JP2015030532A - Large-size tank for chemical liquid - Google Patents

Large-size tank for chemical liquid Download PDF

Info

Publication number
JP2015030532A
JP2015030532A JP2013163724A JP2013163724A JP2015030532A JP 2015030532 A JP2015030532 A JP 2015030532A JP 2013163724 A JP2013163724 A JP 2013163724A JP 2013163724 A JP2013163724 A JP 2013163724A JP 2015030532 A JP2015030532 A JP 2015030532A
Authority
JP
Japan
Prior art keywords
tank
mass
chemical
welding
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013163724A
Other languages
Japanese (ja)
Inventor
教昌 三浦
Norimasa Miura
教昌 三浦
克哉 乘田
Katsunari Norita
克哉 乘田
黒部 淳
Atsushi Kurobe
淳 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2013163724A priority Critical patent/JP2015030532A/en
Publication of JP2015030532A publication Critical patent/JP2015030532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a crack when falling or a production cost, in a large-size tank for a chemical liquid assembled by joining a plurality of members.SOLUTION: A large-size tank for a chemical liquid has a body member in which a bottom face and a lid are joined to a cylindrical body part by seam welding. The downmost end of the cylindrical body part is made to be an outward curl shape, and the large-size tank for a chemical liquid uses a ferritic stainless steel added with 0.1 mass% or greater of each of Cu and Nb, or a ferritic stainless steel added with 0.3 mass% or greater of Mo and 0.1 mass% or greater of Nb, as a tank material.

Description

本発明は、金属を素材とした薬液用大型タンクに関し、例えば農薬や医薬品、非水系電解液を貯蔵して輸送するための大型タンクに関する。   The present invention relates to a large tank for chemicals made of metal, for example, a large tank for storing and transporting agricultural chemicals, pharmaceuticals, and non-aqueous electrolytes.

従来の薬液用大型タンクは、取り扱い時の安全性を考慮して、内容物の薬液が漏れないことと落下時の耐衝撃強度が要求されている。
このような要求に対応するために特許文献1には、タンク上部に筒口を一体で有し、この筒口に薬液を注入・排出するためのパイプを接合した蓋を密栓するとともに、そのパイプの変形や破壊を防止するために、タンク上部に筒状のスカートを設けた構造を持つ薬液輸送用容器が開示されている。また、薬液全量を可能な限り排出させるためにパイプ直下のタンク底面が最も低くなるよう半球面形状の底面を備えたタンクを床面上で自立させるため、タンク下部には筒状のスカートを設けている。
特許文献2には、化学薬品を貯蔵するタンクとして、オーステナイト系ステンレス鋼を素材とした薬液用大型タンクが提案されている。
Conventional large tanks for chemical liquids are required to prevent leakage of the contents of chemical liquids and to have impact resistance when dropped in consideration of safety during handling.
In order to meet such a demand, Patent Document 1 discloses that a cylinder port is integrally formed at the upper part of the tank, and a lid joined with a pipe for injecting and discharging a chemical solution into the cylinder port is sealed, and deformation of the pipe is performed. In order to prevent breakage, a chemical transport container having a structure in which a cylindrical skirt is provided in the upper part of the tank is disclosed. In addition, a cylindrical skirt is provided at the bottom of the tank to make the tank with a hemispherical bottom surface stand on the floor surface so that the bottom surface of the tank directly below the pipe is the lowest so as to discharge the entire amount of chemicals as much as possible. ing.
Patent Document 2 proposes a large chemical tank made of austenitic stainless steel as a tank for storing chemicals.

特許3162329号公報Japanese Patent No. 3162329 特開昭56−102561号公報JP-A-56-102561

このように、従来から提案されている薬液用大型タンクは、薬液の漏れを防止するための密閉構造は十分に施されており、また、タンクを床面上で自立させることを目的としてタンク下部にスカートやカップ状の部材が設けられているものの、タンクが落下した際の耐衝撃強度に対しては不十分である。これは、タンクを床面上で自立させる目的のスカートやカップ状部材(以下、タンクの自立目的部材と称する)では、タンク本体の底面がタンクの自立目的部材の下端とほぼ同じ高さであるため、タンクが落下した際の衝撃をタンクの自立目的部材だけが受けるのではなく、タンク本体も受けてしまうためである。そこで、衝撃吸収特性に優れた構造とすることが望まれていた。特に最近は、海外へ薬液用大型タンクを海上輸送することが頻繁に行なわれており、国際連合危険物輸送及び分類調和専門家委員会の国際連合危険物輸送勧告に対応するためにも、耐衝撃強度が高いタンク構造にする必要がある。
また、複数の部材を重ね継手でTIG溶接してあるため、盛り上がった溶接ビードを研磨する工程や、溶接時に発生したスパッタ処理の工程を追加しなければならず、これによって生産コストが高くなるという問題がある。さらに、溶接前の各部材間に隙間が発生する場合があり、この隙間によって溶接時に部分的な溶け落ちが発生しやすくなることから、隙間を小さくするために各部材の拘束作業が必要となる。これによって作業時間が長くなり、生産コストが高くなっている。
Thus, the conventionally proposed large tanks for chemicals have a sufficient sealing structure to prevent chemicals from leaking, and the bottom of the tank is intended to stand on the floor surface. Although a skirt or a cup-shaped member is provided, the impact resistance strength when the tank is dropped is insufficient. This is because, in a skirt or cup-shaped member for the purpose of allowing the tank to stand on the floor (hereinafter referred to as a tank self-supporting purpose member), the bottom surface of the tank body is substantially the same height as the lower end of the tank self-supporting purpose member. Therefore, not only the self-supporting objective member of the tank receives the impact when the tank falls, but also the tank body. Therefore, it has been desired to have a structure with excellent shock absorption characteristics. In recent years, large tanks for chemicals have been frequently transported overseas, and in order to meet the United Nations Dangerous Goods Transport Recommendations and the United Nations Dangerous Goods Transport and Classification Harmonization Expert Committee, A tank structure with high impact strength is required.
In addition, since a plurality of members are TIG welded with a lap joint, it is necessary to add a process of polishing a raised weld bead and a process of sputtering treatment generated during welding, which increases production costs. There's a problem. In addition, gaps may be generated between the respective members before welding, and partial melting of the gaps is likely to occur during welding. Therefore, it is necessary to restrain each member in order to reduce the gap. . This increases the working time and the production cost.

