JP2015032602A - 太陽光発電システム及び太陽光発電方法 - Google Patents

太陽光発電システム及び太陽光発電方法 Download PDF

Info

Publication number
JP2015032602A
JP2015032602A JP2013158871A JP2013158871A JP2015032602A JP 2015032602 A JP2015032602 A JP 2015032602A JP 2013158871 A JP2013158871 A JP 2013158871A JP 2013158871 A JP2013158871 A JP 2013158871A JP 2015032602 A JP2015032602 A JP 2015032602A
Authority
JP
Japan
Prior art keywords
power generation
ground
ground fault
solar cell
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013158871A
Other languages
English (en)
Inventor
政宣 吉富
Masanori Yoshitomi
政宣 吉富
隆文 石井
Takafumi Ishii
隆文 石井
佐藤 真也
Shinya Sato
真也 佐藤
靖 福田
Yasushi Fukuda
靖 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2013158871A priority Critical patent/JP2015032602A/ja
Priority to PCT/JP2014/059199 priority patent/WO2015015836A1/ja
Publication of JP2015032602A publication Critical patent/JP2015032602A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/17Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass by means of an auxiliary voltage injected into the installation to be protected
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【目的】PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くす或いはより低減することが可能な太陽光発電システムを提供することを目的とする。【構成】 本発明の一態様の地絡検出装置36は、太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、発電部の所与の箇所に接続されて発電部の全ての箇所の対地電位を零以上または零以下にする第1接地電路と、発電部の対地電位を、第1接地電路が接続された時と異なる電位にする第2接地電路と、第1接地電路と第2接地電路とを切り替えて発電部に接続することで、発電部の対地電位を制御する切り替えスイッチ80と、切り替えスイッチ80により、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき発電部の地絡を検知する地絡検知部と、を備え、切り替えスイッチ80は、通常運転時に、発電部に第1接地電路を接続することを特徴とする。【選択図】図1

