JP2015033767A - Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus - Google Patents

Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus Download PDF

Info

Publication number
JP2015033767A
JP2015033767A JP2013164370A JP2013164370A JP2015033767A JP 2015033767 A JP2015033767 A JP 2015033767A JP 2013164370 A JP2013164370 A JP 2013164370A JP 2013164370 A JP2013164370 A JP 2013164370A JP 2015033767 A JP2015033767 A JP 2015033767A
Authority
JP
Japan
Prior art keywords
rubber roller
foaming
conductive
conductive rubber
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013164370A
Other languages
Japanese (ja)
Inventor
拓也 山口
Takuya Yamaguchi
拓也 山口
籔下 俊一
Shunichi Yabushita
俊一 籔下
正文 山本
Masabumi Yamamoto
正文 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013164370A priority Critical patent/JP2015033767A/en
Priority to US14/337,730 priority patent/US20150045196A1/en
Priority to CN201410359625.7A priority patent/CN104339611A/en
Publication of JP2015033767A publication Critical patent/JP2015033767A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • B29C48/9105Heating, e.g. for cross linking of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2019/00Use of rubber not provided for in a single one of main groups B29K2007/00 - B29K2011/00, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a conductive rubber foam roller, by which no cracks by abnormal foaming are present in a cylindrical body after foaming, and thereby, peeling or denting is prevented in a succeeding polishing process, and to provide a conductive rubber foam roller manufactured by the above method, and an image forming apparatus in which the conductive rubber foam roller is assembled.SOLUTION: The method for manufacturing a conductive rubber foam roller includes a step of passing a long cylindrical body 7 that is prepared by continuously extrusion-molding a rubber composition, without cutting, through a microwave crosslinking device 8 and then a hot blow crosslinking device 9. The rubber composition is extrusion-molded, foamed and crosslinked in such a manner that a thickness deviation degree represented by a ratio T/Tof the largest thickness Tto the smallest thickness Tin a radial direction on a cross section of the cylinder immediately after passing through the hot blow crosslinking device 9, is 1.3 or less. A conductive rubber foam roller is manufactured through the above steps. The conductive rubber foam roller is assembled in an image forming apparatus.

Description

本発明は、導電性発泡ゴムローラの製造方法、かかる製造方法によって製造された導電性発泡ゴムローラ、ならびに当該導電性発泡ゴムローラを組み込んだ画像形成装置に関するものである。   The present invention relates to a method for producing a conductive foam rubber roller, a conductive foam rubber roller produced by such a production method, and an image forming apparatus incorporating the conductive foam rubber roller.

例えばレーザープリンタや静電式複写機、普通紙ファクシミリ装置、あるいはこれらの複合機等の、電子写真法を利用した画像形成装置においては、概略下記の工程を経て、紙(OHPフィルム等のプラスチックフィルムを含む。以下同様。)の表面に画像が形成される。
まず、光導電性を有する感光体の表面を一様に帯電させた状態で露光して、当該表面に、形成画像に対応する静電潜像を形成する(帯電工程→露光工程)。
For example, in an image forming apparatus using electrophotography such as a laser printer, an electrostatic copying machine, a plain paper facsimile machine, or a complex machine of these, paper (plastic film such as an OHP film) is roughly processed through the following steps. An image is formed on the surface of the same.
First, the surface of the photoconductive photoconductor is exposed in a uniformly charged state, and an electrostatic latent image corresponding to the formed image is formed on the surface (charging step → exposure step).

次いで、微小な着色粒子であるトナーを所定の電位に帯電させた状態で、先の感光体の表面に接触させる。そうするとトナーが、静電潜像の電位パターンに応じて感光体の表面に選択的に付着されて、静電潜像がトナー像に現像される(現像工程)。
次いで、このトナー像を紙の表面に転写し(転写工程)、さらに定着させることにより(定着工程)、かかる紙の表面に画像が形成される。
Next, the toner, which is minute colored particles, is brought into contact with the surface of the previous photoreceptor in a state where the toner is charged to a predetermined potential. Then, the toner is selectively attached to the surface of the photoconductor according to the potential pattern of the electrostatic latent image, and the electrostatic latent image is developed into a toner image (development process).
Next, the toner image is transferred to the surface of the paper (transfer process) and further fixed (fixing process), whereby an image is formed on the surface of the paper.

また転写工程では、感光体の表面に形成したトナー像を、紙の表面に直接に転写させる場合だけでなく、像担持体の表面に一旦転写(一次転写工程)させたのち紙の表面に再転写させる(二次転写工程)場合もある。
さらに、転写が終了した感光体の表面に残留するトナーを除去する(クリーニング工程)ことにより、一連の画像形成が終了する。
In the transfer process, the toner image formed on the surface of the photoconductor is not only transferred directly to the surface of the paper, but also transferred to the surface of the image carrier (primary transfer process) and then re-transferred to the surface of the paper. In some cases, the image is transferred (secondary transfer process).
Further, a series of image formation is completed by removing the toner remaining on the surface of the photoreceptor after the transfer (cleaning process).

以上で説明した各工程のうち感光体の帯電工程、現像工程、転写工程、およびクリーニング工程には、それぞれの用途に応じた導電性を付与するとともに発泡させたゴムの筒状体からなり、感光体の表面に接触される導電性発泡ゴムローラが広く用いられている。
導電性発泡ゴムローラの製造方法としては、下記の連続法が知られている(特許文献1〜4等)。
Among the above-described processes, the charging process, the developing process, the transferring process, and the cleaning process of the photosensitive member are made of a rubber cylindrical body that is provided with conductivity and foamed according to each application. Conductive foam rubber rollers that are in contact with the surface of the body are widely used.
As a method for producing a conductive foam rubber roller, the following continuous methods are known (Patent Documents 1 to 4, etc.).

すなわち、導電性、架橋性、および発泡性を有するゴム組成物を、押出機を用いて連続的に筒状に押出成形し、押出成形した筒状体をカットせずに長尺のまま、マイクロ波架橋装置、次いで熱風架橋装置を通過させて連続的に発泡、および架橋させる。
次いで所定の長さにカットするとともに二次架橋させ、さらに筒の通孔にシャフトを挿通して固定するとともに、外周面を研磨して所定の外径に仕上げる。
That is, a rubber composition having electrical conductivity, crosslinkability, and foamability is continuously extruded into a cylindrical shape using an extruder, and the extruded cylindrical body is not cut and remains long. It is continuously foamed and cross-linked by passing through a wave cross-linking apparatus and then a hot air cross-linking apparatus.
Next, it is cut to a predetermined length and subjected to secondary cross-linking, and the shaft is inserted into and fixed to the through hole of the cylinder, and the outer peripheral surface is polished to a predetermined outer diameter.

特開2007−322729号公報JP 2007-322729 A 特開2008−90236号公報JP 2008-90236 A 特開2010−145920号公報JP 2010-145920 A 特開2010−217521号公報JP 2010-217521 A

連続法で導電性発泡ゴムローラを製造する場合の問題点の一つとして、発泡時の筒状体の内部で局部的に異常発泡が生じ、それに伴って発泡後の筒状体の内部に割れが内在すること挙げられる。
筒状体の内部に割れが内在していると、当該割れが、その後の研磨によって導電性発泡ゴムローラの外周面に及んで割れた部分が剥離したりするおそれがある。また、割れが外周面に及ばない場合でも、内部の割れの影響で外周面が窪んだりするおそれもある。
One of the problems when manufacturing a conductive foam rubber roller by the continuous method is that abnormal foaming occurs locally inside the cylindrical body during foaming, and accompanying this, cracking occurs inside the cylindrical body after foaming. To be inherent.
If a crack is present inside the cylindrical body, the crack may reach the outer peripheral surface of the conductive foam rubber roller by subsequent polishing, and the cracked portion may peel off. Even when the crack does not reach the outer peripheral surface, the outer peripheral surface may be depressed due to the effect of the internal crack.

そして、かかる剥離や窪みを生じると、導電性ゴムローラの外径の寸法精度や硬さに影響を生じるという問題がある。
本発明の目的は、発泡後の筒状体の内部に異常発泡による割れが内在しないため、その後の研磨工程で剥離や窪みを生じることがない導電性発泡ゴムローラを製造しうる製造方法を提供することにある。また本発明の目的は、かかる製造方法によって製造された導電性発泡ゴムローラ、および当該導電性発泡ゴムローラを組み込んだ画像形成装置を提供することにある。
And when such peeling and a hollow arise, there exists a problem of producing the dimensional accuracy and hardness of the outer diameter of a conductive rubber roller.
An object of the present invention is to provide a production method capable of producing a conductive foamed rubber roller that does not cause peeling or dents in a subsequent polishing step because cracks due to abnormal foaming do not exist inside the tubular body after foaming. There is. Another object of the present invention is to provide a conductive foamed rubber roller manufactured by such a manufacturing method and an image forming apparatus incorporating the conductive foamed rubber roller.

本発明は、導電性、架橋性、および発泡性を有するゴム組成物を連続的に筒状に押出成形し、次いで押出成形した筒状体をカットせずに長尺のまま、マイクロ波架橋装置、次いで熱風架橋装置を通過させて連続的に発泡、および架橋させる工程を経て導電性発泡ゴムローラを製造する製造方法であって、前記工程において、発泡直後の断面の、径方向の最大厚みTmaxと最小厚みTminとの比Tmax/Tminで表される偏肉度が1.3以下となるように、前記ゴム組成物を押出成形、発泡、および架橋させることを特徴とする導電性発泡ゴムローラの製造方法である。 The present invention relates to a microwave crosslinking apparatus in which a rubber composition having conductivity, crosslinkability, and foamability is continuously extruded into a cylindrical shape, and then the extruded cylindrical body is long without being cut. Then, a manufacturing method for producing a conductive foamed rubber roller through a process of continuously foaming and cross-linking by passing through a hot-air cross-linking device, wherein in the process, the radial maximum thickness T max of the cross section immediately after foaming minimum thickness as thickness deviation, expressed by the ratio T max / T min and T min is 1.3 or less, the rubber composition of the extrusion, foaming, and conductive, characterized in that crosslinking and It is a manufacturing method of a foam rubber roller.

発明者の検討によると、発泡過程で割れのもとになる局部的な異常発泡を生じた筒状体は、径方向の厚みに偏り、すなわち偏肉を生じる。
これに対し、熱風架橋装置を通過直後の断面の、径方向の最大厚みTmaxと最小厚みTminとの比Tmax/Tminで表される偏肉度が1.3以下となるように筒状体を押出成形、発泡、および架橋させると、発泡時の筒状体の内部で局部的に異常発泡を生じたり、それに伴って発泡後の筒状体の内部に割れが内在したりするのを防止できる。
According to the inventor's study, a cylindrical body in which local abnormal foaming that causes cracking in the foaming process is uneven in thickness in the radial direction, that is, uneven in thickness.
On the other hand, the unevenness degree represented by the ratio T max / T min of the radial maximum thickness T max and the minimum thickness T min of the cross section immediately after passing through the hot-air crosslinking apparatus is 1.3 or less. When extrusion, foaming, and cross-linking of a cylindrical body, abnormal foaming locally occurs inside the cylindrical body at the time of foaming, and accordingly, cracks are inherent in the cylindrical body after foaming. Can be prevented.

したがって、その後の研磨工程で剥離や窪みを生じることがなく、外径の寸法精度や硬さに影響を生じない導電性発泡ゴムローラを製造できる。
偏肉度をかかる範囲内とするためには、できるだけ厚みが均等となるように筒状体を押出成形し、また押出成形した筒状体を、できるだけ均等に発泡、および架橋させればよい。
Therefore, it is possible to manufacture a conductive foamed rubber roller that does not cause peeling or dents in the subsequent polishing process and does not affect the dimensional accuracy and hardness of the outer diameter.
In order to make the thickness deviation within such a range, the cylindrical body is extruded so that the thickness is as uniform as possible, and the extruded cylindrical body is foamed and crosslinked as evenly as possible.

