JP6652814B2 - Lithium battery and method of manufacturing the same - Google Patents

Lithium battery and method of manufacturing the same Download PDF

Info

Publication number
JP6652814B2
JP6652814B2 JP2015218237A JP2015218237A JP6652814B2 JP 6652814 B2 JP6652814 B2 JP 6652814B2 JP 2015218237 A JP2015218237 A JP 2015218237A JP 2015218237 A JP2015218237 A JP 2015218237A JP 6652814 B2 JP6652814 B2 JP 6652814B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium battery
negative electrode
carbonate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015218237A
Other languages
Japanese (ja)
Other versions
JP2017091715A (en
Inventor
広規 近藤
広規 近藤
勇一 伊藤
勇一 伊藤
滋博 川内
滋博 川内
由佳 小澤
由佳 小澤
武志 阿部
武志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2015218237A priority Critical patent/JP6652814B2/en
Publication of JP2017091715A publication Critical patent/JP2017091715A/en
Application granted granted Critical
Publication of JP6652814B2 publication Critical patent/JP6652814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム電池及びその製造方法に関する。   The present invention relates to a lithium battery and a method for manufacturing the same.

従来、リチウム電池用正極活物質として、LiNi0.5Mn1.54などのNi−Mnスピネルが提案されている(非特許文献1参照)。Ni−Mnスピネルは約4.6〜4.8V(vs. Li+/Li)でLi+を挿入脱離することができるため、黒鉛負極と組み合わせた場合には平均電圧約4.6Vの電池を構成することができる。しかしながら、Ni−Mnスピネルを用いたリチウム電池は正極電位が高いため、従来のリチウム電池用の電解液溶媒であるエチレンカーボネートなどを用いると、正極で酸化分解され、耐久性が悪いことがあった。そこで、耐酸性の高いフッ素置換溶媒を用いることが提案されている(非特許文献2参照)。 Hitherto, Ni—Mn spinels such as LiNi 0.5 Mn 1.5 O 4 have been proposed as a positive electrode active material for lithium batteries (see Non-Patent Document 1). Since the Ni-Mn spinel can insert and desorb Li + at about 4.6 to 4.8 V (vs. Li + / Li), a battery with an average voltage of about 4.6 V when combined with a graphite negative electrode Can be configured. However, a lithium battery using Ni-Mn spinel has a high positive electrode potential. Therefore, when a conventional lithium battery electrolyte solvent, such as ethylene carbonate, is used, oxidative decomposition occurs at the positive electrode and durability may be poor. . Therefore, it has been proposed to use a fluorine-substituted solvent having high acid resistance (see Non-Patent Document 2).

また、リチウム電池に関するものではないが、LiF、LiCl、LiBr、LiI、CF3COOLi及びC25COOLiなどのリチウム塩を含む1,2−ジメトキシエタン溶媒中に、フッ素化アリール基やフッ素化アルキルを備えたボレート化合物を加えることが検討されている(非特許文献3参照)。こうすることで、リチウム塩の解離度を高めることができ、溶液のイオン伝導率を高めることができるとしている。 Although not related to a lithium battery, a fluorinated aryl group or a fluorinated aryl group is contained in a 1,2-dimethoxyethane solvent containing a lithium salt such as LiF, LiCl, LiBr, LiI, CF 3 COOLi, and C 2 F 5 COOLi. It has been studied to add a borate compound having an alkyl (see Non-Patent Document 3). By doing so, the degree of dissociation of the lithium salt can be increased, and the ionic conductivity of the solution can be increased.

Q. Zhong et al., J. Electrochem. Soc., 144, 1, (1997)205-213.Q. Zhong et al., J. Electrochem. Soc., 144, 1, (1997) 205-213. Z. Zhang et al., Energy Environ. Sci., 2013, 6, 1806-1810.Z. Zhang et al., Energy Environ. Sci., 2013, 6, 1806-1810. H. S. Lee et al., J. Electrochem. Soc., 145, 8, (1998)2813-2818.H. S. Lee et al., J. Electrochem. Soc., 145, 8, (1998) 2813-2818.

しかしながら、非特許文献2のリチウム電池では、フッ素置換溶媒を用いることにより高い耐久性を示すとされているものの、電池内でのガス発生の抑制が十分でないことがあり、電池内でのガス発生をより抑制することが望まれていた。非特許文献3では、ボレート化合物の添加によるリチウム塩の解離度向上や溶液のイオン伝導率向上について検討されているだけだった。   However, although the lithium battery of Non-Patent Document 2 is said to exhibit high durability by using a fluorine-substituted solvent, gas generation in the battery may not be sufficiently suppressed, and gas generation in the battery may not be sufficient. It has been desired to further suppress. Non-Patent Document 3 merely examines the improvement of the dissociation degree of a lithium salt and the improvement of the ionic conductivity of a solution by adding a borate compound.

本発明はこのような課題を解決するためになされたものであり、リチウム電池内でのガス発生をより抑制することを主目的とする。   The present invention has been made to solve such a problem, and has as its main object to further suppress gas generation in a lithium battery.

上述した目的を達成するために、本発明者らは鋭意研究した。そして、Li挿入脱離電位が4.4V以上(vs. Li+/Li)の正極活物質を備えたリチウム電池において、カーボネート系溶媒と、支持塩と、所定のボレート化合物を所定量含む電解液を用いると、リチウム電池内でのガス発生をより抑制できることを見出し、本発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors have intensively studied. In a lithium battery provided with a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more (vs. Li + / Li), an electrolytic solution containing a carbonate-based solvent, a supporting salt, and a predetermined amount of a predetermined borate compound It has been found that the use of is able to further suppress the generation of gas in the lithium battery, and the present invention has been completed.

即ち、本発明のリチウム電池は、
Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含む正極と、
負極活物質を含む負極と、
前記正極と前記負極との間に介在し、カーボネート系溶媒と、支持塩と、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物と、を含み、前記ボレート化合物が0.01mol/L以上0.4mol/L以下の範囲で含まれる電解液と、
を備えたものである。
That is, the lithium battery of the present invention is:
A positive electrode including a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more based on lithium;
A negative electrode containing a negative electrode active material;
Interposed between the positive electrode and the negative electrode, a carbonate-based solvent, a supporting salt, and a borate compound having a structure in which three hydrogens of orthoboric acid are substituted with a fluorinated alkyl group, including the borate compound. An electrolyte contained in a range of 0.01 mol / L or more and 0.4 mol / L or less;
It is provided with.