Description

本発明は、太陽光発電システム及び太陽光発電方法に係り、例えば、PID(Potential Induced Degradation)対策が施された太陽光発電システム及び方法に関する。
太陽光を利用して発電を行う太陽光発電システムでは、一般的に、複数の太陽電池モジュールが直列および並列に接続されて、大電圧および大電流となった発電された電力が、パワーコンディショナー等の負荷装置に供給され、商用電力系統等に供給される。太陽光発電システムでは、複数の太陽電池モジュールが直列に接続されて太陽電池ストリングが構成される。そして、複数の太陽電池ストリングが並列に接続されて太陽電池アレイが構成される。
昨今、太陽光発電システムで発電される電圧が高くなるに伴い、かかる太陽光発電システムでは、太陽光発電システムの性能が対地電圧の影響によって劣化し、発電量が下がってしまうPID現象が問題となっている。
図13は、PID現象の一例を説明するための概念図である。図13では、太陽光発電システムの太陽電池アレイのうち、1つの太陽電池ストリング502を例に示している。そして、図13(a)では、太陽電池のバルクにp型半導体を使用した場合を一例として示している。負荷装置510に接続された太陽電池ストリング502の途中の電位が大地の電位になった場合、かかる大地の電位よりも負電位において性能低下が生じる場合がある。一方、図13(b)では、太陽電池のバルクにn型半導体を使用した場合を一例として示している。負荷装置510に接続された太陽電池ストリング502の途中の電位が大地の電位になった場合、かかる大地の電位よりも正電位において性能低下が生じる場合がある。
図14は、PID現象への対策手法の一例を説明するための概念図である。PID現象への対策手法としては、太陽電池モジュールやその内部のセル自体に対策を講ずることが検討されているが、確実な手法として、太陽光発電システムの負極或いは正極を接地することが検討されている。図14(a)では、太陽電池のバルクにp型半導体を使用した場合を一例として示している。かかる場合には、太陽光発電システムを商用電力系統等から絶縁したシステムに構築した状態で、太陽電池ストリング502の負極側を接地する。これにより、太陽電池ストリング502全体が大地の電位よりも負電位になることを防止できる。かかる対策によりPID現象を回避できる。図14(b)では、太陽電池のバルクにn型半導体を使用した場合を一例として示している。かかる場合には、太陽光発電システムを商用電力系統等から絶縁したシステムに構築した状態で、太陽電池ストリング502の正極側を接地する。これにより、太陽電池ストリング502全体が大地の電位よりも正電位になることを防止できる。かかる対策によりPID現象を回避できる。
しかしながら、システムを接地することにより新たな問題が生じる。それは、システム内に地絡事故が発生した場合である。太陽電池アレイ内に絶縁不良があると、電気回路が外部と意図しない形で接触する地絡が生じる場合がある。例えば人や物が絶縁不良箇所に触れたときや、絶縁不良箇所と金属架台等とが接触したとき等が挙げられる。システム内に1か所でも地絡事故が発生すると、地絡箇所の電位は大地電位となるため、PID対策用の接地箇所と地絡箇所との間で閉ループ回路が形成され、大電流が外部に流れてしまうといった大きな事故につながってしまう場合がある。
特開2013−033825号公報
図15は、PID対策が講じられた太陽光発電システムの地絡対策の一例を説明するための概念図である。図15では、太陽電池ストリング502の負極側を接地する場合を示している。図15では、地絡対策用にPID対策用の接地箇所530に電流計或いは/及びヒューズを配置した構成を示している。かかる構成では、図15に示すように、例えば、太陽電池ストリング502の途中或いは正極側で地絡事故が発生した場合、PID対策用の接地箇所530と地絡箇所600との間で閉ループ回路が形成され、大電流が外部に流れてしまう。よって、かかる電流を電流計或いは/及びヒューズで監視して、閾値以上の電流が流れた場合に、地絡事故として、太陽光発電システムを緊急停止させることができる。しかしながら、かかる構成では以下に示すように地絡検出の盲点を生んでしまう。
図16は、PID対策が講じられた太陽光発電システムの地絡検出の盲点の一例を説明するための概念図である。図16に示すように、例えば、まず、太陽電池ストリング502の負極側で第1の地絡事故が発生した場合、PID対策用の接地箇所530と地絡箇所602との間では電位差が生じないので、PID対策用の接地箇所530に配置された電流計或いは/及びヒューズでは、かかる第1の地絡事故を検知することは困難である。そのため、太陽光発電システムは通常運転を継続することになる。かかる状態で、例えば、太陽電池ストリング502の途中或いは正極側で第2の地絡事故が発生した場合、第1の地絡事故の地絡箇所602と第2の地絡事故の地絡箇所600との間で閉ループ回路が形成され、第1の地絡事故点の絶縁抵抗が、PID対策用の接地線の抵抗値よりも小さいと、大電流が外部に流れてしまうことになる。しかし、PID対策用の接地箇所530は閉ループ回路の外部に位置するため、PID対策用の接地箇所530に配置された電流計或いは/及びヒューズでは、かかる第2の地絡事故を検知することは困難である。その結果、地絡を検知できないまま、大電流が外部に流れてしまうといった大きな事故につながってしまう。このように、図16に示した構成では、地絡検知が困難な盲点箇所(検出不感帯)を形成してしまう。
そこで、本発明は、上述した問題点を克服し、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことが可能な太陽光発電システムを提供することを目的とする。
本発明の一態様の地絡検出装置は、
太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、
発電部の所与の箇所に接続されて発電部の全ての箇所の対地電位を零以上または零以下にする第1接地電路と、
発電部の対地電位を、第1接地電路が接続された時と異なる電位にする第2接地電路と、
第1接地電路と第2接地電路とを切り替えて発電部に接続することで、発電部の対地電位を制御する電位制御部と、
電位制御部により、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき発電部の地絡を検知する地絡検知部と、を備え、
電位制御部は、通常運転時に、発電部に第1接地電路を接続することを特徴とする。
また、第1接地電路は、発電部の一方極に接続可能に構成され、第2接地電路は、発電部の他方極に接続可能に構成されていると好適である。
また、第2接地電路は、直流電源を有し、発電部に接続された状態で、発電部に直流電圧を印可するように構成されていると好適である。
或いは、第2接地電路は、交流電源を有し、発電部に接続された状態で、発電部に交流電圧を印可するように構成されていると好適である。
或いは、第1接地電路は、発電部の一方極に接続可能に構成されると共に、第1抵抗を有し、
第2接地電路は、発電部の正極と負極間を所与の抵抗で分圧した中点で接地する電路であるように構成されていると好適である。
本発明の他の一態様の地絡検出装置は、
太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、
一方側が大地に接続されていると共に、他方側が発電部の正極または負極に接続可能な接地電路と、
接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
接地電路は、直流電源を有し、発電部の全ての箇所の対地電位を正または負にすることを特徴とする。
本発明の他の一態様の地絡検出装置は、
太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、
一方側が大地に接続されていると共に、他方側が発電部の正極または負極に接続可能な接地電路と、
接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
接地電路は、交流電源を有し、発電部の全ての箇所の対地電位を時間平均して零以上または零以下にすることを特徴とする。
また、地絡検知部は、発電部と負荷装置とを切り離した状態で、接地線を用いて、発電部の地絡を検知する。
本発明の一態様の太陽光発電方法は、
太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、発電部と負荷装置とを接続し、第1接地電路を用いて発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行うと共に、当該第1接地電路を流れる電流に基づく測定値を測定する工程と、
第2接地電路を用いて、発電部の対地電位を、第1接地電路が発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定する工程と、
発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とに基づき発電部の地絡を検知する工程と、
を備えたことを特徴とする。
本発明の他の一態様の太陽光発電方法は、
太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、発電部と負荷装置とを接続し、第1接地電路を用いて発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行う工程と、
発電部と負荷装置とを切り離した状態で、第1接地電路を発電部に接続し、当該第1接地電路を流れる電流に基づく測定値を測定する工程と、
発電部と負荷装置とを切り離した状態で、第2接地電路を発電部に接続し、発電部の対地電位を、第1接地電路が発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定する工程と、
発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とに基づき発電部の地絡を検知する工程と、
を備えたことを特徴とする。
本発明の一態様によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態1における太陽光発電システムの構成を示す構成図である。 実施の形態2における太陽光発電システムの構成を示す構成図である。 実施の形態3における太陽光発電システムの構成を示す構成図である。 実施の形態4における太陽光発電システムの構成を示す構成図である。 実施の形態5における太陽光発電システムの構成を示す構成図である。 実施の形態6における太陽光発電システムの構成を示す構成図である。 実施の形態7における太陽光発電システムの構成を示す構成図である。 実施の形態7における地絡検知動作を説明するための図である。 実施の形態8における太陽光発電システムの構成を示す構成図である。 実施の形態8における地絡検知動作を説明するための図である。 実施の形態9における太陽光発電システムの構成を示す構成図である。 実施の形態9における地絡検知動作を説明するための図である。 PID現象の一例を説明するための概念図である。 PID現象への対策手法の一例を説明するための概念図である。 PID対策が講じられた太陽光発電システムの地絡対策の一例を説明するための概念図である。 PID対策が講じられた太陽光発電システムの地絡検出の盲点の一例を説明するための概念図である。
実施の形態1.
図1は、実施の形態1における太陽光発電システムの構成を示す構成図である。図1において、太陽光発電システム100は、太陽光エネルギーを利用して発電するシステムである。太陽光発電システム100は、太陽電池アレイ300(発電部の一例)と、負荷装置400と、を備えている。電気的に直列に接続された複数の太陽電池モジュール10a〜e(発電部の一例)によって太陽電池ストリング12(発電部の一例)が構成される。各太陽電池モジュール10は、太陽光を利用して、太陽光エネルギーを電気エネルギーに変換し、直流電力として出力するモジュールである。そして、太陽電池アレイ300は、並列に配置された複数の太陽電池ストリング12a〜cによって構成される。複数の太陽電池ストリング12a〜cは、太陽電池アレイ300内部で電気的に並列に接続される。図1の例では、各太陽電池ストリング12が直列に接続された5つの太陽電池モジュール10a〜eによって構成されているが、これに限るものではない。直列数は、2つでも、3つでも、4つでも、或いは6つ以上であってもよい。適宜設定すればよい。同様に、太陽電池アレイ300は、並列に接続された3つの太陽電池ストリング12a〜cによって構成されているが、これに限るものではない。並列数は、1つでも、2つでも、或いは4つ以上であってもよい。適宜設定すればよい。このように、実施の形態1における発電部は、太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される。
太陽電池アレイ300内において、各太陽電池ストリング12a〜cの正極(+)及び負極(−)には、それぞれ各太陽電池ストリング12a〜cをシステムから解列或いはシステムに接続するスイッチ装置102a〜fが接続される。図1の例では、太陽電池ストリング12aの負極配線にスイッチ装置102aの両端の一方が接続され、正極配線にスイッチ装置102bの両端の一方が接続される。また、スイッチ装置102bの両端の他方側には逆流防止ダイオード20aが接続される。同様に、太陽電池ストリング12bの負極配線にスイッチ装置102cの両端の一方が接続され、正極配線にスイッチ装置102dの両端の一方が接続される。また、スイッチ装置102dの両端の他方側には逆流防止ダイオード20bが接続される。同様に、太陽電池ストリング12cの負極配線にスイッチ装置102eの両端の一方が接続され、正極配線にスイッチ装置102fの両端の一方が接続される。また、スイッチ装置102fの両端の他方側には逆流防止ダイオード20cが接続される。各逆流防止ダイオード20a〜cは、それぞれ対応する太陽電池ストリング12a〜cから供給される電流が流れる方向が順方向になるように配置される。スイッチ装置102は、太陽電池ストリング12の両極に配置可能な数が配置される。各スイッチ装置102は、電気的に開閉動作を自動制御可能なスイッチを用いることが好ましい。この場合、太陽電池に地絡を検出した場合に、システムをストリング単位にまで解列して停止することが可能となる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いると好適である。
また、図1の例では、各太陽電池ストリング12の正極側にだけ逆流防止ダイオード20が配置されているが、これに限るものではない。各太陽電池ストリング12の負極側にだけ逆流防止ダイオード20が配置されてもよい。或いは、各太陽電池ストリング12の正極及び負極の両極にそれぞれ逆流防止ダイオード20が配置されてもよい。いずれの場合も、各逆流防止ダイオード20は、それぞれ対応する太陽電池ストリング12から供給される電流が流れる方向が順方向になるように配置される。
図1の例では、各太陽電池ストリング12a〜cは、一方が対応する太陽電池ストリング12の負極に接続されたスイッチ装置102の他方側で並列に接続され、一方が対応する太陽電池ストリング12の正極側に接続された逆流防止ダイオード20の他方側で並列に接続される。これにより、複数の太陽電池ストリング12a〜cが並列に接続され、太陽電池アレイ300が構成される。なお、逆流防止ダイオードの代わりに、ヒューズを使用することもできる。この場合逆方向電流を完全に防止することはできないが、過度の逆方向電流を防止することが可能な太陽電池アレイを構成することができる。
太陽電池アレイ300の負極配線(負極母線)は遮断器或いは断路器といったスイッチ402に、正極配線(正極母線)は遮断器或いは断路器といったスイッチ404に接続される。そして、スイッチ402,404は、それぞれ負荷装置400に接続される。以上のようにして、太陽電池アレイ300の正極(+)側はスイッチ404を介して、負極(−)側はスイッチ402を介して、それぞれ負荷装置400に接続される。負荷装置400はその内部または出力側に、絶縁トランスを有し、太陽電池アレイが大地と電気的に接続されることを防いでいる。負荷装置400として、例えば、パワーコンディショナー等が挙げられる。太陽電池アレイ300から負荷装置400に供給された直流電力は、負荷装置400内で例えば三相交流電力等に変換され、例えば、商用電力系統等に供給される。このように、負荷装置400は、太陽電池アレイ300(発電部)または大地と絶縁された状態で、太陽電池アレイ300により発電された電力を消費又は変換する。