特に、できるだけ厚みが均等となるように筒状体を押出成形することが、偏肉度を小さくする上で肝要である。
そのためには、押出成形において、開口形状が円形とされた口金と、前記口金内に配設され、前記口金の開口と同一平面での断面形状が円形とされた中芯とを備えた押出機を用い、前記口金の開口と、前記中芯の、前記開口と同一平面での断面との間の、前記開口の周方向の複数個所での、前記開口の径方向の距離の最大値と最小値とから、式(1):
In particular, it is important to extrude the cylindrical body so that the thickness is as uniform as possible in order to reduce the thickness deviation.
To that end, in extrusion molding, an extruder having a die whose opening shape is circular, and a core disposed in the die and having a circular cross-sectional shape in the same plane as the opening of the die. And the maximum and minimum distances in the radial direction of the opening at a plurality of locations in the circumferential direction of the opening between the opening of the base and the cross section of the core in the same plane as the opening. From the value, formula (1):

Figure 2015033767
Figure 2015033767

によって求められる誤差が10%以内となるように、前記口金と中芯とを位置合わせした状態で、前記ゴム組成物を、前記口金と前記中芯との間の環状の空隙を通して筒状に押出成形するのが好ましい。
かかる設定により、当該口金と中芯との間の環状の空隙を通して押出成形される発泡前の筒状体の厚みの偏りをできるだけ小さくでき、マイクロ波架橋装置、次いで熱風架橋装置を通過させて連続的に発泡、および架橋させた、熱風架橋装置を通過直後の筒状体の偏肉度を1.3以下として、発泡時の筒状体の内部で局部的に異常発泡を生じたり、それに伴って発泡後の筒状体の内部に割れが内在したりするのをより一層確実に防止できる。
The rubber composition is extruded into a cylindrical shape through an annular gap between the base and the core while the base and the core are aligned so that the error required by the step is within 10%. It is preferable to mold.
With this setting, the thickness deviation of the cylindrical body before foaming that is extruded through the annular gap between the die and the core can be reduced as much as possible, and it is continuously passed through the microwave crosslinking apparatus and then the hot-air crosslinking apparatus. The thickness of the cylindrical body immediately after passing through the hot-air cross-linking device is 1.3 or less, and abnormal foaming is locally generated inside the cylindrical body at the time of foaming. Thus, it is possible to more reliably prevent cracks from being present inside the cylindrical body after foaming.

本発明は、前記本発明の製造方法によって製造されたことを特徴とする導電性発泡ゴムローラである。
本発明によれば、先に説明した本発明の製造方法に基づいて、寸法精度や硬さに影響を及ぼす剥離や窪みのない導電性発泡ゴムローラを得ることができる。
また本発明は、前記本発明の導電性発泡ゴムローラを組み込んだことを特徴とする画像形成装置である。
The present invention is a conductive foamed rubber roller manufactured by the manufacturing method of the present invention.
According to the present invention, based on the manufacturing method of the present invention described above, it is possible to obtain a conductive foamed rubber roller that does not have peeling or dents that affect dimensional accuracy and hardness.
The present invention also provides an image forming apparatus incorporating the conductive foam rubber roller of the present invention.

本発明によれば、上記のように寸法精度や硬さに影響を及ぼす剥離や窪みのない本発明の導電性発泡ゴムローラを、例えば転写ローラとして組み込むことにより、形成画像の画像特性に優れた画像形成装置を得ることができる。   According to the present invention, an image excellent in image characteristics of a formed image can be obtained by incorporating the conductive foamed rubber roller of the present invention having no peeling or depression affecting the dimensional accuracy and hardness as described above, for example, as a transfer roller. A forming device can be obtained.

本発明によれば、発泡後の筒状体の内部に異常発泡による割れが内在しないため、その後の研磨工程で剥離や窪みを生じることがない導電性発泡ゴムローラを製造しうる製造方法を提供できる。また本発明によれば、かかる製造方法によって製造された導電性発泡ゴムローラ、および当該導電性発泡ゴムローラを組み込んだ画像形成装置を得ることができる。   According to the present invention, since there is no crack due to abnormal foaming inside the tubular body after foaming, it is possible to provide a production method capable of producing a conductive foam rubber roller that does not cause peeling or dents in the subsequent polishing step. . Further, according to the present invention, it is possible to obtain a conductive foamed rubber roller manufactured by such a manufacturing method and an image forming apparatus incorporating the conductive foamed rubber roller.

本発明の導電性発泡ゴムローラの製造方法のうち、ゴム組成物を押出成形、発泡、および架橋させる工程の一例を説明するブロック図である。It is a block diagram explaining an example of the process of extrusion-molding, foaming, and bridge | crosslinking a rubber composition among the manufacturing methods of the conductive foam rubber roller of this invention. 図1の工程を含む本発明の製造方法によって製造された、本発明の導電性発泡ゴムローラの一例を示す斜視図である。It is a perspective view which shows an example of the electroconductive foamed rubber roller of this invention manufactured by the manufacturing method of this invention including the process of FIG. 図1の工程を経て得られた、熱風架橋装置を通過直後の筒状体における、径方向の偏肉度の求め方を説明するための断面図である。It is sectional drawing for demonstrating how to obtain | require the radial thickness deviation in the cylindrical body just after passing the hot-air bridge | crosslinking apparatus obtained through the process of FIG. 図1の工程のうち、ゴム組成物の押出成形に用いる口金と中芯の一例を説明する斜視図である。It is a perspective view explaining an example of a die used for extrusion molding of a rubber composition, and an inside core among processes of Drawing 1. 図4の例の口金と中芯における、径方向の距離の誤差の求め方を説明するための正面図である。It is a front view for demonstrating how to obtain | require the difference | error of the distance of radial direction in a nozzle | cap | die and a center core of the example of FIG.

《導電性発泡ゴムローラの製造方法、および導電性発泡ゴムローラ》
図1は、本発明の導電性発泡ゴムローラの製造方法のうち、ゴム組成物を押出成形、発泡、および架橋させる工程の一例を説明するブロック図である。図2は、図1の工程を含む本発明の製造方法によって製造された、本発明の導電性発泡ゴムローラの一例を示す斜視図である。さらに図3は、図1の工程を経て得られた、熱風架橋装置を通過直後の筒状体における、径方向の偏肉度の求め方を説明するための断面図である。
<< Method of manufacturing conductive foam rubber roller, and conductive foam rubber roller >>
FIG. 1 is a block diagram for explaining an example of steps of extrusion molding, foaming, and crosslinking of a rubber composition in the method for producing a conductive foam rubber roller of the present invention. FIG. 2 is a perspective view showing an example of the conductive foam rubber roller of the present invention manufactured by the manufacturing method of the present invention including the process of FIG. Further, FIG. 3 is a cross-sectional view for explaining how to obtain the radial thickness deviation in the tubular body immediately after passing through the hot-air bridging apparatus obtained through the process of FIG.

図2を参照して、この例の導電性発泡ゴムローラ1は、導電性、架橋性、および発泡性を有するゴム組成物により、単層構造の筒状に形成され、中心の通孔2にシャフト3が挿通されて固定されるとともに、外周面4が研磨されたものである。
図1を参照して、この例の製造方法において使用する製造装置5は、ゴム組成物を連続的に筒状に押出成形するための押出機6と、押出成形した筒状体7をカットせずに長尺のまま、図示しないコンベア等によって連続的に搬送する搬送途上に順に配設された、マイクロ波架橋装置8、および熱風架橋装置9、ならびに筒状体7を一定の速度で引き取るための引取機10を備えている。
Referring to FIG. 2, a conductive foam rubber roller 1 of this example is formed in a single-layered cylindrical shape from a rubber composition having conductivity, crosslinkability, and foamability. 3 is inserted and fixed, and the outer peripheral surface 4 is polished.
Referring to FIG. 1, a manufacturing apparatus 5 used in the manufacturing method of this example cuts an extruder 6 for continuously extruding a rubber composition into a cylindrical shape and an extruded cylindrical body 7. In order to take up the microwave bridging device 8, the hot air bridging device 9, and the tubular body 7 arranged at a constant speed in the course of continuous conveyance by a conveyor or the like (not shown) without being long. The take-up machine 10 is provided.

本発明の製造方法においては、まずゴム分や発泡剤等の成分を所定の割合で配合した、筒状体7のもとになる、導電性、架橋性、および発泡性を有するゴム組成物をリボン状等に形成したものを押出機6に連続的に供給しながら、当該押出機6を動作させることで、長尺の筒状体7を連続的に押出成形する。
次いで、押出成形された筒状体7をコンベア、および引取機10によって一定の速度で連続的に搬送しながら、まずマイクロ波架橋装置8を通過させることでマイクロ波を照射して、筒状体7を形成するゴム組成物をある程度の架橋度まで架橋させる。またマイクロ波架橋装置8内を一定温度に加熱して、架橋とともに、発泡剤を分解させてゴム組成物を発泡させることもできる。
In the production method of the present invention, first, a rubber composition having conductivity, crosslinkability, and foamability, which is the basis of the cylindrical body 7 is blended in a predetermined ratio with components such as a rubber component and a foaming agent. The continuous tubular body 7 is continuously extruded by operating the extruder 6 while continuously supplying the ribbon-shaped one or the like to the extruder 6.
Next, while the extruded cylindrical body 7 is continuously conveyed at a constant speed by the conveyor and the take-up machine 10, the microwave is first irradiated by passing through the microwave bridging device 8, and the cylindrical body The rubber composition forming 7 is crosslinked to a certain degree of crosslinking. Moreover, the inside of the microwave bridge | crosslinking apparatus 8 can be heated to fixed temperature, and a foaming agent can be decomposed | disassembled and foamed a rubber composition with bridge | crosslinking.

次いで、さらに搬送を続けながら熱風架橋装置9を通過させて熱風を吹き付けることで、発泡剤を分解させてゴム組成物をさらに発泡させるとともに、当該ゴム組成物を所定の架橋度まで架橋させる。
図3を参照して、本発明の製造方法では、図1の工程のうち、熱風架橋装置9を通過直後の筒状体7の断面の、当該筒状体7の通孔11と外周面12との間の径方向の距離、すなわち径方向の厚みの最大値(最大厚み)Tmaxと最小値(最小厚み)Tminとの比Tmax/Tminで表される偏肉度が1.3以下となるように、当該工程においてゴム組成物を押出成形、発泡、および架橋させる。
Subsequently, the hot air is passed through the hot air cross-linking device 9 while continuing the conveyance, and the foaming agent is decomposed to further foam the rubber composition, and the rubber composition is cross-linked to a predetermined degree of cross-linking.
Referring to FIG. 3, in the manufacturing method of the present invention, in the step of FIG. 1, through-hole 11 and outer peripheral surface 12 of tubular body 7 in the cross section of tubular body 7 immediately after passing through hot air bridging device 9. radial distance, that is, the maximum value of the radial thickness (maximum thickness) T max and the minimum value (minimum thickness) thickness deviation represented by the ratio T max / T min and T min is 1 between. In this step, the rubber composition is extruded, foamed, and crosslinked so as to be 3 or less.

そうすると、発泡時の筒状体7の内部で局部的に異常発泡を生じたり、それに伴って発泡後の筒状体7の内部に割れが内在したりするのを防止できる。
偏肉度の下限は1である。すなわち偏肉を生じていないのが、最も理想的である。
しかし、偏肉度は1.3以下であればほぼ同等の効果を得ることができるため、導電性発泡ゴムローラ1の生産性等を考慮すると、偏肉度が1以上、1.3以下の範囲となるように調整しながら押出成形、発泡、および架橋させればよい。
If it does so, it can prevent that abnormal foaming locally arises in the inside of the cylindrical body 7 at the time of foaming, and that the crack exists in the inside of the cylindrical body 7 after foaming in connection with it.
The lower limit of the uneven thickness is 1. In other words, it is most ideal that no uneven thickness occurs.
However, since the substantially equivalent effect can be obtained if the unevenness degree is 1.3 or less, the unevenness degree is in the range of 1 or more and 1.3 or less in consideration of the productivity of the conductive foam rubber roller 1. What is necessary is just to carry out extrusion molding, foaming, and bridge | crosslinking, adjusting so that it may become.

ただし、導電性発泡ゴムローラ1を所定の外径とし、かつ外周面4のフレを抑えるべく、当該外周面4を研磨する際の研磨量をできるだけ少なくして、ゴム組成物の使用量を削減することを考慮すると、偏肉度は1.26以下であるのが好ましい。
偏肉度を上記の範囲内に調整するためには、できるだけ厚みが均等となるように筒状体7を押出成形し、また押出成形した筒状体7を、できるだけ均等に発泡、および架橋させればよい。
However, in order to make the conductive foamed rubber roller 1 have a predetermined outer diameter and suppress the deflection of the outer peripheral surface 4, the amount of the rubber composition used is reduced by reducing the polishing amount when polishing the outer peripheral surface 4 as much as possible. In consideration of this, the thickness deviation is preferably 1.26 or less.
In order to adjust the thickness deviation within the above range, the cylindrical body 7 is extruded so that the thickness is as uniform as possible, and the extruded cylindrical body 7 is foamed and crosslinked as evenly as possible. Just do it.

特に、できるだけ厚みが均等となるように筒状体7を押出成形することが、偏肉度を小さくする上で肝要である。
図4は、図1の工程のうち、ゴム組成物の押出成形に用いる口金と中芯の一例を説明する斜視図である。また図5は、図4の例の口金と中芯における、径方向の距離の誤差の求め方を説明するための正面図である。
In particular, it is important to extrude the cylindrical body 7 so that the thickness is as uniform as possible in order to reduce the thickness deviation.
FIG. 4 is a perspective view for explaining an example of a die and a core used for extrusion molding of a rubber composition in the process of FIG. FIG. 5 is a front view for explaining how to determine the radial distance error between the base and the core in the example of FIG.

