JP2015029127A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2015029127A
JP2015029127A JP2014193557A JP2014193557A JP2015029127A JP 2015029127 A JP2015029127 A JP 2015029127A JP 2014193557 A JP2014193557 A JP 2014193557A JP 2014193557 A JP2014193557 A JP 2014193557A JP 2015029127 A JP2015029127 A JP 2015029127A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
bonding
metal film
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014193557A
Other languages
Japanese (ja)
Other versions
JP5901719B2 (en
Inventor
宏美 鴫原
Hiromi Shigihara
宏美 鴫原
博 塚本
Hiroshi Tsukamoto
博 塚本
矢島 明
Akira Yajima
明 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2014193557A priority Critical patent/JP5901719B2/en
Publication of JP2015029127A publication Critical patent/JP2015029127A/en
Application granted granted Critical
Publication of JP5901719B2 publication Critical patent/JP5901719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To solve a problem occurring in semiconductor integrated circuit device for automobile use and the like that aluminum pads of a semiconductor chip and the outside are connected with each other by wire bonding with gold wires and the like, in general, due to the convenience of mounting, but such semiconductor integrated circuit device is used for a long time under a relatively high temperature (approximately 150 degrees C) and poor connection occurs due to interaction between aluminum and gold.SOLUTION: A semiconductor device of a present embodiment comprises: an electrolytic gold plated surface film (gold-based metal plated film) provided on an aluminum-based bonding pads on a semiconductor chip which is a part of a semiconductor integrated circuit device (semiconductor device or electronic circuit device) via a barrier metal film; and gold bonding wires (gold-based bonding wire) for mutually connecting external leads provided on a wiring board (wiring base) and the like.

Description

本発明は、半導体集積回路装置(半導体装置または電子回路装置)における半導体チップ上のパッド電極と外部との相互接続技術に適用して有効な技術に関する。   The present invention relates to a technology that is effective when applied to a technology for interconnecting pad electrodes on a semiconductor chip and the outside in a semiconductor integrated circuit device (semiconductor device or electronic circuit device).

日本特表2004−533711号公報(特許文献1)または米国特許第6534863号公報(特許文献2)には、銅配線構造を有する半導体装置において、表面が酸化されやすいアルミニウム・パッドの代替として、下層からTaN(接着層)/Ta(バリア)/Cu(シード)/Ni(第1電気メッキ層)/Au(第2電気メッキ層)等からなるパッド上に金ワイヤをボンディングする技術が開示されている。   Japanese Patent Publication No. 2004-533711 (Patent Document 1) or US Pat. No. 6,534,863 (Patent Document 2) describes a lower layer as an alternative to an aluminum pad whose surface is easily oxidized in a semiconductor device having a copper wiring structure. Discloses a technique for bonding a gold wire onto a pad made of TaN (adhesion layer) / Ta (barrier) / Cu (seed) / Ni (first electroplating layer) / Au (second electroplating layer), etc. Yes.

特表2004−533711号公報JP-T-2004-533711 米国特許第6534863号公報US Pat. No. 6,534,863

車載用等の半導体集積回路装置においては、一般に、実装上の都合で、金線等によるワイヤ・ボンディング等によって半導体チップ上のアルミニウム・パッドと外部とが相互接続されることがある。しかし、これらの半導体集積回路装置は、比較的高温(摂氏150度前後)で長時間使用されるため、アルミニウムと金の相互作用によってカーケンダル・ボイド(Kirkendall Void)等の接続不良が発生する。   In a semiconductor integrated circuit device for in-vehicle use, generally, an aluminum pad on a semiconductor chip and the outside may be interconnected by wire bonding using a gold wire or the like for convenience of mounting. However, since these semiconductor integrated circuit devices are used at a relatively high temperature (around 150 degrees Celsius) for a long time, poor connection such as Kirkendall Void occurs due to the interaction between aluminum and gold.

本願発明は、これらの課題を解決するためになされたものである。   The present invention has been made to solve these problems.

本発明の目的は、信頼性の高い半導体集積回路装置を提供することにある。   An object of the present invention is to provide a highly reliable semiconductor integrated circuit device.

本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。   The following is a brief description of an outline of typical inventions disclosed in the present application.

すなわち、本願発明は、半導体集積回路装置(半導体装置または電子回路装置)の一部である半導体チップ上のアルミニウム系または銅系のボンディング・パッド上に、バリア・メタル膜を介して、金系表面メタル層を設け、外部との接続のための金系または銅系のボンディング・ワイヤ接合またはボンディング・ボールを設けたものである。   That is, the present invention provides a gold-based surface via a barrier metal film on an aluminum-based or copper-based bonding pad on a semiconductor chip that is a part of a semiconductor integrated circuit device (semiconductor device or electronic circuit device). A metal layer is provided, and a gold-based or copper-based bonding wire bonding or a bonding ball for connection to the outside is provided.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、金系または銅系のボンディング・ワイヤまたはボンディング・ボールが金系表面膜を介してアルミニウム系または銅系のボンディング・パッド上にボンディングされているので、比較的高温で長時間使用しても、アルミニウム等と金の相互作用によって、接続不良が発生することがない。   That is, since a gold-based or copper-based bonding wire or bonding ball is bonded onto an aluminum-based or copper-based bonding pad through a gold-based surface film, it can be used at a relatively high temperature for a long time. Connection failure does not occur due to the interaction between aluminum and gold.

本願の一実施の形態の半導体集積回路装置における半導体チップのパッド開口工程完了時点のデバイス縦構造図(図3の破線部分に対応)である。FIG. 3 is a vertical device structure diagram (corresponding to a broken line portion in FIG. 3) at the time of completing a pad opening process of a semiconductor chip in a semiconductor integrated circuit device according to an embodiment of the present application; 本願の一実施の形態の半導体集積回路装置の製造工程のうち、パッド開口工程からワイヤ・ボンディングまでの流れを示すプロセス・フロー図である。It is a process flow figure showing a flow from a pad opening process to wire bonding among manufacturing processes of a semiconductor integrated circuit device of one embodiment of this application. 本願の一実施の形態の半導体集積回路装置における半導体チップ(図18のX−X’断面に対応)のデバイス断面プロセス・フロー図(パッド開口工程完了時点)である。FIG. 19 is a device cross-sectional process flow diagram (at the time of completion of a pad opening step) for a semiconductor chip (corresponding to the X-X ′ cross section in FIG. 18) in the semiconductor integrated circuit device of one embodiment of the present application; 本願の一実施の形態の半導体集積回路装置における半導体チップ(図19のX−X’断面に対応)のデバイス断面プロセス・フロー図(バリア膜形成工程)である。FIG. 20 is a device cross-sectional process flowchart (barrier film forming step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 19) in the semiconductor integrated circuit device of one embodiment of the present application; 本願の一実施の形態の半導体集積回路装置における半導体チップ(図20のX−X’断面に対応)のデバイス断面プロセス・フロー図(レジスト膜塗布工程)である。FIG. 21 is a device cross-sectional process flowchart (resist film coating step) for a semiconductor chip (corresponding to the X-X ′ cross section in FIG. 20) in the semiconductor integrated circuit device of one embodiment of the present application; 本願の一実施の形態の半導体集積回路装置における半導体チップ(図21のX−X’断面に対応)のデバイス断面プロセス・フロー図(レジスト膜開口工程)である。FIG. 22 is a device cross-sectional process flowchart (resist film opening step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 21) in the semiconductor integrated circuit device of one embodiment of the present application; 本願の一実施の形態の半導体集積回路装置における半導体チップ(図22のX−X’断面に対応)のデバイス断面プロセス・フロー図(金メッキ工程)である。FIG. 23 is a device cross-sectional process flow diagram (gold plating step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 22) in the semiconductor integrated circuit device of one embodiment of the present application; 本願の一実施の形態の半導体集積回路装置における半導体チップ(図23のX−X’断面に対応)のデバイス断面プロセス・フロー図(レジスト除去工程)である。FIG. 24 is a device cross-sectional process flowchart (resist removal step) of a semiconductor chip (corresponding to the X-X ′ cross section in FIG. 23) in the semiconductor integrated circuit device of one embodiment of the present application; 本願の一実施の形態の半導体集積回路装置における半導体チップ(図24のX−X’断面に対応)のデバイス断面プロセス・フロー図(バリア・メタル除去工程)である。FIG. 25 is a device cross-sectional process flowchart (barrier metal removal step) for a semiconductor chip (corresponding to the X-X ′ cross section in FIG. 24) in the semiconductor integrated circuit device of one embodiment of the present application; 図9に対応する本願の一実施の形態の半導体集積回路装置における半導体チップの上面図である。FIG. 10 is a top view of a semiconductor chip in the semiconductor integrated circuit device of one embodiment of the present application corresponding to FIG. 9. 本願の一実施の形態の半導体集積回路装置の上面図である。1 is a top view of a semiconductor integrated circuit device according to an embodiment of the present application. 図11の破線部分に対応する模式断面図である。It is a schematic cross section corresponding to the broken line part of FIG. 図12において、ワイヤ・ボンディングの順序を入れ替えた例を示す模式断面図である。In FIG. 12, it is a schematic cross section which shows the example which replaced the order of wire bonding. 図12において、配線基板を配線基板上の他の電子素子に置き換えた例を示す模式断面図である。In FIG. 12, it is a schematic cross section which shows the example which replaced the wiring board with the other electronic element on a wiring board. 図12において、半導体チップのダイ・ボンディング先を配線基板上の他の電子素子(フリップ・チップ・ボンディングされたもの)に置き換えた例を示す模式断面図である。FIG. 13 is a schematic cross-sectional view showing an example in which the die bonding destination of the semiconductor chip is replaced with another electronic element (flip chip bonded) on the wiring board in FIG. 本願の他の実施の形態(追加のファイナル・パッシベーションとして2層のポリイミド膜を設けた例)の半導体集積回路装置における半導体チップ(図25のX−X’断面に対応)のデバイス断面図(ウエハ工程完了時点)である。Device sectional view (wafer) of a semiconductor chip (corresponding to the section XX ′ in FIG. 25) in a semiconductor integrated circuit device of another embodiment of the present application (an example in which a two-layer polyimide film is provided as an additional final passivation) (When the process is completed). 図3に対応する本願の一実施の形態の半導体集積回路装置における半導体チップの上面図である。FIG. 4 is a top view of a semiconductor chip in the semiconductor integrated circuit device of one embodiment of the present application corresponding to FIG. 3. 図17の破線部の拡大上面図(対応断面は図3に示す)である。FIG. 18 is an enlarged top view (corresponding cross section is shown in FIG. 3) of a broken line part in FIG. 図4に対応する工程における図17の破線部の拡大上面図である。It is an enlarged top view of the broken-line part of FIG. 17 in the process corresponding to FIG. 図5に対応する工程における図17の破線部の拡大上面図である。It is an enlarged top view of the broken-line part of FIG. 17 in the process corresponding to FIG. 図6に対応する工程における図17の破線部の拡大上面図である。It is an enlarged top view of the broken-line part of FIG. 17 in the process corresponding to FIG. 図7に対応する工程における図17の破線部の拡大上面図である。It is an enlarged top view of the broken-line part of FIG. 17 in the process corresponding to FIG. 図8に対応する工程における図17の破線部の拡大上面図である。It is an enlarged top view of the broken-line part of FIG. 17 in the process corresponding to FIG. 図9に対応する工程における図17の破線部の拡大上面図である。It is an enlarged top view of the broken-line part of FIG. 17 in the process corresponding to FIG. 図16に対応する工程における拡大上面図である。FIG. 17 is an enlarged top view in the process corresponding to FIG. 16. ニッケル表面上における無電界金メッキの問題点を説明するための説明断面図である。It is explanatory sectional drawing for demonstrating the problem of the electroless gold plating on the nickel surface. 本願の一実施の形態の半導体集積回路装置の製造工程におけるウエハ・プローブ・テスト工程の様子を示すウエハ上面拡大図(第1の例;正方形パッド)である。It is a wafer upper surface enlarged view (1st example; square pad) which shows the mode of the wafer probe test process in the manufacturing process of the semiconductor integrated circuit device of one embodiment of this application. 図27に対応する例のワイヤ・ボンディング完了時のウエハ上面拡大図(第1の例;正方形パッド)である。FIG. 28 is an enlarged view of a wafer top surface (first example; square pad) when wire bonding in the example corresponding to FIG. 27 is completed; 本願の一実施の形態の半導体集積回路装置の製造工程におけるウエハ・プローブ・テスト工程の様子を示すウエハ上面拡大図(第2の例;正規型長方形パッド)である。It is a wafer upper surface enlarged view (2nd example; regular type | mold rectangular pad) which shows the mode of the wafer probe test process in the manufacturing process of the semiconductor integrated circuit device of one embodiment of this application. 図29に対応する例のワイヤ・ボンディング完了時のウエハ上面拡大図(第2の例;正規型長方形パッド)である。FIG. 30 is an enlarged view of a wafer upper surface (second example; regular rectangular pad) when wire bonding in the example corresponding to FIG. 29 is completed. 本願の一実施の形態の半導体集積回路装置の製造工程におけるウエハ・プローブ・テスト工程の様子を示すウエハ上面拡大図(第3の例;変形型長方形パッド)である。It is a wafer upper surface enlarged view (3rd example; deformation | transformation rectangular pad) which shows the mode of the wafer probe test process in the manufacturing process of the semiconductor integrated circuit device of one embodiment of this application. 図31に対応する例のワイヤ・ボンディング完了時のウエハ上面拡大図(第3の例;変形型長方形パッド)である。FIG. 32 is an enlarged view of the wafer top surface (third example; deformed rectangular pad) at the completion of wire bonding in the example corresponding to FIG. 31; アルミニウム金接合に現れるカーケンダル・ボイド(Kirkendall Void)を説明するためのアルミニウム・パッドおよびボンディング・ワイヤの局部模式断面図である。It is a local schematic sectional drawing of the aluminum pad and bonding wire for demonstrating Kirkendall Void which appears in an aluminum gold joint. 本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合状態の各種の例(正規モード)を示す局部断面図である。It is a local sectional view showing various examples (normal mode) of the bonding state of the bonding wire on the pad in the semiconductor integrated circuit device of one embodiment of the present application. 本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合状態の各種の例(横ずれモード1)を示す局部断面図である。It is a local sectional view showing various examples (lateral shift mode 1) of the bonding state of the bonding wire on the pad in the semiconductor integrated circuit device of one embodiment of the present application. 本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合状態の各種の例(横ずれモード2)を示す局部断面図である。It is a local sectional view showing various examples (lateral shift mode 2) of the bonding state of the bonding wire on the pad in the semiconductor integrated circuit device of one embodiment of the present application. 本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合構造の各種寸法の関係を説明するための局部断面図である。It is a local sectional view for explaining the relation of various dimensions of the bonding structure of the bonding wire on the pad in the semiconductor integrated circuit device of one embodiment of the present application. 本願の一実施の形態の半導体集積回路装置(ワイヤ・ボンディング型BGA)のパッケージ工程完成時の全体上面図(見やすいようにレジン封止体を取り払っている)である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole top view at the time of completion of the package process of the semiconductor integrated circuit device (wire bonding type BGA) of one embodiment of this application (the resin sealing body is removed for easy viewing). 図38の模式断面図である。It is a schematic cross section of FIG. 本願の一実施の形態の半導体集積回路装置(QFP:Quad Flat Package)のパッケージ工程完成時の全体上面図(見やすいようにレジン封止体の上半部を取り払っている)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall top view of a semiconductor integrated circuit device (QFP: Quad Flat Package) according to an embodiment of the present application when a package process is completed (the upper half of a resin sealed body is removed for easy viewing); 図40の模式断面図である。It is a schematic cross section of FIG. 本願の一実施の形態の半導体集積回路装置(フリップ・チップ型BGA)のパッケージ工程完成時の全体上面図である。It is a whole top view at the time of completion of the packaging process of the semiconductor integrated circuit device (flip chip type BGA) of one embodiment of this application. 図42の模式断面図である。It is a schematic cross section of FIG. 図43の破線部の拡大断面図である。It is an expanded sectional view of the broken line part of FIG. 本願の一実施の形態の半導体集積回路装置における各種のアンダ・バンプ・メタル構造(2層構造)を説明するためのパッド周辺断面図である。It is a pad periphery sectional view for explaining various under bump metal structures (two layer structure) in a semiconductor integrated circuit device of one embodiment of this application. 図45の変形例のパッド周辺断面図である。FIG. 46 is a cross-sectional view of the periphery of the pad of the modified example of FIG. 45. 本願の一実施の形態の半導体集積回路装置における各種のアンダ・バンプ・メタル構造(3層以上の多層構造)を説明するためのパッド周辺断面図である。It is a pad periphery sectional view for explaining various under bump metal structures (multilayer structure of three layers or more) in a semiconductor integrated circuit device of one embodiment of this application.