また、実施の形態1では、さらに、太陽電池アレイ300(発電部)内の地絡を検出する地絡検知装置36を備えている。地絡検知装置36は、切り替えスイッチ80(電位制御部の一例)、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。図1では、切り替えスイッチ80の一方側の第1の端子には、太陽電池アレイ300の負極配線(太陽電池アレイ300の負極と負荷装置400の負極を接続する「負極母線」。)から分岐した配線が接続される。切り替えスイッチ80の一方側の第2の端子には、太陽電池アレイ300の正極配線(太陽電池アレイ300の正極と負荷装置400の正極を接続する「正極母線」。)から分岐した配線が接続される。切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極母線)と太陽電池アレイ300の正極配線(正極母線)とを切り替え可能に配置される。切り替えスイッチ80の他方側の端子には抵抗84の両端の一方が接続される。抵抗84の両端の他方は、接地線40に接続される。そして、接地線40は接地箇所41において接地される。
図1において、切り替えスイッチ80が太陽電池アレイ300の負極配線側(第1の端子)に接続された場合、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80と、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、切り替えスイッチ80が太陽電池アレイ300の正極配線側(第2の端子)に接続された場合、太陽電池アレイ300は、正極側接続点51と、切り替えスイッチ80と、抵抗84と、接地線40とからなる接地電路(第2接地電路)に接続された状態となる。このように、切り替えスイッチ80は、太陽電池アレイ300に対して2種の接地電路を切り替えて接続する。このように、第1接地電路は、発電部の一方極に接続可能に構成され、第2接地電路は、発電部の他方極に接続可能に構成される。
また、電圧監視部86は、抵抗84の両端部の電位差(電圧)を監視する。電圧監視部86として、例えば、抵抗84と電気的に並列に接続された電圧計を用いることができる。図1においては、切り替えスイッチ80として、3路スイッチを例示したが、これに限定されず、負極母線が接地された状態と正極母線が接地された状態とを切り替えることができれば、どの様なスイッチまたは回路構成でも良い。また、切り替えスイッチ80は、電気的に開閉動作を自動制御可能なスイッチを用いる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFETを用いると好適である。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上或いは零以下の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極母線)側と接続した状態で、通常運転が行われる。すなわち、通常運転時は、PID(Potential Induced Degradation)対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84を介して太陽電池アレイ300の負極を接地箇所41で接地する。)図1の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84を介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a〜cの負極を大地と同電位に制御でき、PID現象を回避できる。以上のように、第1接地電路は、発電部の所与の箇所に接続されて発電部の全ての箇所の対地電位を零以上または零以下にする。
電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態(すなわち、第1接地電路が太陽電池アレイ300に接続された状態)で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該接地個所と第1接地電路を介して形成される閉回路には起電力が存在せず、抵抗84にも電圧が発生せず地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
そこで、実施の形態1では、さらに、定期的に、切り替えスイッチ80によって、第2接地電路を太陽電池アレイ300に接続して、地絡検知装置36で地絡検知を行う。第2接地電路は、発電部の対地電位を、第1接地電路が接続された時と異なる電位にする。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1〜2時間毎の間隔で地絡検知を行う。かかる状態で電圧監視部86は、抵抗84の両端にかかる電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。そして、測定された電圧V2が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは負極側で地絡事故が発生した場合、太陽電池アレイ300の正極配線(正極母線)と大地の間で電位差が生じるので、電圧V2によって地絡判定できる。すなわち、切り替えスイッチ80を切り替えることにより、負極が地絡検出の盲点であったことを補うことができる。換言すれば、切り替えスイッチ80により、第1接地電路から第2接地電路に切り替えることにより、第1接地電路において盲点だった箇所の地絡を検出することができる。このように、地絡検知部は、切り替えスイッチ80(電位制御部)により、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき発電部の地絡を検知する。なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300の地絡を検知しても良い。これにより負荷装置400からの影響を排除することができる。
このように、切り替えスイッチ80(電位制御部)は、第1接地電路と第2接地電路とを切り替えて発電部に接続することで、発電部の対地電位を制御する。地絡検知の際、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側(負極側接続点50)が抵抗84に接続された状態(第1接地電路に接続された状態)では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a〜cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a〜cの途中の対地電位も正となる。一方、切り替えスイッチ80によって太陽電池アレイ300の正極配線(正極母線)側(正極側接続点51)が抵抗84に接続された状態(第2接地電路に接続された状態)では、接地線40と接続されることで太陽電池アレイ300の正極の電位が大地(グランド)の電位に制御される。よって、太陽電池アレイ300の負極(各太陽電池ストリング12a〜cの負極)の対地電位は、負の電位になる。また、各太陽電池ストリング12a〜cの途中の対地電位も負となる。このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
以上のように、図1に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
以上のように、実施の形態1では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、切り替えスイッチ80(電位制御部)により太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる。
なお、上述した例では、単に、抵抗84の電圧を閾値と比べることによって地絡判定を行っているが、これに限るものではない。例えば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。次に、切り替えスイッチ80によって太陽電池アレイ300の正極配線(正極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧Vaを測定する。さらに、図示しない装置によって、太陽電池アレイ300の負極と正極間の電圧V0を測定する。そして、抵抗84の抵抗値Rと、測定された電圧V1,Va,V0を用いて、絶縁抵抗を演算して、得られた絶縁抵抗が予め設定された閾値以下なら地絡と判定するようにしても好適である。
また、実施の形態1では、第1接地電路を流れる電流に基づく測定値および第2接地電路を流れる電流に基づく測定値として、抵抗84の両端電圧を測定する場合について説明したが、これに限定する必要はなく、太陽電池アレイ300に第1接地電路が接続された状態と、太陽電池アレイ300に第2接地電路が接続された状態の、各状態における電流を測定し、閾値と比べることによって地絡判定を行う構成としても良い。
なお、上述した例では、太陽電池アレイ300単位で地絡検知を行う場合を示したが、これに限るものではない。例えば、太陽電池ストリング12単位で地絡検知を行ってもよい。かかる場合には、検知対象の太陽電池ストリング12に接続された2つのスイッチ装置102をON(閉)にした後、残りの太陽電池ストリング12の各2つのスイッチ装置102をOFF(開)にした状態で、上述した内容の地絡検知を行えばよい。これにより、検知対象の太陽電池ストリング12のみを通常運転させながら、検知対象の太陽電池ストリング12について地絡検知を行うことができる。
以上のように実施の形態1によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態2.
図2は、実施の形態2における太陽光発電システムの構成を示す構成図である。図2において、実施の形態2における太陽光発電システム100では、地絡検知装置36の内部構成の1つとして、図1の構成にさらに直流電源91が配置される。言い換えれば、地絡検知装置36は、切り替えスイッチ80(電位制御部の一例)、地絡検出部(抵抗84と電圧監視部86)、直流電源91、及び接地線40を有している。そして、抵抗84の両端の一方が切り替えスイッチ80と直流電源91の正極に接続され、他方が接地線40に接続され、接地線40は、接地箇所41で接地される。また、電圧監視部86は、抵抗84の両端部の電圧を監視する。切り替えスイッチ80は、一方が太陽電池アレイ300の負極配線(負極母線)から分岐した配線に接続され、他方が、抵抗84と直流電源91の負極とが切り替え可能に接続されている。直流電源91は、太陽電池アレイ300の負極を、直流電源91と抵抗84を介して大地に接続した際に、例えば、太陽電池アレイ300の正極の対地電位がほぼ0になるように電圧を印加すると好適である。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
なお、図2において、切り替えスイッチ80が第1の端子80aに接続された場合(第1の端子80aと第3の端子80cとが接続された状態)、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第1の端子80a)と、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、切り替えスイッチ80が第2の端子80bに接続された場合(第2の端子80bと第3の端子80cとが接続された状態)、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第2の端子80b)と、直流電源91と、抵抗84と、接地線40とからなる接地電路(第2接地電路)に接続された状態となる。このように、切り替えスイッチ80は、太陽電池アレイ300に対して2種の接地電路を切り替えて接続する。このように、第2接地電路は、直流電源91を有し、太陽電池アレイ300(発電部)に接続された状態で、発電部に直流電圧を印可するように構成されている。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上或いは零以下の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極側接続点50)と抵抗84とを接続した状態(切り替えスイッチ80を第1の端子80aに接続し、太陽電池アレイ300を第1接地電路に接続した状態)で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84を介して太陽電池アレイ300の負極を接地箇所41で接地する)。図2の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84を介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の負極(太陽電池のバルクにn型半導体を使用した場合には正極)の対地電位を0に制御する。これにより、各太陽電池ストリング12a〜cの対地電位を零以上に制御でき、PID現象を回避できる。
電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態(すなわち、第1接地電路に接続された状態)で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該接地個所と第1接地電路を介して形成される閉回路には起電力が存在せず、したがって、抵抗84に電圧が発生せず、地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
そこで、実施の形態2では、さらに、定期的に、切り替えスイッチ80によって、第2接地電路を太陽電池アレイ300の負極配線(負極母線)側に接続して、地絡検知装置36で地絡検知を行う。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1〜2時間毎の間隔で地絡検知を行う。
なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300単位で地絡検知を行ってもよく、これにより負荷装置400からの影響を排除できる。
直流電源91は、太陽電池アレイ300の負極を、直流電源91と抵抗84を介して大地に接続した際に(すなわち、太陽電池アレイ300を第2接地電路に接続した際に)、例えば、太陽電池アレイ300の正極の対地電位がほぼ0になるように電圧を印加すると好適である。この場合、切り替えスイッチ80と抵抗84の間に直流電源90が挿入された状態と挿入されていない状態の両状態での検出感度を総合すると、太陽電池アレイ300のあらゆるところで一様な地絡検出感度を得ることが可能となる。かかる状態で、電圧監視部86は、抵抗84の両端にかかる電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。測定された電圧V2が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。図2に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でも抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。
このように、地絡検知の際、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a〜cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a〜cの途中の対地電位も正となる。一方、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側を直流電源91側に接続を切り替えると、太陽電池アレイ300の正極の対地電位がほぼ0になるように直流電源91から電圧を印加される。そのため、太陽電池アレイ300の全体(各太陽電池ストリング12a〜c全体)の対地電位は、大地電位以下の負の電位になる。
このように正極の対地電位がほぼ0になる様に電圧を印加することによって、切り替えスイッチ80と抵抗84の間に直流電源90が挿入された状態と挿入されていない状態の両状態での検出感度を総合すると、太陽電池アレイ300のあらゆるところで一様な地絡検出感度を得ることが可能となる。
このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
以上のように、図2に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
以上のように、実施の形態2では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、切り替えスイッチ80(電位制御部)により太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる点は図1と同様である。