また、薬液用大型タンクの素材としては、オーステナイト系ステンレス鋼を用いることが提案されているが、Niが含有されていることから素材コストが高いために多くの用途に展開しにくい状況にあった。
本発明は、上記の課題を解決するため、耐衝撃強度が高く、内容物の薬液に対して耐食性を有するとともに、低コストになる薬液用大型タンクを提供することを目的とする。
In addition, it has been proposed to use austenitic stainless steel as a material for large chemical tanks. However, since Ni is contained, the material cost is high, so it was difficult to deploy in many applications. .
In order to solve the above-mentioned problems, an object of the present invention is to provide a large chemical tank that has high impact resistance, has corrosion resistance to the chemical solution in the contents, and is low in cost.

本発明の薬液用大型タンクは、その目的を達成するため、円筒状胴部と、半球面形状の底板、蓋、下フランジを有する本体部材と、薬液を注入・排出するパイプ部材で構成されており、円筒状胴部の最下端を外向きのカール形状とすることと、円筒状胴部に半球面形状の底板と蓋とをそれぞれシーム溶接により接合したことを特徴としている。
また、薬液用大型タンクの素材としては、Moを0.3質量%以上と、Nbを0.1質量%以上添加したフェライト系ステンレス鋼、またはCuとNbを各々0.1質量%以上添加したフェライト系ステンレス鋼を用いることも特徴としている。
In order to achieve the object, the large chemical tank according to the present invention includes a cylindrical body, a hemispherical bottom plate, a lid, a main body member having a lower flange, and a pipe member that injects and discharges the chemical. The bottom end of the cylindrical body is an outwardly curled shape, and a hemispherical bottom plate and a lid are joined to the cylindrical body by seam welding.
Moreover, as a raw material of the large tank for chemical liquids, 0.3 mass% or more of Mo and ferritic stainless steel added with 0.1 mass% or more of Nb, or 0.1 mass% or more of Cu and Nb were added respectively. It is also characterized by using ferritic stainless steel.

本発明の薬液用大型タンクにおいては、本体部材の円筒状胴部の最下端を外向きのカール形状としているため、薬液用大型タンクが落下した際にカール部分に衝撃が集中してもカールが開放されることがない。これに対して、下部筒状部材の最下端が内向きにカールしていると、薬液用大型タンクが落下した際の衝撃でカールが開いてしまうのである。カールが開放してしまうと、カールが開放した部分近傍のみに衝撃による変形が集中して大きく変形してしまい、この部分はタンクの割れに至ることもある。すなわち、下部筒状部材の最下端を外側にカールさせることによって、落下による衝撃を下部筒状部材の広い部分で受けるので、局所的な変形を防止することができる。これによって、薬液用大型タンクの本体に伝播する歪みが緩和され、割れを防止することができる。
また、円筒状胴部に半球面状の底板と蓋とをそれぞれシーム溶接により接合していることから、各々の部材を重ねて隙間が発生しても、シーム溶接の際に電極輪の加圧によって隙間の発生を防止できるため、安定した溶接が可能となり、生産コストの上昇を防止できる。
また、薬液用大型タンクの本体部材やパイプ部材、筒状部材の素材をMoを0.3質量%以上と、Nbを0.1質量%以上添加したフェライト系ステンレス鋼、またはCuとNbを各々0.1質量%以上添加したフェライト系ステンレス鋼としているので、落下による衝撃や取り扱い時の衝突に対して十分な強度を持つとともに、内容物の薬液に対して高い耐食性を有している。さらに、薬液用大型タンクのコストを下げることもできる。
In the large chemical tank according to the present invention, the lower end of the cylindrical body of the main body member has an outwardly curled shape. It is never opened. On the other hand, if the lower end of the lower cylindrical member is curled inward, the curl is opened by an impact when the large chemical tank is dropped. When the curl is released, deformation due to impact is concentrated only in the vicinity of the part where the curl is opened, resulting in a large deformation, and this part may lead to cracking of the tank. That is, by curling the lowermost end of the lower cylindrical member outward, the impact due to the drop is received by a wide portion of the lower cylindrical member, so that local deformation can be prevented. Thereby, the distortion propagated to the main body of the large tank for chemical liquid is relieved and cracking can be prevented.
In addition, since the hemispherical bottom plate and lid are joined to the cylindrical body by seam welding, even if a gap is created by overlapping each member, the electrode wheel is pressed during seam welding. Therefore, it is possible to prevent gaps from being generated, so that stable welding is possible and production costs can be prevented from increasing.
Further, the material of the main body member, pipe member, and cylindrical member of the large chemical tank is made of ferritic stainless steel to which Mo is added by 0.3 mass% or more and Nb is added by 0.1 mass% or more, or Cu and Nb, respectively. Since the ferritic stainless steel is added in an amount of 0.1% by mass or more, it has sufficient strength against impact caused by dropping or collision during handling, and has high corrosion resistance against the chemical solution in the contents. In addition, the cost of the large chemical tank can be reduced.

