obtaining a negative electrode layer in the technical field, and is not particularly limited. For example, a coating method (metal mask printing method) , Electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen method, etc.), and compacting method (crimping method, pellet method, etc.). . For example, a paste containing LiCrO 2 or NaCrO 2 , an optional component such as a conductive agent and a binder, and a solvent is prepared, and the obtained paste is applied onto a foil-like negative electrode current collector, dried, and pressed. Then, a negative electrode mixture layer is formed on the negative electrode current collector, or a negative mixture containing LiCrO 2 or NaCrO 2 and optional components such as a conductive agent and a binder is press-molded to form a preform. Then, the negative electrode layer can be obtained by applying a current collector material to one surface of the obtained preform by an application method such as vapor deposition, sputtering, or lamination. The negative electrode layer thus obtained can be combined with other constituent members of the battery, for example, a positive electrode layer, a separator, and a nonaqueous electrolyte to constitute a nonaqueous secondary battery. The negative electrode current collector can be, for example, a rolled metal foil, an electrolytic metal foil, or a metal mesh, but is limited to a metal that does not cause an alloying reaction with Li at a Li reference potential of 3.0 V or less.

正極層は、正極集電体の少なくとも1つの表面に正極材の層を形成することにより得ることができる。正極材は、正極活物質(例えば、リチウムと遷移金属とを含む複合酸化物、リチウム硫化物、リチウムを含む層間化合物、リチウムリン酸化合物などのリチウム含有活物質の他、Liの脱離及び挿入が電気化学的に可能な物質)と、必要に応じて、非水二次電池用正極材の構成成分として当該技術分野で知られている任意成分、例えば、導電剤(例えば黒鉛、カーボンブラック(アセチレンブラック、ケッチェンブラックなど)、カーボンナノチューブ、カーボンナノファイバー、フラーレンなどのうちの1種又は2種以上)、バインダー(例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などのフッ素系バインダー、及び、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などのゴム系バインダー、カルボキシメチルセルロース、ポリアクリル酸、ポリイミド、ポリアミック酸、ポリアミドイミドなどのうちの1種又は2種以上)などを含んでもよい。正極集電体は、例えば、アルミニウム、ニッケル、チタン又はステンレスなどの金属材料によって構成される。正極層は、負極層を得る方法として先に記載した方法に従って得ることができ、特に限定されず、例えば、塗布法(メタルマスク印刷法、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン法など)、圧粉法(圧着法、ペレット法など)などの方法により得ることができる。正極活物質と、導電剤、バインダーなどの任意成分と、さらに溶剤を含むペーストを調製し、得られたペーストを箔状の正極集電体(例えば、銅、金)上に塗布した後、乾燥し、プレスして、正極集電体上に正極材層を形成する方法、あるいは、正極活物質と、導電剤、バインダーなどの任意成分を含む正極材をプレス成形して予備成形体を形成し、得られた予備成形体の片面に、蒸着、スパッタリング、積層などの適用法によりフィルム状、箔状の集電体材料を適用する方法により正極層を得ることができる。   The positive electrode layer can be obtained by forming a positive electrode material layer on at least one surface of the positive electrode current collector. The positive electrode material is a positive electrode active material (for example, a lithium-containing active material such as a composite oxide containing lithium and a transition metal, a lithium sulfide, an intercalation compound containing lithium, and a lithium phosphate compound, as well as desorption and insertion of Li And an optional component known in the art as a constituent of the positive electrode material for a non-aqueous secondary battery, for example, a conductive agent (for example, graphite, carbon black ( Acetylene black, ketjen black, etc.), carbon nanotubes, carbon nanofibers, fullerenes, etc.), binders (eg, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), etc.) Binders and rubber-based bars such as styrene butadiene rubber (SBR) and butadiene rubber (BR) Nda, carboxymethylcellulose, polyacrylic acid, polyimide, polyamic acid, one or more of a polyamide-imide) and the like. The positive electrode current collector is made of a metal material such as aluminum, nickel, titanium, or stainless steel. The positive electrode layer can be obtained according to the method described above as a method for obtaining the negative electrode layer, and is not particularly limited. For example, a coating method (metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll) (Coating method, doctor blade method, gravure coating method, screen method, etc.) and compacting method (pressure bonding method, pellet method, etc.). A paste containing a positive electrode active material, an optional component such as a conductive agent and a binder, and a solvent is prepared, and the obtained paste is applied onto a foil-like positive electrode current collector (eg, copper, gold) and then dried. Press to form a positive electrode material layer on the positive electrode current collector, or press form a positive electrode material containing a positive electrode active material, a conductive agent, a binder and other optional components to form a preform. The positive electrode layer can be obtained by applying a film-like or foil-like current collector material to one surface of the obtained preform by an application method such as vapor deposition, sputtering, or lamination.