なお、上述した例では、単に、抵抗84の電圧を閾値と比べることによって地絡判定を行っているが、これに限るものではない。例えば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。次に、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)が直流電源91側に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧Vbを測定する。そして、直流電源91の電圧Vdcと、抵抗84の抵抗値Rと、測定された電圧V1,Vbを用いて、絶縁抵抗を演算して、得られた絶縁抵抗が予め設定された閾値以下なら地絡と判定するようにしても好適である。
以上のように実施の形態2によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態3.
図3は、実施の形態3における太陽光発電システムの構成を示す構成図である。図3において、実施の形態3における太陽光発電システム100では、地絡検知装置36の内部構成の1つとして、図1の構成にさらに交流電源87が配置される。言い換えれば、地絡検知装置36は、切り替えスイッチ80(電位制御部の一例)、地絡検出部(抵抗84と電圧監視部86)、交流電源87、及び接地線40を有している。そして、抵抗84の両端の一方が切り替えスイッチ80と交流電源87に接続され、他方が接地線40に接続され、接地線40は、接地箇所41で接地される。また、電圧監視部86は、抵抗84の両端部の電圧を監視する。切り替えスイッチ80は、一方が太陽電池アレイ300の負極配線(負極母線)から分岐した配線に接続され、他方が、抵抗84と交流電源87とが切り替え可能に接続されている。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
すなわち、図3において、切り替えスイッチ80が第1の端子80aに接続された場合(第1の端子80aと第3の端子80cとが接続された状態)、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第1の端子80a)と、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、切り替えスイッチ80が第2の端子80bに接続された場合(第2の端子80bと第3の端子80cとが接続された状態)、対応電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第2の端子80b)と、交流電圧源87と、抵抗84と、接地線40とからなる接地電路(第2接地電路)に接続された状態となる。このように、切り替えスイッチ80は、太陽電池アレイ300に対して2種の接地電路を切り替えて接続する。このように、第2接地電路は、交流電源87を有し、太陽電池アレイ300(発電部)に接続された状態で、発電部に交流電圧を印可するように構成されている。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上あるいは零以下に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極母線)と抵抗84とを接続した状態(抵抗84側にONとした状態)で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84を介して太陽電池アレイ300の負極を接地箇所41で接地する)。図3の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84を介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a〜cの負極を大地と同電位に制御でき、PID現象を回避できる。
電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で(すなわち、第1接地電路に接続された状態で)、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該接地個所と第1接地電路を介して形成される閉回路には起電力が存在せず、したがって、抵抗84に電圧が発生せず、地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
そこで、実施の形態3では、さらに、定期的に、切り替えスイッチ80を切り替えることによって、第2接地電路を太陽電池アレイ300に接続して、地絡検知装置36で地絡検知を行う。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1〜2時間毎の間隔で地絡検知を行う。
なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300単位で地絡検知を行っても良い。これにより負荷装置400からの影響を排除できる。
かかる状態で電圧監視部86は、交流電源87の位相に同期させて、抵抗84の両端にかかる交流電源87と同相の電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。そして、電圧V2が当該相用に予め設定された閾値を超えた場合に図示しない制御システムが地絡事故有と判定する。そして、太陽光発電システム100を緊急停止させることができる。図3に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でも抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。
このように、地絡検知の際、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態(第1接地電路に接続された状態)では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a〜cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a〜cの途中の対地電位も正となる。一方、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側を交流電源87側に接続を切り替えると(すなわち、切り替えスイッチ80により、太陽電池アレイ300を第2接地電路に接続すると)、太陽電池アレイ300の負極の対地電位が交流電源87から印加される電圧の極によって可変になる。このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
以上のように、図3に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
以上のように、実施の形態3では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、切り替えスイッチ80(電位制御部)により、太陽電池アレイ300の負極或いは正極に交流電圧が印加されないように制御すると共に、太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる点は図1と同様である。
なお、上述した例では、単に、抵抗84の電圧を閾値と比べることによって地絡判定を行っているが、これに限るものではない。例えば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。次に、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)が交流電源87側に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧Vcを測定する。そして、交流電源87の電圧Vacと、抵抗84の抵抗値Rと、測定された電圧V1,Vcを用いて、絶縁抵抗を演算して、得られた絶縁抵抗が予め設定された閾値以下なら地絡と判定するようにしても好適である。
以上のように実施の形態3によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態4.
図4は、実施の形態4における太陽光発電システムの構成を示す構成図である。図4において、実施の形態4における太陽光発電システム100では、地絡検知装置36の内部構成として、図1の切り替えスイッチ80の代わりに、スイッチ81と、2つの抵抗83a,83bとが配置される。言い換えれば、地絡検知装置36は、スイッチ81(電位制御部の一例)、抵抗83a,83b、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。そして、抵抗84の両端の一方がスイッチ81と抵抗83aに接続され、他方が接地線40に接続され、接地線40は、接地箇所41で接地される。また、電圧監視部86は、抵抗84の両端部の電圧を監視する。一方が抵抗84に接続されたスイッチ81の両端の他方は、抵抗83bの両端の一方に接続される。抵抗83aの他方は太陽電池アレイ300の負極配線(負極母線)から分岐した配線に接続される。抵抗83bの他方は太陽電池アレイ300の正極配線(正極母線)から分岐した配線に接続される。抵抗83a,83bは、例えば、同じ抵抗値の抵抗を用いるとよい。換言すれば、スイッチ81がON(閉)の状態では、太陽電池アレイ300の両極間の電圧(電位差)を抵抗83a,83bで分圧した中点を、抵抗84を介して大地に接続する。
スイッチ81は、電気的に開閉動作を自動制御可能なスイッチを用いる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFETを用いると好適である。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
すなわち、図4において、スイッチ81がOFF(開)の場合、太陽電池アレイ300は、負極側接続点50と、抵抗83aと、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、スイッチ81がON(閉)の場合、太陽電池アレイ300は、負極側接続点50と正極側接続点51とを抵抗83aと抵抗83bとで分圧した中点を抵抗84と接地線40を介して大地に接続する接地電路(第2接地電路)に接続された状態となる。このように、スイッチ81は、太陽電池アレイ300に対して2種の対地電路を切り替えて接続する。このように、第1接地電路は、太陽電池アレイ300(発電部)の一方極に接続可能に構成されると共に、第1抵抗83aを有している。そして、第2接地電路は、太陽電池アレイ300(発電部)の正極と負極間を所与の抵抗(抵抗83aと抵抗83b)で分圧した中点で接地する電路であるように構成されている。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上或いは零以下に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、スイッチ81は、OFF(開)の状態(第1接地電路に接続された状態)で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84,83aを介して太陽電池アレイ300の負極を接地箇所41で接地する)。図4の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84,83aを介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a〜cの負極を大地電位に制御でき、PID現象を回避できる。
電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が直列の抵抗84,83aに接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して形成される閉回路には起電力が存在せず、抵抗84に電圧が発生しない為、地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
そこで、実施の形態4では、さらに、定期的に、スイッチ81をOFF(開)からON(閉)に切り替えることによって、第2接地電路を太陽電池アレイ300に接続して、地絡検知装置36で地絡検知を行う。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1〜2時間毎の間隔で地絡検知を行う。
なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300単位で地絡検知を行っても良い。これにより負荷装置400からの影響を排除できる。
かかる状態で電圧監視部86は、抵抗84の両端にかかる電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。電圧V2が予め設定された閾値を超えた場合に図示しない制御システムが地絡事故有と判定する。そして、太陽光発電システム100を緊急停止させることができる。図4に示す地絡検知装置の例では、スイッチ81をON(閉)にした状態では、いずれかの太陽電池ストリング12の中間電位位置で地絡事故が発生した場合、地絡判定が困難となるが、かかる位置で地絡事故が発生した場合、上述した電圧V1によって通常運転時に地絡判定できる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、通常運転時の電流監視部42による地絡検出の盲点を排除できる。
このように、地絡検知の際、スイッチ81(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、スイッチ81がOFFの状態では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a〜cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a〜cの途中の対地電位も正となる。一方、スイッチ81がONに接続を切り替えると、太陽電池アレイ300の両極の中間電位の対地電位が大地(グランド)の電位となる。このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
以上のように、図4に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
以上のように、実施の形態4では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、スイッチ81(電位制御部)により太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、スイッチ81(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる点は図1と同様である。
以上のように実施の形態4によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くす或いはより低減できる。
実施の形態5.
図5は、実施の形態5における太陽光発電システムの構成を示す構成図である。図5において、実施の形態5における太陽光発電システム100では、図1の切り替えスイッチ80の代わりに、直流電源92が配置される。言い換えれば、地絡検知装置36は、直流電源92、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。抵抗84は一方が直流電源92の負極に接続され、直流電源92を介して太陽電池アレイ300の負極配線(負極母線)から分岐された配線に接続される。また、抵抗84は他方が接地される。直流電源92は、太陽電池アレイ300の全ての箇所の対地電位が正になるように電圧を印加する。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を正或いは負の電位に制御した状態で、太陽光発電を運転する。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、直流電源92の負極を地絡検知部の少なくとも一部(抵抗84)を介して接地線40によって接地箇所41で接地し、直流電源92の正極を太陽電池アレイ300の負極に接続する。このように、直流電源92によって太陽光発電システム100の負極(最低電位)でも対地電位が正電位になるように制御する。このように、システムの通常運転時には、直流電源92(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正電位(太陽電池のバルクにn型半導体を使用した場合には負電位)に制御する。これにより、各太陽電池ストリング12a〜cの負極を対地電位に対して正電位に制御でき、PID現象を回避できる。