本発明の薬液用大型タンクの断面模式図Schematic cross-sectional view of the large chemical tank of the present invention 塩水噴霧試験による耐食性比較結果を示す図The figure which shows the corrosion resistance comparison result with salt spray test

以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の実施形態に係る薬液用大型タンク1の断面模式図である。薬液用大型タンク1は、薬液を貯蔵する本体部材2と、薬液を注入・排出するパイプ部材12から構成されている。また、本体部材2は、円筒状胴部5と半球面形状の底面6、さらに蓋3と下フランジ11からの構成である。
パイプ部材12は、本体部材2に差し込まれ薬液を注入・排出するパイプ4と、上フランジ8から構成されており、薬液を本体部材2の内部に密閉するためには、上フランジ8と下フランジ11の間にシール材9を挟みながらパイプ4を本体部材2内に差し込み、上フランジ8と下フランジ11の間をボルト10により締結する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a large chemical liquid tank 1 according to an embodiment of the present invention. The large chemical tank 1 is composed of a main body member 2 for storing the chemical liquid and a pipe member 12 for injecting and discharging the chemical liquid. The main body member 2 is composed of a cylindrical body 5, a hemispherical bottom surface 6, a lid 3 and a lower flange 11.
The pipe member 12 is composed of a pipe 4 that is inserted into the main body member 2 and injects and discharges the chemical liquid, and an upper flange 8. In order to seal the chemical liquid inside the main body member 2, an upper flange 8 and a lower flange are provided. The pipe 4 is inserted into the main body member 2 while sandwiching the sealing material 9 between the upper flange 8 and the lower flange 11 with a bolt 10.

本体部材2の円筒状胴部5は、素材を円筒形状に加工して、突合せ部分を溶接にて接合し、最下端を外向きのカール形状に加工して完成させている。この胴部5の一方端には半球面形状に加工した底板6をシーム溶接(溶接部15)により円周を溶接して組み付けており、他方端には蓋3と下フランジ11を溶接により接合した蓋3をシーム溶接(溶接部15)により円周を溶接して組み付けている。円筒状胴部5の突合せ溶接や下フランジ11を蓋3に溶接する方法は特に規定しないが、作業性を考慮すると片側から溶接できるTIG溶接などの溶融溶接によることが好ましい。
円筒状胴部5と蓋3の接合は、薬液用大型タンク1が側面から衝突を受けてパイプ部材12が変形したり破壊したりすることを防止するため、円筒状胴部5でパイプ部材12を囲う位置で行う。また、円筒状胴部5と半球面状の底板5との接合は、円筒状胴部5において半球面状の底板6を接合した位置から下方の領域が、薬液用大型タンク1が落下した際に変形して衝撃力を吸収するように下側領域13を設けた位置で行う。
The cylindrical body 5 of the main body member 2 is completed by processing the material into a cylindrical shape, joining the butted portions by welding, and processing the lowermost end into an outwardly curled shape. A bottom plate 6 processed into a hemispherical shape is assembled to one end of the body portion 5 by seam welding (welding portion 15), and the lid 3 and the lower flange 11 are joined to the other end by welding. The lid 3 is assembled by welding the circumference by seam welding (welded portion 15). The butt welding of the cylindrical body 5 and the method of welding the lower flange 11 to the lid 3 are not particularly defined, but in consideration of workability, it is preferable to use fusion welding such as TIG welding that can be welded from one side.
The cylindrical body 5 and the lid 3 are joined to prevent the pipe member 12 from being deformed or broken due to the collision of the large chemical tank 1 from the side surface. At the position surrounding In addition, the cylindrical body 5 and the semispherical bottom plate 5 are joined when the large tank 1 for chemical liquid falls in the area below the position where the cylindrical body 5 is joined to the semispherical bottom plate 6. This is performed at the position where the lower region 13 is provided so as to absorb the impact force by deformation.

蓋3は、パイプ4を本体部材2内に差し込むための挿入口7を有する。挿入口7は蓋3の中心に所定寸法の穴開け・バーリング加工した後に、下フランジ11を溶接して製作している。上フランジ8には、パイプ4に溶接により接合されており、ボルト10により下フランジ11と組み付けるためのボルト穴が設けられている。
上フランジ8とパイプ4の接合や下フランジ11と蓋3の接合に用いる溶接方法は、特に限定しないが、作業性を考慮すると片側から溶接できるTIG溶接などの溶融溶接にすることが好ましい。
The lid 3 has an insertion port 7 for inserting the pipe 4 into the main body member 2. The insertion port 7 is manufactured by drilling and burring a predetermined dimension in the center of the lid 3 and then welding the lower flange 11. The upper flange 8 is joined to the pipe 4 by welding, and is provided with bolt holes for assembling with the lower flange 11 with bolts 10.
The welding method used for joining the upper flange 8 and the pipe 4 or joining the lower flange 11 and the lid 3 is not particularly limited, but it is preferable to use fusion welding such as TIG welding that allows welding from one side in consideration of workability.

本発明においては、薬液用大型タンク1を構成する部材には、薬液に対する耐食性や落下や衝突に対する強度性能、コストを考慮して、特定成分を添加したフェライト系ステンレス鋼を用いる。特に耐食性に関しては、オーステナイト系ステンレス鋼と同等以上の性能とする必要があり、そのため本発明者らは、フェライト系ステンレス鋼のなかでもCuとNbを添加した、あるいはMoとNbを添加したフェライト系ステンレス鋼に着目した。   In the present invention, a ferritic stainless steel to which a specific component is added is used for the members constituting the chemical liquid large tank 1 in consideration of the corrosion resistance against the chemical liquid, the strength performance against dropping and collision, and the cost. In particular, the corrosion resistance needs to be equal to or better than that of austenitic stainless steel. Therefore, the present inventors added a ferrite and a ferritic stainless steel to which Cu and Nb are added or Mo and Nb are added. Focused on stainless steel.