〔実施の形態の概要〕
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。
[Outline of Embodiment]
First, an outline of a typical embodiment of the invention disclosed in the present application will be described.

1.以下を含む半導体集積回路装置:
(a)半導体チップのデバイス面上に設けられたアルミニウム系または銅系のパッド電極;
(b)前記パッド電極上に設けられたバリア・メタル膜;
(c)前記バリア・メタル膜上に設けられた金を主要な成分とする表面金属膜;
(d)前記表面金属膜上に接合された金または銅を主要な成分とするボンディング・ボールまたはボンディング・ワイヤ。
1. Semiconductor integrated circuit devices including:
(A) an aluminum-based or copper-based pad electrode provided on the device surface of the semiconductor chip;
(B) a barrier metal film provided on the pad electrode;
(C) a surface metal film mainly composed of gold provided on the barrier metal film;
(D) A bonding ball or bonding wire mainly composed of gold or copper bonded onto the surface metal film.

2.前記1項の半導体集積回路装置において、前記表面金属膜の厚さは、前記バリア・メタル膜の厚さよりも厚い。   2. In the semiconductor integrated circuit device according to the item 1, the surface metal film is thicker than the barrier metal film.

3.前記1または2項の半導体集積回路装置において、前記表面金属膜は、電解メッキまたはスパッタリングにより形成されたものである。   3. 3. In the semiconductor integrated circuit device according to item 1 or 2, the surface metal film is formed by electrolytic plating or sputtering.

4.前記1から3項のいずれか一つの半導体集積回路装置において、前記表面金属膜は、電解メッキにより形成されたものである。   4). 4. In the semiconductor integrated circuit device according to any one of items 1 to 3, the surface metal film is formed by electrolytic plating.

5.前記1から4項のいずれか一つの半導体集積回路装置において、前記表面金属膜の面積は、前記パッド電極上の絶縁膜開口の面積よりも大きい。   5. 5. In the semiconductor integrated circuit device according to any one of 1 to 4, the area of the surface metal film is larger than the area of the insulating film opening on the pad electrode.

6.前記1から5項のいずれか一つの半導体集積回路装置において、前記パッド電極の面積は、前記表面金属膜の面積よりも大きい。   6). 6. In the semiconductor integrated circuit device according to any one of 1 to 5, the area of the pad electrode is larger than the area of the surface metal film.

7.前記1から6項のいずれか一つの半導体集積回路装置において、前記パッド電極上の絶縁膜開口は、平面的に言って、前記表面金属膜の内部にある。   7). 7. In the semiconductor integrated circuit device according to any one of 1 to 6, the insulating film opening on the pad electrode is inside the surface metal film in a plan view.

8.前記1から7項のいずれか一つの半導体集積回路装置において、前記表面金属膜は、平面的に言って、前記パッド電極の内部にある。   8). 8. In the semiconductor integrated circuit device according to any one of 1 to 7, the surface metal film is inside the pad electrode in plan view.

9.前記1から4項のいずれか一つの半導体集積回路装置において、前記表面金属膜は、前記パッド電極のない領域にまで延在している。   9. 5. In the semiconductor integrated circuit device according to any one of items 1 to 4, the surface metal film extends to a region without the pad electrode.

10.前記1から9項のいずれか一つの半導体集積回路装置において、前記ボンディング・ボールは、ボンディング・ワイヤのボール部である。   10. 10. In the semiconductor integrated circuit device according to any one of 1 to 9, the bonding ball is a ball portion of a bonding wire.

11.前記1から10項のいずれか一つの半導体集積回路装置において、前記ボンディング・ボールは、金を主要な成分とする部材から構成されている。   11. 11. In the semiconductor integrated circuit device according to any one of items 1 to 10, the bonding ball is made of a member whose main component is gold.

12.前記1から10項のいずれか一つの半導体集積回路装置において、前記ボンディング・ボールは、銅を主要な成分とする部材から構成されている。   12 11. In the semiconductor integrated circuit device according to any one of items 1 to 10, the bonding ball is composed of a member whose main component is copper.

13.前記1から12項のいずれか一つの半導体集積回路装置において、前記パッド電極は、アルミニウム系または銅系のパッド電極である。   13. 13. The semiconductor integrated circuit device according to any one of 1 to 12, wherein the pad electrode is an aluminum-based or copper-based pad electrode.

14.前記1から13項のいずれか一つの半導体集積回路装置において、前記バリア・メタル膜は、チタンを主要な成分とする。   14 14. In the semiconductor integrated circuit device according to any one of items 1 to 13, the barrier metal film includes titanium as a main component.

15.前記1から13項のいずれか一つの半導体集積回路装置において、前記バリア・メタル膜は、チタン、クロム、窒化チタン、および窒化タングステンからなる群から選択された一つを主要な成分とする。   15. 14. In the semiconductor integrated circuit device according to any one of items 1 to 13, the barrier metal film includes, as a main component, one selected from the group consisting of titanium, chromium, titanium nitride, and tungsten nitride.

16.前記1から15項のいずれか一つの半導体集積回路装置において、更に以下を含む:
(e)前記バリア・メタル膜と前記表面金属膜の間に設けられたシード・メタル膜。
16. 16. The semiconductor integrated circuit device according to any one of items 1 to 15, further including:
(E) A seed metal film provided between the barrier metal film and the surface metal film.

17.前記16項の半導体集積回路装置において、前記シード・メタル膜は、パラジウムを主要な成分とする。   17. 16. In the semiconductor integrated circuit device according to item 16, the seed metal film contains palladium as a main component.

18.前記16項の半導体集積回路装置において、前記シード・メタル膜は、銅、金、ニッケル、白金、ロジウム、モリブデン、タングステン、クロムおよびタンタルからなる群から選択された一つを主要な成分とする。   18. 16. In the semiconductor integrated circuit device according to the item 16, the seed metal film has as its main component one selected from the group consisting of copper, gold, nickel, platinum, rhodium, molybdenum, tungsten, chromium, and tantalum.

19.前記1から18項のいずれか一つの半導体集積回路装置において、前記パッド電極は、平面的に言って、ほぼ正方形形状を呈している。   19. 19. In the semiconductor integrated circuit device according to any one of items 1 to 18, the pad electrode has a substantially square shape in plan view.

20.前記1から18項のいずれか一つの半導体集積回路装置において、前記パッド電極は、平面的に言って、ほぼ長方形形状を呈している。   20. 19. In the semiconductor integrated circuit device according to any one of items 1 to 18, the pad electrode has a substantially rectangular shape in plan view.