図5の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極側が接地線40及び抵抗84を介して接地された直流電源92の正極を太陽電池アレイ300の負極配線に接地している。太陽電池のバルクにn型半導体を使用した場合には、正極側が接地線40及び抵抗84を介して接地された直流電源92の負極を太陽電池アレイ300の正極配線(正極母線)に接地することは言うまでもない。このように、図5において、接地電路は、一方側が大地に接続されていると共に、他方側が太陽電池アレイ300(発電部)の正極または負極に接続可能に構成される。そして、接地電路は、直流電源92を有し、太陽電池アレイ300(発電部)の全ての箇所の対地電位を正または負にする。
電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、直流電源92よって太陽電池アレイ300の最低電位の対地電位が正電位になるように制御された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された接地電路(直流電源92、抵抗84、接地線40を有する接地電路)を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。図5に示す地絡検知装置の例では、いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と接地電路40を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池モジュールと直流電源92が起電力となって接地電路40に電流が流れることにより、抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。また、同様に、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該地絡箇所と負極間に存在する直流電源92が起電力となって接地電路40に電流が流れることにより、抵抗84の両端に電位差が生じるので、かかる地絡を検出できる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。このように、地絡検出部(抵抗84、電圧監視部86)は、接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する。
このように、直流電源92(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
以上のように、実施の形態5では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。
以上のように実施の形態5によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態6.
図6は、実施の形態6における太陽光発電システムの構成を示す構成図である。図6において、実施の形態6における太陽光発電システム100では、図1の切り替えスイッチ80の代わりに、交流電源93が配置される。言い換えれば、地絡検知装置36は、交流電源93、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。抵抗84は一方が交流電源93に接続され、交流電源93を介して太陽電池アレイ300の負極配線(負極母線)の負極側接続点50から分岐された配線に接続される。また、抵抗84は他方が接地される。交流電源93は、太陽電池アレイ300の負極母線の対地電位が0Vを中心として変動するように交流電圧を印加する。その他の構成は、図5と同様である。また、特に説明する点以外の内容は実施の形態5と同様である。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位の時間平均値を零以上或いは零以下の電位に制御した状態で、太陽光発電を運転する。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、交流電源93の片相を地絡検知部の少なくとも一部(抵抗84)を介して接地線40によって接地箇所41で接地し、交流電源93の逆極を太陽電池アレイ300の負極に接続する。このように、交流電源93によって太陽光発電システム100の負極(最低電位)でも対地電位の時間平均値が0になるように制御する。このように、システムの通常運転時には、交流電源93(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を0または正電位(太陽電池のバルクにn型半導体を使用した場合には0または負電位)に制御する。これにより、PID現象を回避できる。
図6の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、片相が接地線40及び抵抗84を介して接地された交流電源93の逆相を太陽電池アレイ300の負極配線に接地している。太陽電池のバルクにn型半導体を使用した場合には、正極側が接地線40及び抵抗84を介して接地された交流電源93の逆相を太陽電池アレイ300の正極配線(正極母線)に接地することは言うまでもない。このように、接地電路は、一方側が大地に接続されていると共に、他方側が太陽電池アレイ300(発電部)の正極または負極に接続可能に構成される。そして、接地電路は、交流電源93を有し、太陽電池アレイ300(発電部)の全ての箇所の対地電位を時間平均して零以上または零以下にする。
電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、交流電源93よって太陽電池アレイ300の最低電位の対地電位が0を中心として変動する様に制御された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された接地電路(交流電源93、抵抗84、接地線40を有する接地電路)を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1の振幅のうち、交流電源93と同位相の成分が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。このように、地絡検出部は、接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する。そして、太陽光発電システム100を緊急停止させることができる。図6に示す地絡検知装置の例では、太陽電池ストリング12のいずれの箇所で地絡が発生しても、当該地絡箇所と接地電路40を介して閉回路が形成され、当該閉回路中に交流電源93が含まれるため、接地電路40に電流が流れることにより、抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
このように、交流電源93(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
以上のように、実施の形態6では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。
以上のように実施の形態5によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態7.
上述した各実施の形態では、太陽電池アレイ300単位で、地絡検出を行うと共にPID対策を行う構成について説明した。しかしながら、これに限るものではない。実施の形態7では、太陽電池ストリング12a〜c毎に、地絡検出とPID対策を行う構成について説明する。
図7は、実施の形態7における太陽光発電システムの構成を示す構成図である。図7において、各太陽電池ストリング12a〜cの負極配線と対応するスイッチ装置102a,c,eとの間に、それぞれ対応する太陽電池ストリング12a〜cの負極をシステムから解列或いはシステムに接続するスイッチ装置103a,c,eが配置される。そして、各太陽電池ストリング12a〜cの正極配線と対応するスイッチ装置102b,d,fとの間に、それぞれ対応する太陽電池ストリング12a〜cの正極をシステムから解列或いはシステムに接続するスイッチ装置103b,d,fが配置される。また、各太陽電池ストリング12a〜cの負極配線から分岐した配線が逆流防止ダイオード46およびスイッチ装置33を介して地絡検知装置36に接続される。スイッチ装置103は、電気的に開閉動作を自動制御可能なスイッチを用いる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFETを用いると好適である。
具体的には、図7において、太陽電池ストリング12aの負極とスイッチ装置103aとを接続する負極配線から分岐した配線が逆流防止ダイオード46aおよびスイッチ装置33aを介して地絡検知装置36の負極側に接続される。また、太陽電池ストリング12aの正極とスイッチ装置103bとを接続する正極配線から分岐した配線がスイッチ装置31aを介して地絡検知装置36の正極側に接続される。同様に、太陽電池ストリング12bの負極とスイッチ装置103cとを接続する負極配線から分岐した配線が逆流防止ダイオード46bおよびスイッチ装置33bを介して地絡検知装置36の負極側に接続される。また、太陽電池ストリング12bの正極とスイッチ装置103dとを接続する正極配線から分岐した配線がスイッチ装置31bを介して地絡検知装置36の正極側に接続される。同様に、太陽電池ストリング12cの負極とスイッチ装置103eとを接続する負極配線から分岐した配線が逆流防止ダイオード46cおよびスイッチ装置33cを介して地絡検知装置36の負極側に接続される。また、太陽電池ストリング12cの正極とスイッチ装置103fとを接続する正極配線から分岐した配線がスイッチ装置31cを介して地絡検知装置36に接続される。各太陽電池ストリング12から地絡検知装置36への接続は、図7に示すように並列に接続される。地絡検知装置36の負極側は、接地線40を介して接地箇所41に接地される。各ダイオード46a〜cは、図7に示すように大地(グランド)から太陽電池ストリング12a〜cの負極に向かう方向を順方向として接続される。
図7の例では、スイッチ装置102、逆流防止ダイオード20、及びスイッチ402,404が同じ1つの接続箱(点線)内に配置され、スイッチ装置103、逆流防止ダイオード46、及び地絡検知装置36が別の1つの接続箱(点線)内に配置された例を示している。特に接続箱を分けないのであれば、スイッチ装置103の機能はスイッチ装置102で代用できる。その場合には、スイッチ装置103を省略しても構わない。
その他、特に説明する点以外の内容は実施の形態1と同様である。
なお、本実施の形態7における地絡検出装置36の内部構成は、図1(実施の形態1)から図6(実施の形態6)に示した地絡検出装置36のいずれであっても良い。例えば、図1(実施の形態1)に記載の地絡検出装置を用いる場合、図7における地絡検出装置36のN(−)が図1に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)が図1に示す正極側接続点51に該当する。この場合、通常運転時は、図7に示すように、スイッチ装置33a〜cをON(閉)にして、地絡検出装置36と各太陽電池ストリング12a〜cの負極配線を接続し、スイッチ装置31a〜cをOFF(開)にして地絡検出装置36と各太陽電池ストリング12a〜cの正極配線を切り離す。係る状態で、地絡検出装置36内の切り替えスイッチ80によって各太陽電池ストリング12a〜cの負極配線を抵抗84に接続し(第1接地電路に接続し)、PID対策をする。
言い換えれば、太陽光発電の通常運転を行う工程では、太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部(例えば、太陽電池ストリング12a)と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置400と、を具備する太陽光発電システムを用いて、発電部(例えば、太陽電池ストリング12a)と負荷装置400とを接続し、第1接地電路を用いて発電部の全ての箇所の対地電位を零以上(太陽電池のバルクにp型半導体を使用した場合)または零以下(太陽電池のバルクにn型半導体を使用した場合)にした状態で、太陽光発電の通常運転を行う。
更に、実施の形態7においては、定期的に、太陽電池ストリングa〜c毎に地絡検出を行う。その際、地絡検知部は、発電部(例えば、太陽電池ストリング12a)と負荷装置400とを切り離した状態(発電部をシステムから解列させた状態)で、接地線40を用いて、発電部の地絡を検知する。
図8は、実施の形態7において、図1(実施の形態1)に記載した地絡検出装置36を用いた地絡検知動作を説明するための図である。実施の形態7では、太陽電池ストリング12毎に地絡検知を行う。地絡検知の際、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)の図示しない制御システムからの制御によって駆動するスイッチ装置103(例えば、スイッチ装置103a,b)をOFF(開)にして、地絡検知の対象となる太陽電池ストリング12をシステムから解列させる。その後、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)のスイッチ装置33(例えば、スイッチ装置33a)をONのまま、図示しない制御システムからの制御によって駆動するスイッチ装置31(例えば、スイッチ装置31a)をON(閉)にして、地絡検知の対象となる太陽電池ストリング12の正極側及び負極側を地絡検知装置36に接続する。また、地絡検知の対象ではない太陽電池ストリング12のスイッチ装置31,33についてはいずれもOFFとする。係る状態で、地絡検出装置36内の切り替えスイッチ80(電位制御部)により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。言い換えれば、発電部と負荷装置とを切り離した状態で、第1接地電路を発電部に接続し、当該第1接地電路を流れる電流に基づく測定値を測定する工程と、発電部と負荷装置とを切り離した状態で、第2接地電路を発電部に接続し、発電部の対地電位を、第1接地電路が発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定する工程と、を実施する。そして、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とに基づき発電部の地絡を検知する。なお、図1は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、通常運転時において、太陽電池ストリング12a〜cの正極配線を地絡検出装置36に接続し、接地しておくことは言うまでもない。また、通常運転時において、PID対策をしながら電圧監視部86により常時電圧監視をし、地絡判定を行っても良い。
また、実施の形態7において、図2(実施の形態2)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(−)が図2に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図2に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a〜cの正極配線から分岐した配線は不要となる。この場合において、通常運転時は、スイッチ装置33a〜cをON(閉)にし、地絡検出装置36内の切り替えスイッチ80を端子80aに接続し(すなわち、第1接地電路に接続し)、PID対策を行う。更に、定期的に、太陽電池ストリングa〜c毎に地絡検出を行う。具体的には、まず、検査対象となった太陽電池ストリング(例えば、太陽電池ストリング12a)をスイッチ装置103a、bによりシステムから解列する(他のスイッチ装置103c〜fはON(閉)状態とする)。そして、スイッチ装置33aをON(閉)にして太陽電池ストリング12aを地絡検出装置36に接続する(他の太陽電池ストリング12b、cはスイッチ装置33b、cにより地絡検出装置36から切り離す)。係る状態で、地絡検出装置36内の切り替えスイッチ80により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。なお、通常運転時において、PID対策をしながら電圧監視部86により常時電圧を監視し、地絡判定を行っても良い。なお、図2は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図2に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図2に示す地絡検出装置36の切り替えスイッチ80の端子80cは図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(−)側には何も接続されない状態となる。この時、直流電源91は、正極側が切り替えスイッチ80の端子80bに接続されるように配置され、各太陽電池ストリング12aの正極配線に対して正電位を印可できるように配置される。