図4を参照して、ゴム組成物を筒状に押出成形するために、この例では、開口13の形状が円形とされた口金14と、当該口金14内に配設され、口金14の開口と同一平面での断面15の形状が円形とされた中芯16とを組み合わせて用いる。
このうち中芯16は円錐状に形成され、図中に一点鎖線で示す円錐の軸17を筒状体7の押出方向E(図中に実線の矢印で示す)と一致させ、かつ円錐の頂点18を押出方向に向けるとともに、当該頂点18を、口金14の開口13から押出方向に突出させた状態で、口金14内に配設されている。
Referring to FIG. 4, in order to extrude the rubber composition into a cylindrical shape, in this example, the base 14 having a circular shape of the opening 13 and the opening of the base 14 are provided in the base 14. Are used in combination with a core 16 having a circular cross section 15 in the same plane.
Among these, the center core 16 is formed in a conical shape, and a conical shaft 17 indicated by an alternate long and short dash line in the drawing coincides with the extrusion direction E of the cylindrical body 7 (indicated by a solid arrow in the drawing), and the apex of the cone. 18 is directed in the extrusion direction, and the apex 18 is disposed in the base 14 in a state of protruding from the opening 13 of the base 14 in the extrusion direction.

かかる口金14と中芯16とを組み合わせて、できるだけ厚みが均等な筒状体7を押出成形するためには、口金14の開口13と、中芯16の、開口13と同一平面での断面15との間の、開口13の周方向の複数個所での、径方向の距離の最大値と最小値とから、先の式(1)によって求められる誤差が10%以内となるように、口金14と中芯16とを位置合わせした状態で、ゴム組成物を、口金14と中芯16との間の環状の空隙を通して筒状に押出成形するのが好ましい。   In order to extrude the cylindrical body 7 having a uniform thickness as much as possible by combining the base 14 and the center core 16, the opening 13 of the base 14 and the cross section 15 of the center core 16 in the same plane as the opening 13. 14 so that the error determined by the above equation (1) is within 10% from the maximum value and the minimum value of the radial distance at a plurality of locations in the circumferential direction of the opening 13 between The rubber composition is preferably extruded into a cylindrical shape through an annular gap between the die 14 and the core 16 in a state where the core and the core 16 are aligned.

誤差の調整には、例えば口金14を、中芯16の軸17に対して上下左右4方向からねじ等によって押し固定するための固定機構における、押し量の調整機能を利用するのが好ましい。すなわち図5を参照して、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が10%以内となるように調整する。 For the adjustment of the error, for example, it is preferable to use a pressing amount adjusting function in a fixing mechanism for pressing and fixing the base 14 with respect to the shaft 17 of the center core 16 from above, below, right and left by four screws. That Referring to FIG. 5, the press amount of the four directions of the fixing mechanism, not shown, corresponding to such four directions of the fixing mechanism, the maximum value and the minimum in the distance d 1 to d 4 four directions of the shaft 17 From the value, adjustment is made so that the error obtained by the equation (1) is within 10%.

そうすると、口金14と中芯16との間の環状の空隙を通して押出成形される発泡前の筒状体7の厚みの偏りをできるだけ小さくでき、マイクロ波架橋装置8、次いで熱風架橋装置9を通過させて連続的に発泡、および架橋させた、熱風架橋装置9を通過直後の筒状体7の偏肉度を1.3以下として、発泡時の筒状体7の内部で局部的に異常発泡を生じたり、それに伴って発泡後の筒状体7の内部に割れが内在したりするのをより一層確実に防止できる。   Then, the thickness deviation of the tubular body 7 before foaming that is extruded through the annular gap between the base 14 and the inner core 16 can be made as small as possible, and the microwave bridging device 8 and then the hot-air bridging device 9 are passed. The uneven thickness of the tubular body 7 immediately after passing through the hot air bridging device 9 that has been continuously foamed and crosslinked is set to 1.3 or less, and abnormal foaming is locally generated inside the tubular body 7 at the time of foaming. It is possible to more reliably prevent the occurrence of cracks and the occurrence of cracks inside the cylindrical body 7 after foaming.

なお、式(1)によって求められる誤差の下限は、理想的には0%であることが好ましい。ただし誤差は、10%以内であればほぼ同等の効果を得ることができるため、調製の手間を簡略化して導電性発泡ゴムローラ1の生産性等を考慮すると、誤差が0%以上、10%以下の範囲となるように調整して押出成形するのが好ましい。
また、先に説明したように押出成形した筒状体7を、できるだけ均等に発泡、および架橋させることも、先に説明した偏肉度を1.3以下とするために有効である。
It should be noted that the lower limit of the error obtained by the equation (1) is ideally preferably 0%. However, if the error is within 10%, almost the same effect can be obtained. Therefore, considering the productivity of the conductive foam rubber roller 1 by simplifying the preparation effort, the error is 0% or more and 10% or less. It is preferable to perform extrusion molding while adjusting so as to be in the above range.
Further, it is also effective to foam and crosslink the extruded cylindrical body 7 as uniformly as possible, as described above, so that the uneven thickness described above is 1.3 or less.

連続法に使用するマイクロ波架橋装置8、および熱風架橋装置9は、かかる点を考慮して設計するのが一般的であるため、通常は押出成形した筒状体7を、そのままの状態で両装置内を通過させるだけでも差支えない。
しかし筒状体7の全体で、マイクロ波の照射線量や加熱の度合いをより一層均一化して、さらに均等に発泡、および架橋させるべく、搬送途中の筒状体7に捻りを加えるようにしてもよい。
Since the microwave crosslinking apparatus 8 and the hot air crosslinking apparatus 9 used in the continuous method are generally designed in consideration of such points, the extruded cylindrical body 7 is usually left as it is. You can just pass through the device.
However, the entire cylindrical body 7 may be twisted in the course of conveyance so that the microwave irradiation dose and the degree of heating can be made more uniform, and foamed and crosslinked evenly. Good.

このあと、発泡、および架橋させた筒状体7を所定の長さにカットし、必要に応じて熱風オーブン中等で加熱して二次架橋させた後、図2に示すように通孔2にシャフト3を挿通して固定し、さらに外周面4を研磨することで、図1に示すようにシャフト3と電気的に接合され、かつ機械的に固定された状態の導電性発泡ゴムローラ1が製造される。
研磨は任意の時点で実施できるが、所定の長さにカットし、シャフト3を挿通して固定した図2の状態で、シャフト3を中心として回転させながら研磨するのが、作業性を向上し、なおかつ外周面4のフレを抑制する上で好ましい。
Thereafter, the foamed and cross-linked cylindrical body 7 is cut to a predetermined length and, if necessary, heated in a hot air oven or the like to be secondary cross-linked, and then into the through-hole 2 as shown in FIG. The shaft 3 is inserted and fixed, and the outer peripheral surface 4 is polished, whereby the conductive foam rubber roller 1 is manufactured which is electrically joined to the shaft 3 and mechanically fixed as shown in FIG. Is done.
Polishing can be performed at any time, but in the state of FIG. 2 where the shaft 3 is cut and inserted and fixed, polishing is performed while rotating around the shaft 3 to improve workability. In addition, it is preferable for suppressing the deflection of the outer peripheral surface 4.

この際、本発明によれば、先に説明したように筒状体7の偏肉度が1.3以下とされ、当該筒状体7内に、異常発泡による割れが内在していないため、研磨によって剥離や窪みを生じることがなく、外径の寸法精度や硬さに影響を生じない導電性発泡ゴムローラ1を製造できる。
また本発明によれば、連続法を実施することにより、生産性を向上して導電性発泡ゴムローラ1の生産コストを圧縮できるという利点もある。
At this time, according to the present invention, as described above, the thickness deviation of the cylindrical body 7 is 1.3 or less, and cracks due to abnormal foaming are not inherent in the cylindrical body 7, The conductive foamed rubber roller 1 that does not cause peeling or dent due to polishing and does not affect the dimensional accuracy and hardness of the outer diameter can be manufactured.
Further, according to the present invention, there is an advantage that the productivity can be improved and the production cost of the conductive foam rubber roller 1 can be reduced by carrying out the continuous method.

シャフト3は、例えばアルミニウム、アルミニウム合金、ステンレス鋼等の金属によって一体に形成される。
かかるシャフト3は、通孔2の内径よりも外径の大きいものを圧入することで、導電性発泡ゴムローラ1と電気的に接合するとともに機械的に固定してもよいし、導電性を有する熱硬化性接着剤を介して導電性発泡ゴムローラ1と電気的に接合するとともに機械的に固定してもよい。
The shaft 3 is integrally formed of a metal such as aluminum, an aluminum alloy, or stainless steel.
Such a shaft 3 may be electrically joined to the conductive foamed rubber roller 1 and mechanically fixed by press-fitting a shaft having an outer diameter larger than the inner diameter of the through-hole 2, or a conductive heat. The conductive foam rubber roller 1 may be electrically bonded and mechanically fixed via a curable adhesive.

このうち後者の場合は、例えば熱風オーブン中で加熱して熱硬化性接着剤を硬化させる際に、同時に導電性発泡ゴムローラ1を二次架橋させてもよい。
マイクロ波架橋装置8、および熱風架橋装置9の詳細は、例えば先に説明した特許文献1ないし3等に記載のとおりである。
導電性発泡ゴムローラ1は、例えば帯電ローラ、現像ローラ、転写ローラ等として、電子写真法を利用した画像形成装置に組み込んで使用することができる。
In the latter case, for example, when the thermosetting adhesive is cured by heating in a hot air oven, the conductive foamed rubber roller 1 may be secondarily crosslinked at the same time.
The details of the microwave cross-linking device 8 and the hot air cross-linking device 9 are as described in, for example, Patent Documents 1 to 3 described above.
The conductive foam rubber roller 1 can be used by being incorporated in an image forming apparatus using electrophotography, for example, as a charging roller, a developing roller, a transfer roller, or the like.

導電性発泡ゴムローラ1は、(社)日本ゴム協会標準規格SRIS 0101「膨張ゴムの物理試験方法」に記載された測定方法により、温度23℃、相対湿度55%の常温常湿環境下、4.9Nの荷重を付加して測定されるアスカーC型硬さが50°以下であるのが好ましい。
アスカーC型硬さがこの範囲を超える導電性発泡ゴムローラ1は柔軟性が不足して、例えば転写ローラとして使用した際に、広いニップ幅を確保してトナーの転写効率を向上する効果や、感光体へのダメージを低減する効果が得られないおそれがある。
The conductive foamed rubber roller 1 is measured under a normal temperature and humidity environment at a temperature of 23 ° C. and a relative humidity of 55% according to the measurement method described in Japan Rubber Association Standard SRIS 0101 “Physical Test Method for Expanded Rubber”. The Asker C-type hardness measured with a 9N load applied is preferably 50 ° or less.
The conductive foamed rubber roller 1 having an Asker C-type hardness exceeding this range lacks flexibility. For example, when used as a transfer roller, the conductive foam rubber roller 1 has an effect of ensuring a wide nip width to improve toner transfer efficiency and photosensitivity. The effect of reducing damage to the body may not be obtained.

アスカーC型硬さを調整するためには、例えばゴム組成物を構成する各成分の種類と量を調整すればよい。
《ゴム組成物》
導電性発泡ゴムローラ1のもとになるゴム組成物としては、押出機6を用いて筒状に押出成形可能で、マイクロ波架橋装置8、および熱風架橋装置9を通過させた際に発泡、架橋する発泡性、架橋性を有し、なおかつ導電性発泡ゴムローラ1の用途に応じた任意の導電性を有するゴム組成物を用いることができる。
In order to adjust Asker C-type hardness, for example, the type and amount of each component constituting the rubber composition may be adjusted.
<Rubber composition>
The rubber composition used as the base of the conductive foamed rubber roller 1 can be extruded into a cylindrical shape by using an extruder 6 and is foamed and cross-linked when passed through the microwave cross-linking device 8 and the hot-air cross-linking device 9. It is possible to use a rubber composition having any foaming property and cross-linking property and having any conductivity according to the use of the conductive foamed rubber roller 1.

特に導電性付与剤として、ゴム分を兼ねるイオン導電性ゴムを用いてイオン導電性を付与したゴム組成物が好ましい。
〈ゴム分〉
ゴム分としては、イオン導電性ゴムと架橋性ゴムとを併用するのが好ましい。
(イオン導電性ゴム)
イオン導電性ゴムとしては、エピクロルヒドリンゴムが好ましい。
In particular, a rubber composition imparted with ionic conductivity using an ionic conductive rubber also serving as a rubber component is preferable as the conductivity imparting agent.
<Rubber>
As the rubber component, it is preferable to use an ion conductive rubber and a crosslinkable rubber in combination.
(Ion conductive rubber)
As the ion conductive rubber, epichlorohydrin rubber is preferable.

エピクロルヒドリンゴムとしては、例えばエピクロルヒドリン単独重合体、エピクロルヒドリン−エチレンオキサイド二元共重合体(ECO)、エピクロルヒドリン−プロピレンオキサイド二元共重合体、エピクロルヒドリン−アリルグリシジルエーテル二元共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体(GECO)、エピクロルヒドリン−プロピレンオキサイド−アリルグリシジルエーテル三元共重合体、およびエピクロルヒドリン−エチレンオキサイド−プロピレンオキサイド−アリルグリシジルエーテル四元共重合体等の1種または2種以上が挙げられる。   Examples of the epichlorohydrin rubber include epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide binary copolymer (ECO), epichlorohydrin-propylene oxide binary copolymer, epichlorohydrin-allyl glycidyl ether binary copolymer, epichlorohydrin-ethylene oxide- 1 type or 2 types, such as allylic glycidyl ether terpolymer (GECO), epichlorohydrin-propylene oxide-allyl glycidyl ether terpolymer, and epichlorohydrin-ethylene oxide-propylene oxide-allyl glycidyl ether quaternary copolymer The above is mentioned.