これらのフェライト系ステンレス鋼の熱膨張率は、オーステナイト系ステンレス鋼と比較すると約1/2であり、また熱伝導率が約1.5倍であって熱の拡散が速いことから、溶接による加熱変形も約1/2以下となる。この変形量の低下に比例して、溶接時の部材の固定締め付け力も低くすることが可能である。   The thermal expansion coefficient of these ferritic stainless steels is about 1/2 that of austenitic stainless steels, and the thermal conductivity is about 1.5 times and heat diffusion is fast. The deformation is also about ½ or less. In proportion to the decrease in the amount of deformation, it is possible to reduce the fastening force of the member during welding.

これらのフェライト系ステンレス鋼の耐食性は、代表的なSUS304との塩水噴霧試験(JIS Z 2371)における比較において、図2に示すようにSUS304と同等以上の耐食性を有することが判明した。ここで図2におけるレイティングナンバは、JIS Z 2371附属書1に記載のレイティングナンバ法に基づいて評価した塩水噴霧試験結果の判定である。
また、この塩水噴霧試験に用いた各供試材の成分組成は表1に示す通りである。
The corrosion resistance of these ferritic stainless steels was found to be equivalent to or higher than that of SUS304 as shown in FIG. 2 in comparison with a typical salt spray test (JIS Z 2371) with SUS304. Here, the rating number in FIG. 2 is determination of the salt spray test result evaluated based on the rating number method described in JIS Z 2371 Annex 1.
Moreover, the component composition of each test material used in this salt spray test is as shown in Table 1.

表1 塩水噴霧試験に用いたステンレス鋼の成分組成 (質量%)

Figure 2015030532
Table 1 Composition of stainless steel used for salt spray test (mass%)
Figure 2015030532

これらの成分組成のうちMoは、Crの存在下で耐食性を向上させる作用がある。また、Cuの作用は、アノード電流を低下させて不動態皮膜を安定化させる効果であり、Nbの作用はNbCを形成することによって粒界へのCr炭化物の析出を抑制してCr欠乏を抑える効果である。
以上に示したように、本発明のフェライト系ステンレス鋼を薬液用大型タンクの素材とすることにより、オーステナイト系ステンレス鋼と同等以上の耐食性を確保することができる。
Of these component compositions, Mo has the effect of improving the corrosion resistance in the presence of Cr. Further, the action of Cu is an effect of stabilizing the passive film by reducing the anode current, and the action of Nb suppresses the Cr deficiency by suppressing the precipitation of Cr carbide at the grain boundary by forming NbC. It is an effect.
As described above, by using the ferritic stainless steel of the present invention as a raw material for a large tank for chemicals, corrosion resistance equivalent to or higher than that of austenitic stainless steel can be ensured.

なお、基本となるフェライト系ステンレス鋼としては、質量%で、C:0.25%以下、Si:2.0%以下、Mn:1.0%以下、P:0.04%以下、S:0.01%以下、Cr:16〜35%、N:0.025%以下をベースとして、これにNb:0.1〜0.6%やCu:0.1〜1.0%、Mo:0.3〜6.0%を含有するものが好ましい。   In addition, as a ferritic stainless steel used as a base, C: 0.25% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.04% or less, S: Based on 0.01% or less, Cr: 16 to 35%, N: 0.025% or less, Nb: 0.1 to 0.6%, Cu: 0.1 to 1.0%, Mo: Those containing 0.3 to 6.0% are preferred.

C、Nは、耐食性の面からはSUS430やSUS434に含まれる程度でよいが、強度の成形加工や溶接加工が施される場合において、加工性、耐食性ならびに耐粒界腐食性、あるいは靭性の面からC、Nは低ければ低いほど好ましい。一方、C、Nを低めることは精錬時間の延長を来たし製造コストの上昇を招く。これは、C、Nを固定する作用を有するNbを適量添加することで、ある程度の含有は許容される。このため、Cは0.25質量%以下、Nは0.025質量%以下とするが、加工性や溶接部の耐食性あるいは靭性が要求される場合には、Cは0.03質量%以下、Nは0.02質量%以下にするのが好ましい。   C and N may be included in SUS430 or SUS434 from the viewpoint of corrosion resistance. However, when strength forming or welding is performed, workability, corrosion resistance and intergranular corrosion resistance, or toughness are required. To C and N are preferably as low as possible. On the other hand, lowering the C and N lengthens the refining time and increases the manufacturing cost. This is allowed to be included to some extent by adding an appropriate amount of Nb having an action of fixing C and N. For this reason, C is 0.25% by mass or less and N is 0.025% by mass or less. However, when workability and corrosion resistance or toughness of the welded portion are required, C is 0.03% by mass or less, N is preferably 0.02% by mass or less.

Siは、脱酸作用を有しており、後述するように同様の作用を有するMnを耐食性の面から減少させるので多い方が望ましい。しかし、多すぎると鋼を硬化させ加工性を損ない、また溶接時の高温割れや溶接部靭性に対しても有害であるので上限を2.0質量%とする。   Si has a deoxidizing action and, as will be described later, Mn having the same action is reduced from the aspect of corrosion resistance, so that a larger amount is desirable. However, if the amount is too large, the steel is hardened and the workability is impaired, and it is also harmful to hot cracking and weld toughness during welding, so the upper limit is set to 2.0% by mass.