同様に、実施の形態7において、図3(実施の形態3)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(−)が図3に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図3に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a〜cの正極配線から分岐した配線は不要となる。この場合において、通常運転時は、スイッチ装置33a〜cをON(閉)にし、地絡検出装置36内の切り替えスイッチ80を端子80aに接続し(すなわち、第1接地電路に接続し)、PID対策を行う。更に、定期的に、各太陽電池ストリングa〜c毎に地絡検出を行う。具体的には、まず、検査対象となった太陽電池ストリング(例えば、太陽電池ストリング12a)をスイッチ装置103a、bによりシステムから解列する(他のスイッチ装置103c〜fはON(閉)状態とする)。そして、スイッチ装置33aをON(閉)にして太陽電池ストリング12aを地絡検出装置36に接続する(他の太陽電池ストリング12b、cはスイッチ装置33b、cにより地絡検出装置36から切り離す)。係る状態で、地絡検出装置36内の切り替えスイッチ80により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。なお、PID対策をしながら電圧監視部86により常時電圧監視をし、地絡判定を行う構成としても良い。なお、図3は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図3に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図2に示す地絡検出装置36の切り替えスイッチ80の端子80cは図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(−)側には何も接続されない状態となる。
また、実施の形態7において、図4(実施の形態4)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(−)が図1に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)が図1に示す正極側接続点51に該当する。この場合、通常運転時は、スイッチ装置33a〜cをON(閉)にして、地絡検出装置36と各太陽電池ストリング12a〜cの負極配線を接続し、スイッチ装置31a〜cをOFF(開)にして地絡検出装置36と各太陽電池ストリング12a〜cの正極配線を切り離す。係る状態で、地絡検出装置36内の切り替えスイッチ80によって各太陽電池ストリング12a〜cの負極配線を抵抗84に接続し(第1接地電路に接続し)、PID対策をする。更に、定期的に、各太陽電池ストリングa〜c毎に地絡検出を行う。具体的には、まず、検査対象となった太陽電池ストリング(例えば、太陽電池ストリング12a)をスイッチ装置103a、bによりシステムから解列する(他のスイッチ装置103c〜fはON(閉)状態とする)。そして、スイッチ装置33aとスイッチ装置31aをON(閉)にして太陽電池ストリング12aを地絡検出装置36に接続する(他の太陽電池ストリング12b、cはスイッチ装置33b、cとスイッチ装置31b、cにより地絡検出装置36から切り離す)。係る状態で、地絡検出装置36内の切り替えスイッチ80により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。なお、通常運転時において、PID対策をしながら電圧監視部86により常時電圧監視をし、地絡判定を行っても良い。
また、実施の形態7において、図5(実施の形態5)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(−)が図5に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図5に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a〜cの正極配線から分岐した配線は不要となる。この場合において、地絡検出装置36は、常時、太陽電池ストリング12a〜cに接続される。従って、実施の形態7において、図5に示す地絡検出装置36を使用する場合には、スイッチ33a〜cは省略しても構わない。なお、図5は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図5に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図5に示す直流電源92は図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(−)側には何も接続されない状態となる。この時、直流電源92は、負極側が各太陽電池ストリング12aの正極配線に接続されるように配置され、各太陽電池ストリング12aの正極配線に対して負電位を印可できるように配置される。
また、実施の形態7において、図6(実施の形態6)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(−)が図6に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図5に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a〜cの正極配線から分岐した配線は不要となる。この場合において、地絡検出装置36は、常時、太陽電池ストリング12a〜cに接続される。従って、実施の形態7において、図6に示す地絡検出装置36を使用する場合には、スイッチ33a〜cは省略しても構わない。なお、図6は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図6に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図6に示す交流電源93は図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(−)側には何も接続されない状態となる。
以上のような切り替え動作を行うことで、実施の形態7における地絡検知装置36の内部構成が、例えば、図1に示した切り替えスイッチ80、抵抗84、及び電圧監視部86を用いた回路構成を採用する場合、通常運転時は電圧V1を測定できる。そして、定期的な地絡検知の際に電圧V2を測定できる。よって、図1で説明した内容と同様の地絡検知ができる。
このように、実施の形態7においては、2種の接地電路を用いて地絡検出を行うタイプの地絡検出装置(例えば実施の形態1〜4)や、直流電圧を加極印可して太陽電池全体の対地電位を正(または負)に制御して地絡検出を行うタイプの地絡検出装置(例えば実施の形態5)や、交流電圧を印可して常時太陽電池の対地電位を変化させて地絡検出を行うタイプの地絡検出装置(例えば実施の形態6)における接地電路を利用して、通常運転時に各太陽電池ストリング12a〜cの負極配線(あるいは正極配線)を接地してPID対策をし、且つ、各太陽電池ストリング12a〜cを地絡検出が困難な盲点箇所なく確実に地絡検出をすることができる。すなわち、地絡検出装置の接地電路を利用する為、PID対策用に新たな構成を追加する必要がなく、しかも、確実に地絡検出を行う事が可能となる。
実施の形態8.
図9は、実施の形態8における太陽光発電システムの構成を示す構成図である。図9において、逆流防止ダイオード46が無くなった点以外は、図7と同様である。また、以下、特に説明する点以外の内容は実施の形態7と同様である。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、地絡検出装置36内の接地電路を用いて各太陽電池ストリング12a〜cの所定の点の対地電位を正極或いは負極の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、103、及びスイッチ402,404は、いずれもON(閉)の状態で、各スイッチ装置31は、いずれもOFF(開)の状態で、スイッチ装置33については、いずれかの太陽電池ストリング12a〜c用のスイッチ装置33のみON(閉)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、地絡検知装置36が、いずれか1つの太陽電池ストリング12a〜c(例えば、太陽電池ストリング12a)の負極に接続される。この状態で地絡検出装置36は太陽電池ストリング12aの対地電位を制御し、PID対策を実行する。例えば、図1(実施の形態1)に示す地絡検出装置36を用いる場合には、切り替えスイッチ80により第1接地電路を太陽電池ストリング12aに接続する。各太陽電池ストリング12a〜cの負極は、並列に接続されているので、太陽電池ストリング12aの負極を地絡検出装置36内の第1接地電路を介して接地すれば、すべての太陽電池ストリング12a〜cの負極の対地電位を大地の電位に制御できる。図9の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線を接地することは言うまでもない。このように、システムの通常運転時には、スイッチ装置31,33は、地絡検出装置36の接地電路を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a〜cの負極を対地電位に制御でき、PID現象を回避できる。
以上のように、いずれかの太陽電池ストリング12a〜c用のスイッチ装置33のみON(閉)にすることで、他の太陽電池ストリング12a〜cからの逆流がなくすことができる。よって、逆流防止ダイオード46を省略できる。
図10は、実施の形態8における地絡検知動作を説明するための図である。実施の形態8では、太陽電池ストリング12毎に地絡検知を行う。例えば、図1(実施の形態1)に示す地絡検出装置36を用いる場合には、地絡検知の際、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)の図示しない制御システムからの制御によって駆動するスイッチ装置103(例えば、スイッチ装置103a,b)をOFF(開)にして、地絡検知の対象となる太陽電池ストリング12をシステムから解列させる。その後、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)のスイッチ装置33(例えば、スイッチ装置33a)をONのまま、図示しない制御システムからの制御によって駆動するスイッチ装置31(例えば、スイッチ装置31a)をON(閉)にして、地絡検知の対象となる太陽電池ストリング12の正極側及び負極側を地絡検知装置36に接続する。また、地絡検知の対象ではない太陽電池ストリング12のスイッチ装置31,33についてはいずれもOFFとする。
以上のような切り替え動作を行うことで、実施の形態8における地絡検知装置36の内部構成が、例えば、図1に示した切り替えスイッチ80、抵抗84、及び電圧監視部86を用いた回路構成を採用する場合、通常運転時は電圧V1を測定できる。そして、定期的な地絡検知の際に電圧V2を測定できる。よって、図1で説明した内容と同様の地絡検知ができる。
以上のように実施の形態8では、PID対策用の接地が行われながら、太陽電池ストリング12毎に、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態9.
図11は、実施の形態9における太陽光発電システムの構成を示す構成図である。図11において、地絡検知装置36、各スイッチ装置31,33、及び各太陽電池ストリング12a〜cの負極および正極から分岐して各スイッチ装置31,33へと接続するための配線の分岐点の位置が、負極側において各スイッチ装置102と各太陽電池ストリング12a〜cの負極が並列に接続される位置との間、正極側において各ダイオード20と各太陽電池ストリング12a〜cの正極が並列に接続される位置との間に移動した点以外は、図9と同様である。各太陽電池ストリング12a〜cの負極および正極から分岐して各スイッチ装置31,33へと接続するための配線の分岐点の位置を、図11の位置にすることで、各太陽電池ストリング12a〜cの負極を同時期に接地する場合でもダイオード46を省略することができる。また、以下、特に説明する点以外の内容は実施の形態7と同様である。
以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、地絡検出装置36内の接地電路を用いて各太陽電池ストリング12a〜cの所定の点の対地電位を正極或いは負極の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、103、各スイッチ装置33、及びスイッチ402,404は、いずれもON(閉)の状態で、各スイッチ装置31は、いずれもOFF(開)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、地絡検知装置36が、各太陽電池ストリング12a〜cの負極に接続される。換言すれば、スイッチ装置31,33は、通常運転時に、意図的に負極側のスイッチ装置31のみON、正極側のスイッチ装置33をOFFに制御して負極配線を接地している。図11の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線を接地することは言うまでもない。このように、太陽光発電システム100の負極が地絡検知装置36の少なくとも一部(図示しない負極側回路)を介して接地された状態となる。このように、システムの通常運転時には、スイッチ装置31,33は、地絡検出装置36の接地電路を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a〜cの負極を対地電位に制御でき、PID現象を回避できる。
図11は、実施の形態9における地絡検知動作を説明するための図である。実施の形態9では、太陽電池ストリング12毎に地絡検知を行う。地絡検知の際、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)の図示しない制御システムからの制御によって駆動するスイッチ装置103(例えば、スイッチ装置103a,b)をOFF(開)にして、地絡検知の対象となる太陽電池ストリング12をシステムから解列させる。その後、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)のスイッチ装置33(例えば、スイッチ装置33a)をONのまま、図示しない制御システムからの制御によって駆動するスイッチ装置31(例えば、スイッチ装置31a)をON(閉)にして、地絡検知の対象となる太陽電池ストリング12の正極側及び負極側を地絡検知装置36に接続する。また、地絡検知の対象ではない太陽電池ストリング12のスイッチ装置31,33についてはいずれもOFFとする。
以上のような切り替え動作を行うことで、実施の形態9における地絡検知装置36の内部構成が、例えば、図1に示した切り替えスイッチ80、抵抗84、及び電圧監視部86を用いた回路構成を採用する場合、通常運転時は電圧V1を測定できる。そして、定期的な地絡検知の際に電圧V2を測定できる。よって、図1で説明した内容と同様の地絡検知ができる。
以上のように実施の形態9では、PID対策用の接地が行われながら、太陽電池ストリング12毎に、地絡検知が困難な盲点箇所を無くすことできる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。上述した故障検知の手法は、一例であって、上述した故障検知の手法に限るものではない。接地電路を用いて太陽電池の対地電位を意図的に制御し、盲点箇所なく地絡の存否を判定する地絡検出方法であれば、その他の地絡等の故障検知手法を用いてもよい。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての太陽光発電システムは、本発明の範囲に包含される。
10 太陽電池モジュール
12,502 太陽電池ストリング
20,46 ダイオード
31,33,102,103 スイッチ装置
36 検知部
40 接地線
41,530 接地箇所
80,81 切り替えスイッチ
83,84 抵抗
91 直流電源
86 電圧監視部
87 交流電源
100 太陽光発電システム
300 太陽電池アレイ
400,510 負荷装置
402,404 スイッチ
500 太陽光発電システム
600,602 地絡箇所