本発明のリチウム電池の製造方法は、
Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含む正極と、負極活物質を含む負極と、の間に、カーボネート系溶媒と、支持塩と、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物と、を含み、前記ボレート化合物が0.01mol/L以上0.4mol/L以下の範囲で含まれる電解液を注入するものである。
The method for producing a lithium battery of the present invention comprises:
Between a positive electrode containing a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more based on lithium and a negative electrode containing a negative electrode active material, a carbonate-based solvent, a supporting salt, and three hydrogens of orthoboric acid are formed. A borate compound having a structure substituted with a fluorinated alkyl group, and the electrolyte solution containing the borate compound in a range of 0.01 mol / L or more and 0.4 mol / L or less is injected.

このリチウム電池及びその製造方法では、リチウム電池内でのガス発生をより抑制できる。こうした効果が得られる理由は、以下のように推察される。例えば、ルイス塩基であるボレート化合物が、孤立電子対を有するカーボネート系溶媒と相互作用することによって、Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含む正極を用いた場合でも、正極上でのカーボネート系溶媒の酸化分解を抑制できると考えられる。カーボネート系溶媒の酸化分解によって生じるH+は負極に移動して水素ガスを発生させることがあるが、カーボネート系溶媒の酸化分解を抑制することにより、結果として、リチウム電池内でのガス発生を抑制できると考えられる。 According to the lithium battery and the method for manufacturing the same, gas generation in the lithium battery can be further suppressed. The reason why these effects can be obtained is presumed as follows. For example, even when a borate compound that is a Lewis base interacts with a carbonate-based solvent having a lone electron pair, even when a positive electrode containing a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more on a lithium basis is used. It is considered that the oxidative decomposition of the carbonate-based solvent on the positive electrode can be suppressed. H + generated by the oxidative decomposition of the carbonate-based solvent may move to the negative electrode and generate hydrogen gas. However, by suppressing the oxidative decomposition of the carbonate-based solvent, gas generation in the lithium battery is suppressed as a result. It is considered possible.

リチウム電池10の一例を示す模式図。FIG. 2 is a schematic diagram illustrating an example of a lithium battery 10.

本発明のリチウム電池は、正極と、負極と、正極と負極との間に介在し、リチウムイオンを伝導する電解液と、を備えている。   The lithium battery of the present invention includes a positive electrode, a negative electrode, and an electrolytic solution interposed between the positive electrode and the negative electrode and conducting lithium ions.

本発明のリチウム電池の正極は、Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含有している。正極活物質としては、スピネル型リチウムニッケルマンガン酸化物、オリビン型リチウムリン酸コバルト、オリビン型リチウムリン酸ニッケルなどが挙げられる。スピネル型リチウムニッケルマンガン酸化物としては、例えば、LiaNibMncMede(MeはMn,Ni以外の遷移金属元素、Al及びアルカリ土類金属から選ばれる少なくとも1種の元素であり、a〜eは0.9≦a≦1.2、0.45≦b≦0.55、1.45≦c≦1.55、0≦d≦5.00、3.8≦e≦4.2)などが挙げられる。Meとしての遷移金属は、例えば、V,Ti,Cr,Fe,Co,Cu等とすることができる。オリビン型リチウムリン酸コバルトとしてはLiCoPO4などが挙げられ、オリビン型リチウムリン酸ニッケルとしてはLiNiPO4などが挙げられる。正極活物質としては、上述したもののうち、スピネル型リチウムニッケルマンガン酸化物が好ましく、LiNi0.5Mn1.54がより好ましい。なお、本発明において、各化学式で示した物質は、化学量論組成のものに限定されず、一部の元素が、過剰であったり、欠損していたり、他の元素で置換されていてもよい。 The positive electrode of the lithium battery of the present invention contains a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more based on lithium. Examples of the positive electrode active material include spinel-type lithium nickel manganese oxide, olivine-type lithium cobalt phosphate, olivine-type lithium nickel phosphate, and the like. The spinel type lithium-nickel-manganese oxide, for example, Li a Ni b Mn c Me d O e (Me is Mn, a transition metal element other than Ni, is at least one element selected from Al and alkaline earth metal , A to e are 0.9 ≦ a ≦ 1.2, 0.45 ≦ b ≦ 0.55, 1.45 ≦ c ≦ 1.55, 0 ≦ d ≦ 5.00, 3.8 ≦ e ≦ 4 .2) and the like. The transition metal as Me can be, for example, V, Ti, Cr, Fe, Co, Cu, or the like. The olivine-type lithium phosphate cobalt is like LiCoPO 4, and the like LiNiPO 4 as olivine-type lithium nickel phosphate. As the positive electrode active material, among those described above, a spinel type lithium nickel manganese oxide is preferable, and LiNi 0.5 Mn 1.5 O 4 is more preferable. Note that, in the present invention, the substance represented by each chemical formula is not limited to those having a stoichiometric composition, and some of the elements may be excessive, defective, or replaced with another element. Good.