次に、本願において開示される発明のその他の実施の形態について概要を説明する。   Next, an outline of another embodiment of the invention disclosed in the present application will be described.

1.以下を含む半導体集積回路装置:
(a)配線基板;
(b)前記配線基板上、または前記配線基板上に設置された第1の電子素子上に固定された第1の半導体チップ;
(c)前記第1の半導体チップのデバイス面上に設けられたアルミニウム系または銅系のパッド電極;
(d)前記パッド電極上に設けられたバリア・メタル膜;
(e)前記バリア・メタル膜上に設けられたシード・メタル膜;
(f)前記シード・メタル膜上に設けられた金を主要な成分とする電解メッキによる表面金属膜;
(g)前記第1の半導体チップの外部に設けられた外部メタル電極;
(h)前記表面金属膜と前記外部メタル電極を相互に接続する金を主要な成分とするボンディング・ワイヤ。
1. Semiconductor integrated circuit devices including:
(A) a wiring board;
(B) a first semiconductor chip fixed on the wiring board or on a first electronic element placed on the wiring board;
(C) an aluminum-based or copper-based pad electrode provided on the device surface of the first semiconductor chip;
(D) a barrier metal film provided on the pad electrode;
(E) a seed metal film provided on the barrier metal film;
(F) a surface metal film formed by electrolytic plating using gold provided on the seed metal film as a main component;
(G) an external metal electrode provided outside the first semiconductor chip;
(H) A bonding wire whose main component is gold that interconnects the surface metal film and the external metal electrode.

2.前記1項の半導体集積回路装置において、前記パッド電極は、アルミニウム系のパッド電極である。   2. 2. The semiconductor integrated circuit device according to item 1, wherein the pad electrode is an aluminum-based pad electrode.

3.前記1または2項の半導体集積回路装置において、前記バリア・メタル膜は、チタンを主要な成分とする。   3. In the semiconductor integrated circuit device according to the item 1 or 2, the barrier metal film contains titanium as a main component.

4.前記1から3項のいずれか一つの半導体集積回路装置において、前記シード・メタル膜は、パラジウムを主要な成分とする。   4). 4. In the semiconductor integrated circuit device according to any one of items 1 to 3, the seed metal film includes palladium as a main component.

5.前記1、2、および4項のいずれか一つの半導体集積回路装置において、前記バリア・メタル膜は、チタン、クロム、窒化チタン、および窒化タングステンからなる群から選択された一つを主要な成分とする。   5. 5. In the semiconductor integrated circuit device according to any one of items 1, 2, and 4, the barrier metal film includes, as a main component, one selected from the group consisting of titanium, chromium, titanium nitride, and tungsten nitride. To do.

6.前記1から3および5項のいずれか一つの半導体集積回路装置において、前記シード・メタル膜は、銅、金、ニッケル、白金、ロジウム、モリブデン、タングステン、クロムおよびタンタルからなる群から選択された一つを主要な成分とする。   6). 6. The semiconductor integrated circuit device according to any one of 1 to 3 and 5, wherein the seed metal film is selected from the group consisting of copper, gold, nickel, platinum, rhodium, molybdenum, tungsten, chromium and tantalum. One of the main ingredients.

7.前記1から6項のいずれか一つの半導体集積回路装置において、前記第1の半導体チップは、前記配線基板上に固定されている。   7). 7. In the semiconductor integrated circuit device according to any one of 1 to 6, the first semiconductor chip is fixed on the wiring board.

8.前記1から6項のいずれか一つの半導体集積回路装置において、前記第1の半導体チップは、前記配線基板上の前記第1の電子素子上に固定されている。   8). 7. In the semiconductor integrated circuit device according to any one of 1 to 6, the first semiconductor chip is fixed on the first electronic element on the wiring board.

9.前記1から8項のいずれか一つの半導体集積回路装置において、前記外部メタル電極は、前記配線基板上にある。   9. 9. In the semiconductor integrated circuit device according to any one of items 1 to 8, the external metal electrode is on the wiring board.

10.前記1から8項のいずれか一つの半導体集積回路装置において、前記外部メタル電極は、前記配線基板上の前記第1の電子素子上にある。   10. 9. The semiconductor integrated circuit device according to any one of 1 to 8, wherein the external metal electrode is on the first electronic element on the wiring board.

11.前記1から10項のいずれか一つの半導体集積回路装置において、前記ボンディング・ワイヤは、前記表面金属膜側を第1ボンディング点とする。   11. 11. The semiconductor integrated circuit device according to any one of 1 to 10, wherein the bonding wire has the surface metal film side as a first bonding point.

12.前記1から10項のいずれか一つの半導体集積回路装置において、前記ボンディング・ワイヤは、前記表面金属膜側を第2ボンディング点とする。   12 11. The semiconductor integrated circuit device according to any one of 1 to 10, wherein the bonding wire has the surface metal film side as a second bonding point.

13.前記1から12項のいずれか一つの半導体集積回路装置において、前記外部メタル電極の表面には、金、銀、またはパラジウムを主要な成分とする金属膜が設けられている。   13. 13. In the semiconductor integrated circuit device according to any one of items 1 to 12, a metal film containing gold, silver, or palladium as a main component is provided on a surface of the external metal electrode.

14.(a)配線基板;
(b)前記配線基板上、または前記配線基板上に設置された第1の電子素子上に固定された第1の半導体チップ;
(c)前記第1の半導体チップのデバイス面上に設けられたアルミニウム系または銅系のパッド電極;
(d)前記パッド電極上に設けられたバリア・メタル膜;
(e)前記バリア・メタル膜上に設けられたシード・メタル膜;
(f)前記シード・メタル膜上に設けられた金を主要な成分とする表面金属膜;
(g)前記第1の半導体チップの外部に設けられた外部メタル電極;
(h)前記表面金属膜と前記外部メタル電極を相互に接続する金を主要な成分とするボンディング・ワイヤ
を有する半導体集積回路装置の製造方法であって、以下の工程を含む:
(I)半導体ウエハのほぼ全面に前記シード・メタル膜を形成する工程;
(II)前記シード・メタル膜上に、開口部を有するレジスト膜を形成する工程;
(III)電解メッキにより前記開口部にメッキ層を形成することによって、前記表面金属膜を形成する工程。
14 (A) a wiring board;
(B) a first semiconductor chip fixed on the wiring board or on a first electronic element placed on the wiring board;
(C) an aluminum-based or copper-based pad electrode provided on the device surface of the first semiconductor chip;
(D) a barrier metal film provided on the pad electrode;
(E) a seed metal film provided on the barrier metal film;
(F) a surface metal film mainly composed of gold provided on the seed metal film;
(G) an external metal electrode provided outside the first semiconductor chip;
(H) A method of manufacturing a semiconductor integrated circuit device having a bonding wire whose main component is gold that interconnects the surface metal film and the external metal electrode, and includes the following steps:
(I) forming the seed metal film on substantially the entire surface of the semiconductor wafer;
(II) forming a resist film having an opening on the seed metal film;
(III) A step of forming the surface metal film by forming a plating layer in the opening by electrolytic plating.

次に、本願において開示される発明の更にその他の実施の形態について概要を説明する。   Next, an outline of still another embodiment of the invention disclosed in the present application will be described.

1.以下を含む半導体集積回路装置:
(a)半導体チップのデバイス面上に設けられたアルミニウム系または銅系のパッド電極;
(b)前記パッド電極上に設けられたバリア・メタル膜;
(c)前記バリア・メタル膜上に設けられた金を主要な成分とする電解メッキによる表面金属膜;
(d)前記表面金属膜上に接合された金または銅を主要な成分とするボンディング・ボールまたはボンディング・ワイヤ。
1. Semiconductor integrated circuit devices including:
(A) an aluminum-based or copper-based pad electrode provided on the device surface of the semiconductor chip;
(B) a barrier metal film provided on the pad electrode;
(C) a surface metal film by electrolytic plating containing gold provided on the barrier metal film as a main component;
(D) A bonding ball or bonding wire mainly composed of gold or copper bonded onto the surface metal film.

2.前記1項の半導体集積回路装置において、前記パッド電極は、アルミニウム系のパッド電極である。   2. 2. The semiconductor integrated circuit device according to item 1, wherein the pad electrode is an aluminum-based pad electrode.

3.前記1または2項の半導体集積回路装置において、前記バリア・メタル膜は、チタンを主要な成分とする。   3. In the semiconductor integrated circuit device according to the item 1 or 2, the barrier metal film contains titanium as a main component.

4.前記1から3項のいずれか一つの半導体集積回路装置において、更に以下を含む:
(e)前記バリア・メタル膜と前記表面金属膜の間に設けられたシード・メタル膜。
4). 4. The semiconductor integrated circuit device according to any one of items 1 to 3, further including:
(E) A seed metal film provided between the barrier metal film and the surface metal film.

5.前記4項の半導体集積回路装置において、前記シード・メタル膜は、パラジウムを主要な成分とする。   5. In the semiconductor integrated circuit device according to the item 4, the seed metal film contains palladium as a main component.

6.前記1、2、4および5項のいずれか一つの半導体集積回路装置において、前記バリア・メタル膜は、チタン、クロム、窒化チタン、および窒化タングステンからなる群から選択された一つを主要な成分とする。   6). 6. The semiconductor integrated circuit device according to any one of items 1, 2, 4, and 5, wherein the barrier metal film includes one selected from the group consisting of titanium, chromium, titanium nitride, and tungsten nitride as a main component. And

7.前記4または6項の半導体集積回路装置において、前記シード・メタル膜は、銅、金、ニッケル、白金、ロジウム、モリブデン、タングステン、クロムおよびタンタルからなる群から選択された一つを主要な成分とする。   7). 7. The semiconductor integrated circuit device according to item 4 or 6, wherein the seed metal film has one selected from the group consisting of copper, gold, nickel, platinum, rhodium, molybdenum, tungsten, chromium and tantalum as a main component. To do.

〔本願における記載形式・基本的用語・用法の説明〕
1.本願において、実施の態様の記載は、必要に応じて、便宜上複数のセクションに分けて記載する場合もあるが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しを省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
[Description format, basic terms, usage in this application]
1. In the present application, the description of the embodiment may be divided into a plurality of sections for convenience, if necessary, but these are not independent from each other unless otherwise specified. Each part of a single example, one part is the other part of the details, or part or all of the modifications. Moreover, as a general rule, the same part is not repeated. In addition, each component in the embodiment is not indispensable unless specifically stated otherwise, unless it is theoretically limited to the number, and obviously not in context.

更に、本願において、「半導体集積回路装置」というときは、主に、各種トランジスタ(能動素子)を中心に、抵抗、コンデンサ等を半導体チップ等(たとえば単結晶シリコン基板)上に集積したものをいう。ここで、各種トランジスタの代表的なものとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に代表されるMISFET(Metal Insulator Semiconductor Field Effect Transistor)を例示することができる。このとき、集積回路構成の代表的なものとしては、Nチャネル型MISFETとPチャネル型MISFETを組み合わせたCMOS(Complemetary Metal Oxide Semiconductor)型集積回路に代表されるCMIS(Complemetary Metal Insulator Semiconductor)型集積回路を例示することができる。   Further, in the present application, the term “semiconductor integrated circuit device” mainly refers to a device in which resistors, capacitors, and the like are integrated on a semiconductor chip or the like (for example, a single crystal silicon substrate) with a focus on various transistors (active elements). . Here, as a representative of various transistors, a MISFET (Metal Insulator Semiconductor Effect Transistor) typified by a MOSFET (Metal Oxide Field Effect Transistor) can be exemplified. At this time, as a typical integrated circuit configuration, a CMIS (Complementary Metal Insulator Semiconductor) integrated circuit represented by a CMOS (Complementary Metal Oxide Semiconductor) integrated circuit combining an N-channel MISFET and a P-channel MISFET. Can be illustrated.