Mnは、硫化物形成能が強く、鋼中のSと結合し水溶液中で不安定で発錆の起点となりやすいMnSを形成し、耐食性を劣化させるので低いほうが望ましい。Mnが低くなるに従って孔食電位は貴となり、耐食性が改善される。有意な耐食性を得るためにはMnを1.0質量%以下にする必要がある。   Mn has a strong ability to form sulfides, and forms MnS which bonds with S in steel and is unstable in an aqueous solution and easily causes rusting, and deteriorates corrosion resistance. As Mn decreases, the pitting potential becomes noble and the corrosion resistance is improved. In order to obtain significant corrosion resistance, it is necessary to make Mn 1.0% by mass or less.

Sは、上述のようにMnと結合し耐食性に有害であり、低い方が望ましい。有意な耐食
性を得るためには、Sは0.01質量%以下にする必要がある。特に過酷な条件下で使
用される場合には0.002質量%以下にするのが好ましい。
S is bonded to Mn as described above, which is harmful to corrosion resistance, and is preferably low. In order to obtain significant corrosion resistance, S needs to be 0.01% by mass or less. Particularly when used under severe conditions, the content is preferably 0.002% by mass or less.

Crは、不動態皮膜の主要構成元素であり、不動態効果を得るには少なくとも16質量%のCrを必要とする。Crの増加は鋼の脆化をまねき加工時の割れや肌荒れを生じやすくなり、かつ軟質性が損なわれる。またCrの増加により製造が困難となり製造コストの上昇を招く。これらの理由から35質量%を上限とする。   Cr is a main constituent element of the passive film, and at least 16% by mass of Cr is required to obtain a passive effect. An increase in Cr leads to embrittlement of the steel, and is liable to cause cracks and rough skin during processing, and the softness is impaired. Further, the increase in Cr makes it difficult to manufacture and causes an increase in manufacturing cost. For these reasons, the upper limit is 35% by mass.

Nbは、鋼中のC、Nを固定する元素として知られており、通常加工性および溶接部の諸特性を改善するのに添加されているが、これらの効果の他にNbC形成による粒界へのCr炭化物の析出抑制により耐食性改善効果を有する。Nbの下限は、粒界腐食を防止するためC、Nの固定に必要な量から0.1質量%とする。一方Nbはその含有量が高くなり過ぎると、溶接やろう付け時の耐高温割れ性が低下し、靭性を損なうので0.6質量%を上限とする。   Nb is known as an element that fixes C and N in steel, and is usually added to improve the workability and various properties of the weld. In addition to these effects, grain boundaries due to NbC formation are added. It has the effect of improving corrosion resistance by suppressing the precipitation of Cr carbide. The lower limit of Nb is set to 0.1% by mass from the amount necessary for fixing C and N in order to prevent intergranular corrosion. On the other hand, if the content of Nb is too high, the hot cracking resistance at the time of welding and brazing decreases and the toughness is impaired, so 0.6 mass% is made the upper limit.

Cuは、アノード電流を低下させることによる不動態皮膜の安定化により耐食性改善効
果を有する。安定した耐食性改善効果を得るために下限は0.1質量%とする。過剰の添加は、加工性を低下させると共に耐食性も低下させるため1.0質量%を上限とする。
Cu has an effect of improving the corrosion resistance by stabilizing the passive film by reducing the anode current. In order to obtain a stable corrosion resistance improving effect, the lower limit is set to 0.1% by mass. Excessive addition lowers the workability and also reduces the corrosion resistance, so 1.0 mass% is made the upper limit.

Moは、一般的にはCrの存在下でステンレス鋼の耐食性を高める作用がよく知られている。このため、本発明では必要に応じてMoを添加することができる。種々検討の結果、Moによるステンレス鋼の耐食性を高める作用を十分に発揮させるためには0.3質量%のMo含有量を確保することがより効果的である。しかし過剰のMo添加は加工性低下やコスト増を招くので、Moを添加する場合は6.0質量%未満の範囲で行う。   Mo is generally well known for its action to increase the corrosion resistance of stainless steel in the presence of Cr. For this reason, in this invention, Mo can be added as needed. As a result of various studies, it is more effective to secure a Mo content of 0.3% by mass in order to sufficiently exhibit the effect of enhancing the corrosion resistance of stainless steel by Mo. However, excessive addition of Mo causes a decrease in workability and an increase in cost. Therefore, when adding Mo, it is performed in a range of less than 6.0% by mass.

(実施例1)
素材として表1に示した本発明1のフェライト系ステンレス鋼を用い、図1に示した構造の薬液用大型タンク1を製造した。本発明1のフェライト系ステンレス鋼を用いて製造した部材は、本体部材2のうち、円筒状胴部5、半球面状の底板6、蓋3と、パイプ部材12のうちパイプ4である。
Example 1
Using the ferritic stainless steel of the present invention 1 shown in Table 1 as a material, a large chemical tank 1 having the structure shown in FIG. 1 was manufactured. The members manufactured using the ferritic stainless steel according to the first aspect of the present invention are the cylindrical body 5, the hemispherical bottom plate 6, the lid 3, and the pipe 4 among the pipe members 12.

薬液用大型タンク1の外径は600mm、高さは1200mmである。本体部材2と蓋3は板厚が2mmであり、パイプ4は外径20mmで板厚1.5mmのTIG溶接パイプを用いた。上フランジ8と下フランジ11は、板厚4mm、外径60mmのものを用いた。 The large tank 1 for chemical liquid has an outer diameter of 600 mm and a height of 1200 mm. The main body member 2 and the lid 3 have a plate thickness of 2 mm, and the pipe 4 is a TIG welded pipe having an outer diameter of 20 mm and a plate thickness of 1.5 mm. As the upper flange 8 and the lower flange 11, those having a plate thickness of 4 mm and an outer diameter of 60 mm were used.