Claims (10)

  1. 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、前記発電部内の地絡を検出する地絡検出装置であって、
    前記発電部の所与の箇所に接続されて前記発電部の全ての箇所の対地電位を零以上または零以下にする第1接地電路と、
    前記発電部の対地電位を、前記第1接地電路が接続された時と異なる電位にする第2接地電路と、
    前記第1接地電路と前記第2接地電路とを切り替えて前記発電部に接続することで、前記発電部の対地電位を制御する電位制御部と、
    前記電位制御部により、前記発電部に接続された前記第1接地電路を流れる電流に基づく測定値と、前記発電部に接続された前記第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき前記発電部の地絡を検知する地絡検知部と、を備え、
    前記電位制御部は、通常運転時に、前記発電部に前記第1接地電路を接続することを特徴とする地絡検出装置。
  2. 前記第1接地電路は、前記発電部の一方極に接続可能に構成され、前記第2接地電路は、前記発電部の他方極に接続可能に構成されていることを特徴とする請求項1に記載の地絡検出装置。
  3. 前記第2接地電路は、直流電源を有し、前記発電部に接続された状態で、前記発電部に直流電圧を印可することを特徴とする請求項1に記載の地絡検出装置。
  4. 前記第2接地電路は、交流電源を有し、前記発電部に接続された状態で、前記発電部に交流電圧を印可することを特徴とする請求項1に記載の地絡検出装置。
  5. 前記第1接地電路は、前記発電部の一方極に接続可能に構成されると共に、第1抵抗を有し、
    前記第2接地電路は、前記発電部の正極と負極間を所与の抵抗で分圧した中点で接地する電路であることを特徴とする請求項1に記載の地絡検出装置。
  6. 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、前記発電部内の地絡を検出する地絡検出装置であって、
    一方側が大地に接続されていると共に、他方側が前記発電部の正極または負極に接続可能な接地電路と、
    前記接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
    前記接地電路は、直流電源を有し、前記発電部の全ての箇所の対地電位を正または負にすることを特徴とする地絡検出装置。
  7. 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、前記発電部内の地絡を検出する地絡検出装置であって、
    一方側が大地に接続されていると共に、他方側が前記発電部の正極または負極に接続可能な接地電路と、
    前記接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
    前記接地電路は、交流電源を有し、前記発電部の全ての箇所の対地電位を時間平均して零以上または零以下にすることを特徴とする地絡検出装置。
  8. 前記地絡検知部は、前記発電部と前記負荷装置とを切り離した状態で、前記接地線を用いて、前記発電部の地絡を検知することを特徴とする請求項1〜7いずれか記載の太陽光発電システム。
  9. 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、前記発電部と前記負荷装置とを接続し、第1接地電路を用いて前記発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行うと共に、当該第1接地電路を流れる電流に基づく測定値を測定する工程と、
    第2接地電路を用いて、前記発電部の対地電位を、前記第1接地電路が前記発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定する工程と、
    前記発電部に接続された前記第1接地電路を流れる電流に基づく測定値と、前記発電部に接続された前記第2接地電路を流れる電流に基づく測定値とに基づき前記発電部の地絡を検知する工程と、
    を備えたことを特徴とする太陽光発電方法。
  10. 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、前記発電部と前記負荷装置とを接続し、第1接地電路を用いて前記発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行う工程と、
    前記発電部と前記負荷装置とを切り離した状態で、前記第1接地電路を前記発電部に接続し、当該第1接地電路を流れる電流に基づく測定値を測定する工程と、
    前記発電部と前記負荷装置とを切り離した状態で、第2接地電路を前記発電部に接続し、前記発電部の対地電位を、前記第1接地電路が前記発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定する工程と、
    前記発電部に接続された前記第1接地電路を流れる電流に基づく測定値と、前記発電部に接続された前記第2接地電路を流れる電流に基づく測定値とに基づき前記発電部の地絡を検知する工程と、
    を備えたことを特徴とする太陽光発電方法。
JP2013158871A 2013-07-31 2013-07-31 太陽光発電システム及び太陽光発電方法 Pending JP2015032602A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013158871A JP2015032602A (ja) 2013-07-31 2013-07-31 太陽光発電システム及び太陽光発電方法
PCT/JP2014/059199 WO2015015836A1 (ja) 2013-07-31 2014-03-28 太陽光発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158871A JP2015032602A (ja) 2013-07-31 2013-07-31 太陽光発電システム及び太陽光発電方法