セパレータは、当該技術分野においてセパレータとして機能することができる多孔質膜であれば特に限定されない。セパレータを構成する材料の例としては、有機材料、例えば、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン製の多孔質膜、及び無機材料、例えばセラミック製の多孔質膜が挙げられる。多孔質膜は、1種以上の有機又は無機材料で構成されたものであることができ、有機材料と無機材料から構成された複合膜であってもよい。複合膜を構成する膜の数や材質に特に制限はない。特に、多層構造、例えばPP/PE/PPの3層構造のポリオレフィン製の多孔質膜が好適に使用される。   A separator will not be specifically limited if it is a porous film | membrane which can function as a separator in the said technical field. Examples of the material constituting the separator include an organic material such as a porous membrane made of polyolefin such as polypropylene (PP) and polyethylene (PE), and an inorganic material such as a porous membrane made of ceramic. The porous film may be composed of one or more organic or inorganic materials, and may be a composite film composed of an organic material and an inorganic material. There are no particular restrictions on the number or material of the membranes that make up the composite membrane. Particularly, a porous film made of polyolefin having a multilayer structure, for example, a three-layer structure of PP / PE / PP is preferably used.

本発明において、電解質は、リチウムイオン伝導性であり、電解質の例としては、非水溶媒中に溶解されて電解液を構成するリチウム塩電解質、ポリマー電解質、固体電解質が挙げられる。電解液を構成する非水溶媒としては、非プロトン性極性有機溶媒が望ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの高誘電率、高粘度の環状カーボネート化合物と、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの低粘度の鎖状カーボネート化合物が好ましい。リチウム塩電解質の例としては、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(CSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)、塩化リチウム(LiCl)、臭化リチウム(LiBr)などが挙げられる。電解液中のリチウム塩の濃度は、好ましくは0.3〜5Mであり、より好ましくは1〜3Mであり、さらに好ましくは1〜2.5Mであり、特に好ましくは0.8〜1.5Mである。リチウム塩濃度が3Mを超えると、電解液の粘度が過度に高くなり、ハイレートでの放電容量や低温での放電容量が低下する。一方、リチウム塩の濃度が1M未満であると、リチウムイオンの消費に対して供給が追従できなくなり、ハイレートでの放電容量や低温での放電容量が低下する。 In the present invention, the electrolyte is lithium ion conductive, and examples of the electrolyte include a lithium salt electrolyte, a polymer electrolyte, and a solid electrolyte that are dissolved in a non-aqueous solvent to constitute an electrolytic solution. The non-aqueous solvent constituting the electrolytic solution is preferably an aprotic polar organic solvent. For example, a high-dielectric constant, high-viscosity cyclic carbonate compound such as ethylene carbonate (EC) or propylene carbonate (PC), and dimethyl carbonate ( Low viscosity chain carbonate compounds such as DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) are preferred. Examples of lithium salt electrolytes include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), Bis (pentafluoroethanesulfonyl) imide lithium (LiN (C 2 F 5 SO 2 ) 2 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ), lithium chloride (LiCl), lithium bromide (LiBr) and the like. The concentration of the lithium salt in the electrolytic solution is preferably 0.3 to 5M, more preferably 1 to 3M, still more preferably 1 to 2.5M, and particularly preferably 0.8 to 1.5M. It is. When the lithium salt concentration exceeds 3M, the viscosity of the electrolytic solution becomes excessively high, and the discharge capacity at a high rate and the discharge capacity at a low temperature are reduced. On the other hand, when the concentration of the lithium salt is less than 1M, the supply cannot follow the consumption of lithium ions, and the discharge capacity at a high rate and the discharge capacity at a low temperature are reduced.