今日の半導体集積回路装置、すなわち、LSI(Large Scale Integration)のウエハ工程は、通常、原材料としてのシリコンウエハの搬入からプリ・メタル(Premetal)工程(M1配線層下端とゲート電極構造の間の層間絶縁膜等の形成、コンタクト・ホール形成、タングステン・プラグ、埋め込み等からなる工程)あたりまでのFEOL(Front End of Line)工程と、M1配線層形成から始まり、アルミニウム系パッド電極上のファイナル・パッシベーション膜へのパッド開口の形成あたりまで(ウエハ・レベル・パッケージ・プロセスにおいては、当該プロセスも含む)のBEOL(Back End of Line)工程に大別できる。FEOL工程の内、ゲート電極パターニング工程、コンタクト・ホール形成工程等は、特に微細な加工が要求される微細加工工程である。一方、BEOL工程においては、ビアおよびトレンチ形成工程、特に、比較的下層のローカル配線(たとえば4層程度の構成の埋め込み配線では、M1からM3あたりまで、10層程度の構成の埋め込み配線では、M1からM5あたりまでの微細埋め込み配線)等において、特に微細加工が要求される。なお、「MN(通常N=1から15程度)」で、下から第N層配線を表す。M1は第1層配線であり、M3は第3層配線である。   A semiconductor process of today's semiconductor integrated circuit device, that is, an LSI (Large Scale Integration) wafer process, is usually performed from the introduction of a silicon wafer as a raw material to a pre-metal process (interlayer between the lower end of the M1 wiring layer and the gate electrode structure). Starting from the formation of insulating film, contact hole formation, tungsten plug, embedding, etc. (FEOL (Front End of Line) process) and M1 wiring layer formation, final passivation on the aluminum-based pad electrode The process can be roughly divided into BEOL (Back End of Line) processes up to the formation of pad openings in the film (including the process in the wafer level package process). Of the FEOL process, the gate electrode patterning process, the contact hole forming process, and the like are microfabrication processes that require particularly fine processing. On the other hand, in the BEOL process, a via and trench formation process, in particular, a relatively lower local wiring (for example, M1 to M3 in a buried wiring having a structure of about four layers, M1 in a buried wiring having a structure of about 10 layers. In particular, fine processing is required for fine embedded wiring from M to around M5. Note that “MN (usually N = 1 to 15)” represents the N-th layer wiring from the bottom. M1 is a first layer wiring, and M3 is a third layer wiring.

2.同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、A以外の要素を主要な構成要素のひとつとするものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。同様に、「酸化シリコン膜」、「酸化シリコン系絶縁膜」等と言っても、比較的純粋な非ドープ酸化シリコン(Undoped Silicon Dioxide)だけでなく、FSG(Fluorosilicate Glass)、TEOSベース酸化シリコン(TEOS-based silicon oxide)、SiOC(Silicon Oxicarbide)またはカーボンドープ酸化シリコン(Carbon-doped Silicon oxide)またはOSG(Organosilicate glass)、PSG(Phosphorus Silicate Glass)、BPSG(Borophosphosilicate Glass)等の熱酸化膜、CVD酸化膜、SOG(Spin ON Glass)、ナノ・クラスタリング・シリカ(Nano-Clustering Silica:NSC)等の塗布系酸化シリコン、これらと同様な部材に空孔を導入したシリカ系Low-k絶縁膜(ポーラス系絶縁膜)、およびこれらを主要な構成要素とする他のシリコン系絶縁膜との複合膜等を含むことは言うまでもない。   2. Similarly, in the description of the embodiment, etc., regarding the material, composition, etc., “X consisting of A” etc. is an element other than A unless specifically stated otherwise and clearly not in context. It is not excluded that one of the main components. For example, as for the component, it means “X containing A as a main component”. For example, “silicon member” is not limited to pure silicon, but also includes SiGe alloys, other multi-component alloys containing silicon as a main component, and members containing other additives. Needless to say. Similarly, “silicon oxide film”, “silicon oxide insulating film”, etc. are not only relatively pure undoped silicon oxide (FS), but also FSG (Fluorosilicate Glass), TEOS-based silicon oxide ( Thermal oxide films such as TEOS-based silicon oxide), SiOC (Silicon Oxicarbide) or Carbon-doped Silicon oxide or OSG (Organosilicate glass), PSG (Phosphorus Silicate Glass), BPSG (Borophosphosilicate Glass), CVD Oxide film, SOG (Spin ON Glass), nano-clustering silica (Nano-Clustering Silica: NSC), etc., coated silicon oxide, silica-based low-k insulating film (porous) with pores introduced in the same materials Needless to say, it includes a composite insulating film and other silicon-based insulating films having these as main components.

また、酸化シリコン系絶縁膜と並んで、半導体分野で常用されているシリコン系絶縁膜としては、窒化シリコン系絶縁膜がある。この系統の属する材料としては、SiN,SiCN,SiNH,SiCNH等がある。ここで、「窒化シリコン」というときは、特にそうでない旨明示したときを除き、SiNおよびSiNHの両方を含む。同様に、「SiCN」というときは、特にそうでない旨明示したときを除き、SiCNおよびSiCNHの両方を含む。   In addition to silicon oxide insulating films, silicon nitride insulating films that are commonly used in the semiconductor field include silicon nitride insulating films. Materials belonging to this system include SiN, SiCN, SiNH, SiCNH, and the like. Here, “silicon nitride” includes both SiN and SiNH unless otherwise specified. Similarly, “SiCN” includes both SiCN and SiCNH, unless otherwise specified.

なお、SiCは、SiNと類似の性質を有するが、SiONは、むしろ、酸化シリコン系絶縁膜に分類すべき場合が多い。   Note that SiC has similar properties to SiN, but SiON is often rather classified as a silicon oxide insulating film.

窒化シリコン膜は、SAC(Self−Aligned Contact)技術におけるエッチ・ストップ膜として、多用されるほか、SMT(Stress Memorization Technique)における応力付与膜としても使用される。   The silicon nitride film is frequently used as an etch stop film in SAC (Self-Aligned Contact) technology, and also used as a stress applying film in SMT (Stress Memory Technique).

同様に、「銅配線」、「アルミニウム配線」、「アルミニウム・パッド」、「金バンプ(金表面膜)」等といっても、純粋なものばかりでなく、アルミニウム又は金を主要な成分とするもの、すなわち「銅系配線」、「アルミニウム系配線」、「アルミニウム系パッド」、「金系バンプ(金系表面金属膜)」を指すものとする。また、これらの表現は、当該部分の主要部がそれらの材料からできていることを指すのであって、必ずしも当該部分の全体が、それらの材料からできていることを指すものではないことは言うまでもない。   Similarly, “copper wiring”, “aluminum wiring”, “aluminum pad”, “gold bump (gold surface film)”, etc. are not only pure but also aluminum or gold as the main component. In other words, “copper-based wiring”, “aluminum-based wiring”, “aluminum-based pad”, and “gold-based bump (gold-based surface metal film)”. In addition, these expressions indicate that the main part of the part is made of those materials, and needless to say, the whole part is not necessarily made of those materials. Yes.

以上のことは、「バリア・メタル」、「シード・メタル」等についても同じである。   The same applies to “barrier metal”, “seed metal” and the like.

3.同様に、図形、位置、属性等に関して、好適な例示をするが、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、厳密にそれに限定されるものではないことは言うまでもない。   3. Similarly, suitable examples of graphics, positions, attributes, and the like are given, but it is needless to say that the present invention is not strictly limited to those cases unless explicitly stated otherwise, and unless otherwise apparent from the context.

4.さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。   4). In addition, when a specific number or quantity is mentioned, a numerical value exceeding that specific number will be used unless specifically stated otherwise, unless theoretically limited to that number, or unless otherwise clearly indicated by the context. There may be a numerical value less than the specific numerical value.

5.「ウエハ」というときは、通常は半導体集積回路装置(半導体装置、電子装置も同じ)をその上に形成する単結晶シリコンウエハを指すが、エピタキシャルウエハ、SOI基板、LCDガラス基板等の絶縁基板と半導体層等の複合ウエハ等も含むことは言うまでもない。   5. “Wafer” usually refers to a single crystal silicon wafer on which a semiconductor integrated circuit device (same as a semiconductor device and an electronic device) is formed, but an insulating substrate such as an epitaxial wafer, an SOI substrate, an LCD glass substrate and the like. Needless to say, a composite wafer such as a semiconductor layer is also included.

6.「ボンディング・パッド」は、本願においては、主にその上に、パッド上メタル多層構造またはバンプ構造(バリア・メタルから表面金属膜まで)を形成するアルミニウム系パッド等を指す。ボンディング・パッドは、アルミニウム系に限らず、銅系でもよい。   6). In the present application, the “bonding pad” mainly refers to an aluminum-based pad or the like on which a metal multi-layer structure or bump structure (from a barrier metal to a surface metal film) is formed. The bonding pad is not limited to aluminum but may be copper.

7.本願においては、ボンディング・パッド上に形成された電界メッキ等による(直下のバリア・メタル層等と比較して)比較的厚い金等の端子電極(外部接続用電極)、すなわち「表面メタル層」を、本来の直接接続のためのバンプ電極ではないが、形状の類似性を考慮して便宜上、「金バンプ」、「バンプ電極」または「バンプ電極層」等とも呼ぶ場合がある。なお、本来のバンプ電極は通常15マイクロ・メートル程度の厚さを有するが、表面メタル層は通常1から5マイクロ・メートル程度の厚さを有する。但し、表面メタル層としての金層の下に銅やニッケル等の電解メッキ層を比較的厚く付ける例においては、それらの層を表面メタル層の一部と見ると、全体としては15マイクロ・メートル程度の厚さとなる場合もある。   7). In the present application, a relatively thick terminal electrode such as gold (external connection electrode) by electroplating or the like formed on a bonding pad (compared to a barrier metal layer directly below), that is, a “surface metal layer” Is not a bump electrode for direct connection, but may be referred to as a “gold bump”, a “bump electrode”, a “bump electrode layer”, or the like for convenience in consideration of the similarity in shape. The original bump electrode usually has a thickness of about 15 micrometers, but the surface metal layer usually has a thickness of about 1 to 5 micrometers. However, in an example in which an electroplating layer such as copper or nickel is relatively thick under the gold layer as the surface metal layer, when these layers are regarded as a part of the surface metal layer, the total is 15 micrometers. In some cases, it may be about a thickness.

「ボンディング・ボール」というときは、ボール・ボンディングにおいて、第1ボンディング点にできるボール形状の金属塊又はそれが変形したもののほか、スタッド・バンプ(Stud Bump)等のボンディング・ワイヤ起因のボール形状の金属塊又はそれが変形したものを指す。   The term “bonding ball” refers to a ball-shaped metal block formed at the first bonding point or a deformed ball-shaped metal block, or a ball-shaped ball derived from a bonding wire such as a stud bump. It refers to a metal mass or a deformed one.

8.本願において、「配線基板」は、汎用されているガラス・エポキシ等の有機配線基板(単層および多層)の外、フレキシブル配線基板、セラミック配線基板、ガラス配線基板等を含む。また、配線基板上の「電子素子」はパッケージに封入された半導体装置、半導体チップ、その他のチップ状部品(抵抗、コンデンサなど)等を含む。   8). In the present application, the “wiring board” includes a flexible wiring board, a ceramic wiring board, a glass wiring board, and the like in addition to a commonly used organic wiring board (single layer and multilayer) such as glass / epoxy. The “electronic element” on the wiring board includes a semiconductor device, a semiconductor chip, other chip-like components (resistors, capacitors, etc.) enclosed in a package.