この正極は、正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   This positive electrode is prepared by mixing a positive electrode active material, a conductive material, and a binder, adding an appropriate solvent to form a paste-like positive electrode material, coating and drying the surface of the current collector, and, if necessary, It may be formed by compression to increase the density. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale graphite, flake graphite) or artificial graphite, acetylene black, carbon black, Ketjen black, carbon whiskers, needle coke, carbon fiber, and one or a mixture of two or more of metals (copper, nickel, aluminum, silver, gold, and the like) can be used. Among these, carbon black and acetylene black are preferable as the conductive material from the viewpoints of electron conductivity and coatability. The binder plays a role of binding the active material particles and the conductive material particles. For example, a binder resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a fluorine-containing resin such as fluororubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. Further, an aqueous dispersion of a cellulose-based or styrene-butadiene rubber (SBR) as an aqueous binder can also be used. Examples of the solvent in which the positive electrode active material, the conductive material, and the binder are dispersed include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylene triamine, N, N-dimethylaminopropylamine And organic solvents such as ethylene oxide and tetrahydrofuran. Further, a dispersant, a thickener, and the like may be added to water, and the active material may be slurried with a latex such as SBR. As the thickener, for example, polysaccharides such as carboxymethylcellulose and methylcellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as an applicator roll, screen coating, a doctor blade method, spin coating, and a bar coater, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., and aluminum and copper for the purpose of improving adhesion, conductivity and oxidation resistance. The surface of which has been treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foam, and a formed body of a fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム電池の負極は、負極活物質を含有している。負極活物質としては、リチウム、リチウム合金のほか、リチウムイオンを吸蔵・放出可能な炭素質材料、シリコン、シリコン化合物、スズ、スズ化合物、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。炭素質材料としては、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり支持塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。複合酸化物としては、例えば、リチウムチタン複合酸化物(例えばLiTi24)やリチウムバナジウム複合酸化物(例えばLiV25)などが挙げられる。負極活物質としては、このうち、炭素質材料や、シリコン、スズ、リチウムチタン複合酸化物などが好ましい。 The negative electrode of the lithium battery of the present invention contains a negative electrode active material. Examples of negative electrode active materials include lithium, lithium alloys, carbonaceous materials capable of absorbing and releasing lithium ions, silicon, silicon compounds, tin, tin compounds, composite oxides containing multiple elements, and conductive polymers. Can be Examples of the carbonaceous material include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. As a carbonaceous material, graphite such as artificial graphite and natural graphite has an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and self-discharges when a lithium salt is used as a supporting salt. This is preferable because the irreversible capacity during charging can be reduced and the irreversible capacity during charging can be reduced. Examples of the composite oxide include a lithium titanium composite oxide (eg, LiTi 2 O 4 ) and a lithium vanadium composite oxide (eg, LiV 2 O 5 ). As the negative electrode active material, a carbonaceous material, silicon, tin, lithium titanium composite oxide and the like are preferable.

この負極は、例えば、負極活物質と集電体とを密着させて形成してもよいし、負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   The negative electrode may be formed, for example, by adhering a negative electrode active material and a current collector, or by mixing a negative electrode active material, a conductive material, and a binder, adding an appropriate solvent, and then forming a paste-like negative electrode. The material may be coated on the surface of the current collector and dried, and may be compressed and formed as necessary to increase the electrode density. As the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The current collector of the negative electrode includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as adhesiveness, conductivity and reduction resistance improvement. For the purpose, for example, one obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver, or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウム電池の電解液は、カーボネート系溶媒と、支持塩と、ボレート化合物と、を含む。   The electrolytic solution of the lithium battery of the present invention contains a carbonate-based solvent, a supporting salt, and a borate compound.

カーボネート系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネートなどが挙げられる。また、カーボネート系溶媒は、上述した各カーボネート系溶媒において少なくとも1つの水素原子がフッ素原子で置換されたものとしてもよい。カーボネート系溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。カーボネート系溶媒は、環状カーボネートと鎖状カーボネートの両方を含むことが好ましい。また、カーボネート系溶媒は、少なくとも1つの水素原子がフッ素原子で置換されたフッ素化カーボネートを含むことが好ましい。フッ素化カーボネートを含むものでは、リチウム電池の耐久性をより高めることができると考えられる。カーボネート系溶媒は、エチレンカーボネートのうち少なくとも1つの水素原子がフッ素原子で置換されたフッ素化エチレンカーボネートや、エチルメチルカーボネートのうち少なくとも1つの水素原子がフッ素原子で置換されたフッ素化エチルメチルカーボネートがより好ましい。   Examples of the carbonate-based solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t-butyl carbonate, and dicarbonate. Chain carbonates such as -i-propyl carbonate and t-butyl-i-propyl carbonate; Further, the carbonate-based solvent may be one in which at least one hydrogen atom in each of the above-described carbonate-based solvents is substituted with a fluorine atom. As the carbonate-based solvent, one type may be used alone, or two or more types may be used in combination. The carbonate-based solvent preferably contains both a cyclic carbonate and a chain carbonate. Further, the carbonate-based solvent preferably contains a fluorinated carbonate in which at least one hydrogen atom has been replaced with a fluorine atom. It is thought that the one containing fluorinated carbonate can further improve the durability of the lithium battery. The carbonate-based solvent includes fluorinated ethylene carbonate in which at least one hydrogen atom of ethylene carbonate is substituted with a fluorine atom, and fluorinated ethyl methyl carbonate in which at least one hydrogen atom of ethyl methyl carbonate is substituted with a fluorine atom. More preferred.

支持塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiN(FSO22、LiN(CF3SO22、LiC(CF3SO23、LiSiF6、LiAlF4、LiSCN、LiCl、LiF、LiBr、LiI、LiAlCl4などのリチウム塩が挙げられる。このうち、LiPF6や、LiFSI(上述したLiN(FSO22)などが好ましい。支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。 As the supporting salt, for example, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiN (FSO 2) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3 , lithium salts such as LiSiF 6 , LiAlF 4 , LiSCN, LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among them, LiPF 6 and LiFSI (the above-described LiN (FSO 2 ) 2 ) are preferable. The concentration of the supporting salt in the electrolytic solution is preferably 0.1 mol / L or more and 5 mol / L or less, more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 5 mol / L or less, the electrolyte can be further stabilized.

ボレート化合物は、オルトホウ酸(B(OH)3)の3つの水素が、フッ素化アルキル基で置換された構造を有している。フッ素化アルキル基は、アルキル基の有する水素のうちの1つ以上がフッ素で置換された構造であればよく、一部の水素がフッ素で置換された構造でもよいし、全ての水素がフッ素で置換された構造でもよい。フッ素化アルキル基は、少なくとも、アルキル基の末端の炭素に結合する水素のうちの1つ以上がフッ素で置換された構造であることがより好ましい。アルキル基は、直鎖でもよいし分岐鎖を有していてもよく、炭素数は1〜9であることが好ましい。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基などが挙げられる。また、これらのアルキル基は置換基を有していてもよい。このボレート化合物は、下記式(1)で表されるものとしてもよい。 The borate compound has a structure in which three hydrogens of orthoboric acid (B (OH) 3 ) are substituted with a fluorinated alkyl group. The fluorinated alkyl group may have a structure in which one or more of hydrogens included in the alkyl group is substituted with fluorine, may have a structure in which some hydrogens are substituted with fluorine, or may have a structure in which all hydrogens are substituted with fluorine. A substituted structure may be used. It is more preferable that the fluorinated alkyl group has a structure in which at least one or more of the hydrogens bonded to carbon at the terminal of the alkyl group are substituted with fluorine. The alkyl group may be linear or branched, and preferably has 1 to 9 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a nonyl group. Further, these alkyl groups may have a substituent. This borate compound may be represented by the following formula (1).