本体部材2の円筒状胴部5は、外径600mmとなるように曲げ加工を行った後に端部どうしをTIG溶接で接合し、最下端に外径20mmの外向きカール部14を加工した。
また、半球面状の底面6は、曲率半径が800mmとなる半球面形状に加工した。蓋3は、中央に穴径25mm、高さ20mmのバーリング加工部を設け、そのバーリング加工部に下フランジ11を配置し、TIG溶接により接合した。
円筒状胴部5と半球面状の底面6の接合は、下側領域13の長さが60mmとなる位置でシーム溶接を行った。また、円筒状胴部5と蓋3の接合は、パイプ12が円筒状胴部5で囲われるように、円筒状胴部5の最上部から50mmの位置で、シーム溶接により行った。
シーム溶接は、外径150mm、幅10mm、先端に曲率半径40mmのRを付与した一対のクロム銅製電極輪を用い、加圧力3kN、溶接電流10kA、溶接速度2m/分の条件で行った。
一方、パイプ部材12は、上フランジ8の中央に貫通穴を開け、パイプ4を通してパイプの周囲をTIG溶接で封止して製作した。
なお、上フランジ8には、ボルト10を通すためのφ9mmの穴を6箇所、下フランジ11にはM6の雌ネジ部を6箇所設けた。
続いて、シール材9を用意した。シール材9は、外径60mm、厚さ2mmのポリプロピレン製で、中央にパイプ4を通すための直径30mmの穴1つと、その周囲にフランジのボルト穴と同じ配置でφ9mmのボルト用穴6つをあけたものである。このシール材9を下フランジ11の上に置き、パイプ部材12のパイプ4を本体部材2の挿入口7から本体部材内部に挿入して、上フランジ8と下フランジ11をボルト10で締結して薬液用大型タンク1を完成させた。
(実施例2)
The cylindrical body portion 5 of the main body member 2 was bent so as to have an outer diameter of 600 mm, the ends were joined by TIG welding, and the outward curled portion 14 having an outer diameter of 20 mm was processed at the lowermost end.
The hemispherical bottom surface 6 was processed into a hemispherical shape having a radius of curvature of 800 mm. The lid 3 was provided with a burring portion having a hole diameter of 25 mm and a height of 20 mm in the center, and the lower flange 11 was disposed on the burring portion and joined by TIG welding.
The cylindrical body 5 and the hemispherical bottom surface 6 were joined by seam welding at a position where the length of the lower region 13 was 60 mm. The cylindrical body 5 and the lid 3 were joined by seam welding at a position 50 mm from the top of the cylindrical body 5 so that the pipe 12 was surrounded by the cylindrical body 5.
Seam welding was performed using a pair of chromium-copper electrode wheels with an outer diameter of 150 mm, a width of 10 mm, and a radius of curvature of 40 mm at the tip, with a pressure of 3 kN, a welding current of 10 kA, and a welding speed of 2 m / min.
On the other hand, the pipe member 12 was manufactured by forming a through hole in the center of the upper flange 8 and sealing the periphery of the pipe through the pipe 4 by TIG welding.
The upper flange 8 was provided with six holes of 9 mm for passing the bolts 10 and the lower flange 11 was provided with six M6 female screw portions.
Subsequently, a sealing material 9 was prepared. The sealing material 9 is made of polypropylene having an outer diameter of 60 mm and a thickness of 2 mm, and has one hole with a diameter of 30 mm for allowing the pipe 4 to pass through the center, and six bolt holes with a diameter of 9 mm in the same arrangement as the bolt bolt holes on the periphery. It is what opened. The sealing material 9 is placed on the lower flange 11, the pipe 4 of the pipe member 12 is inserted into the main body member from the insertion port 7 of the main body member 2, and the upper flange 8 and the lower flange 11 are fastened with bolts 10. A large tank 1 for chemicals was completed.
(Example 2)

素材として表1に示した本発明2のフェライト系ステンレス鋼を用い、図1に示した薬液用大型タンク1を製造した。薬液用大型タンク1の各部の寸法や溶接方法、シール材9の仕様は、実施例1と同じとした。
(比較例1)
Using the ferritic stainless steel of the present invention 2 shown in Table 1 as a raw material, the large-sized chemical tank 1 shown in FIG. 1 was manufactured. The dimensions of each part of the large chemical liquid tank 1, the welding method, and the specifications of the sealing material 9 were the same as those in Example 1.
(Comparative Example 1)

素材として表1に示したSUS304を用い、図1に示した薬液用大型タンク1を製造した。薬液用大型タンク1の各部の寸法や溶接方法、シール材9の仕様は、溶接電流8kAに設定した以外は実施例1と同じとして薬液用大型タンク1を製造した。
(比較例2)
Using SUS304 shown in Table 1 as a raw material, the large tank 1 for chemical solution shown in FIG. 1 was manufactured. The chemical large tank 1 was manufactured in the same manner as in Example 1 except that the dimensions and welding methods of the chemical liquid large tank 1 and the specifications of the sealing material 9 were set to a welding current of 8 kA.
(Comparative Example 2)