〔実施の形態の詳細〕
実施の形態について更に詳述する。各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。
[Details of the embodiment]
The embodiment will be further described in detail. In the drawings, the same or similar parts are denoted by the same or similar symbols or reference numerals, and description thereof will not be repeated in principle.

1.本願の一実施の形態の半導体集積回路装置におけるアルミニウム系パッド上のパッド開口完成時点でのデバイス断面構造の説明(主に図1)
図1は本願発明の実施の形態の半導体集積回路装置の製造方法による65nmテクノロジ・ノードのデバイスの断面構造の一例を示すデバイス断面図(パッド開口完成時点)である。図1に基づいて、本願の実施形態の半導体集積回路装置のデバイス構造の概要を説明する。
1. Description of device cross-sectional structure at the time of completion of pad opening on aluminum-based pad in semiconductor integrated circuit device of one embodiment of the present application (mainly FIG. 1)
FIG. 1 is a device cross-sectional view (at the time of completion of a pad opening) showing an example of a cross-sectional structure of a 65 nm technology node device manufactured by a method of manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention. The outline of the device structure of the semiconductor integrated circuit device according to the embodiment of the present application will be described with reference to FIG.

図1に示すように、たとえば、STI(Shallow Trench Isolation)型の素子分離フィールド絶縁膜2で分離されたP型単結晶シリコン基板1のデバイス面上には、PチャネルMOSFETまたはNチャネルMOSFETのゲート電極8が形成されている。それらの上には、エッチ・ストップ膜である窒化シリコン・ライナー膜4(たとえば約30nm)が形成されている。その上には、窒化シリコン・ライナー膜4よりもずっと厚く、下層の熱CVD法によるオゾンTEOS酸化シリコン膜(たとえば約200nm)および上層のプラズマTEOS酸化シリコン膜(たとえば約270nm)等からなるプリ・メタル(Premetal)層間絶縁膜5が形成されている。また、これらのプリ・メタル絶縁膜を貫通して、タングステン・プラグ3が形成されている。ここまでがプリ・メタル領域PMである。   As shown in FIG. 1, for example, a gate of a P-channel MOSFET or an N-channel MOSFET is formed on a device surface of a P-type single crystal silicon substrate 1 separated by an STI (Shallow Trench Isolation) type element isolation field insulating film 2. An electrode 8 is formed. A silicon nitride liner film 4 (for example, about 30 nm) which is an etch stop film is formed thereon. Further, it is much thicker than the silicon nitride liner film 4 and is composed of a lower layer of an ozone TEOS silicon oxide film (for example, about 200 nm) formed by a thermal CVD method and an upper layer plasma TEOS silicon oxide film (for example, about 270 nm). A metal interlayer insulating film 5 is formed. A tungsten plug 3 is formed through these pre-metal insulating films. This is the pre-metal region PM.

その上の第1配線層M1は、下層のSiCN膜(たとえば約50nm)等の絶縁性バリア膜14および主層間絶縁膜であるプラズマシリコン酸化膜15(たとえば約150nm)等およびそれらに形成された配線溝に埋め込まれた銅配線13等から構成されている。   The first wiring layer M1 thereon is formed on the lower insulating barrier film 14 such as a SiCN film (for example, about 50 nm), the plasma silicon oxide film 15 (for example, about 150 nm) as the main interlayer insulating film, and the like. It is composed of a copper wiring 13 or the like embedded in the wiring groove.

その上の第2配線層から第6配線層M2,M3,M4,M5,M6は、相互にほぼ同様の構造をしている。各層は、下層のSiCO膜(たとえば約30nm)/SiCN膜(たとえば約30nm)等からなる複合絶縁性バリア膜(ライナー膜)24、34,44、54,64、および上層のほとんどの領域を占める主層間絶縁膜25,35,45,55,65等から構成されている。この主層間絶縁膜25,35,45,55,65は、下層よりカーボン・ドープ酸化シリコン膜、すなわち、SiOC膜(たとえば約350nm)とキャップ膜であるプラズマTEOSシリコン酸化膜(たとえば約80nm)等からなる。これらの層間絶縁膜を貫通して、銅プラグおよび銅配線を含む銅埋め込み配線23,33,43,53,63が形成されている。   The second to sixth wiring layers M2, M3, M4, M5, and M6 on the second wiring layer have substantially the same structure. Each layer occupies a composite insulating barrier film (liner film) 24, 34, 44, 54, 64 composed of a lower SiCO film (for example, about 30 nm) / SiCN film (for example, about 30 nm) or the like, and most of the upper layer region. It is composed of main interlayer insulating films 25, 35, 45, 55, 65 and the like. The main interlayer insulating films 25, 35, 45, 55, 65 are carbon-doped silicon oxide films from the lower layer, that is, a SiOC film (for example, about 350 nm) and a plasma TEOS silicon oxide film (for example, about 80 nm) as a cap film. Consists of. Copper embedded wirings 23, 33, 43, 53, 63 including copper plugs and copper wirings are formed through these interlayer insulating films.

その上の第7配線層から第8配線層M7,M8は、相互にほぼ同様の構造をしている。各層は、下層のSiCN膜(たとえば約70nm)等の絶縁性バリア膜74,84および上層の主層間絶縁膜75,85等から構成されている。この主層間絶縁膜75,85は、下層よりプラズマTEOSシリコン酸化膜(たとえば約250nm)、FSG膜(たとえば約300nm)、およびキャップ膜であるUSG膜(たとえば約200nm)等からなる。これらの層間絶縁膜を貫通して、銅プラグおよび銅配線を含む銅埋め込み配線73,83が形成されている。   The seventh wiring layer to the eighth wiring layer M7, M8 thereabove have substantially the same structure. Each layer includes insulating barrier films 74 and 84 such as a lower SiCN film (for example, about 70 nm) and upper main interlayer insulating films 75 and 85. The main interlayer insulating films 75 and 85 are composed of a plasma TEOS silicon oxide film (for example, about 250 nm), an FSG film (for example, about 300 nm), a USG film (for example, about 200 nm) as a cap film, and the like from the lower layer. Copper embedded wirings 73 and 83 including copper plugs and copper wirings are formed through these interlayer insulating films.

その上の第9配線層から第10配線層M9,M10は、相互にほぼ同様の構造をしている。各層は下層の層間と上層の層内に分かれている。層間絶縁膜は、下層のSiCN膜(たとえば約70nm)等の絶縁性バリア膜94b,104bおよび上層の主層間絶縁膜等から構成されている。主層間絶縁膜は下層のFSG膜95b,105b(たとえば約800nm)及び上層のキャップ膜であるUSG膜96b,106b(たとえば約100nm)等から構成されている。また、層内絶縁膜は、下層のSiCN膜(たとえば約50nm)等の絶縁性バリア膜94a,104aおよび上層の主層間絶縁膜等から構成されている。主層内絶縁膜は下層のFSG膜95a,105a(たとえば約1200nm)及び上層のキャップ膜であるUSG膜96a,106a(たとえば約100nm)等から構成されている。これらの層間絶縁膜および層内絶縁膜等を貫通して、銅プラグおよび銅配線を含む銅埋め込み配線93,103が形成されている。   The ninth wiring layer to the tenth wiring layer M9, M10 thereabove have substantially the same structure. Each layer is divided into a lower layer and an upper layer. The interlayer insulating film includes insulating barrier films 94b and 104b such as a lower SiCN film (for example, about 70 nm) and an upper main interlayer insulating film. The main interlayer insulating film is composed of lower FSG films 95b and 105b (for example, about 800 nm) and USG films 96b and 106b (for example, about 100 nm) as upper cap films. The in-layer insulating film is composed of insulating barrier films 94a and 104a such as a lower SiCN film (for example, about 50 nm) and an upper main interlayer insulating film. The main-layer insulating film is composed of lower FSG films 95a and 105a (for example, about 1200 nm) and USG films 96a and 106a (for example, about 100 nm) as upper layer cap films. Copper embedded wirings 93 and 103 including copper plugs and copper wirings are formed through the interlayer insulating film and the interlayer insulating film.

その上の最上層配線層(パッド層)APは、下層のSiCN膜114(たとえば約100nm)等の絶縁性バリア膜、中間のUSG膜117(たとえば約900nm)等の主層間絶縁膜、および、最外部のプラズマSiN119(たとえば約600nm)等のファイナル・パッシベーション膜等から構成されている。また、これらの層間絶縁膜を貫通して、タングステン・プラグ113が設けられており、USG膜117上にはアルミニウム系のボンディング・パッド118(たとえば約1000nm)が設けられている。このアルミニウム系のボンディング・パッド118とタングステン・プラグ113には、必要に応じて、下層のチタン接着層151(たとえば約10nm)および上層の窒化チタン・バリアメタル層152(たとえば約30nm)が設けられている。また、ボンディング・パッド118上には、窒化チタン層153(たとえば約70nm)が形成されており、この膜とプラズマSiN119に開口が形成され、ボンディング・パッド開口163となっている。   The uppermost wiring layer (pad layer) AP thereabove includes an insulating barrier film such as a lower SiCN film 114 (for example, about 100 nm), a main interlayer insulating film such as an intermediate USG film 117 (for example, about 900 nm), and The outermost plasma SiN119 (for example, about 600 nm) or the like is used for a final passivation film or the like. Further, a tungsten plug 113 is provided through these interlayer insulating films, and an aluminum-based bonding pad 118 (for example, about 1000 nm) is provided on the USG film 117. The aluminum-based bonding pad 118 and the tungsten plug 113 are provided with a lower titanium adhesive layer 151 (for example, about 10 nm) and an upper titanium nitride barrier metal layer 152 (for example, about 30 nm) as necessary. ing. A titanium nitride layer 153 (for example, about 70 nm) is formed on the bonding pad 118, and an opening is formed in this film and the plasma SiN 119 to form a bonding pad opening 163.

なお、アルミニウム系のボンディング・パッド118の代わりに、銅系のボンディング・パッドにしてもよい。   Instead of the aluminum bonding pad 118, a copper bonding pad may be used.

2.本願の一実施の形態の半導体集積回路装置の製造方法におけるボンディング・パッド開口の後のプロセス等の説明(主に図2、図3から図9、図16、図17から図24および図25)
次に、図3から図9、図17から図24等に基づいて、本願発明の一実施の形態の半導体集積回路装置の製造方法におけるボンディング・パッド上メタル層構造(表面メタル層または金バンプ等)の形成プロセスを説明する。
2. Description of processes after bonding pad opening in manufacturing method of semiconductor integrated circuit device according to one embodiment of the present application (mainly FIG. 2, FIG. 3 to FIG. 9, FIG. 16, FIG. 17 to FIG. 24 and FIG. 25)
Next, based on FIG. 3 to FIG. 9, FIG. 17 to FIG. 24, etc., the metal layer structure on the bonding pad (surface metal layer or gold bump, etc.) in the manufacturing method of the semiconductor integrated circuit device according to the embodiment of the present invention. ) Will be described.