式(1)において、フッ素化アルキル基である、Cx1y1z1、Cx2y2z2及びCx3y3z3、は、全てが同じでもよいし、2つが同じで1つが異なっていてもよいし、全てが異なっていてもよい。x1,x2及びx3は、それぞれ、1以上9以下であればよいが、6以下が好ましく、5以下がより好ましく、4以下がさらに好ましく、1以上2以下が一層好ましい。y1,y2及びy3は、それぞれ、0以上18以下であればよいが、12以下が好ましく、7以下がより好ましく、3以下がさらに好ましく、0以上2以下が一層好ましい。z1,z2及びz3は、それぞれ、1以上19以下であればよいが、13以下が好ましく、11以下がより好ましく、7以下がさらに好ましく、1以上5以下が一層好ましい。ボレート化合物は、x1,x2及びx3が全て2で、y1,y2及びy3が全て2で、z1,z2及びz3が全て3である、(2,2,2−トリフルオロエチル)ボレートであることがより好ましい。 In the formula (1), a fluorinated alkyl group, C x1 H y1 F z1, C x2 H y2 F z2 and C x3 H y3 F z3, may be all the same, two one same but different Or all may be different. Each of x1, x2 and x3 may be 1 or more and 9 or less, but is preferably 6 or less, more preferably 5 or less, still more preferably 4 or less, and still more preferably 1 or more and 2 or less. Each of y1, y2 and y3 may be 0 or more and 18 or less, preferably 12 or less, more preferably 7 or less, still more preferably 3 or less, and still more preferably 0 or more and 2 or less. Each of z1, z2 and z3 may be 1 or more and 19 or less, preferably 13 or less, more preferably 11 or less, still more preferably 7 or less, and still more preferably 1 or more and 5 or less. The borate compound is (2,2,2-trifluoroethyl) borate in which x1, x2, and x3 are all 2, y1, y2, and y3 are all 2, and z1, z2, and z3 are all 3. Is more preferred.

電解液には、ボレート化合物が、0.01mol/L以上0.4mol/L以下の範囲で含まれる。このうち、0.02mol/L以上が好ましく、0.03mol/L以上がより好ましい。また、0.3mol/L以下が好ましく、0.2mol/L以下がより好ましい。こうした範囲であれば、リチウム電池内でのガス発生をより抑制できるし、高温耐久性をより高めることができる。また、0.4mol/L以下であれば、負極抵抗の増大を抑制し、電池としての抵抗の上昇を抑制できる。   The electrolyte solution contains a borate compound in a range of 0.01 mol / L or more and 0.4 mol / L or less. Of these, 0.02 mol / L or more is preferable, and 0.03 mol / L or more is more preferable. Further, it is preferably at most 0.3 mol / L, more preferably at most 0.2 mol / L. Within such a range, gas generation in the lithium battery can be further suppressed, and high-temperature durability can be further improved. When the concentration is 0.4 mol / L or less, an increase in negative electrode resistance can be suppressed, and an increase in resistance as a battery can be suppressed.

本発明のリチウム電池は、正極と負極との間にセパレータを備えていてもよい。セパレータとしては、リチウム電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium battery of the present invention may include a separator between the positive electrode and the negative electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium battery.For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin microporous membrane of an olefin-based resin such as polyethylene or polypropylene Is mentioned. These may be used alone or in combination of two or more.

本発明のリチウム電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウム電池の一例を示す模式図である。このリチウム電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす電解液20と、を備えたものである。このリチウム電池10は、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シート18に接続された負極端子26とを配設して形成されている。ここでは、正極活物質12は、Li挿入脱離電位がリチウム基準で4.4V以上である。また、電解液20は、カーボネート系溶媒と、支持塩と、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物と、を含み、ボレート化合物は0.01mol/L以上0.4mol/L以下の範囲で含まれる。   The shape of the lithium battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a stacked type, a cylindrical type, a flat type, and a square type. Further, the present invention may be applied to a large vehicle used for an electric vehicle or the like. FIG. 1 is a schematic diagram showing an example of the lithium battery of the present invention. The lithium battery 10 includes a positive electrode sheet 13 in which a positive electrode active material 12 is formed on a current collector 11, a negative electrode sheet 18 in which a negative electrode active material 17 is formed on a surface of a current collector 14, a positive electrode sheet 13 and a negative electrode sheet 18. And a separator 20 provided between the positive electrode sheet 13 and the negative electrode sheet 18. In this lithium battery 10, a separator 19 is sandwiched between a positive electrode sheet 13 and a negative electrode sheet 18, these are wound and inserted into a cylindrical case 22, and connected to a positive electrode terminal 24 connected to the positive electrode sheet 13 and a negative electrode sheet 18. And the formed negative electrode terminal 26. Here, the positive electrode active material 12 has a Li insertion / desorption potential of 4.4 V or more based on lithium. The electrolytic solution 20 includes a carbonate-based solvent, a supporting salt, and a borate compound having a structure in which three hydrogens of orthoboric acid are substituted with a fluorinated alkyl group, and the borate compound is 0.01 mol / L or more. It is contained in a range of 0.4 mol / L or less.