本発明の負極合剤を使用して得られる非水二次電池は、上述した構成部材の他に、正極集電体及び負極集電体に接続された正極端子及び負極端子などを有することができる。負極層及び正極層の構造は、負極層と正極層とがセパレータと電解質を介して対向していれば、平板状の正極および負極が交互に積層された積層型構造や、帯状の正極および負極とが重ねられロール状に巻き取られて形成され捲回型構造、いずれの構造をしていてもよいこれらの構成部材の種類及び形状は、非水二次電池の用途に応じて適宜選択することができる。非水二次電池の形状としては、コイン型、円筒型、角型などが挙げられるがこれらに限定されない。   The nonaqueous secondary battery obtained by using the negative electrode mixture of the present invention may have a positive electrode current collector, a positive electrode terminal connected to the negative electrode current collector, a negative electrode terminal, and the like in addition to the above-described constituent members. it can. The structure of the negative electrode layer and the positive electrode layer is such that a negative electrode layer and a positive electrode layer are opposed to each other through a separator and an electrolyte, and a laminated structure in which flat positive electrodes and negative electrodes are alternately stacked, or a strip-shaped positive electrode and negative electrode The type and shape of these constituent members that may have any structure, which are formed by being rolled up and rolled up, are appropriately selected according to the use of the nonaqueous secondary battery. be able to. Examples of the shape of the non-aqueous secondary battery include, but are not limited to, a coin shape, a cylindrical shape, and a square shape.

以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されない。   The present invention will be described in more detail with reference to the following examples and comparative examples, but the scope of the present invention is not limited by these examples.

<実施例1>
(i)LiCrO負極活物質の合成
硝酸でpHを2以下に制御した160mlの超純水中に16gのグリコール酸を溶解させることにより得られた溶媒中に、12.0045g(0.0300モル)の硝酸クロム(III)及び2.0685gの硝酸リチウム(0.0300モル)を加えた(硝酸クロム(III)と硝酸リチウムのモル比1:1)。得られた溶液を80℃で撹拌しながら溶媒を蒸発させることによって、ゲル状析出物が生成した。ゲル状析出物を回収し、不活性雰囲気(Nガス)下、350℃で24時間仮焼成を行い、次に、不活性雰囲気下、950℃で48時間本焼成を行い、LiCrOを得た。
(ii)負極層(作用極)の作製
上記のとおり得られたLiCrO、ポリフッ化ビニリデン((株)クレハ製)及びアセチレンブラック(電気化学工業(株)製)を質量比85:10:5で混合し、N−メチル−2−ピロリドン(和光純薬品工業(株))中に分散させ、負極合剤スラリーを得た。次に、得られたスラリーをドクターブレード法により負極集電体としての圧延銅箔(厚さ15μm)上に塗布し、直径16mmの円形に打ち抜き、乾燥、圧延し、負極層を得た。
(iii)正極層(対極)の作製
箔状の金属リチウム(本城金属(株)製、厚さ25μm)を、ローラーにより平滑化し、次に、直径19mmの円形に打ち抜いて対極を得た。
(iv)電解液の調製
エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を3:4:3の体積比で含む混合溶媒に、電解質としてリチウム塩LiPFをモル濃度1Mで溶解させることに電解液を得た。
(v)セパレータ
ポリプロピレン(PP)からなる厚さ25μmの多孔質膜をセパレータとして使用した。
(vi)集電体
厚さ15μmの圧延銅箔を集電体として使用した。
(vii)電池の作製
上記の電池構成部材を2032型(直径20mm、厚さ3.2mm)のコインセルに組み込むことにより2032型コイン電池を作製した。
<Example 1>
(I) Synthesis of LiCrO 2 negative electrode active material In a solvent obtained by dissolving 16 g of glycolic acid in 160 ml of ultrapure water whose pH was controlled to 2 or less with nitric acid, 12.0045 g (0.0300 mol) was obtained. ) And 2.0685 g of lithium nitrate (0.0300 mol) were added (molar ratio of chromium (III) nitrate to lithium nitrate 1: 1). While the obtained solution was stirred at 80 ° C., the solvent was evaporated to form a gel-like precipitate. The gel-like precipitate was collected and pre-baked at 350 ° C. for 24 hours under an inert atmosphere (N 2 gas). Next, main baking was performed at 950 ° C. for 48 hours under an inert atmosphere to obtain LiCrO 2 . It was.
(Ii) Production of negative electrode layer (working electrode) LiCrO 2 obtained as described above, polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) in a mass ratio of 85: 10: 5 And dispersed in N-methyl-2-pyrrolidone (Wako Pure Chemical Industries, Ltd.) to obtain a negative electrode mixture slurry. Next, the obtained slurry was applied onto a rolled copper foil (thickness: 15 μm) as a negative electrode current collector by a doctor blade method, punched into a circle having a diameter of 16 mm, dried and rolled to obtain a negative electrode layer.
(Iii) Production of positive electrode layer (counter electrode) Foil-like lithium metal (Honjo Metal Co., Ltd., thickness 25 μm) was smoothed by a roller, and then punched into a circle having a diameter of 19 mm to obtain a counter electrode.
(Iv) Preparation of Electrolytic Solution In a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3, a lithium salt LiPF 6 as an electrolyte has a molar concentration of 1M. An electrolytic solution was obtained by dissolving in
(V) Separator A porous film made of polypropylene (PP) and having a thickness of 25 μm was used as a separator.
(Vi) Current collector A rolled copper foil having a thickness of 15 μm was used as a current collector.
(Vii) Production of Battery A 2032 type coin battery was produced by incorporating the above battery constituent members into a 2032 type (diameter 20 mm, thickness 3.2 mm) coin cell.