図2は本願の一実施の形態の半導体集積回路装置の製造工程のうち、パッド開口工程からワイヤ・ボンディングまでの流れを示すプロセス・フロー図である。図3は本願の一実施の形態の半導体集積回路装置における半導体チップ(図18のX−X’断面に対応)のデバイス断面プロセス・フロー図(パッド開口工程完了時点)である。図4は本願の一実施の形態の半導体集積回路装置における半導体チップ(図19のX−X’断面に対応)のデバイス断面プロセス・フロー図(バリア膜形成工程)である。図5は本願の一実施の形態の半導体集積回路装置における半導体チップ(図20のX−X’断面に対応)のデバイス断面プロセス・フロー図(レジスト膜塗布工程)である。図6は本願の一実施の形態の半導体集積回路装置における半導体チップ(図21のX−X’断面に対応)のデバイス断面プロセス・フロー図(レジスト膜開口工程)である。図7は本願の一実施の形態の半導体集積回路装置における半導体チップ(図22のX−X’断面に対応)のデバイス断面プロセス・フロー図(金メッキ工程)である。図8は本願の一実施の形態の半導体集積回路装置における半導体チップ(図23のX−X’断面に対応)のデバイス断面プロセス・フロー図(レジスト除去工程)である。図9は本願の一実施の形態の半導体集積回路装置における半導体チップ(図24のX−X’断面に対応)のデバイス断面プロセス・フロー図(バリア・メタル除去工程)である。図16は本願の他の実施の形態(追加のファイナル・パッシベーションとして2層のポリイミド膜を設けた例)の半導体集積回路装置における半導体チップ(図25のX−X’断面に対応)のデバイス断面図(ウエハ工程完了時点)である。図17は図3に対応する本願の一実施の形態の半導体集積回路装置における半導体チップの上面図である。図18は図17の破線部の拡大上面図(対応断面は図3に示す)である。図19は図4に対応する工程における図17の破線部の拡大上面図である。図20は図5に対応する工程における図17の破線部の拡大上面図である。図21は図6に対応する工程における図17の破線部の拡大上面図である。図22は図7に対応する工程における図17の破線部の拡大上面図である。図23は図8に対応する工程における図17の破線部の拡大上面図である。図24は図9に対応する工程における図17の破線部の拡大上面図である。図25は図16に対応する工程における拡大上面図である。   FIG. 2 is a process flow diagram showing the flow from the pad opening process to wire bonding in the manufacturing process of the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 3 is a device cross-sectional process flow diagram (at the time of completion of the pad opening process) of the semiconductor chip (corresponding to the X-X ′ cross section of FIG. 18) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 4 is a device cross-sectional process / flow diagram (barrier film forming step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 19) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 5 is a device cross-sectional process / flow diagram (resist film coating step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 20) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 6 is a device cross-sectional process flowchart (resist film opening step) of the semiconductor chip (corresponding to the X-X ′ cross section of FIG. 21) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 7 is a device cross-sectional process flowchart (gold plating step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 22) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 8 is a device cross-sectional process flowchart (resist removal step) of a semiconductor chip (corresponding to the X-X ′ cross section of FIG. 23) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 9 is a device cross-sectional process flow diagram (barrier metal removal step) of the semiconductor chip (corresponding to the X-X ′ cross section of FIG. 24) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 16 is a device cross section of a semiconductor chip (corresponding to the XX ′ cross section of FIG. 25) in a semiconductor integrated circuit device of another embodiment of the present application (an example in which a two-layer polyimide film is provided as an additional final passivation). It is a figure (at the time of completion of a wafer process). FIG. 17 is a top view of a semiconductor chip in the semiconductor integrated circuit device according to the embodiment of the present application corresponding to FIG. 18 is an enlarged top view (corresponding cross section is shown in FIG. 3) of the broken line part of FIG. FIG. 19 is an enlarged top view of the broken line portion of FIG. 17 in the step corresponding to FIG. 20 is an enlarged top view of the broken line portion of FIG. 17 in the step corresponding to FIG. FIG. 21 is an enlarged top view of the broken line portion of FIG. 17 in the process corresponding to FIG. FIG. 22 is an enlarged top view of the broken line portion of FIG. 17 in the process corresponding to FIG. FIG. 23 is an enlarged top view of the broken line portion of FIG. 17 in the process corresponding to FIG. 24 is an enlarged top view of the broken line portion of FIG. 17 in the step corresponding to FIG. FIG. 25 is an enlarged top view in the process corresponding to FIG.

まず、図3、図17、および図18に示すように多数のデバイスや配線(酸化シリコン膜や種々のメタル層で形成されている)が形成されたパッド下の配線を含むウエハ101の主面上にたとえばシリコン・ナイトライド等(無機系のみでなく有機系の膜でもよい)のファイナル・パッシベーション膜119(図16に示すように、更にその上にポリイミド系樹脂層120を形成することもある)が形成されており、そのアルミニウム・パッド118に対応する部分には、パッド開口163(ファイナル・パッシベーション膜119にあけられた開口)が設けられている(図2のパッド開口工程201で形成)。   First, as shown in FIG. 3, FIG. 17, and FIG. 18, the main surface of the wafer 101 including the wiring under the pad on which a large number of devices and wirings (formed of silicon oxide films and various metal layers) are formed. A final passivation film 119 such as silicon nitride (which may be an organic film as well as an inorganic film) may be formed thereon (as shown in FIG. 16), a polyimide resin layer 120 may be further formed thereon. ) And a pad opening 163 (an opening formed in the final passivation film 119) is provided in a portion corresponding to the aluminum pad 118 (formed in the pad opening process 201 in FIG. 2). .

次に図3の状態で、ボンディング・パッド118表面の自然酸化膜を除去するために、アルゴンを主要な成分とする雰囲気中でスパッタリング・エッチを実行する(図2のスパッタ・エッチ202)。   Next, in the state of FIG. 3, in order to remove the natural oxide film on the surface of the bonding pad 118, sputtering etching is performed in an atmosphere containing argon as a main component (sputter etching 202 in FIG. 2).

次に図4及び図19に示すようにスパッタリング成膜により、バリア&シード・メタル層(アンダー・バンプ・メタル膜)67が形成される。下層のバリア・メタル膜121としては、たとえば厚さ175マイクロ・メータ程度(150から200マイクロ・メータ程度が好適な範囲として例示することができる)のチタン膜を例示することができる(図2のTiスパッタ工程203)。また、上層のシード・メタル膜122としては、たとえば厚さ175マイクロ・メータ程度(150から200マイクロ・メータ程度が好適な範囲として例示することができる)のパラジウム膜を例示することができる(図2のPdスパッタ工程204)。   Next, as shown in FIGS. 4 and 19, a barrier & seed metal layer (under bump metal film) 67 is formed by sputtering film formation. As the lower barrier metal film 121, for example, a titanium film having a thickness of about 175 micrometers (about 150 to 200 micrometers can be exemplified as a suitable range) can be exemplified (FIG. 2). Ti sputtering step 203). Moreover, as the seed metal film 122 in the upper layer, for example, a palladium film having a thickness of about 175 micrometers (about 150 to 200 micrometers can be exemplified as a suitable range) can be exemplified (see FIG. 2 Pd sputtering step 204).

次に、図5及び図20に示すように、その上に、塗布システム等を用いて、たとえば4マイクロ・メートル程度(2から6マイクロ・メータ程度が好適な範囲として例示することができる)の厚さのポジ型レジスト膜12(必要に応じてネガ型でもよい)が形成される(図2のレジスト塗布工程205)。   Next, as shown in FIG. 5 and FIG. 20, for example, by using a coating system or the like, for example, about 4 micrometers (about 2 to 6 micrometers can be exemplified as a suitable range). A positive resist film 12 having a thickness (which may be negative if necessary) is formed (resist application step 205 in FIG. 2).

次に、図6および図21に示すように、レジストを露光(たとえばi線光露光)、現像(たとえばアルカリ現像)することで開口66を形成する(図2の露光工程206および現像工程207)。続いて、開口66の底の有機汚染を除去する等のために、酸素アッシャー処理(酸素プラズマ処理)を実施(たとえば常温で120秒程度の時間)する(図2のOアッシング工程208)。 Next, as shown in FIGS. 6 and 21, the resist 66 is exposed (for example, i-line light exposure) and developed (for example, alkali development) to form openings 66 (exposure process 206 and development process 207 in FIG. 2). . Subsequently, in order to remove organic contamination at the bottom of the opening 66, oxygen asher processing (oxygen plasma processing) is performed (for example, about 120 seconds at room temperature) (O 2 ashing step 208 in FIG. 2).

次に、図7および図22に示すように、開口66に電気メッキで、たとえば2マイクロ・メータ程度(好適な範囲としては1から5マイクロ・メータ程度)の厚さの表面メタル層(バンプ電極)115となる金層を埋め込む(図2の電解メッキ工程209)。メッキ条件としては、たとえば300φウエハについて言えば、亜硫酸金ナトリウム・メッキ液を使用し、液温は摂氏55度、電流値は0.1から1A/dm、メッキ時間20分程度を例示することができる。 Next, as shown in FIGS. 7 and 22, a surface metal layer (bump electrode) having a thickness of, for example, about 2 micrometers (preferably about 1 to 5 micrometers) is formed by electroplating the opening 66. ) 115 is embedded (electrolytic plating step 209 in FIG. 2). As for the plating conditions, for example, for a 300φ wafer, a sodium sulfite gold plating solution is used, the solution temperature is 55 degrees Celsius, the current value is 0.1 to 1 A / dm 2 , and the plating time is about 20 minutes. Can do.

次に図8および図23に示すように、レジスト膜12を除去する(図2のレジスト除去工程210)。続いて、有機汚染を除去する等のために、酸素アッシャー処理(酸素プラズマ処理)を実施(たとえば常温で120秒程度の時間)する(図2のOアッシング工程211)
最後に図9および図24に示すように、表面メタル層(金バンプ電極)115をマスクにしてウエット・エッチングで不要なバリア&シード・メタル層67(UBM膜)を順次選択除去する(図2のPdウエット・エッチング工程212およびTiウエット・エッチング工程213)。シード・メタル膜122のエッチング液としては、ヨウ素系のエッチング液を、バリア膜121のエッチング液としては、アンモニアと過酸化水素の混合液等を例示することができる。続いて、有機汚染を除去する等のために、酸素アッシャー処理(酸素プラズマ処理)を実施(たとえば常温で120秒程度の時間)する(図2のOアッシング工程214)。
Next, as shown in FIGS. 8 and 23, the resist film 12 is removed (resist removal step 210 in FIG. 2). Subsequently, in order to remove organic contamination, etc., oxygen ashing (oxygen plasma processing) is performed (for example, about 120 seconds at room temperature) (O 2 ashing step 211 in FIG. 2).
Finally, as shown in FIGS. 9 and 24, unnecessary barrier and seed metal layer 67 (UBM film) is sequentially selectively removed by wet etching using surface metal layer (gold bump electrode) 115 as a mask (FIG. 2). Pd wet etching step 212 and Ti wet etching step 213). Examples of the etchant for the seed metal film 122 include iodine-based etchants, and examples of the etchant for the barrier film 121 include a mixture of ammonia and hydrogen peroxide. Subsequently, oxygen ashing (oxygen plasma processing) is performed (for example, at a normal temperature for about 120 seconds) to remove organic contamination (O 2 ashing step 214 in FIG. 2).

これで表面メタル層(バンプ電極)が一応完成したことになる。表面メタル層(金バンプ電極)115は、通常、比較的純粋な金材料から構成されている。しかし、基本的には、金を主要な成分とする金系合金で構成することができる。セクション3においては、図9の破線部分のその後の工程等を説明する。   This completes the surface metal layer (bump electrode). The surface metal layer (gold bump electrode) 115 is usually made of a relatively pure gold material. However, basically, it can be composed of a gold-based alloy containing gold as a main component. In section 3, the subsequent process of the broken line part in FIG. 9 will be described.

なお、前記バリア・メタル膜は、チタン、クロム、窒化チタン、および窒化タングステンからなる群から選択された一つを主要な成分とするものとすることができる。バリア・メタル膜には、スパッタ成膜可能性と十分な対金バリア性が要求される。   The barrier metal film may be mainly composed of one selected from the group consisting of titanium, chromium, titanium nitride, and tungsten nitride. The barrier metal film is required to be capable of forming a sputter film and have a sufficient barrier property against gold.