本発明のリチウム電池の製造方法では、正極と負極との間に電解液を注入する。正極は、Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含むものであればよく、上述したリチウム電池の正極などを用いることができる。負極は、負極活物質を含むものであればよく、上述したリチウム電池の負極などを用いることができる。電解液は、カーボネート系溶媒と、支持塩と、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物と、を含み、前記ボレート化合物が0.01mol/L以上0.4mol/L以下の範囲で含むものであればよく、上述したリチウム電池の電解液などを用いることができる。なお、本発明のリチウム電池は、こうした製造方法で製造されたものに限定されず、正極と負極との間に電解液を介在させることができる製造方法で製造されたものであればよい。例えば、電解液中に正極や負極を配置してもよいし、あらかじめ電解液を含浸させた正極や負極を用いてリチウム電池を製造してもよい。リチウム電池の製造時に用いる電解液中のボレート化合物の濃度が0.01mol/L以上0.4mol/L以下の範囲であれば、その後の充放電などで電解液中のボレート化合物濃度が変化しても、リチウム電池内でのガス発生を抑制できると考えられる。   In the method for manufacturing a lithium battery according to the present invention, an electrolyte is injected between the positive electrode and the negative electrode. The positive electrode only needs to include a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more on a lithium basis, and the above-described positive electrode of a lithium battery or the like can be used. The negative electrode only needs to include a negative electrode active material, and the above-described negative electrode of a lithium battery or the like can be used. The electrolytic solution includes a carbonate-based solvent, a supporting salt, and a borate compound having a structure in which three hydrogens of orthoboric acid are substituted with a fluorinated alkyl group, wherein the borate compound is contained in an amount of 0.01 mol / L to 0.1 mol / L. What is necessary is just to contain in the range of 4 mol / L or less, and the above-mentioned electrolyte of a lithium battery or the like can be used. The lithium battery of the present invention is not limited to one manufactured by such a manufacturing method, but may be any one manufactured by a manufacturing method that allows an electrolytic solution to be interposed between a positive electrode and a negative electrode. For example, a positive electrode or a negative electrode may be arranged in the electrolytic solution, or a lithium battery may be manufactured using the positive electrode or the negative electrode impregnated with the electrolytic solution in advance. If the concentration of the borate compound in the electrolyte used in the production of the lithium battery is in the range of 0.01 mol / L or more and 0.4 mol / L or less, the concentration of the borate compound in the electrolyte changes during subsequent charging and discharging. It is also considered that gas generation in the lithium battery can be suppressed.

以上説明した本発明のリチウム電池及びその製造方法によれば、リチウム電池内でのガス発生をより抑制できる。こうした効果が得られる理由は、以下のように推察される。例えば、上述した非特許文献2のリチウム電池では、フッ素化エチレンカーボネート溶媒(以下FECとも称する)を用いることで、耐酸性を高めることができ、Li挿入脱離電位がリチウム基準で4.6〜4.8Vの正極を用いたリチウム電池の耐久性を高めることができる。しかし、非特許文献2のリチウム電池では、正極でFECが酸化分解されてCO2とHFが生成し、H+が負極に移動し、負極で還元されて水素ガスが生成すると考えられる。これに対して、本発明のリチウム電池では、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物を適量含むため、こうした正極上での副反応を抑制できると考えられる。より具体的には、例えば、ルイス塩基であるボレート化合物が、孤立電子対を有するカーボネート系溶媒と相互作用することによって、正極上でのカーボネート系溶媒の酸化分解が抑制され、結果として、リチウム電池内でのガス発生を抑制できると考えられる。また、本発明のリチウム電池によれば、正極上での副反応を抑制できるため、副反応に伴う正負極間での容量ずれによる電池容量の低下も抑制できると考えられる。 According to the lithium battery and the method for manufacturing the same of the present invention described above, gas generation in the lithium battery can be further suppressed. The reason why these effects can be obtained is presumed as follows. For example, in the lithium battery of Non-Patent Document 2 described above, acid resistance can be increased by using a fluorinated ethylene carbonate solvent (hereinafter, also referred to as FEC), and the Li insertion / desorption potential is 4.6 to lithium based. The durability of a lithium battery using a 4.8 V positive electrode can be increased. However, in the lithium battery of Non-Patent Document 2, it is considered that FEC is oxidized and decomposed at the positive electrode to generate CO 2 and HF, H + moves to the negative electrode, and is reduced at the negative electrode to generate hydrogen gas. On the other hand, in the lithium battery of the present invention, since a proper amount of a borate compound having a structure in which three hydrogens of orthoboric acid are substituted with a fluorinated alkyl group is included, it is considered that such a side reaction on the positive electrode can be suppressed. . More specifically, for example, a borate compound that is a Lewis base interacts with a carbonate-based solvent having a lone pair of electrons, thereby suppressing oxidative decomposition of the carbonate-based solvent on the positive electrode. It is thought that gas generation in the inside can be suppressed. In addition, according to the lithium battery of the present invention, since a side reaction on the positive electrode can be suppressed, it is considered that a decrease in battery capacity due to a capacity shift between the positive electrode and the negative electrode due to the side reaction can be suppressed.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment at all, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のリチウム電池を具体的に作製した例について、実施例として説明する。   Hereinafter, an example in which the lithium battery of the present invention is specifically manufactured will be described as an example.

[実施例1]
(電池の作製)
モノフルオロエチレンカーボネート(MFEC)とメチル−2,2,2−トリフルオロエチルカーボネート(MTFEC)を体積比でMFEC:FTFEC=3:7の割合で含む混合溶媒中に、LiPF6を1.1Mの濃度となるように含む混合溶液を準備した。この混合溶液100mLに3.08g(0.05mol/L)のトリス(2,2,2−トリフルオロエチル)ボレート(Aldrich製)を添加して、電解液を調整した。
[Example 1]
(Production of battery)
In a mixed solvent containing monofluoroethylene carbonate (MFEC) and methyl-2,2,2-trifluoroethyl carbonate (MTFEC) in a volume ratio of MFEC: FTFEC = 3: 7, LiPF 6 was added at a concentration of 1.1 M. A mixed solution containing a concentration was prepared. 3.08 g (0.05 mol / L) of tris (2,2,2-trifluoroethyl) borate (manufactured by Aldrich) was added to 100 mL of the mixed solution to prepare an electrolytic solution.

正極活物質としてのLiNi0.5Mn1.54を90質量%、導電材としてのカーボンブラックを8質量%、結着材としてのポリフッ化ビニリデンを2質量%の割合で混合し、分散媒としてのN−メチル−2−ピロリドンを適量添加して分散させて、スラリー状正極合材を得た。このスラリー状正極合材を、15μm厚のアルミニウム箔集電体の両面に塗布、乾燥させた後、ロールプレスで高密度化し、正極シートとした。なお、正極活物質の付着量は、片面当たり6.0mg/cm2とした。 90% by mass of LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material, 8% by mass of carbon black as a conductive material, and 2% by mass of polyvinylidene fluoride as a binder, and N as a dispersion medium -Methyl-2-pyrrolidone was added and dispersed in an appropriate amount to obtain a slurry-like positive electrode mixture. The slurry-like positive electrode mixture was applied to both sides of a 15-μm-thick aluminum foil current collector, dried, and then densified by a roll press to obtain a positive electrode sheet. The amount of the positive electrode active material attached was 6.0 mg / cm 2 per side.