<実施例2>
硝酸リチウムの代わりに硝酸ナトリウム(2.5497g、0.0300モル)を使用してNaCrOを合成し、NaCrOを負極活物質として使用したことを除いて、実施例1と同様に電池を作製した。
<Example 2>
Sodium nitrate instead of lithium nitrate (2.5497g, 0.0300 mole) were synthesized NaCrO 2 using, except using the NaCrO 2 as the negative electrode active material, produce a battery in the same manner as in Example 1 did.

<比較例1>
負極活物質としてLiCoOを使用したことを除いて、実施例1と同様に電池を作製した。なお、LiCoOは、硝酸リチウムと硝酸コバルトを用いたゾルゲル法により得た。
<Comparative Example 1>
A battery was fabricated in the same manner as in Example 1 except that LiCoO 2 was used as the negative electrode active material. LiCoO 2 was obtained by a sol-gel method using lithium nitrate and cobalt nitrate.

評価方法
<X線回折(XRD)法>
(1)充放電前のXRD測定
実施例1及び2並びに比較例1で使用した負極活物質(すなわち、それぞれ、LiCrO、NaCrO及びLiCoO)であって、負極層の作製のために使用する前の粉末状の負極活物質を、XRD法により分析し、XRDスペクトルを得た。分析に使用したX線回折装置は、(株)リガク製のX線回折装置Ultima IVであり、2θ測定範囲は10°〜50°であり、スキャン速度は毎分10°であり、使用X線波長はCuΚα線であり、回折ピークの同定には(株)リガク製ソフトウェアPDXLを使用した。
(2)充放電後のXRD測定
下記の「電気化学特性評価」で50回の充放電サイクルにかけられた後の実施例1及び2並びに比較例1のコイン電池をアルゴンボックス内で解体し、ジメチルカーボネート(DMC)で洗浄後、負極合剤層を剥離し、サンプルを採取して大気を遮断する大気非暴露セルに入れ、大気非暴露条件下で、負極合剤層を上記の「(1)充放電前のXRD測定」に記載したのと同じ測定装置及び条件を使用してXRD法により分析し、XRDスペクトルを得た。回折ピークの同定には(株)リガク製ソフトウェアPDXLを使用した。
(3)XRD測定による評価結果
充放電前及び50回の充放電サイクルにかけられた後の実施例1及び2並びに比較例1の負極活物質(すなわち、それぞれ、LiCrO、NaCrO及びLiCoO)のXRDスペクトルを図1(a)〜(c)に示す。充放電前のXRDスペクトルと充放電サイクル後のXRDスペクトルを比較して、充放電前のXRDスペクトルに存在する鋭いピークに対応するピークが充放電サイクル後のXRDスペクトルにも存在する場合に、充放電サイクルの間にコンバージョン反応が起こらなかったと判定し、充放電前のXRDスペクトルに存在する鋭いピークに対応するピークが充放電サイクル後のXRDスペクトルに観察されない場合には充放電サイクルの間にコンバージョン反応が起こったと判定した。図1(a)〜(c)のXRDスペクトルから、実施例1及び2では、充放電前のXRDスペクトルに存在する鋭いピークに対応するピークが50回の充放電サイクル後のXRDスペクトルに存在するため、充放電サイクルの間のコンバージョン反応が起こらなかったと判定した。これに対し、比較例1については、充放電前のXRDスペクトルに存在する鋭いピークに対応するピークは50回の充放電サイクル後のXRDスペクトルに認められず、幅の広いピークが出現した。比較例1については、結晶質から非晶質に構造が非可逆的に変化するほどまで、充放電サイクルの間にコンバージョン反応が進行したと考えられる。
Evaluation method <X-ray diffraction (XRD) method>
(1) XRD measurement before charge / discharge The negative electrode active materials used in Examples 1 and 2 and Comparative Example 1 (that is, LiCrO 2 , NaCrO 2, and LiCoO 2 , respectively), and used for the production of the negative electrode layer The powdered negative electrode active material before the analysis was analyzed by the XRD method to obtain an XRD spectrum. The X-ray diffractometer used for the analysis was an X-ray diffractometer Ultima IV manufactured by Rigaku Corporation. The 2θ measurement range was 10 ° to 50 °, the scan speed was 10 ° per minute, and the X-ray used The wavelength was CuΚα rays, and software PDXL manufactured by Rigaku Corporation was used for identification of diffraction peaks.