図1に示した薬液用大型タンク1のうち、円筒状胴部の下端のカール部14を内側に巻いた形状としたこと以外は、実施例1と同じ薬液用大型タンク1を製造した。
(比較例3)
素材として表1に示した本発明1のフェライト系ステンレス鋼を用い、図1に示した薬液用大型タンク1を製造した。薬液用大型タンク1の各部の寸法やシール材9の仕様は、実施例1と同じとしたが、円筒状胴部5と半球面状の底面6の接合と、円筒状胴部5と蓋3の接合は、どちらもTIG溶接により行った。TIG溶接の条件は、TIG溶接の条件は、溶接電流が120A、溶接速度を0.3m/分、シールドガスをArガスとした。また、溶接後は盛り上がった溶接ビードの砥石によるグラインダー研磨を行った。
The same large chemical tank 1 as in Example 1 was manufactured except that the curled portion 14 at the lower end of the cylindrical body portion was wound inward from the large chemical liquid tank 1 shown in FIG.
(Comparative Example 3)
Using the ferritic stainless steel of the present invention 1 shown in Table 1 as a raw material, the large-sized chemical tank 1 shown in FIG. 1 was manufactured. The dimensions of each part of the large chemical tank 1 and the specifications of the sealing material 9 are the same as those in the first embodiment. However, the cylindrical body 5 and the hemispherical bottom surface 6 are joined together, and the cylindrical body 5 and the lid 3. Both were joined by TIG welding. The TIG welding conditions were such that the welding current was 120 A, the welding speed was 0.3 m / min, and the shielding gas was Ar gas. After welding, grinder polishing was performed with a grindstone of the raised weld bead.

実施例1と2、および比較例1に示した薬液用大型タンク1に六フッ化燐酸リチウムを200リットル注入し、トラック荷台からの積み下ろし作業時の落下を想定して、タンク本体を45度傾けた状態で、高さ1.5mから鉛直方向に自由落下させた。その結果、何れの素材でも空隙高さ20mmでは本体部材2に割れが発生したが、空隙高さ40mmでは割れは発生せず、衝撃力に十分耐えることが分かった。また、比較例2に示した薬液用大型タンク1にも六フッ化燐酸リチウムを200リットル注入し、上記と同様の試験条件で自由落下させたが、カール部15が開放されて下部筒状部材14が変形して、本体部材2に割れが発生した。   200 liters of lithium hexafluorophosphate was injected into the large chemical tank 1 shown in Examples 1 and 2 and Comparative Example 1, and the tank body was tilted 45 degrees assuming a drop during loading and unloading work from the truck bed. In this state, it was dropped freely from a height of 1.5 m in the vertical direction. As a result, it was found that cracks occurred in the body member 2 at a gap height of 20 mm in any material, but no cracks occurred at a gap height of 40 mm, and the material sufficiently resisted the impact force. In addition, 200 liters of lithium hexafluorophosphate was also injected into the large chemical liquid tank 1 shown in Comparative Example 2 and allowed to fall freely under the same test conditions as above, but the curled portion 15 was opened and the lower cylindrical member was opened. 14 deformed, and the main body member 2 was cracked.

実施例1と2および比較例1〜3の薬液用大型タンク1に六フッ化燐酸リチウムをベースとしたリチウムイオン電池用電解液を200リットル注入し、90℃の雰囲気下で1ヶ月放置して薬液用大型タンク1の状態を評価した。評価した結果、実施例1と比較例1,2の薬液用大型タンク1においては、変形や液漏れなどの異常は見られなかったが、比較例3の薬液用大型タンク1においては、部分的に溶接ビード研磨量が過大となって接合部の厚みが薄くなり、その薄くなった接合部が電解液の膨張により変形する状態となった。   200 liters of a lithium ion battery electrolyte solution based on lithium hexafluorophosphate was injected into the large chemical solution tanks 1 of Examples 1 and 2 and Comparative Examples 1 to 3, and left in a 90 ° C. atmosphere for one month. The state of the large chemical tank 1 was evaluated. As a result of evaluation, no abnormalities such as deformation and liquid leakage were found in the large chemical tank 1 of Example 1 and Comparative Examples 1 and 2, but in the large chemical tank 1 of Comparative Example 3, In addition, the weld bead polishing amount was excessive and the thickness of the joint became thin, and the thin joint became deformed by the expansion of the electrolyte.

本発明にかかる薬液用大型タンクは、薬液を貯蔵して輸送するタンクとして製造面やコスト面で好適である。   The large tank for chemical liquid according to the present invention is suitable in terms of production and cost as a tank for storing and transporting chemical liquid.

1 薬液用大型タンク
2 本体部材
3 蓋
4 パイプ
5 円筒状胴部
6 底面
7 挿入口
8 上フランジ
9 シール材
10 ボルト
11 下フランジ
12 パイプ部材
13 下側領域
14 カール部
15 溶接部
DESCRIPTION OF SYMBOLS 1 Large chemical tank 2 Main body member 3 Lid 4 Pipe 5 Cylindrical trunk | drum 6 Bottom face 7 Insertion port 8 Upper flange 9 Sealing material 10 Bolt 11 Lower flange 12 Pipe member 13 Lower region 14 Curled part 15 Welded part

Claims (5)