またエピクロルヒドリンゴムとしては、例示の中でもエチレンオキサイドを含む共重合体、特にECO、および/またはGECOが好ましい。
両共重合体においてエチレンオキサイド含量は、いずれも30モル%以上、特に50モル%以上であるのが好ましく、80モル%以下であるのが好ましい。
エチレンオキサイドは、導電性発泡ゴムローラ1の全体でローラ抵抗値を下げる働きをする。しかしエチレンオキサイド含量がこの範囲未満では、かかる働きが十分に得られないため、ローラ抵抗値を十分に低下できないおそれがある。
As the epichlorohydrin rubber, among the examples, a copolymer containing ethylene oxide, particularly ECO and / or GECO is preferable.
In both copolymers, the ethylene oxide content is preferably 30 mol% or more, particularly preferably 50 mol% or more, and more preferably 80 mol% or less.
Ethylene oxide serves to lower the roller resistance value of the entire conductive foam rubber roller 1. However, when the ethylene oxide content is less than this range, such a function cannot be obtained sufficiently, and the roller resistance value may not be sufficiently reduced.

一方、エチレンオキサイド含量が範囲を超える場合には、エチレンオキサイドの結晶化が起こり分子鎖のセグメント運動が妨げられるため、逆にローラ抵抗値が上昇する傾向がある。また、発泡、および架橋後の導電性発泡ゴムローラ1の硬度が上昇したり、架橋前のゴム組成物の、加熱溶融時の粘度が上昇したりするおそれもある。
ECOにおけるエピクロルヒドリン含量は、エチレンオキサイド含量の残量である。すなわちエピクロルヒドリン含量は20モル%以上であるのが好ましく、70モル%以下、特に50モル%以下であるのが好ましい。
On the other hand, when the ethylene oxide content exceeds the range, crystallization of ethylene oxide occurs and the segmental movement of the molecular chain is hindered, so that the roller resistance value tends to increase. Further, there is a possibility that the hardness of the conductive foamed rubber roller 1 after foaming and cross-linking increases, or the viscosity of the rubber composition before cross-linking increases during heating and melting.
The epichlorohydrin content in ECO is the remaining amount of ethylene oxide content. That is, the epichlorohydrin content is preferably 20 mol% or more, preferably 70 mol% or less, and particularly preferably 50 mol% or less.

またGECOにおけるアリルグリシジルエーテル含量は0.5モル%以上、特に2モル%以上であるのが好ましく、10モル%以下、特に5モル%以下であるのが好ましい。
アリルグリシジルエーテルは、それ自体が側鎖として自由体積を確保するために機能することにより、エチレンオキサイドの結晶化を抑制して、導電性発泡ゴムローラ1のローラ抵抗値を低下させる働きをする。しかしアリルグリシジルエーテル含量がこの範囲未満では、かかる働きが得られないため、ローラ抵抗値を十分に低下できないおそれがある。
Further, the allylic glycidyl ether content in GECO is preferably 0.5 mol% or more, particularly preferably 2 mol% or more, more preferably 10 mol% or less, and particularly preferably 5 mol% or less.
The allyl glycidyl ether itself functions to secure a free volume as a side chain, thereby suppressing the crystallization of ethylene oxide and reducing the roller resistance value of the conductive foam rubber roller 1. However, when the allyl glycidyl ether content is less than this range, such a function cannot be obtained, so that the roller resistance value may not be sufficiently reduced.

一方、アリルグリシジルエーテルは、GECOの架橋時に架橋点として機能するため、アリルグリシジルエーテル含量が範囲を超える場合には、GECOの架橋密度が高くなり、分子鎖のセグメント運動が妨げられるため、却ってローラ抵抗値が上昇する傾向がある。また導電性発泡ゴムローラ1の切断時伸びや100%モジュラス、疲労特性、耐屈曲性等が低下するおそれもある。   On the other hand, since allyl glycidyl ether functions as a crosslinking point during GECO crosslinking, when the allyl glycidyl ether content exceeds the range, the GECO crosslinking density becomes high and the molecular chain segmental movement is hindered. The resistance value tends to increase. Further, the elongation, 100% modulus, fatigue characteristics, bending resistance, etc. of the conductive foam rubber roller 1 may be reduced.

GECOにおけるエピクロルヒドリン含量は、エチレンオキサイド含量、およびアリルグリシジルエーテル含量の残量である。すなわちエピクロルヒドリン含量は10モル%以上、特に19.5モル%以上であるのが好ましく、69.5モル%以下、特に60モル%以下であるのが好ましい。
GECOとしては、先に説明した3種の単量体を共重合させた狭義の意味での共重合体のほかに、エピクロルヒドリン−エチレンオキサイド共重合体(ECO)をアリルグリシジルエーテルで変性した変性物も知られており、本発明ではいずれのGECOも使用可能である。
The epichlorohydrin content in GECO is the remaining amount of ethylene oxide content and allyl glycidyl ether content. That is, the epichlorohydrin content is preferably 10 mol% or more, particularly 19.5 mol% or more, preferably 69.5 mol% or less, particularly preferably 60 mol% or less.
GECO includes a modified product obtained by modifying epichlorohydrin-ethylene oxide copolymer (ECO) with allyl glycidyl ether in addition to the above-described copolymer in the narrow sense obtained by copolymerization of the three types of monomers. Any GECO can be used in the present invention.

エピクロルヒドリンゴムの配合割合は、ゴム分の総量100質量部中の5質量部以上、特に10質量部以上であるのが好ましく、40質量部以下、特に30質量部以下であるのが好ましい。
配合割合がこの範囲未満では、導電性発泡ゴムローラ1に良好なイオン導電性を付与できないおそれがある。
The blending ratio of epichlorohydrin rubber is preferably 5 parts by mass or more, particularly 10 parts by mass or more, and preferably 40 parts by mass or less, particularly 30 parts by mass or less, in 100 parts by mass of the total amount of rubber.
If the blending ratio is less than this range, the conductive foamed rubber roller 1 may not be provided with good ionic conductivity.

一方、範囲を超える場合には、相対的に架橋性ゴムの配合割合が少なくなって、次に説明する各種架橋性ゴムを配合することによる効果が十分に得られないおそれがある。
(架橋性ゴム)
架橋性ゴムとしては、スチレンブタジエンゴム(SBR)、および/またはアクリロニトリルブタジエンゴム(NBR)が挙げられる。これらのゴムは良好な架橋性を有する上、発泡、および架橋後の導電性発泡ゴムローラ1に良好なゴム弾性や柔軟性を付与できる。
On the other hand, when it exceeds the range, the blending ratio of the crosslinkable rubber is relatively reduced, and there is a possibility that the effect of blending various crosslinkable rubbers described below cannot be sufficiently obtained.
(Crosslinkable rubber)
Examples of the crosslinkable rubber include styrene butadiene rubber (SBR) and / or acrylonitrile butadiene rubber (NBR). These rubbers have good crosslinkability, and can impart good rubber elasticity and flexibility to the foamed and foamed conductive foamed rubber roller 1.

また、架橋性ゴムとしてさらにエチレンプロピレンジエンゴム(EPDM)を配合すると、導電性発泡ゴムローラ1の、画像形成装置内で発生するオゾンに対する耐性を向上できる。
(SBR、NBR)
SBRとしては、スチレンと1,3−ブタジエンとを乳化重合法、溶液重合法等の種々の重合法によって共重合させて合成される種々のSBRがいずれも使用可能である。またSBRとしては、伸展油を加えて柔軟性を調整した油展タイプのものと、加えない非油展タイプのものとがあるが、このいずれも使用可能である。
Further, when ethylene propylene diene rubber (EPDM) is further blended as the crosslinkable rubber, the resistance of the conductive foam rubber roller 1 to ozone generated in the image forming apparatus can be improved.
(SBR, NBR)
As the SBR, any of various SBRs synthesized by copolymerizing styrene and 1,3-butadiene by various polymerization methods such as an emulsion polymerization method and a solution polymerization method can be used. In addition, as SBR, there are an oil-extended type in which flexibility is adjusted by adding an extending oil and a non-oil-extended type in which flexibility is not added, either of which can be used.

さらにSBRとしては、スチレン含量によって分類される高スチレンタイプ、中スチレンタイプ、および低スチレンタイプのSBRがいずれも使用可能である。スチレン含量や架橋度を変更することで、導電性発泡ゴムローラ1の各種物性を調整できる。
これらSBRの1種または2種以上が使用可能である。
またNBRとしては、アクリロニトリル含量によって分類される低ニトリルNBR、中ニトリルNBR、中高ニトリルNBR、高ニトリルNBR、および極高ニトリルNBRがいずれも使用可能である。これらNBRの1種または2種以上が使用可能である。
Furthermore, as the SBR, any of SBR of high styrene type, medium styrene type, and low styrene type classified by styrene content can be used. Various physical properties of the conductive foam rubber roller 1 can be adjusted by changing the styrene content and the degree of crosslinking.
One or more of these SBRs can be used.
As NBR, any of low nitrile NBR, medium nitrile NBR, medium high nitrile NBR, high nitrile NBR, and extremely high nitrile NBR classified by acrylonitrile content can be used. One or more of these NBRs can be used.

さらにSBRとNBRも併用できる。
SBR、および/またはNBRの配合割合は、ゴム分の総量100質量部中の40質量部以上、特に60質量部以上であるのが好ましく、90質量部以下、特に80質量部以下であるのが好ましい。
配合割合がこの範囲未満では、SBR、および/またはNBRを用いることによる、先に説明した、ゴム組成物に良好な架橋性を付与する効果や、発泡、および架橋後の導電性発泡ゴムローラ1に良好なゴム弾性や柔軟性を付与する効果が十分に得られないおそれがある。
Furthermore, SBR and NBR can be used together.
The blending ratio of SBR and / or NBR is preferably 40 parts by mass or more, particularly 60 parts by mass or more, and particularly 90 parts by mass or less, particularly 80 parts by mass or less, in 100 parts by mass of the total amount of rubber. preferable.
When the blending ratio is less than this range, the effect of imparting good crosslinkability to the rubber composition described above by using SBR and / or NBR, and the conductive foamed rubber roller 1 after foaming and crosslinking are used. There is a possibility that the effect of imparting good rubber elasticity and flexibility cannot be obtained sufficiently.

一方、範囲を超える場合には、相対的にEPDMの配合割合が少なくなって導電性発泡ゴムローラ1に良好なオゾン耐性を付与できないおそれがある。また相対的にエピクロルヒドリンゴムの配合割合が少なくなって、導電性発泡ゴムローラ1に良好なイオン導電性を付与できないおそれもある。
なお配合割合は、SBRとして油展タイプのものを用いる場合は、当該油展タイプのSBR中に含まれる固形分としてのSBR自体の配合割合である。またSBRとNBRを併用する場合は、その合計の配合割合である。
(EPDM)
EPDMとしては、エチレンとプロピレンに少量の第3成分(ジエン分)を加えることで主鎖中に二重結合を導入した種々のEPDMが、いずれも使用可能である。
On the other hand, when it exceeds the range, the blending ratio of EPDM is relatively reduced, and there is a possibility that good ozone resistance cannot be imparted to the conductive foamed rubber roller 1. Further, the blending ratio of epichlorohydrin rubber is relatively decreased, and there is a possibility that good ionic conductivity cannot be imparted to the conductive foam rubber roller 1.
In addition, a mixing | blending ratio is a mixing | blending ratio of SBR itself as solid content contained in SBR of the said oil-extended type when using an oil-extended type thing as SBR. Moreover, when using SBR and NBR together, it is the total blending ratio.
(EPDM)
As EPDM, any of various EPDMs in which a double bond is introduced into the main chain by adding a small amount of a third component (diene component) to ethylene and propylene can be used.

EPDMとしては、かかる第3成分の種類や量の違いによる様々な製品が提供されている。代表的な第3成分としては、例えばエチリデンノルボルネン(ENB)、1,4−ヘキサジエン(1,4−HD)、ジシクロペンタジエン(DCP)等が挙げられる。重合触媒としてはチーグラー触媒を使用するのが一般的である。
EPDMの配合割合は、ゴム分の総量100質量部中の5質量部以上であるのが好ましく、40質量部以下、特に20質量部以下であるのが好ましい。
As EPDM, various products are provided depending on the kind and amount of the third component. Representative examples of the third component include ethylidene norbornene (ENB), 1,4-hexadiene (1,4-HD), dicyclopentadiene (DCP), and the like. A Ziegler catalyst is generally used as the polymerization catalyst.
The blending ratio of EPDM is preferably 5 parts by mass or more, more preferably 40 parts by mass or less, and particularly preferably 20 parts by mass or less, in 100 parts by mass of the total rubber content.