Publications (1)

Publication Number Publication Date
JP2015032602A true JP2015032602A (ja) 2015-02-16

Family

ID=52431387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158871A Pending JP2015032602A (ja) 2013-07-31 2013-07-31 太陽光発電システム及び太陽光発電方法

Country Status (2)

Country Link
JP (1) JP2015032602A (ja)
WO (1) WO2015015836A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011956A (ja) * 2015-06-25 2017-01-12 オムロン株式会社 太陽光発電システムの出力回復方法およびその装置
JP2018520626A (ja) * 2015-06-26 2018-07-26 ニューポート コーポレイション 1または複数の光電池の1または複数の特性を測定する装置および方法
KR102670331B1 (ko) * 2023-06-16 2024-05-30 박동철 Dc 개폐 기능을 가진 태양광 접속반

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682858B (zh) * 2015-02-07 2017-09-22 杭州桑尼能源科技股份有限公司 光伏高压诱导衰减效应(pid)消除电路及其方法
CN105591609B (zh) * 2015-12-31 2018-06-29 北京天诚同创电气有限公司 光伏系统的pid处理方法和系统
JP6996366B2 (ja) * 2018-03-13 2022-01-17 オムロン株式会社 変換装置及びハイブリット電源システム
WO2022032635A1 (zh) * 2020-08-14 2022-02-17 华为数字能源技术有限公司 一种光伏电站联动保护系统及方法
CN113489354B (zh) * 2021-05-27 2022-05-31 华为数字能源技术有限公司 一种光伏发电系统及变换电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802076B2 (ja) * 2011-08-01 2015-10-28 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011956A (ja) * 2015-06-25 2017-01-12 オムロン株式会社 太陽光発電システムの出力回復方法およびその装置
JP2018520626A (ja) * 2015-06-26 2018-07-26 ニューポート コーポレイション 1または複数の光電池の1または複数の特性を測定する装置および方法
KR102670331B1 (ko) * 2023-06-16 2024-05-30 박동철 Dc 개폐 기능을 가진 태양광 접속반

Also Published As

Publication number Publication date
WO2015015836A1 (ja) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2015015836A1 (ja) 太陽光発電システム
JP6113220B2 (ja) 太陽電池検査装置および太陽電池検査方法
JP5841906B2 (ja) 故障検知装置、故障検知システム、及び故障検知方法
JP4780416B2 (ja) 太陽電池アレイ故障診断方法
JP6547447B2 (ja) 太陽光発電システムの出力回復方法およびその装置
US9252682B2 (en) Grid-connected inverter apparatus and control method therefor
WO2015015835A1 (ja) 太陽光発電システム
JP5730716B2 (ja) 太陽光発電システムの故障診断方法
AU2019204551B2 (en) Electrical supply system
JP2014011428A (ja) 故障検知装置、故障検知システム、及び故障検知方法
JP6481571B2 (ja) 検査装置および検査方法
US10530250B2 (en) Multiphase converter
JP2014038961A (ja) 導通不良検知装置及び導通不良検知方法
US11469708B2 (en) Ground-fault detecting device and related method
JP6405807B2 (ja) 太陽光発電システムの検査装置および太陽光発電システムの検査方法
WO2014007255A1 (ja) 太陽電池検査用電流制御装置
WO2016199445A1 (ja) 太陽光発電システムの検査方法および検査装置
US20220014015A1 (en) Abnormality detecting system for a solar power grid
JP2016123232A (ja) 太陽電池の検査方法およびその装置並びに太陽電池検査装置に用いられる信号源
JP2014011429A (ja) 導通不良検知装置、導通不良検知システム、及び導通不良検知方法
Aly et al. A new real-time perfect condition monitoring for high-power converters
US11632076B2 (en) Solar power generation system and test method
Pazouki et al. Fault Diagnosis and Fault Tolerant Operation of Non-Isolated DC-DC Converters