円筒状部材と、その下部に接合された底板と、円筒状部材の上部に接合された蓋とからなる本体部材を有する薬液用大型タンクであって、
円筒状部材の下端は外向きのカール形状とされ、
円筒状部材と底板との接合と、円筒状部材と蓋との接合がともにシーム溶接であることを特徴とする薬液用大型タンク。
A large tank for a chemical solution having a main body member composed of a cylindrical member, a bottom plate bonded to the lower portion thereof, and a lid bonded to the upper portion of the cylindrical member,
The lower end of the cylindrical member has an outward curl shape,
A large tank for a chemical solution, characterized in that both the joining of the cylindrical member and the bottom plate and the joining of the cylindrical member and the lid are seam welding.
前記底板は、下方に向かって凸となる半球面形状である請求項1に記載の薬液用大型タンク。   The large tank for a chemical solution according to claim 1, wherein the bottom plate has a hemispherical shape that protrudes downward. 前記本体部材に、薬液を注入・排出するパイプ部材を備える請求項1または2に記載の薬液用大型タンク。   The large tank for chemical | medical solutions of Claim 1 or 2 provided with the pipe member which inject | pours / discharges a chemical | medical solution in the said main body member. 本体部材とパイプ部材の素材を、Moを0.3質量%以上と、Nbを0.1質量%以上添加したフェライト系ステンレス鋼を用いたことを特徴とする請求項1から3のいずれかに記載の薬液用大型タンク。   4. The ferritic stainless steel to which Mo is added in an amount of 0.3% by mass or more and Nb is added in an amount of 0.1% by mass or more is used as a material for the main body member and the pipe member. Large tank for chemicals described. 本体部材とパイプ部材の素材を、CuとNbを各々0.1質量%以上添加したフェライト系ステンレス鋼を用いたことを特徴とする請求項1から3のいずれかに記載の薬液用大型タンク。
The large tank for chemical | medical solution in any one of Claim 1 to 3 which used the ferritic stainless steel which added 0.1 mass% or more of Cu and Nb for the raw material of a main body member and a pipe member, respectively.
JP2013163724A 2013-08-07 2013-08-07 Large-size tank for chemical liquid Pending JP2015030532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163724A JP2015030532A (en) 2013-08-07 2013-08-07 Large-size tank for chemical liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163724A JP2015030532A (en) 2013-08-07 2013-08-07 Large-size tank for chemical liquid

Publications (1)

Publication Number Publication Date
JP2015030532A true JP2015030532A (en) 2015-02-16

Family

ID=52516202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163724A Pending JP2015030532A (en) 2013-08-07 2013-08-07 Large-size tank for chemical liquid

Country Status (1)

Country Link
JP (1) JP2015030532A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235984U (en) * 1985-08-23 1987-03-03
JPS63295032A (en) * 1987-05-27 1988-12-01 Chuo Sangyo Kk Method and apparatus for prolonging durability of metal drum
JPH02232345A (en) * 1989-03-06 1990-09-14 Sumitomo Metal Ind Ltd High strength high chromium steel excellent in corrosion resistance and oxidation resistance
JPH1081940A (en) * 1997-09-26 1998-03-31 Nisshin Steel Co Ltd Ferritic stainless steel excellent in corrosion resistance in weld zone
JPH11171289A (en) * 1997-12-17 1999-06-29 Fuji Acetylene Kogyo Kk Chemical liquid container
JP2008285718A (en) * 2007-05-17 2008-11-27 Jfe Steel Kk Ferritic stainless steel sheet having high strength of welded joint for water heater, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235984U (en) * 1985-08-23 1987-03-03
JPS63295032A (en) * 1987-05-27 1988-12-01 Chuo Sangyo Kk Method and apparatus for prolonging durability of metal drum
JPH02232345A (en) * 1989-03-06 1990-09-14 Sumitomo Metal Ind Ltd High strength high chromium steel excellent in corrosion resistance and oxidation resistance
JPH1081940A (en) * 1997-09-26 1998-03-31 Nisshin Steel Co Ltd Ferritic stainless steel excellent in corrosion resistance in weld zone
JPH11171289A (en) * 1997-12-17 1999-06-29 Fuji Acetylene Kogyo Kk Chemical liquid container
JP2008285718A (en) * 2007-05-17 2008-11-27 Jfe Steel Kk Ferritic stainless steel sheet having high strength of welded joint for water heater, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR101692591B1 (en) Ni BASED ALLOY FLUX CORED WIRE
TWI450983B (en) Fused parts with excellent corrosion resistance and strength of fat iron and stainless steel TIG welded structure
EP2402103A1 (en) Fillet weld joint and method for gas shielded arc welding
EP2716399B1 (en) Method of manufacturing an automobile frame
KR101657825B1 (en) Tungsten inert gas welding material for high manganese steel
EP2799577A1 (en) Ferritic stainless steel
CN108608802A (en) A kind of fork truck Wheel retainer ring structure and its processing technology
JP4173076B2 (en) Ni-based alloy flux cored wire
JP2015030533A (en) Large-size tank for chemical liquid
JP2015030532A (en) Large-size tank for chemical liquid
JP2015030503A (en) Large-size tank for chemical liquid
JP6203868B2 (en) Welding wire for Fe-36Ni alloy
KR20180074826A (en) Welded member having excellent welded portion porosity resistance and fatigue property and method of manufacturing the same
TWI780636B (en) Welding structure, stainless steel welding structure, stainless steel welding vessel and stainless steel
JP2015009828A (en) Large tank for liquid chemical
JPWO2014087628A1 (en) Steel material excellent in alcohol pitting resistance and alcohol SCC resistance
JP2013244983A (en) Large chemical tank
TWI823427B (en) Welded structure
JP5579316B1 (en) Welding method and welded structure
KR102043516B1 (en) Method of welding coated steel sheet and austenite based stianless pipe
JP6688947B1 (en) Pressure vessel
JP2011202254A (en) Ferritic stainless steel having excellent corrosion resistance in weld zone
KR102592758B1 (en) Welded structures and storage tanks
CN117506194A (en) Welding method for high fracture toughness liquid carbon dioxide storage tank steel electrode
JP2010162570A (en) Weld structure having brittle crack propagation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171025