(2) XRD measurement after charge / discharge The coin batteries of Examples 1 and 2 and Comparative Example 1 after being subjected to 50 charge / discharge cycles in the following “electrochemical property evaluation” were disassembled in an argon box, and dimethyl After washing with carbonate (DMC), the negative electrode mixture layer is peeled off, a sample is taken and placed in an air non-exposed cell that shuts off the atmosphere, and the negative electrode mixture layer is placed under the above-mentioned “(1) Using the same measuring apparatus and conditions as described in “XRD measurement before charge and discharge”, analysis was performed by the XRD method to obtain an XRD spectrum. For identification of diffraction peaks, software PDXL manufactured by Rigaku Corporation was used.
(3) Evaluation result by XRD measurement The negative electrode active materials of Examples 1 and 2 and Comparative Example 1 before charging and discharging and after being subjected to 50 charging / discharging cycles (that is, LiCrO 2 , NaCrO 2 and LiCoO 2 , respectively) XRD spectra of are shown in FIGS. When the XRD spectrum before charging / discharging is compared with the XRD spectrum after charging / discharging cycle, the peak corresponding to the sharp peak existing in the XRD spectrum before charging / discharging also exists in the XRD spectrum after charging / discharging cycle. When it is determined that no conversion reaction has occurred during the discharge cycle, and a peak corresponding to a sharp peak in the XRD spectrum before charge / discharge is not observed in the XRD spectrum after the charge / discharge cycle, conversion is performed during the charge / discharge cycle. It was determined that a reaction occurred. From the XRD spectra of FIGS. 1A to 1C, in Examples 1 and 2, a peak corresponding to a sharp peak existing in the XRD spectrum before charge / discharge is present in the XRD spectrum after 50 charge / discharge cycles. Therefore, it was determined that no conversion reaction occurred during the charge / discharge cycle. On the other hand, in Comparative Example 1, a peak corresponding to a sharp peak existing in the XRD spectrum before charge / discharge was not recognized in the XRD spectrum after 50 charge / discharge cycles, and a broad peak appeared. About the comparative example 1, it is thought that the conversion reaction advanced during the charging / discharging cycle until the structure irreversibly changed from crystalline to amorphous.