配合割合がこの範囲未満では、導電性発泡ゴムローラ1に良好なオゾン耐性を付与できないおそれがある。
一方、範囲を超える場合には、相対的にSBR、および/またはNBRの配合割合が少なくなって、これらのゴムを配合することによる、ゴム組成物に良好な架橋性を付与する効果や、発泡、および架橋後の導電性発泡ゴムローラ1に良好なゴム弾性や柔軟性を付与する効果が十分に得られないおそれがある。また相対的にエピクロルヒドリンゴムの配合割合が少なくなって、導電性発泡ゴムローラ1に良好なイオン導電性を付与できないおそれもある。
If the blending ratio is less than this range, there is a possibility that good ozone resistance cannot be imparted to the conductive foamed rubber roller 1.
On the other hand, when exceeding the range, the blending ratio of SBR and / or NBR is relatively reduced, and by blending these rubbers, the effect of imparting good crosslinkability to the rubber composition, foaming, Further, there is a possibility that the effect of imparting good rubber elasticity and flexibility to the conductive foamed rubber roller 1 after crosslinking may not be sufficiently obtained. Further, the blending ratio of epichlorohydrin rubber is relatively decreased, and there is a possibility that good ionic conductivity cannot be imparted to the conductive foam rubber roller 1.

(その他のゴム)
ゴム分として、さらにクロロプレンゴム(CR)、ブタジエンゴム(BR)、アクリルゴム(ACM)等の極性ゴムを配合して、導電性発泡ゴムローラ1のローラ抵抗値を微調整することもできる。
〈発泡成分〉
ゴム組成物には、当該ゴム組成物を発泡させるための発泡成分を配合する。
(Other rubber)
As a rubber component, polar rubber such as chloroprene rubber (CR), butadiene rubber (BR), acrylic rubber (ACM) or the like can be further blended to finely adjust the roller resistance value of the conductive foam rubber roller 1.
<Foaming component>
The rubber composition is blended with a foaming component for foaming the rubber composition.

かかる発泡成分としては、加熱により分解し、気体を発生してゴム組成物を発泡させることができる発泡剤のみを、ゴム分の総量100質量部あたり1質量部以上、10質量部以下の割合で使用するか、または当該量の発泡剤と、ゴム分の総量100質量部あたり5質量部以下の発泡助剤とを併用するのが好ましい。
発泡成分として、発泡剤の分解温度を低くして発泡セルのセル径を細かくする働きをする発泡助剤を除く、すなわち発泡助剤を全く配合せずに、加熱によって分解して気体を発生する発泡剤のみを単独で使用するか、あるいは発泡助剤を配合するとしても、その配合割合を上で説明した範囲に制限して配合することにより、導電性発泡ゴムローラ1の全体で発泡セル径を大きくできる。
As such a foaming component, only a foaming agent that can be decomposed by heating and generate a gas to foam the rubber composition is a ratio of 1 part by mass or more and 10 parts by mass or less per 100 parts by mass of the total amount of rubber. It is preferable to use or use together the foaming agent of the said quantity, and the foaming adjuvant of 5 mass parts or less per 100 mass parts of total amounts of rubber | gum.
As a foaming component, excluding the foaming aid that lowers the decomposition temperature of the foaming agent to reduce the cell diameter of the foamed cell, that is, it does not contain any foaming aid and decomposes by heating to generate gas. Even if only the foaming agent is used or the foaming aid is blended, the foamed cell diameter of the entire conductive foamed rubber roller 1 can be reduced by blending the blending ratio limited to the range described above. Can be big.

また発泡剤の配合割合をこの範囲とすることで先に説明した異常発泡を抑制し、筒状体7を良好に発泡させるとともに、発泡、および架橋後の外周面4および内周面の断面形状をきれいな円形とし、かつ内径の寸法をできるだけ均一化し、しかも発泡セルの分布をできるだけ均一化して、硬さや導電性のムラが小さい導電性発泡ゴムローラ1を製造できる。   In addition, the above-described abnormal foaming is suppressed by setting the blending ratio of the foaming agent within this range, the cylindrical body 7 is foamed well, and the outer peripheral surface 4 and the inner peripheral surface after foaming and cross-sectional shape are cross-linked. The conductive foam rubber roller 1 can be manufactured with a uniform circular shape as much as possible and with the distribution of the foamed cells made as uniform as possible to reduce hardness and conductivity unevenness.

なお、かかる効果をさらに向上することを考慮すると、発泡剤の配合割合は、ゴム分の総量100質量部あたり1.5質量部以上であるのが好ましく、8質量部以下であるのが好ましい。また発泡助剤は配合しないのが最も好ましい。
発泡剤としては、例えばアゾジカルボンアミド(HNOCN=NCONH、ADCA)、4,4′−オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)、N,N−ジニトロソペンタメチレンテトラミン(DPT)等の1種または2種以上が挙げられる。
In consideration of further improving this effect, the blending ratio of the foaming agent is preferably 1.5 parts by mass or more and preferably 8 parts by mass or less per 100 parts by mass of the total amount of rubber. Most preferably, no foaming aid is blended.
Examples of the blowing agent include 1 such as azodicarbonamide (H 2 NOCN = NCONH 2 , ADCA), 4,4′-oxybis (benzenesulfonylhydrazide) (OBSH), N, N-dinitrosopentamethylenetetramine (DPT) and the like. A seed | species or 2 or more types is mentioned.

また、発泡助剤としては尿素が挙げられる。
〈架橋成分〉
ゴム組成物には、ゴム分を架橋させるための架橋成分を配合する。架橋成分としては、架橋剤、促進剤等が挙げられる。
このうち架橋剤としては、例えば硫黄系架橋剤、チオウレア系架橋剤、トリアジン誘導体系架橋剤、過酸化物系架橋剤、各種モノマー等の1種または2種以上が挙げられる。中でも硫黄系架橋剤が好ましい。
Moreover, urea is mentioned as a foaming adjuvant.
<Crosslinking component>
In the rubber composition, a crosslinking component for crosslinking the rubber component is blended. Examples of the crosslinking component include a crosslinking agent and an accelerator.
Among these, examples of the crosslinking agent include one or more of sulfur-based crosslinking agents, thiourea-based crosslinking agents, triazine derivative-based crosslinking agents, peroxide-based crosslinking agents, various monomers, and the like. Of these, sulfur-based crosslinking agents are preferred.

また硫黄系架橋剤としては、粉末硫黄や有機含硫黄化合物等が挙げられる。このうち有機含硫黄化合物等としては、テトラメチルチウラムジスルフィド、N,N−ジチオビスモルホリン等が挙げられる。特に粉末硫黄等の硫黄が好ましい。
硫黄の配合割合は、ゴム分の総量100質量部あたり0.2質量部以上、特に1質量部以上であるのが好ましく、5質量部以下、特に3質量部以下であるのが好ましい。
Examples of sulfur-based crosslinking agents include powdered sulfur and organic sulfur-containing compounds. Among these, examples of the organic sulfur-containing compound include tetramethylthiuram disulfide and N, N-dithiobismorpholine. In particular, sulfur such as powdered sulfur is preferred.
The blending ratio of sulfur is preferably 0.2 parts by mass or more, particularly 1 part by mass or more, preferably 5 parts by mass or less, particularly 3 parts by mass or less, per 100 parts by mass of the total amount of rubber.

配合割合がこの範囲未満では、ゴム組成物の全体での架橋速度が遅くなり、架橋に要する時間が長くなって導電性発泡ゴムローラ1の生産性が低下するおそれがある。また範囲を超える場合には、発泡、および架橋後の導電性発泡ゴムローラ1の圧縮永久ひずみが大きくなったり、過剰の硫黄が導電性発泡ゴムローラ1の外周面4にブルームしたりするおそれがある。   If the blending ratio is less than this range, the crosslinking rate of the rubber composition as a whole becomes slow, and the time required for crosslinking becomes long, and the productivity of the conductive foamed rubber roller 1 may be lowered. Further, if the range is exceeded, there is a possibility that the compression set of the foamed and crosslinked conductive foamed rubber roller 1 becomes large, or excessive sulfur blooms on the outer peripheral surface 4 of the conductive foamed rubber roller 1.

促進剤としては、例えば消石灰、マグネシア(MgO)、リサージ(PbO)等の無機促進剤や、有機促進剤等の1種または2種以上が挙げられる。
また有機促進剤としては、例えばジ−o−トリルグアニジン、1,3−ジフェニルグアニジン、1−o−トリルビグアニド、ジカテコールボレートのジ−o−トリルグアニジン塩等のグアニジン系促進剤;2−メルカプトベンゾチアゾール、ジ−2−ベンゾチアジルジスルフィド等のチアゾール系促進剤;N−シクロへキシル−2−ベンゾチアジルスルフェンアミド等のスルフェンアミド系促進剤;テトラメテルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム系促進剤;チオウレア系促進剤等の1種または2種以上が挙げられる。
Examples of the accelerator include inorganic accelerators such as slaked lime, magnesia (MgO), and resurge (PbO), and one or more organic accelerators.
Examples of the organic accelerator include guanidine accelerators such as di-o-tolylguanidine, 1,3-diphenylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt; 2-mercapto Thiazole accelerators such as benzothiazole and di-2-benzothiazyl disulfide; sulfenamide accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide; tetrametherthiuram monosulfide, tetramethylthiuram One type or two or more types of thiuram accelerators such as disulfide, tetraethylthiuram disulfide, and dipentamethylene thiuram tetrasulfide;

促進剤としては、かかる種々の促進剤の中から、組み合わせる架橋剤の種類に応じて、最適な促進剤の1種または2種以上を選択して使用すればよい。例えば架橋剤として硫黄を使用する場合は、促進剤としてチウラム系促進剤、および/またはチアゾール系促進剤を選択して使用するのが好ましい。
また促進剤は、種類によって架橋促進のメカニズムが異なるため、2種以上を併用するのが好ましい。併用する個々の促進剤の配合割合は任意に設定することができるが、ゴム分の総量100質量部あたり0.1質量部以上、特に0.5質量部以上であるのが好ましく、10質量部以下、特に6質量部以下であるのが好ましい。
As the accelerator, one or more of the optimum accelerators may be selected from the various accelerators according to the type of the crosslinking agent to be combined. For example, when sulfur is used as a crosslinking agent, it is preferable to select and use a thiuram accelerator and / or a thiazole accelerator as an accelerator.
Moreover, since the acceleration | stimulation mechanism of a crosslinking agent changes with kinds, it is preferable to use 2 or more types together. The blending ratio of the individual accelerators used in combination can be arbitrarily set, but is preferably 0.1 parts by mass or more, particularly preferably 0.5 parts by mass or more per 100 parts by mass of the total amount of rubber. Hereinafter, it is particularly preferably 6 parts by mass or less.

架橋成分としては、さらに促進助剤を配合してもよい。
促進助剤としては、例えば亜鉛華等の金属化合物;ステアリン酸、オレイン酸、綿実脂肪酸等の脂肪酸、その他従来公知の促進助剤の1種または2種以上が挙げられる。
促進助剤の配合割合は、ゴム分の種類および組み合わせや、架橋剤、促進剤の種類および組み合わせ等に応じて適宜設定することができる。
As the cross-linking component, an accelerator aid may be further blended.
Examples of the acceleration aid include one or more metal compounds such as zinc oxide; fatty acids such as stearic acid, oleic acid, and cottonseed fatty acid; and other conventionally known acceleration aids.
The blending ratio of the accelerator aid can be appropriately set according to the kind and combination of the rubber component, the kind and combination of the crosslinking agent and accelerator, and the like.

〈その他〉
ゴム組成物には、さらに必要に応じて各種の添加剤を配合してもよい。かかる添加剤としては、例えば受酸剤、可塑成分(可塑剤、加工助剤等)、劣化防止剤、充填剤、スコーチ防止剤、紫外線吸収剤、滑剤、顔料、帯電防止剤、難燃剤、中和剤、造核剤、共架橋剤等が挙げられる。
<Others>
You may mix | blend various additives with a rubber composition further as needed. Examples of such additives include acid acceptors, plastic components (plasticizers, processing aids, etc.), deterioration inhibitors, fillers, scorch inhibitors, ultraviolet absorbers, lubricants, pigments, antistatic agents, flame retardants, Examples thereof include a compatibilizer, a nucleating agent, and a co-crosslinking agent.

受酸剤は、ゴム分の架橋時にエピクロルヒドリンゴムから発生する塩素系ガスの、導電性発泡ゴムローラ1内への残留と、それによる架橋阻害や感光体の汚染等を防止するために機能する。
受酸剤としては、酸受容体として作用する種々の物質を用いることができるが、分散性に優れていることからハイドロタルサイト類またはマグサラットが好ましく、特にハイドロタルサイト類が好ましい。
The acid acceptor functions to prevent the chlorine-based gas generated from the epichlorohydrin rubber during the crosslinking of the rubber component from remaining in the conductive foamed rubber roller 1, thereby inhibiting crosslinking and contamination of the photoreceptor.
As the acid acceptor, various substances acting as an acid acceptor can be used. However, hydrotalcite or magsarat is preferable because of excellent dispersibility, and hydrotalcite is particularly preferable.