更に、シード・メタル膜は、銅、金、ニッケル、白金、ロジウム、モリブデン、タングステン、クロムおよびタンタルからなる群から選択された一つを主要な成分とするものとすることができる。シード・メタル膜には、バリア・メタル膜と反応しないこと、金と脆弱な反応層を形成しないこと、および、電解金層が成長できる程度に低抵抗材料であることが要求される。   Further, the seed metal film may be mainly composed of one selected from the group consisting of copper, gold, nickel, platinum, rhodium, molybdenum, tungsten, chromium and tantalum. The seed metal film is required not to react with the barrier metal film, to form a fragile reaction layer with gold, and to be a low-resistance material to the extent that an electrolytic gold layer can be grown.

図16は、図3から図9等に説明した構造に対する変形例である。図16および図25の例では、プラズマSiN(パッド上の無機ファイナル・パッシベーション)119をパターニングした上に、有機系パッシベーション膜であるポリイミド膜120を形成およびパターニング(ポリイミド膜開口123)したものである。この例は、加工及び構造は複雑になるが信頼性の向上の点では有利である。また、この構造の代わりに、又は、この構造に加えて、無機ファイナル・パッシベーション119を下層の無機系絶縁膜と上層のポリイミド膜とすることもできる。   FIG. 16 is a modification of the structure described in FIGS. In the example of FIGS. 16 and 25, plasma SiN (inorganic final passivation on a pad) 119 is patterned, and then a polyimide film 120 which is an organic passivation film is formed and patterned (polyimide film opening 123). . This example is advantageous in terms of improving reliability although the processing and structure are complicated. Further, instead of or in addition to this structure, the inorganic final passivation 119 may be a lower inorganic insulating film and an upper polyimide film.

3.本願の一実施の形態の半導体集積回路装置の製造方法における組み立てプロセスおよびデバイス構造の説明(図10から図12、合わせて図2および図9等を参照)
このセクションでは、セクション2で説明したプロセスに続き、図2のO2アッシング工程214からワイヤ・ボンディング工程219(スタッド・バンプを使用する場合は、スタッド・バンプ形成)までを説明する。
3. Description of assembly process and device structure in manufacturing method of semiconductor integrated circuit device according to one embodiment of the present application (refer to FIGS. 10 to 12 and FIGS. 2 and 9 together)
In this section, following the process described in section 2, the process from the O2 ashing step 214 to the wire bonding step 219 (or stud bump formation when stud bumps are used) in FIG. 2 will be described.

図10は図9に対応する本願の一実施の形態の半導体集積回路装置における半導体チップの上面図である。図11は本願の一実施の形態の半導体集積回路装置の上面図である。図12は図11の破線部分に対応する模式断面図である。   FIG. 10 is a top view of a semiconductor chip in the semiconductor integrated circuit device according to the embodiment of the present application corresponding to FIG. FIG. 11 is a top view of a semiconductor integrated circuit device according to an embodiment of the present application. 12 is a schematic cross-sectional view corresponding to the broken line portion of FIG.

図2に示すように、図9(図16)で説明したO2アッシング工程214(図2)の後、ウエハ101に対して、プローブ・テスト215(ウエハ検査)が実行される。その後、ウエハ101の裏面を研削して所定の厚さにするバック・グラインディングすなわちBG工程216が実行される。続いて、レーザ、回転ブレード、又はその両方を用いて、ウエハ101を個々のチップ101に分割するダイシング工程217を実行する。このチップ101に分割された状態を次に示す。   As shown in FIG. 2, a probe test 215 (wafer inspection) is performed on the wafer 101 after the O 2 ashing process 214 (FIG. 2) described in FIG. 9 (FIG. 16). Thereafter, back grinding, that is, a BG step 216, is performed in which the back surface of the wafer 101 is ground to a predetermined thickness. Subsequently, a dicing process 217 for dividing the wafer 101 into individual chips 101 is performed using a laser, a rotating blade, or both. A state where the chip 101 is divided is shown below.

図10は、図9(または図16)に対応する本願の一実施の形態の半導体集積回路装置における半導体チップ101の上面全体図である。同図において、半導体チップ101のほぼ全面は、ファイナル・パッシベーション119(120)に覆われており、周辺部の各パッド上には、表面メタル層115が設けられている。   FIG. 10 is an overall top view of the semiconductor chip 101 in the semiconductor integrated circuit device according to the embodiment of the present application corresponding to FIG. 9 (or FIG. 16). In the figure, almost the entire surface of the semiconductor chip 101 is covered with a final passivation 119 (120), and a surface metal layer 115 is provided on each peripheral pad.

次に、図11および図12(図11の破線部分の拡大断面)に示すように、たとえば有機多層配線基板等(単層配線基板でもよい)の配線基板133(セラミック基板やフレキシブル配線基板等でもよい)上に、接着材層130(ダイ・アタッチ・フィルム、ペースト等)を介して、半導体チップ101をダイ・ボンディングする(図2のダイ・ボンディング工程218)。   Next, as shown in FIG. 11 and FIG. 12 (enlarged cross section of the broken line portion in FIG. 11), for example, a wiring board 133 (ceramic board, flexible wiring board, etc.) such as an organic multilayer wiring board (may be a single-layer wiring board). The semiconductor chip 101 is die-bonded via an adhesive layer 130 (die attach film, paste, etc.) (die bonding step 218 in FIG. 2).

次に、図12に示すように、金を主要な成分とするボンディング・ワイヤ132およびボンディング・キャピラリ171を用いて、チップ101(ダイ)上のボンディング・パッド118上の表面メタル層115(表面金層)とチップ101の外部のリード部131(この場合は、配線基板133上)間を接続する(図2のワイヤ・ボンディング工程219であり、ボンディング温度は、たとえば摂氏150程度である)。この場合は、表面メタル層115側がボール134を伴うボール・ボンディング(1次ボンディング部135)で、リード部131側がウエッジ・ボンディング(2次ボンディング部136)である(両方をセットとして「ボール・ボンディング」、「ボール・ウエッジ・ボンディング」、「ネイル・ヘッド・ボンディング」等という)。ボンディングの方式としては、低温化の要請から、サーモ・ソニック・ボンディング(加熱と超音波エネルギーの組み合わせによる)が好適である。このようにチップ側にボール134を用いてボンディングするもの(チップ側が2次ボンディング部となるもの)を、次セクションの図14のような「逆方向ボンディング」と区別して、特に「順方向ボンディング」という。   Next, as shown in FIG. 12, the surface metal layer 115 (surface gold) on the bonding pad 118 on the chip 101 (die) is used by using a bonding wire 132 and a bonding capillary 171 whose main components are gold. Layer) and a lead portion 131 (in this case, on the wiring substrate 133) of the chip 101 are connected (in the wire bonding step 219 in FIG. 2, the bonding temperature is about 150 degrees Celsius, for example). In this case, the surface metal layer 115 side is ball bonding with the ball 134 (primary bonding portion 135), and the lead portion 131 side is wedge bonding (secondary bonding portion 136) (both are set as “ball bonding”). ”,“ Ball / Wedge Bonding ”,“ Nail Head Bonding ”, etc.). As a bonding method, thermo-sonic bonding (by a combination of heating and ultrasonic energy) is suitable because of the demand for low temperature. In this way, what is bonded with the ball 134 on the chip side (the chip side is the secondary bonding portion) is distinguished from “reverse bonding” as shown in FIG. 14 in the next section, in particular “forward bonding”. That's it.

本実施の形態においては、特性的に微妙な半導体チップ側のアルミニウム系(銅系でも同じ)ボンディング・パッド上にバリア・メタル等の中間メタル層を介して、金を主要な成分とする表面金属層が形成されているので、金を主要な成分とする(たとえばパラジウムその他の添加物を許容する)金系ボンディング・ワイヤで、配線基板等との相互接続をとった場合でも、高温長時間使用による不所望な反応の進行を回避することができる。   In this embodiment, a surface metal whose main component is gold through an intermediate metal layer such as a barrier metal on an aluminum-based (copper-based) bonding pad on the semiconductor chip side that is characteristically delicate Since the layer is formed, gold-based bonding wires containing gold as the main component (for example, allowing palladium and other additives) can be used for a long time at high temperatures even when interconnected with a wiring board, etc. Undesirable progress of the reaction can be avoided.

なお、リード部131の表面は、信頼性の観点から、いわゆるボンディング金属膜(金、銀、パラジウムまたはこれらの合金等を主要な成分とする金属膜)となっていることが望ましい。   The surface of the lead portion 131 is desirably a so-called bonding metal film (a metal film containing gold, silver, palladium, or an alloy thereof as a main component) from the viewpoint of reliability.

4.本願の一実施の形態の半導体集積回路装置の製造方法における組み立てプロセスおよびデバイス構造の変形例の説明(図13から図15)
ここでは、セクション3で説明した組み立てプロセスおよび組み立て構造に対する種々の変形例について説明する。
4). Description of Modification Example of Assembly Process and Device Structure in Manufacturing Method of Semiconductor Integrated Circuit Device of One Embodiment of the Present Application (FIGS. 13 to 15)
Here, various modifications to the assembly process and the assembly structure described in Section 3 will be described.

図13は図12において、ワイヤ・ボンディングの順序を入れ替えた例を示す模式断面図である。図14は図12において、配線基板を配線基板上の他の電子素子に置き換えた例を示す模式断面図である。図15は図12において、半導体チップのダイ・ボンディング先を配線基板上の他の電子素子(フリップ・チップ・ボンディングされたもの)に置き換えた例を示す模式断面図である。   FIG. 13 is a schematic cross-sectional view showing an example in which the order of wire bonding is changed in FIG. FIG. 14 is a schematic cross-sectional view showing an example in which the wiring board is replaced with another electronic element on the wiring board in FIG. FIG. 15 is a schematic cross-sectional view showing an example in which the die bonding destination of the semiconductor chip is replaced with another electronic element (flip chip bonded) on the wiring board in FIG.

(1)逆順ボンディング方式(逆方向ボンディング)の説明(図13)
図13に示すように、図12のワイヤ・ボンディングの順序を逆転させてもよい。すなわち、逆方向ボンディングである。この場合は、表面メタル層115側が、2次ボンディング部136となるので、ワイヤ・ループが低くなるメリットがある。通常のアルミニウム系ボンディング・パッド118への直接接続では、デバイスへの衝撃の問題があるが、この例では、比較的厚い表面金層115があるので、当該問題の影響は比較的小さい。
(1) Explanation of reverse order bonding method (reverse direction bonding) (FIG. 13)
As shown in FIG. 13, the order of wire bonding in FIG. 12 may be reversed. That is, reverse bonding. In this case, since the surface metal layer 115 side becomes the secondary bonding portion 136, there is an advantage that the wire loop is lowered. The direct connection to the normal aluminum-based bonding pad 118 has a problem of impact to the device, but in this example, since there is a relatively thick surface gold layer 115, the influence of the problem is relatively small.

なお、セクション3と同様に、リード部131の表面は、信頼性の観点から、いわゆるボンディング金属膜(金、銀、パラジウムまたはこれらの合金等を主要な成分とする金属膜)となっていることが望ましい。   As in section 3, the surface of the lead 131 is a so-called bonding metal film (a metal film containing gold, silver, palladium, or an alloy thereof as a main component) from the viewpoint of reliability. Is desirable.