負極活物質としての非晶質コート黒鉛を98質量%、結着剤としてのスチレンブタジエンゴムを1質量%、増粘剤としてのカルボキシメチルセルロースナトリウムを1質量%の割合で混合し、水を適量添加して分散させて、スラリー状負極合材を得た。このスラリー状負極合材を、10μm厚の銅箔集電体の両面に塗布、乾燥させた後、ロールプレスで高密度化し、負極シートとした。なお、負極活物質の付着量は、片面当たり4.0mg/cm2とした。 98% by mass of amorphous coated graphite as a negative electrode active material, 1% by mass of styrene butadiene rubber as a binder, and 1% by mass of sodium carboxymethylcellulose as a thickener, and an appropriate amount of water is added. To obtain a slurry negative electrode mixture. This slurry negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil current collector, dried, and then densified by a roll press to obtain a negative electrode sheet. The amount of the negative electrode active material attached was 4.0 mg / cm 2 per side.

正極シートに正極集電タブリードを熔接して正極とし、負極シートには負極集電タブリードを熔接して負極とした。これらの正極及び負極の間に、ポリプロピレン/ポリエチレン/ポリプロピレン3層構造で20μm厚の微多孔膜セパレータを挟み、捲回してロール電極体を作製した。このロール電極体を、外装缶及びキャップよりなる、ニッケルメッキした鉄製の円筒形状の電池ケースに挿入した。電池ケースのキャップ側に配置した正極集電タブに、正極集電タブリードを熔接するとともに、外装缶の底に配置した負極集電タブに負極集電タブリードを熔接した。そして、電解液を電池ケース内に含浸させ、キャップにかしめ加工を施すことにより電池ケースを密閉し、円筒型の電池を作製した。   A positive electrode current collector tab lead was welded to the positive electrode sheet to form a positive electrode, and a negative electrode current collector tab lead was welded to the negative electrode sheet to form a negative electrode. A 20 μm-thick microporous membrane separator having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between these positive electrode and negative electrode, and wound to produce a roll electrode body. This roll electrode body was inserted into a nickel-plated iron cylindrical battery case composed of an outer can and a cap. The positive electrode current collecting tab lead was welded to the positive electrode current collecting tab arranged on the cap side of the battery case, and the negative electrode current collecting tab lead was welded to the negative electrode current collecting tab arranged on the bottom of the outer can. Then, the electrolytic solution was impregnated in the battery case, and the cap was caulked to close the battery case, thereby producing a cylindrical battery.

(電池のコンディショニング)
得られた電池を用い、20℃で活性化充放電を行った。1サイクル目は、定電流方式で、電流密度0.3mA/cm2(0.3C相当)の定電流で上限電圧4.9Vまで充電した。その後、定電流方式で、電流密度0.3mA/cm2で下限電圧3.5Vまで放電した。2サイクル目は定電流−定電圧方式で、0.3mA/cm2で定電流充電し、4.9Vに達した後に4.9Vでの定電圧充電を1時間行った。その後、定電流方式で電流密度0.3mA/cm2で下限電圧3.5Vまで放電した。このときの放電容量をCiniとした。
(Battery conditioning)
Activated charging and discharging were performed at 20 ° C. using the obtained battery. In the first cycle, the battery was charged up to an upper limit voltage of 4.9 V at a constant current of 0.3 mA / cm 2 (corresponding to 0.3 C) by a constant current method. Thereafter, the battery was discharged to a lower limit voltage of 3.5 V at a current density of 0.3 mA / cm 2 by a constant current method. In the second cycle, a constant current-constant voltage method was used, and a constant current charge was performed at 0.3 mA / cm 2 , and after reaching 4.9 V, a constant voltage charge was performed at 4.9 V for one hour. Thereafter, the battery was discharged to a lower limit voltage of 3.5 V at a current density of 0.3 mA / cm 2 by a constant current method. The discharge capacity at this time was defined as Cini.

(電池の高温サイクル耐久試験)
コンディショニング後の電池を用い、60℃の環境温度、2C相当の電流で定電流充放電試験を行った。上限電圧を4.9V、下限電圧を3.5Vとし、サイクル数は200サイクルとした。200サイクル後の電池を20℃の環境温度で定電流−定電圧方式で、0.3mA/cm2で定電流充電し、4.9Vに達した後に4.9Vでの定電圧充電を1時間行った。その後、定電流方式で電流密度0.3mA/cm2で下限電圧3.5Vまで放電した。このときの放電容量をC200とし、C200/Ciniを容量維持率とした。
(High temperature cycle endurance test of batteries)
Using the battery after conditioning, a constant current charge / discharge test was performed at an environmental temperature of 60 ° C. and a current corresponding to 2 C. The upper limit voltage was 4.9 V, the lower limit voltage was 3.5 V, and the number of cycles was 200. After 200 cycles, the battery was charged at a constant current of 0.3 mA / cm 2 at a constant current-constant voltage method at an environmental temperature of 20 ° C., and after reaching 4.9 V, was charged at a constant voltage of 4.9 V for 1 hour. went. Thereafter, the battery was discharged to a lower limit voltage of 3.5 V at a current density of 0.3 mA / cm 2 by a constant current method. The discharge capacity at this time was C200, and C200 / Cini was the capacity retention ratio.

(ガス量測定)
コンディショニング後、高温サイクル耐久試験の前後において、以下のようにガス量の測定を行った。電池を3.5Vまで放電した状態で注射筒が接続されたテフロン製密閉容器に入れて密閉し、密閉したままニードルで電池缶に穴をあけ、バルブを開いて注射筒に出てきたガスの容積から電池内発生ガス量を測定した。
(Gas measurement)
After conditioning, before and after the high-temperature cycle durability test, the gas amount was measured as follows. The battery was discharged to 3.5 V and sealed in a Teflon-sealed container with a syringe connected to it. The battery was opened with a needle, and the valve was opened to open the valve. The amount of gas generated in the battery was measured from the volume.