またハイドロタルサイト類等を酸化マグネシウムや酸化カリウムと併用するとより高い受酸効果を得ることができ、感光体の汚染をより一層確実に防止できる。
受酸剤の配合割合は、ゴム分の総量100質量部あたり0.2質量部以上、特に0.5質量部以上であるのが好ましく、5質量部以下、特に3質量部以下であるのが好ましい。
配合割合がこの範囲未満では、受酸剤を含有させることによる効果が十分に得られないおそれがある。また範囲を超える場合には、発泡、および架橋後の導電性発泡ゴムローラ1の硬さが上昇するおそれがある。
Further, when hydrotalcites or the like are used in combination with magnesium oxide or potassium oxide, a higher acid receiving effect can be obtained, and contamination of the photoreceptor can be prevented more reliably.
The blending ratio of the acid acceptor is preferably 0.2 parts by mass or more, particularly 0.5 parts by mass or more, preferably 5 parts by mass or less, particularly 3 parts by mass or less, per 100 parts by mass of the total amount of rubber. preferable.
If the blending ratio is less than this range, the effect of containing the acid acceptor may not be sufficiently obtained. Moreover, when exceeding a range, there exists a possibility that the hardness of the conductive foamed rubber roller 1 after foaming and bridge | crosslinking may rise.

可塑剤としては、例えばジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、トリクレジルホスフェート等の各種可塑剤や、極性ワックス等の各種ワックス等が挙げられる。また加工助剤としてはステアリン酸等の脂肪酸などが挙げられる。
これら可塑成分の配合割合は、ゴム分の総量100質量部あたり5質量部以下であるのが好ましい。例えば画像形成装置に使用する場合、官能体に対して汚染を生じるのを防止するためである。
Examples of the plasticizer include various plasticizers such as dibutyl phthalate (DBP), dioctyl phthalate (DOP), and tricresyl phosphate, and various waxes such as polar wax. Examples of the processing aid include fatty acids such as stearic acid.
The blending ratio of these plastic components is preferably 5 parts by mass or less per 100 parts by mass of the total amount of rubber. For example, when used in an image forming apparatus, it is for preventing contamination of a functional substance.

劣化防止剤としては、各種の老化防止剤や酸化防止剤等が挙げられる。
このうち酸化防止剤は、導電性発泡ゴムローラ1のローラ抵抗値の環境依存性を低減するとともに、連続通電時のローラ抵抗値の上昇を抑制する働きをする。酸化防止剤としては、例えばジエチルジチオカルバミン酸ニッケル〔大内新興化学工業(株)製のノクラック(登録商標)NEC−P〕、ジブチルジチオカルバミン酸ニッケル〔大内新興化学工業(株)製のノクラックNBC〕等が挙げられる。
Examples of the deterioration preventing agent include various antiaging agents and antioxidants.
Among these, the antioxidant functions to reduce the environmental dependency of the roller resistance value of the conductive foam rubber roller 1 and to suppress an increase in the roller resistance value during continuous energization. As an antioxidant, for example, nickel diethyldithiocarbamate [Nocrak (registered trademark) NEC-P manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.], nickel dibutyldithiocarbamate [Nocrack NBC manufactured by Ouchi Shinsei Chemical Industrial Co., Ltd.] Etc.

充填剤としては、例えば酸化亜鉛、シリカ、カーボン、カーボンブラック、クレー、タルク、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム等の1種または2種以上が挙げられる。
充填剤を配合することにより、導電性発泡ゴムローラ1の機械的強度等を向上できる。
また充填剤として導電性カーボンブラックを用いて、導電性発泡ゴムローラ1に電子導電性を付与することもできる。
Examples of the filler include one or more of zinc oxide, silica, carbon, carbon black, clay, talc, calcium carbonate, magnesium carbonate, aluminum hydroxide, and the like.
By blending the filler, the mechanical strength of the conductive foamed rubber roller 1 can be improved.
Further, it is possible to impart electronic conductivity to the conductive foamed rubber roller 1 by using conductive carbon black as a filler.

特に充填剤としては、ゴムの補強材として機能して、導電性発泡ゴムローラ1の引張特性を向上する効果に優れたシリカやカーボンブラック、特にカーボンブラックが好ましい。
カーボンブラックの配合割合は、ゴム分の総量100質量部あたり5質量部以上であるのが好ましく、50質量部以下、特に30質量部以下であるのが好ましい。
In particular, as the filler, silica or carbon black, particularly carbon black, which functions as a rubber reinforcing material and is excellent in the effect of improving the tensile properties of the conductive foam rubber roller 1 is preferable.
The blending ratio of carbon black is preferably 5 parts by mass or more per 100 parts by mass of the total amount of rubber, and is preferably 50 parts by mass or less, particularly preferably 30 parts by mass or less.

スコーチ防止剤としては、例えばN−シクロへキシルチオフタルイミド、無水フタル酸、N−ニトロソジフエニルアミン、2,4−ジフエニル−4−メチル−1−ペンテン等の1種または2種以上が挙げられる。特にN−シクロへキシルチオフタルイミドが好ましい。
スコーチ防止剤の配合割合は、ゴム分の総量100質量部あたり0.1質量部以上であるのが好ましく、5質量部以下、特に1質量部以下であるのが好ましい。
Examples of the scorch inhibitor include one or more of N-cyclohexylthiophthalimide, phthalic anhydride, N-nitrosodiphenylamine, 2,4-diphenyl-4-methyl-1-pentene, and the like. . N-cyclohexylthiophthalimide is particularly preferable.
The blending ratio of the scorch inhibitor is preferably 0.1 parts by mass or more per 100 parts by mass of the total amount of rubber, and is preferably 5 parts by mass or less, particularly preferably 1 part by mass or less.

共架橋剤とは、それ自体が架橋するとともにゴム分とも架橋反応して全体を高分子化する働きを有する成分を指す。
共架橋剤としては、例えばメタクリル酸エステルや、あるいはメタクリル酸またはアクリル酸の金属塩等に代表されるエチレン性不飽和単量体、1,2−ポリブタジエンの官能基を利用した多官能ポリマ類、ジオキシム等の1種または2種以上が挙げられる。
The co-crosslinking agent refers to a component that itself has a function of crosslinking and also having a function of crosslinking the rubber component to polymerize the whole.
Examples of co-crosslinking agents include methacrylic acid esters, or ethylenically unsaturated monomers represented by metal salts of methacrylic acid or acrylic acid, polyfunctional polymers using functional groups of 1,2-polybutadiene, 1 type, or 2 or more types, such as dioxime, is mentioned.

このうちエチレン性不飽和単量体としては、例えば
(a) アクリル酸、メタクリル酸、クロトン酸などのモノカルボン酸類、
(b) マレイン酸、フマル酸、イタコン酸などのジカルボン酸類、
(c) (a)(b)の不飽和カルボン酸類のエステルまたは無水物、
(d) (a)〜(c)の金属塩、
(e) 1,3−ブタジエン、イソプレン、2−クロル−1,3−ブタジエンなどの脂肪族共役ジエン、
(f) スチレン、α−メチルスチレン、ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼンなどの芳香族ビニル化合物、
(g) トリアリルイソシアヌレート、トリアリルシアヌレート、ビニルピリジンなどの複素環を有するビニル化合物、
(h) その他、(メタ)アクリロニトリルもしくはα−クロルアクリロニトリルなどのシアン化ビニル化合物、アクロレイン、ホルミルステロール、ビニルメチルケトン、ビニルエチルケトン、ビニルブチルケトン
等の1種または2種以上が挙げられる。
Among these, as the ethylenically unsaturated monomer, for example
(a) monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid,
(b) dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid,
(c) esters or anhydrides of unsaturated carboxylic acids of (a) (b),
(d) a metal salt of (a) to (c),
(e) aliphatic conjugated dienes such as 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene,
(f) aromatic vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, ethylvinylbenzene, divinylbenzene,
(g) vinyl compounds having a heterocyclic ring such as triallyl isocyanurate, triallyl cyanurate, vinylpyridine,
(h) In addition, one or more kinds of vinyl cyanide compounds such as (meth) acrylonitrile or α-chloroacrylonitrile, acrolein, formylsterol, vinyl methyl ketone, vinyl ethyl ketone, vinyl butyl ketone and the like can be mentioned.

また(c)の不飽和カルボン酸類のエステルとしては、モノカルボン酸類のエステルが好ましい。
モノカルボン酸類のエステルとしては、例えば
メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、n−ぺンチル(メタ)アクリレート、i−ぺンチル(メタ)アクリレート、n−へキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、オクチル(メタ)アクリレート、i−ノニル(メタ)アクリレート、tert−ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートなどの(メタ)アクリル酸のアルキルエステル;
アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ブチルアミノエチル(メタ)アクリレートなどの(メタ)アクリル酸のアミノアルキルエステル;
べンジル(メタ)アクリレート、ベンゾイル(メタ)アクリレート、アリル(メタ)アクリレートなどの芳香族環を有する(メタ)アクリレート;
グリシジル(メタ)アクリレート、メタグリシジル(メタ)アクリレート、エポキシシクロヘキシル(メタ)アクリレートなどのエポキシ基を有する(メタ)アクリレート;
N−メチロール(メタ)アクリルアミド、γ−(メタ)アクリルオキシプロピルトリメトキシシラン、テトラハイドロフルフリルメタクリレートなどの各種官能基を有する(メタ)アクリレート;
エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンジメタクリレート(EDMA)、ポリエチレングリコールジメタクリレート、イソブチレンエチレンジメタクリレートなどの多官能(メタ)アクリレート;
等の1種または2種以上が挙げられる。
The ester of unsaturated carboxylic acids (c) is preferably an ester of monocarboxylic acids.
Examples of esters of monocarboxylic acids include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meta ) Acrylate, n-pentyl (meth) acrylate, i-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl ( (Meth) acrylate, i-nonyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, etc. ) Alkyl esters of acrylic acid;
Aminoalkyl esters of (meth) acrylic acid such as aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, butylaminoethyl (meth) acrylate;
(Meth) acrylates having an aromatic ring such as benzyl (meth) acrylate, benzoyl (meth) acrylate, allyl (meth) acrylate;
(Meth) acrylates having an epoxy group such as glycidyl (meth) acrylate, metaglycidyl (meth) acrylate, and epoxycyclohexyl (meth) acrylate;
(Meth) acrylates having various functional groups such as N-methylol (meth) acrylamide, γ- (meth) acryloxypropyltrimethoxysilane, tetrahydrofurfuryl methacrylate;
Polyfunctional (meth) acrylates such as ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene dimethacrylate (EDMA), polyethylene glycol dimethacrylate, isobutylene ethylene dimethacrylate;
1 type, or 2 or more types, etc. are mentioned.

以上で説明した各成分を含むゴム組成物は、従来同様に調製できる。すなわち、まずゴム分を所定の割合で配合して素練りし、次いで発泡成分、架橋成分以外の添加剤を加えて混練した後、最後に発泡成分、架橋成分を加えて混練することでゴム組成物が得られる。混練には、例えばニーダ、バンバリミキサ、押出機等を用いることができる。
《画像形成装置》
本発明の画像形成装置は、本発明の導電性発泡ゴムローラ1を組み込んだことを特徴とするものである。かかる本発明の画像形成装置としては、例えばレーザープリンタや静電式複写機、普通紙ファクシミリ装置、あるいはこれらの複合機等の、電子写真法を利用した種々の画像形成装置が挙げられる。
The rubber composition containing each component demonstrated above can be prepared similarly to the past. That is, first a rubber component is blended at a predetermined ratio and kneaded, then an additive other than a foaming component and a crosslinking component is added and kneaded, and finally a foaming component and a crosslinking component are added and kneaded to form a rubber composition. A thing is obtained. For kneading, for example, a kneader, a Banbury mixer, an extruder, or the like can be used.
<Image forming apparatus>
The image forming apparatus of the present invention is characterized by incorporating the conductive foam rubber roller 1 of the present invention. Examples of the image forming apparatus of the present invention include various image forming apparatuses using electrophotography such as a laser printer, an electrostatic copying machine, a plain paper facsimile machine, or a complex machine of these.

〈実施例1〉
(ゴム組成物の調製)
ゴム分としてはECO〔日本ゼオン(株)製のHYDRIN(登録商標)T3108〕10質量部、EPDM〔住友化学(株)製のエスプレン(登録商標)EPDM505A〕10質量部、およびNBR〔JSR(株)製のJSR N250 SL、非油展、低ニトリルNBR、アクリロニトリル含量:20%〕80質量部を配合した。
<Example 1>
(Preparation of rubber composition)
As rubber, 10 parts by mass of ECO [HYDRIN (registered trademark) T3108 manufactured by Nippon Zeon Co., Ltd.], 10 parts by mass of EPDM (registered trademark EPDM505A manufactured by Sumitomo Chemical Co., Ltd.), and NBR [JSR Co., Ltd.] ) JSR N250 SL, non-oil-extended, low nitrile NBR, acrylonitrile content: 20%], 80 parts by mass.