<電気化学特性評価>
(1)評価方法:
各例で作製したコイン電池を、温度25℃、カットオフ電位0.01〜1.5V(vs.Li/Li)、0.1C(1Cは1時間で満充電できる電流値)で充放電サイクルを50回繰り返し、初回の充放電サイクルの放電容量を初回放電容量として求め、50回の充放電サイクル後の放電容量を求めた。下記式(1)に従って、初回放電容量に対する50回の充放電サイクル後の放電容量を容量維持率(%)として求めた。
容量維持率(%)=100×(50サイクル後の放電容量)/(初回放電容量)・・・式(1)
(2)電気化学特性評価結果
実施例1及び2並びに比較例1の初回放電容量と容量維持率を下記表1に示す。
<Electrochemical characteristics evaluation>
(1) Evaluation method:
The coin battery produced in each example was charged and discharged at a temperature of 25 ° C., a cutoff potential of 0.01 to 1.5 V (vs. Li / Li + ), and 0.1 C (1 C is a current value that can be fully charged in 1 hour) The cycle was repeated 50 times, the discharge capacity of the first charge / discharge cycle was determined as the initial discharge capacity, and the discharge capacity after 50 charge / discharge cycles was determined. According to the following formula (1), the discharge capacity after 50 charge / discharge cycles with respect to the initial discharge capacity was determined as the capacity retention rate (%).
Capacity retention rate (%) = 100 x (discharge capacity after 50 cycles) / (initial discharge capacity) ... Formula (1)
(2) Results of electrochemical property evaluation The initial discharge capacities and capacity retention rates of Examples 1 and 2 and Comparative Example 1 are shown in Table 1 below.

Figure 2015035324
Figure 2015035324

実施例1及び2と比較例1の初回放電容量は同じ値であったが、実施例1の容量維持率は90.2%であり、実施例2の容量維持率は89.3%であり、比較例1の容量維持率は12.3%であった。実施例1及び2は、比較例1と比べてかなり高い容量維持率を示したことが分かる。   The initial discharge capacities of Examples 1 and 2 and Comparative Example 1 were the same value, but the capacity maintenance rate of Example 1 was 90.2%, and the capacity maintenance rate of Example 2 was 89.3%. The capacity retention rate of Comparative Example 1 was 12.3%. It can be seen that Examples 1 and 2 showed a considerably higher capacity retention rate than Comparative Example 1.

Claims (2)

リチウム含有層状クロム酸化物LiCrO又はナトリウム含有層状クロム酸化物NaCrOを負極活物質として含む非水二次電池用の負極合剤。 A negative electrode mixture for a non-aqueous secondary battery comprising lithium-containing layered chromium oxide LiCrO 2 or sodium-containing layered chromium oxide NaCrO 2 as a negative electrode active material. 正極層と、負極層と、前記正極層と負極層の間に配置されたセパレータと、非水電解質とを含み、前記負極層が、負極集電体上に請求項1に記載の負極合剤からなる層を有するものである、非水二次電池。   2. The negative electrode mixture according to claim 1, comprising: a positive electrode layer; a negative electrode layer; a separator disposed between the positive electrode layer and the negative electrode layer; and a nonaqueous electrolyte, wherein the negative electrode layer is disposed on the negative electrode current collector. A non-aqueous secondary battery having a layer comprising:
JP2013165443A 2013-08-08 2013-08-08 Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery Pending JP2015035324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165443A JP2015035324A (en) 2013-08-08 2013-08-08 Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165443A JP2015035324A (en) 2013-08-08 2013-08-08 Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2015035324A true JP2015035324A (en) 2015-02-19

Family

ID=52543719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165443A Pending JP2015035324A (en) 2013-08-08 2013-08-08 Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2015035324A (en)

Similar Documents

Publication Publication Date Title
EP3208870B1 (en) Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
KR101444189B1 (en) Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same
JP5348170B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP6361599B2 (en) Power storage device
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
US20200020936A1 (en) Battery
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JPWO2017082083A1 (en) Lithium ion secondary battery and manufacturing method thereof
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP2012174546A (en) Nonaqueous electrolyte secondary battery
JP2018026497A (en) Manufacturing method of power storage device and pre-doping method of power storage device
WO2014091687A1 (en) Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
JP2016031852A (en) Nonaqueous electrolyte secondary battery
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
JP2015198007A (en) Electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2017526145A (en) Anode materials for lithium-ion batteries
JP2012156087A (en) Nonaqueous electrolyte secondary battery
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JP5758731B2 (en) Nonaqueous electrolyte secondary battery
JP6652814B2 (en) Lithium battery and method of manufacturing the same
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2015035324A (en) Negative electrode mixture for nonaqueous secondary battery and nonaqueous secondary battery