[実施例2]
トリス(2,2,2−トリフルオロエチル)ボレートの濃度を0.1mol/Lとした電解液を用いた以外は、実施例1と同様とした。
[Example 2]
Example 1 was the same as Example 1 except that an electrolytic solution having a tris (2,2,2-trifluoroethyl) borate concentration of 0.1 mol / L was used.

[実施例3]
負極活物質としてLiTi24を用い、コンディショニング及び高温サイクル耐久試験において上限電圧を3.4V、下限電圧を2.0Vとした以外は、実施例1と同様とした。
[Example 3]
Example 1 was the same as Example 1 except that LiTi 2 O 4 was used as the negative electrode active material and the upper limit voltage was 3.4 V and the lower limit voltage was 2.0 V in the conditioning and the high-temperature cycle durability test.

[実施例4]
トリス(2,2,2−トリフルオロエチル)ボレートの濃度を0.1mol/Lとした電解液を用い、負極活物質としてLiTi24を用い、コンディショニング及び高温サイクル耐久試験において上限電圧を3.4V、下限電圧を2.0Vとした以外は、実施例1と同様とした。
[Example 4]
Using an electrolytic solution having a concentration of tris (2,2,2-trifluoroethyl) borate of 0.1 mol / L, using LiTi 2 O 4 as a negative electrode active material, and setting an upper limit voltage of 3 in conditioning and a high temperature cycle durability test. Example 4 was the same as Example 1 except that the voltage was 0.4 V and the lower limit voltage was 2.0 V.

[比較例1]
トリス(2,2,2−トリフルオロエチル)ボレートを含まない混合溶液を電解液に用いた以外は、実施例1と同様とした。
[Comparative Example 1]
Example 1 was repeated except that a mixed solution containing no tris (2,2,2-trifluoroethyl) borate was used as the electrolyte.

[比較例2]
トリス(2,2,2−トリフルオロエチル)ボレートの濃度を0.5mol/Lとした電解液を用いた以外は、実施例1と同様とした。
[Comparative Example 2]
Example 1 was repeated except that an electrolytic solution having a concentration of tris (2,2,2-trifluoroethyl) borate of 0.5 mol / L was used.

[比較例3]
トリス(2,2,2−トリフルオロエチル)ボレートを含まない混合溶液を電解液に用い、負極活物質としてLiTi24を用い、コンディショニング及び高温サイクル耐久試験において上限電圧を3.4V、下限電圧を2.0Vとした以外は、実施例1と同様とした。
[Comparative Example 3]
A mixed solution containing no tris (2,2,2-trifluoroethyl) borate is used as an electrolyte, LiTi 2 O 4 is used as a negative electrode active material, and the upper limit voltage is 3.4 V and the lower limit is lower limit in conditioning and high temperature cycle durability test. It was the same as Example 1 except that the voltage was 2.0 V.

[実験結果]
表1に実験結果をまとめた。なお、表1において、ガス量は、比較例1の初期ガス量を1としたときの相対ガス量とした。負極に黒鉛を用いた比較例1、実施例1、実施例2の比較から、トリス(2,2,2−トリフルオロエチル)ボレートを添加することで、初期ガス量低減及び耐久後ガス量低減が確認された。また、それに伴って、高温サイクル耐久試験の容量維持率の向上も見られた。耐久後のガス成分を分析すると、実施例1や実施例2では比較例1に比して、CO2及びH2がより減少していることがわかった。このことから、トリス(2,2,2−トリフルオロエチル)ボレートの添加により、正極上での溶媒の分解が抑制されてCO2の発生量が減るとともに、溶媒の酸化分解によって生じるHFの量が減少したために、負極上でのH2発生も抑制されてH2発生量が減ったと考えられた。
[Experimental result]
Table 1 summarizes the experimental results. In Table 1, the gas amount was a relative gas amount when the initial gas amount in Comparative Example 1 was 1. Comparison of Comparative Example 1, Example 1 and Example 2 using graphite for the negative electrode shows that by adding tris (2,2,2-trifluoroethyl) borate, the initial gas amount and the post-durability gas amount are reduced. Was confirmed. In addition, the capacity retention of the high-temperature cycle durability test was also improved. When the gas components after the durability test were analyzed, it was found that CO 2 and H 2 in Examples 1 and 2 were smaller than those in Comparative Example 1. Thus, the addition of tris (2,2,2-trifluoroethyl) borate suppresses the decomposition of the solvent on the positive electrode, reduces the amount of CO 2 generated, and the amount of HF generated by the oxidative decomposition of the solvent. It was considered that the generation of H 2 on the negative electrode was also suppressed and the amount of generated H 2 was reduced due to the decrease in H 2 .

また、負極に、黒鉛に代えてLiTi24を用いた場合にも、同様の効果が得られた。このことから、負極の種類は特に限定されないことがわかった。 The same effect was obtained when LiTi 2 O 4 was used instead of graphite for the negative electrode. From this, it was found that the type of the negative electrode was not particularly limited.

一方、トリス(2,2,2−トリフルオロエチル)ボレートを0.5mol/L添加した比較例2は初期のガス量は減少したものの、耐久後のガス量や、高温耐久試験の容量維持率が悪化した。比較例2では、耐久後の電池抵抗が上昇していた。この理由は、例えば、トリス(2,2,2−トリフルオロエチル)ボレートの電解液中の割合が高いと、何らかの新たな反応が生じて電極表面に被膜のようなものを形成し、Liイオンの通過を阻害するためと推察された。   On the other hand, in Comparative Example 2 in which tris (2,2,2-trifluoroethyl) borate was added at 0.5 mol / L, although the initial gas amount decreased, the gas amount after endurance and the capacity retention rate in the high-temperature endurance test Got worse. In Comparative Example 2, the battery resistance after durability increased. The reason for this is that, for example, when the proportion of tris (2,2,2-trifluoroethyl) borate in the electrolyte is high, some new reaction occurs and a film-like substance is formed on the electrode surface, and the Li ion It was speculated that this would block the passage of traffic.

なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It is to be noted that the present invention is not limited to the above-described embodiment at all, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

本発明は、電池産業の分野に利用可能である。   The present invention can be used in the field of the battery industry.

10 リチウム電池、11 集電体、12 正極活物質、13 正極シート、14 集電体、17 負極活物質、18 負極シート、19 セパレータ、20 電解液、22 円筒ケース、24 正極端子、26 負極端子。   Reference Signs List 10 lithium battery, 11 current collector, 12 positive electrode active material, 13 positive electrode sheet, 14 current collector, 17 negative electrode active material, 18 negative electrode sheet, 19 separator, 20 electrolyte, 22 cylindrical case, 24 positive electrode terminal, 26 negative electrode terminal .

Claims (8)

Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含む正極と、
負極活物質を含む負極と、
前記正極と前記負極との間に介在し、フッ素化鎖状カーボネートを含むカーボネート系溶媒と、支持塩と、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物と、を含み、前記ボレート化合物が0.01mol/L以上0.2mol/L以下の範囲で含まれる電解液と、
を備えたリチウム電池。
A positive electrode including a positive electrode active material having a Li insertion / desorption potential of 4.4 V or more based on lithium;
A negative electrode containing a negative electrode active material;
Interposed between the positive electrode and the negative electrode, a carbonate-based solvent containing a fluorinated chain carbonate, a supporting salt, and a borate compound having a structure in which three hydrogens of orthoboric acid are substituted with a fluorinated alkyl group, An electrolytic solution containing the borate compound in a range of 0.01 mol / L or more and 0.2 mol / L or less ;
With lithium battery.
前記ボレート化合物は、式(1)で表される、請求項1に記載のリチウム電池。
The lithium battery according to claim 1, wherein the borate compound is represented by Formula (1).
前記ボレート化合物は、(2,2,2−トリフルオロエチル)ボレートである、請求項1又は2に記載のリチウム電池。   The lithium battery according to claim 1, wherein the borate compound is (2,2,2-trifluoroethyl) borate. 前記正極活物質は、LiNi0.5Mn1.54を含む、請求項1〜3のいずれか1項に記載のリチウム電池。 4. The lithium battery according to claim 1, wherein the positive electrode active material includes LiNi 0.5 Mn 1.5 O 4. 5 . 前記負極活物質は、炭素質材料、シリコン、スズ、リチウムチタン複合酸化物からなる群より選ばれる1以上を含む、請求項1〜4のいずれか1項に記載のリチウム電池。   The lithium battery according to any one of claims 1 to 4, wherein the negative electrode active material includes one or more selected from the group consisting of a carbonaceous material, silicon, tin, and a lithium-titanium composite oxide. 前記カーボネート系溶媒は、少なくとも1つの水素原子がフッ素原子で置換されたフッ素化カーボネートを含む、請求項1〜5のいずれか1項に記載のリチウム電池。   The lithium battery according to any one of claims 1 to 5, wherein the carbonate-based solvent includes a fluorinated carbonate in which at least one hydrogen atom is substituted with a fluorine atom. 前記支持塩は、LiPF6及びLiFSIのうちの1以上を含む、請求項1〜6のいずれか1項に記載のリチウム電池。 The lithium battery according to claim 1, wherein the supporting salt includes one or more of LiPF 6 and LiFSI. Li挿入脱離電位がリチウム基準で4.4V以上の正極活物質を含む正極と、負極活物質を含む負極と、の間に、フッ素化鎖状カーボネートを含むカーボネート系溶媒と、支持塩と、オルトホウ酸の3つの水素がフッ素化アルキル基で置換された構造を有するボレート化合物と、を含み、前記ボレート化合物が0.01mol/L以上0.2mol/L以下の範囲で含まれる電解液を注入する、リチウム電池の製造方法。 A positive electrode containing a positive electrode active material having a Li insertion / elimination potential of 4.4 V or more on a lithium basis, and a negative electrode containing a negative electrode active material, a carbonate-based solvent containing a fluorinated chain carbonate, a supporting salt, A borate compound having a structure in which three hydrogens of orthoboric acid are substituted with a fluorinated alkyl group, and injecting an electrolytic solution containing the borate compound in a range of 0.01 mol / L to 0.2 mol / L. To manufacture a lithium battery.
JP2015218237A 2015-11-06 2015-11-06 Lithium battery and method of manufacturing the same Active JP6652814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218237A JP6652814B2 (en) 2015-11-06 2015-11-06 Lithium battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218237A JP6652814B2 (en) 2015-11-06 2015-11-06 Lithium battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017091715A JP2017091715A (en) 2017-05-25
JP6652814B2 true JP6652814B2 (en) 2020-02-26

Family

ID=58768002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218237A Active JP6652814B2 (en) 2015-11-06 2015-11-06 Lithium battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6652814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649591A (en) * 2022-03-31 2022-06-21 宁德新能源科技有限公司 Electrochemical device and electric appliance comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243035B2 (en) * 2005-10-12 2013-07-24 三井化学株式会社 Lithium secondary battery
JP2012174546A (en) * 2011-02-22 2012-09-10 Kaneka Corp Nonaqueous electrolyte secondary battery
JP6210166B2 (en) * 2014-10-17 2017-10-11 日立化成株式会社 Lithium ion battery

Also Published As

Publication number Publication date
JP2017091715A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
JP5099168B2 (en) Lithium ion secondary battery
JP6673818B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP2012209161A (en) Lithium secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP6565323B2 (en) Non-aqueous secondary battery
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP2011071017A (en) Lithium secondary battery
JP2014216211A (en) Electrode and nonaqueous secondary battery
JP6652814B2 (en) Lithium battery and method of manufacturing the same
JP5662746B2 (en) Lithium ion secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP5272810B2 (en) Capacitors
JP5189466B2 (en) Lithium secondary battery
US11081698B2 (en) Cathode active material containing boron and carbon, and magnesium secondary battery using the same
JP2018113174A (en) Lithium secondary battery
JP2012226963A (en) Lithium secondary battery
JP5504853B2 (en) How to use lithium secondary battery
JP6011077B2 (en) Non-aqueous battery
JP2012028248A (en) Secondary battery anode and secondary battery using the same
JP2018133303A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200124

R150 Certificate of patent or registration of utility model

Ref document number: 6652814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250