そして、これらゴム分の総量100質量部に、下記表1に示す各成分を配合し、密閉式混練機を用いて80℃で3〜5分間混練してゴム組成物を調製した。   And each component shown in following Table 1 was mix | blended with 100 mass parts of these rubber | gum total amounts, and it knead | mixed for 3 to 5 minutes at 80 degreeC using the closed kneader, and prepared the rubber composition.

Figure 2015033767
Figure 2015033767

表1中の各成分は下記のとおり。なお表中の質量部は、ゴム分の総量100質量部あたりの量である。
充填剤:カーボンブラックHAF〔東海カーボン(株)製の商品名シースト3〕
発泡剤:ADCA系発泡剤〔永和化成工業(株)製の商品名ビニホールAC#3〕
受酸剤:ハイドロタルサイト類〔協和化学工業(株)製のDHT−4A−2〕
架橋剤:粉末硫黄〔鶴見化学工業(株)製〕
促進剤DM:ジ−2−ベンゾチアジルジスルフィド〔大内新興化学工業(株)製のノクセラー(登録商標)DM〕
促進剤TS:テトラメチルチウラムジスルフィド〔大内新興化学工業(株)製のノクセラーTS〕
促進助剤:酸化亜鉛〔ハクスイテック(株)製〕
(口金、および中芯の調整)
図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が30%となるように調整した。
Each component in Table 1 is as follows. In addition, the mass part in a table | surface is the quantity per 100 mass parts of total amounts of rubber | gum.
Filler: Carbon black HAF [trade name Seast 3 manufactured by Tokai Carbon Co., Ltd.]
Foaming agent: ADCA-based foaming agent (trade name Binhore AC # 3 manufactured by Eiwa Chemical Industry Co., Ltd.)
Acid acceptor: Hydrotalcite [DHT-4A-2 manufactured by Kyowa Chemical Industry Co., Ltd.]
Cross-linking agent: Powdered sulfur [manufactured by Tsurumi Chemical Co., Ltd.]
Accelerator DM: Di-2-benzothiazyl disulfide [Noxer (registered trademark) DM manufactured by Ouchi Shinsei Chemical Co., Ltd.]
Accelerator TS: Tetramethylthiuram disulfide [Noxeller TS manufactured by Ouchi Shinsei Chemical Co., Ltd.]
Acceleration aid: Zinc oxide [manufactured by Hakusuitec Co., Ltd.]
(Adjustment of base and core)
4 and 5, the pressing amount by the fixing mechanism in four directions (not shown) of the base 14 (the inner diameter of the opening 13: 10.5 mm) and the core 16 (the outer diameter of the cross section 15: 3.5 mm) is applied. 4 corresponds to the direction of the fixing mechanism, the maximum and minimum values of vertical and horizontal in four directions of the distance d 1 to d 4 of the shaft 17, and adjusted so that the error obtained by the equation (1) is 30%.

(導電性発泡ゴムローラの製造)
先のゴム組成物を、図1に示す製造装置5の押出機6に供給し、押出機6を動作させて、上記のように誤差を調整した口金14と中芯16との間の環状の隙間を通して外径φ10.5mm、内径φ3.5mmの筒状に押出成形し、押出成形した筒状体7をカットせずに長尺のままで連続的に送り出しながら、マイクロ波架橋装置8と熱風架橋装置9を連続的に通過させることで連続的に架橋および発泡させた。
(Manufacture of conductive foam rubber roller)
The previous rubber composition is supplied to the extruder 6 of the manufacturing apparatus 5 shown in FIG. 1, and the extruder 6 is operated so that the annular shape between the base 14 and the core 16 whose error has been adjusted as described above is adjusted. Extruded into a cylindrical shape with an outer diameter of 10.5 mm and an inner diameter of 3.5 mm through the gap, and the extruded cylindrical body 7 is continuously cut out without being cut. By continuously passing through the cross-linking device 9, cross-linking and foaming were continuously performed.

マイクロ波架橋装置8の出力は8kW、槽内制御温度は160℃、熱風架橋装置9の槽内制御温度は250℃、加熱槽の有効長は8mとした。
熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.30であった。
次いで発泡、および架橋させたのち冷却した筒状体7を長さ220mmにカットして導電性発泡ゴムローラ1を製造し、次いで熱風オーブン中で160℃×1時間加熱して二次架橋させた後、通孔2に、外径φ6mmの金属(SUM−24L)製のシャフト3を圧入して電気的に接続するとともに機械的に固定したのち、円筒研削盤を用いて外径がφ12mmになるまで外周面4をトラバース研磨した。
The output of the microwave cross-linking apparatus 8 was 8 kW, the control temperature in the tank was 160 ° C., the control temperature in the tank of the hot air cross-linking apparatus 9 was 250 ° C., and the effective length of the heating tank was 8 m.
When the cylindrical body 7 immediately after passing through the hot-air bridging device 9 was cut and the uneven thickness was measured, it was 1.30.
Next, after foaming and crosslinking, the cooled cylindrical body 7 is cut into a length of 220 mm to produce a conductive foamed rubber roller 1, and then subjected to secondary crosslinking by heating in a hot air oven at 160 ° C. for 1 hour. A metal (SUM-24L) shaft 3 having an outer diameter of φ6 mm is press-fitted into the through hole 2 to be electrically connected and mechanically fixed, and then the outer diameter becomes φ12 mm using a cylindrical grinder. The outer peripheral surface 4 was traverse-polished.

〈実施例2〉
図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が20%となるように調整したこと以外は実施例1と同様にして導電性発泡ゴムローラ1を製造した。
<Example 2>
4 and 5, the pressing amount by the fixing mechanism in four directions (not shown) of the base 14 (the inner diameter of the opening 13: 10.5 mm) and the core 16 (the outer diameter of the cross section 15: 3.5 mm) is applied. 4 corresponds to the direction of the fixing mechanism, the maximum value and the minimum value of the four directions of the distance d 1 to d 4 of the shaft 17, an error obtained by the equation (1) was adjusted to 20% A conductive foam rubber roller 1 was produced in the same manner as in Example 1 except for the above.

熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.20であった。
〈実施例3〉
ゴム分として、ECO10質量部、EPDM10質量部、およびNBR40質量部に、さらにSBR〔JSR(株)製のJSR 1502、非油展〕40質量部を配合するとともに、図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が25%となるように調整したこと以外は実施例1と同様にして導電性発泡ゴムローラ1を製造した。
It was 1.20 when the cylindrical body 7 just after passing the hot-air bridge | crosslinking apparatus 9 was cut, and the thickness deviation was measured.
<Example 3>
As a rubber component, 10 parts by mass of ECO, 10 parts by mass of EPDM, and 40 parts by mass of NBR are further blended with 40 parts by mass of SBR (JSR 1502, JSR 1502, non-oil-extended), and the base shown in FIGS. 14 (the inner diameter of the opening 13: 10.5 mm) and the pressing amount of the center core 16 (outer diameter of the cross section 15: 3.5 mm) by a four-direction fixing mechanism (not shown) correspond to the four-direction fixing mechanism. , the maximum and minimum values of the four directions of the distance d 1 to d 4 of the shaft 17, except that the error obtained by the equation (1) was adjusted to 25% in the same manner as in example 1 Thus, the conductive foam rubber roller 1 was manufactured.

熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.26であった。
〈実施例4〉
ゴム分として、ECO10質量部、EPDM10質量部、およびSBR80質量部を配合するとともに、図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が30%となるように調整したこと以外は実施例1と同様にして導電性発泡ゴムローラ1を製造した。
It was 1.26 when the cylindrical body 7 just after passing the hot-air bridge | crosslinking apparatus 9 was cut, and the thickness deviation was measured.
<Example 4>
As rubber, 10 parts by mass of ECO, 10 parts by mass of EPDM, and 80 parts by mass of SBR were blended, and the base 14 (inner diameter of the opening 13: 10.5 mm) shown in FIGS. 4 and 5 and the core 16 (outside of the cross section 15) diameter: of 3.5 mm), the push amount of the four directions of the fixing mechanism (not shown) corresponding to such four directions of the fixing mechanism, the maximum value and the minimum in the distance d 1 to d 4 four directions of the shaft 17 A conductive foam rubber roller 1 was produced in the same manner as in Example 1 except that the error was adjusted so as to be 30% based on the value from Equation (1).

熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.30であった。
〈比較例1〉
図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が35%となるように調整したこと以外は実施例1と同様にして導電性発泡ゴムローラ1を製造した。
When the cylindrical body 7 immediately after passing through the hot-air bridging device 9 was cut and the uneven thickness was measured, it was 1.30.
<Comparative example 1>
4 and 5, the pressing amount by the fixing mechanism in four directions (not shown) of the base 14 (the inner diameter of the opening 13: 10.5 mm) and the core 16 (the outer diameter of the cross section 15: 3.5 mm) is applied. 4 corresponds to the direction of the fixing mechanism, the maximum value and the minimum value of the four directions of the distance d 1 to d 4 of the shaft 17, an error obtained by the equation (1) was adjusted to 35% A conductive foam rubber roller 1 was produced in the same manner as in Example 1 except for the above.

熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.34であった。
〈比較例2〉
図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が40%となるように調整したこと以外は実施例3と同様にして導電性発泡ゴムローラ1を製造した。
It was 1.34 when the cylindrical body 7 just after passing the hot air bridge | crosslinking apparatus 9 was cut, and the thickness deviation was measured.
<Comparative example 2>
4 and 5, the pressing amount by the fixing mechanism in four directions (not shown) of the base 14 (the inner diameter of the opening 13: 10.5 mm) and the core 16 (the outer diameter of the cross section 15: 3.5 mm) is applied. 4 corresponds to the direction of the fixing mechanism, the maximum value and the minimum value of the four directions of the distance d 1 to d 4 of the shaft 17, an error obtained by the equation (1) was adjusted to 40% A conductive foam rubber roller 1 was produced in the same manner as in Example 3 except for the above.

熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.40であった。
〈比較例3〉
図4、図5に示す口金14(開口13の内径:10.5mm)と、中芯16(断面15の外径:3.5mm)の、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差が38%となるように調整したこと以外は実施例4と同様にして導電性発泡ゴムローラ1を製造した。
The cylindrical body 7 immediately after passing through the hot air bridging device 9 was cut and the uneven thickness was measured and found to be 1.40.
<Comparative Example 3>
4 and 5, the pressing amount by the fixing mechanism in four directions (not shown) of the base 14 (the inner diameter of the opening 13: 10.5 mm) and the core 16 (the outer diameter of the cross section 15: 3.5 mm) is applied. 4 corresponds to the direction of the fixing mechanism, the maximum and minimum values of vertical and horizontal in four directions of the distance d 1 to d 4 of the shaft 17, an error obtained by the equation (1) was adjusted to 38% A conductive foam rubber roller 1 was produced in the same manner as in Example 4 except for the above.

熱風架橋装置9を通過直後の筒状体7をカットして偏肉度を測定したところ1.38であった。
〈割れの確認〉
各実施例、比較例において、所定長にカット後、二次架橋前の導電性発泡ゴムローラ1を、その軸方向に沿って、周方向に8分割するようにカットして、カット面の割れの有無を確認した。
It was 1.38 when the cylindrical body 7 just after passing the hot-air bridge | crosslinking apparatus 9 was cut, and the uneven thickness degree was measured.
<Check for cracks>
In each example and comparative example, after cutting to a predetermined length, the conductive foamed rubber roller 1 before secondary cross-linking is cut so as to be divided into eight in the circumferential direction along the axial direction, and the cut surface is cracked. The presence or absence was confirmed.

結果を表2に示す。   The results are shown in Table 2.

Figure 2015033767
Figure 2015033767

表2の実施例1〜4、比較例1〜3の結果より、熱風架橋装置9を通過直後の筒状体7の偏肉度1.3以下とすることで、内部に割れが内在しないため、その後の研磨工程で剥離や窪みを生じることがない導電性発泡ゴムローラを製造できることが判った。
また各実施例、比較例の結果より、図4、図5に示す口金14と中芯16とを組み合わせ筒状体7を押出成形する場合に、熱風架橋装置9を通過直後の筒状体7の偏肉度1.3以下とするためには、図示しない4方向の固定機構による押し量を、かかる4方向の固定機構に対応する、軸17の上下左右4方向の距離d〜d中の最大値と最小値から、式(1)によって求められる誤差を10%以下とするのが好ましいことが判った。
From the results of Examples 1 to 4 and Comparative Examples 1 to 3 in Table 2, because the thickness of the cylindrical body 7 immediately after passing through the hot-air bridging device 9 is 1.3 or less, there are no cracks inside. It has been found that a conductive foam rubber roller that does not cause peeling or dents in the subsequent polishing step can be produced.
From the results of the examples and comparative examples, the cylindrical body 7 immediately after passing through the hot-air bridging device 9 when the cylindrical body 7 is extruded by combining the base 14 and the core 16 shown in FIGS. 4 and 5. in order to the thickness deviation 1.3 or less, the press amount of the four directions of the fixing mechanism, not shown, corresponding to such four directions of the fixing mechanism, four directions of the distance d 1 to d 4 of the shaft 17 From the maximum value and the minimum value, it was found that the error calculated by the equation (1) is preferably 10% or less.

1 導電性発泡ゴムローラ
2 通孔
3 シャフト
4 外周面
5 製造装置
6 押出機
7 筒状体
8 マイクロ波架橋装置
9 熱風架橋装置
10 引取機
11 通孔
12 外周面
13 開口
14 口金
15 断面
16 中芯
17 軸
18 頂点
〜d 距離
E 押出方向
max 最大厚み
min 最小厚み
DESCRIPTION OF SYMBOLS 1 Conductive foaming rubber roller 2 Through-hole 3 Shaft 4 Outer peripheral surface 5 Manufacturing apparatus 6 Extruder 7 Cylindrical body 8 Microwave bridge | crosslinking apparatus 9 Hot-air bridge | crosslinking apparatus 10 Take-out machine 11 Through-hole 12 Outer peripheral surface 13 Opening 14 Base 15 Cross section 16 Core 17 axis 18 vertex d 1 to d 4 distance E extrusion direction T max maximum thickness T min minimum thickness

Claims (4)

導電性、架橋性、および発泡性を有するゴム組成物を連続的に筒状に押出成形し、次いで押出成形した筒状体をカットせずに長尺のまま、マイクロ波架橋装置、次いで熱風架橋装置を通過させて連続的に発泡、および架橋させる工程を経て導電性発泡ゴムローラを製造する製造方法であって、前記工程において、熱風架橋装置を通過直後の断面の、径方向の最大厚みTmaxと最小厚みTminとの比Tmax/Tminで表される偏肉度が1.3以下となるように、前記ゴム組成物を押出成形、発泡、および架橋させることを特徴とする導電性発泡ゴムローラの製造方法。 A rubber composition having electrical conductivity, crosslinkability, and foamability is continuously extruded into a cylindrical shape, and then the extruded cylindrical body is kept long without being cut. A manufacturing method for producing a conductive foamed rubber roller through a step of continuously foaming and cross-linking by passing through an apparatus, wherein in the step, a maximum radial thickness T max of a cross section immediately after passing through a hot-air cross-linking device minimum thickness as thickness deviation, expressed by the ratio T max / T min and T min is 1.3 or less, the rubber composition of the extrusion, foaming, and conductive, characterized in that crosslinking and Manufacturing method of foam rubber roller. 前記押出成形には、開口形状が円形とされた口金と、前記口金内に配設され、前記口金の開口と同一平面での断面形状が円形とされた中芯とを備えた押出機を用い、前記口金の開口と、前記中芯の、前記開口と同一平面での断面との間の、前記開口の周方向の複数個所での、前記開口の径方向の距離の最大値と最小値とから、式(1):
Figure 2015033767
によって求められる誤差が10%以内となるように、前記口金と中芯とを位置合わせした状態で、前記ゴム組成物を、前記口金と前記中芯との間の環状の空隙を通して筒状に押出成形する請求項1に記載の導電性発泡ゴムローラの製造方法。
For the extrusion molding, an extruder having a die whose opening shape is circular and a core disposed in the die and having a circular cross-sectional shape in the same plane as the opening of the die is used. A maximum value and a minimum value of the radial distance between the opening of the base and the center of the core at a plurality of locations in the circumferential direction of the opening, From equation (1):
Figure 2015033767
The rubber composition is extruded into a cylindrical shape through an annular gap between the base and the core while the base and the core are aligned so that the error required by the step is within 10%. The method for producing a conductive foamed rubber roller according to claim 1 to be molded.
前記請求項1または2に記載の製造方法によって製造されたことを特徴とする導電性発泡ゴムローラ。   A conductive foam rubber roller manufactured by the manufacturing method according to claim 1. 前記請求項3に記載の導電性発泡ゴムローラを組み込んだことを特徴とする画像形成装置。   4. An image forming apparatus comprising the conductive foam rubber roller according to claim 3.
JP2013164370A 2013-08-07 2013-08-07 Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus Pending JP2015033767A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013164370A JP2015033767A (en) 2013-08-07 2013-08-07 Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus
US14/337,730 US20150045196A1 (en) 2013-08-07 2014-07-22 Method of producing electrically conductive foam rubber roller, electrically conductive foam rubber roller, and image forming apparatus
CN201410359625.7A CN104339611A (en) 2013-08-07 2014-07-25 Method of producing electrically conductive foam rubber roller, electrically conductive foam rubber roller, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164370A JP2015033767A (en) 2013-08-07 2013-08-07 Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2015033767A true JP2015033767A (en) 2015-02-19

Family

ID=52449141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164370A Pending JP2015033767A (en) 2013-08-07 2013-08-07 Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus

Country Status (3)

Country Link
US (1) US20150045196A1 (en)
JP (1) JP2015033767A (en)
CN (1) CN104339611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576837B2 (en) 2019-10-03 2023-02-14 Jfxd Trx Acq Llc Multi-zonal roller and method of use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105082524B (en) * 2015-08-10 2017-07-18 苏州市创怡盛实业有限公司 The roller that roller surface processing method and surface are modified
CN114277531B (en) * 2021-12-22 2023-07-07 安徽兰翔智能制造有限公司 Textile rubber roller convenient for rubber surface replacement
CN116284932A (en) * 2023-05-16 2023-06-23 中裕铁信交通科技股份有限公司 Slow-expansion type high-expansion-ratio water-swelling rubber water stop strip and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280928A1 (en) * 2005-02-14 2006-12-14 Canon Kasei Kabushiki Kaisha Process for producing conductive rubber roller, and roller for electrophotographic apparatus
JP2007322729A (en) * 2006-05-31 2007-12-13 Canon Chemicals Inc Electroconductive rubber roller, its manufacturing method and electrophotographic image forming apparatus
JP2008090236A (en) * 2006-10-05 2008-04-17 Canon Chemicals Inc Method for manufacturing conductive rubber roller, and roller for electrophotographic device
JP2008188907A (en) * 2007-02-06 2008-08-21 Canon Chemicals Inc Extrusion mold and molding method
JP2009034915A (en) * 2007-08-02 2009-02-19 Canon Chemicals Inc Extrusion machine for producing conductive rubber roll
US20100069208A1 (en) * 2008-09-16 2010-03-18 Marui Takashi Conductive roller
JP2010145920A (en) * 2008-12-22 2010-07-01 Canon Chemicals Inc Conductive sponge rubber roller and image forming apparatus
JP2010217521A (en) * 2009-03-17 2010-09-30 Canon Chemicals Inc Conductive rubber roller and transfer roller
JP2011154178A (en) * 2010-01-27 2011-08-11 Canon Inc Method of manufacturing rubber roller for electrophotography

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899276A (en) * 1973-05-29 1975-08-12 Beloit Corp Annular extrusion die with back pressure control
US3914356A (en) * 1974-03-28 1975-10-21 Western Electric Co Methods of and apparatus for controlling the thickness of an annular extrusion
US4198554A (en) * 1977-07-01 1980-04-15 Cober Electronics, Inc. Method and apparatus for microwave vulcanization of extruded rubber profiles
US4548570A (en) * 1983-05-12 1985-10-22 Cosden Technology, Inc. Extrusion apparatus for producing thermoplastic pipe
US4490316A (en) * 1983-06-29 1984-12-25 Caterpillar Tractor Co. Apparatus and method for controlling internal size of an extruded hose
US5166484A (en) * 1990-10-05 1992-11-24 Astex/Gerling Laboratories, Inc. Microwave system and method for curing rubber
JPH0739128B2 (en) * 1991-03-29 1995-05-01 鬼怒川ゴム工業株式会社 Controller for continuous extrusion vulcanization line
TW254883B (en) * 1991-04-03 1995-08-21 Mitsui Petroleum Chemicals Ind
US5108683A (en) * 1991-04-05 1992-04-28 Vijay Anand Apparatus and method for extruding single and multiple layers of plastic
IT1247920B (en) * 1991-05-13 1995-01-05 Pirelli Cavi S P A Dir Proprie EXTRUSION HEAD TO APPLY POLYMERIC MATERIAL COATINGS ON SEMI-FINISHED CYLINDRICAL CONFORMATION WORKS
US5622732A (en) * 1993-04-13 1997-04-22 Sencorp Systems Inc. Foam sheet extrusion die apparatus, and system with adjustable choke area
US5462423A (en) * 1993-04-13 1995-10-31 Sencorp Systems, Inc. Apparatus for non-mechanical die lip temperature adjustment in an extruder
US6984351B2 (en) * 2001-01-23 2006-01-10 Snap-Tite Technologies, Inc. Apparatus and method for continuously and endlessly vulcanizing rubber hose
DE10300374B4 (en) * 2003-01-06 2010-12-23 Windmöller & Hölscher Kg Method and device for controlling the thickness of extruded film
DE102006049660B3 (en) * 2006-10-18 2008-02-14 Inoex Gmbh Assembly to extrude thermoplastic pipes has form chamber with adjustable radial inserts
US8235701B2 (en) * 2009-06-20 2012-08-07 Guill Tool & Engineering Co., Inc. Adjustment mechanism for extrusion die
US9744710B2 (en) * 2012-01-13 2017-08-29 U.S. Farathane Corporation Assembly and process for creating an extruded pipe for use in a geothermal heat recovery operation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280928A1 (en) * 2005-02-14 2006-12-14 Canon Kasei Kabushiki Kaisha Process for producing conductive rubber roller, and roller for electrophotographic apparatus
JP2010140034A (en) * 2005-02-14 2010-06-24 Canon Chemicals Inc Process for producing conductive rubber roller and roller for electrophotographic apparatus
JP2007322729A (en) * 2006-05-31 2007-12-13 Canon Chemicals Inc Electroconductive rubber roller, its manufacturing method and electrophotographic image forming apparatus
JP2008090236A (en) * 2006-10-05 2008-04-17 Canon Chemicals Inc Method for manufacturing conductive rubber roller, and roller for electrophotographic device
JP2008188907A (en) * 2007-02-06 2008-08-21 Canon Chemicals Inc Extrusion mold and molding method
JP2009034915A (en) * 2007-08-02 2009-02-19 Canon Chemicals Inc Extrusion machine for producing conductive rubber roll
US20100069208A1 (en) * 2008-09-16 2010-03-18 Marui Takashi Conductive roller
JP2010072115A (en) * 2008-09-16 2010-04-02 Sumitomo Rubber Ind Ltd Conductive roller
JP2010145920A (en) * 2008-12-22 2010-07-01 Canon Chemicals Inc Conductive sponge rubber roller and image forming apparatus
JP2010217521A (en) * 2009-03-17 2010-09-30 Canon Chemicals Inc Conductive rubber roller and transfer roller
JP2011154178A (en) * 2010-01-27 2011-08-11 Canon Inc Method of manufacturing rubber roller for electrophotography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576837B2 (en) 2019-10-03 2023-02-14 Jfxd Trx Acq Llc Multi-zonal roller and method of use thereof

Also Published As

Publication number Publication date
US20150045196A1 (en) 2015-02-12
CN104339611A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5380597B2 (en) Conductive rubber composition and transfer roller using the same
JP5081292B2 (en) Transfer member
JP5904670B2 (en) Conductive rubber composition, transfer roller and method for producing the same, and image forming apparatus
JP6164974B2 (en) Conductive rubber composition and transfer roller manufacturing method
JP5655106B2 (en) Conductive rubber composition, transfer roller, and image forming apparatus
JP6288839B2 (en) Toner supply roller and image forming apparatus
CN107663315B (en) Conductive rubber composition, transfer roller, method for producing the same, and image forming apparatus
JP2015033767A (en) Method for manufacturing conductive rubber foam roller, conductive rubber form roller, and image forming apparatus
US20170025197A1 (en) Electrically conductive rubber composition, transfer roller, and image forming apparatus
JP5837870B2 (en) Method for manufacturing cylindrical foam rubber, and method for manufacturing conductive roller
JP6279384B2 (en) Toner supply roller and image forming apparatus
JP2014162103A (en) Method for manufacturing electroconductive roller, electroconductive roller, and image forming device
JP6168693B2 (en) Conductive rubber composition and transfer roller manufacturing method
JP6272111B2 (en) Toner supply roller and image forming apparatus
JP2015197463A (en) Toner supply roller and image forming apparatus
JP6357299B2 (en) Manufacturing method of conductive foam rubber roller and manufacturing method of image forming apparatus
JP2017203970A (en) Transfer roller and manufacturing method thereof
JP5699117B2 (en) Method for producing cylindrical foam rubber
JP2014231187A (en) Production method of conductive foamed rubber roller, conductive foamed rubber roller, and image forming apparatus
JP6091249B2 (en) Manufacturing method of conductive roller
JP6261128B2 (en) Rubber composition and semiconductive foam rubber roller
JP5907615B2 (en) Method for manufacturing cylindrical foam rubber, and method for manufacturing conductive roller
JP5925610B2 (en) Manufacturing method of foamed rubber member and manufacturing method of transfer roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171005