(2)2チップ間ワイヤ・ボンディング方式の説明(図14)
この例は、図14に示すように、図12及び図13と異なり、半導体チップ101が配線基板133に直接ではなく、配線基板133上の他の半導体チップ101b(より広くはデバイス・チップ)すなわち下地チップ(下地電子素子以下同じ)上にダイ・ボンディングされている。ここで、ボンディング・ワイヤ132で、半導体チップ101上の表面メタル層115と下地チップ101b上の表面メタル層115とを相互接続する場合において、他の半導体チップ101bが半導体チップ101と同様なパッド上メタル多層構造を有する場合は、両ボンディング部が信頼性の高い構造となる。
(2) Description of wire bonding method between two chips (Fig. 14)
As shown in FIG. 14, this example differs from FIGS. 12 and 13 in that the semiconductor chip 101 is not directly on the wiring board 133, but another semiconductor chip 101 b (more broadly a device chip) on the wiring board 133, that is, It is die-bonded on a base chip (the same applies to the base electronic element). Here, when the surface metal layer 115 on the semiconductor chip 101 and the surface metal layer 115 on the base chip 101 b are interconnected by the bonding wire 132, the other semiconductor chip 101 b is on the same pad as the semiconductor chip 101. In the case of a metal multilayer structure, both bonding parts have a highly reliable structure.

なお、逆方向ボンディングを適用することもできる。   Note that reverse bonding can also be applied.

(3)フリップ・チップ上ダイ・ボンディング方式の説明(図15)
図15に示すように、半導体チップ101のダイ・ボンディングは、配線基板133上にフリップ・チップ・ボンディング(配線基板133上の半田バンプ用ランド電極138への半田バンプ137による接続)された他の半導体チップ101bすなわち下地チップ上に実行してもよい。この場合は、ボンディング・ワイヤ132による相互接続は、半導体チップ101上の表面メタル層115と前記下地チップ101b以外のデバイス・チップ上の電極(リード部)または配線基板133上のリード部131となる。
(3) Description of flip-chip die bonding method (FIG. 15)
As shown in FIG. 15, the die bonding of the semiconductor chip 101 is performed by another method in which flip chip bonding (connection by solder bumps 137 to the solder bump land electrodes 138 on the wiring substrate 133) is performed on the wiring substrate 133. You may perform on the semiconductor chip 101b, ie, a base chip. In this case, the interconnection by the bonding wire 132 becomes the surface metal layer 115 on the semiconductor chip 101 and the electrode (lead part) on the device chip other than the base chip 101b or the lead part 131 on the wiring substrate 133. .

なお、セクション3と同様に、リード部131の表面は、信頼性の観点から、いわゆるボンディング金属膜(金、銀、パラジウムまたはこれらの合金等を主要な成分とする金属膜)となっていることが望ましい。   As in section 3, the surface of the lead 131 is a so-called bonding metal film (a metal film containing gold, silver, palladium, or an alloy thereof as a main component) from the viewpoint of reliability. Is desirable.

また、逆方向ボンディングを適用することもできる。   Also, reverse bonding can be applied.

5.本願の一実施の形態の半導体集積回路装置の各種パッケージ形態の説明(主に図38から図44)
このセクションでは、本願の一実施の形態の半導体集積回路装置(他の実施の形態でも同じ)の各種パッケージ形態について説明する。
5. Description of various package forms of the semiconductor integrated circuit device of one embodiment of the present application (mainly FIGS. 38 to 44)
In this section, various package forms of a semiconductor integrated circuit device according to an embodiment of the present application (the same applies to other embodiments) will be described.

図38は本願の一実施の形態の半導体集積回路装置(ワイヤ・ボンディング型BGA)のパッケージ工程完成時の全体上面図(見やすいようにレジン封止体を取り払っている)である。図39は図38の模式断面図である。図40は本願の一実施の形態の半導体集積回路装置(QFP:Quad Flat Package)のパッケージ工程完成時の全体上面図(見やすいようにレジン封止体の上半部を取り払っている)である。図41は図40の模式断面図である。図42は本願の一実施の形態の半導体集積回路装置(フリップ・チップ型BGA)のパッケージ工程完成時の全体上面図である。図43は図42の模式断面図である。図44は図43の破線部の拡大断面図である。   FIG. 38 is an overall top view of the semiconductor integrated circuit device (wire bonding type BGA) according to the embodiment of the present application when the package process is completed (resin sealing body is removed for easy viewing). FIG. 39 is a schematic cross-sectional view of FIG. FIG. 40 is an overall top view of the semiconductor integrated circuit device (QFP: Quad Flat Package) according to one embodiment of the present application when the package process is completed (the upper half of the resin sealed body is removed for easy viewing). 41 is a schematic cross-sectional view of FIG. FIG. 42 is an overall top view of the semiconductor integrated circuit device (flip chip type BGA) according to the embodiment of the present application when the package process is completed. 43 is a schematic cross-sectional view of FIG. 44 is an enlarged cross-sectional view of a broken line portion of FIG.

先ず始めに、図38及び図39に基づいて、配線基板133(たとえば、有機系多層配線基板)を用いたワイヤ・ボンディング型BGAについて説明する。図38及び図39に示すように、配線基板133上に接着剤層130(たとえばダイ・アタッチ・フィルムやダイ・ボンド・ペースト等)を介してデバイス・チップ101(半導体チップ)がダイ・ボンディングされている。デバイス・チップ101の上面には複数の表面メタル層115(ボンディング・パッド上)が設けられており、配線基板133の上面に設けられた複数の外部リード131との間は、ボンディング・ワイヤ132によって、接続されている。この例では、表面メタル層115側にボンディング・ボール134が作られている。配線基板133の上面側は封止レジン181によって封止されている。一方、配線基板133の下面側には、複数の半田バンプ137が設けられている。   First, a wire bonding type BGA using a wiring board 133 (for example, an organic multilayer wiring board) will be described with reference to FIGS. As shown in FIGS. 38 and 39, a device chip 101 (semiconductor chip) is die-bonded on a wiring substrate 133 via an adhesive layer 130 (for example, a die attach film or a die bond paste). ing. A plurality of surface metal layers 115 (on bonding pads) are provided on the upper surface of the device chip 101, and bonding wires 132 are provided between the device chip 101 and a plurality of external leads 131 provided on the upper surface of the wiring substrate 133. ,It is connected. In this example, a bonding ball 134 is formed on the surface metal layer 115 side. The upper surface side of the wiring board 133 is sealed with a sealing resin 181. On the other hand, a plurality of solder bumps 137 are provided on the lower surface side of the wiring board 133.

次に、図40及び図41に基づいて、ワイヤ・ボンディング型QFP(リードフレームを用いたレジン・パッケージ)について説明する。図40及び図41に示すように、4本のダイ・パッド・サポート・バー146に保持されたダイ・パッド145上には、接着剤層130(たとえばダイ・アタッチ・フィルムやダイ・ボンド・ペースト等)を介してデバイス・チップ101(半導体チップ)がダイ・ボンディングされている。デバイス・チップ101の上面には複数の表面メタル層115(ボンディング・パッド上)が設けられており、複数のリード131との間は、ボンディング・ワイヤ132によって、接続されている。この例では、表面メタル層115側にボンディング・ボール134が作られている。リード131の内側、ダイ・パッド・サポート・バー146、ダイ・パッド145、デバイス・チップ101、およびボンディング・ワイヤ132は、レジン封止体181(封止レジン)によって封止されている。   Next, a wire bonding type QFP (resin package using a lead frame) will be described with reference to FIGS. As shown in FIGS. 40 and 41, an adhesive layer 130 (for example, a die attach film or a die bond paste) is formed on the die pad 145 held by the four die pad support bars 146. Etc.), the device chip 101 (semiconductor chip) is die-bonded. A plurality of surface metal layers 115 (on bonding pads) are provided on the upper surface of the device chip 101, and are connected to the plurality of leads 131 by bonding wires 132. In this example, a bonding ball 134 is formed on the surface metal layer 115 side. The inside of the lead 131, the die pad support bar 146, the die pad 145, the device chip 101, and the bonding wire 132 are sealed with a resin sealing body 181 (sealing resin).

次に図42から図44に基づいて、フリップ・チップ型BGA(たとえば、金系スタッド・バンプによるフリップ・チップ接続)について説明する。図42から図44に示すように、配線基板133上には、複数のランド・パッド155が設けられており、このランド・パッド155とデバイス・チップ101の下面の複数の表面メタル層115(ボンディング・パッド下)下の金系スタッド・バンプ157(銅系でもよい)とが、半田層156(たとえば、銀3.5重量%、残りは錫からなる鉛フリー半田等)を介して、相互に接続されている。この接続は、アンダ・フィル・レジン148(たとえば、シリカ粉末入りのエポキシ系レジン等)によって補強されている。配線基板133の下面には、外部接続用の半田バンプ137(たとえば、銀3.5重量%、銅0.5重量%、残りは錫からなる鉛フリー半田等)が設けられている。   Next, a flip chip type BGA (for example, flip chip connection using a gold stud bump) will be described with reference to FIGS. 42 to 44, a plurality of land pads 155 are provided on the wiring substrate 133, and a plurality of surface metal layers 115 (bonding) on the lower surfaces of the land pads 155 and the device chip 101 are provided. -Under the pad) The gold-based stud bump 157 (which may be copper-based) is connected to each other via a solder layer 156 (for example, lead-free solder made of 3.5% by weight of silver and the rest of tin). It is connected. This connection is reinforced by underfill resin 148 (for example, epoxy resin containing silica powder). On the lower surface of the wiring board 133, solder bumps 137 for external connection (for example, 3.5% by weight of silver, 0.5% by weight of copper, and the rest are lead-free solder made of tin, etc.) are provided.

6.本願の一実施の形態の半導体集積回路装置の製造方法におけるウエハ・プローブ検査等の説明(主に図27から図32)
このセクションでは、セクション3の図2で説明したプローブ・テスト215およびワイヤ・ボンディング工程219について更に説明する。
6). Explanation of wafer probe inspection and the like in the method of manufacturing a semiconductor integrated circuit device of one embodiment of the present application (mainly FIGS. 27 to 32)
This section further describes the probe test 215 and wire bonding process 219 described in FIG.

図27は本願の一実施の形態の半導体集積回路装置の製造工程におけるウエハ・プローブ・テスト工程の様子を示すウエハ上面拡大図(第1の例;正方形パッド)である。図28は図27に対応する例のワイヤ・ボンディング完了時のウエハ上面拡大図(第1の例;正方形パッド)である。図29は本願の一実施の形態の半導体集積回路装置の製造工程におけるウエハ・プローブ・テスト工程の様子を示すウエハ上面拡大図(第2の例;正規型長方形パッド)である。図30は図29に対応する例のワイヤ・ボンディング完了時のウエハ上面拡大図(第2の例;正規型長方形パッド)である。図31は本願の一実施の形態の半導体集積回路装置の製造工程におけるウエハ・プローブ・テスト工程の様子を示すウエハ上面拡大図(第3の例;変形型長方形パッド)である。図32は図31に対応する例のワイヤ・ボンディング完了時のウエハ上面拡大図(第3の例;変形型長方形パッド)である。これらに基づいて、ボンディング・パッドおよび表面メタル層の形状(配向も含む)とプローブ針ならびにボンディング・ワイヤとの関係等を説明する。   FIG. 27 is an enlarged top view of the wafer (first example; square pad) showing the wafer probe test process in the manufacturing process of the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 28 is an enlarged view of the wafer top surface (first example: square pad) when wire bonding is completed in the example corresponding to FIG. FIG. 29 is an enlarged top view of the wafer (second example; regular rectangular pad) showing the state of the wafer probe test process in the manufacturing process of the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 30 is an enlarged view of the wafer top surface (second example: regular rectangular pad) at the completion of wire bonding in the example corresponding to FIG. FIG. 31 is an enlarged top view of the wafer (third example; deformed rectangular pad) showing the state of the wafer probe test process in the manufacturing process of the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 32 is an enlarged view of the wafer top surface (third example; deformed rectangular pad) at the completion of wire bonding in the example corresponding to FIG. Based on these, the relationship between the shape (including orientation) of the bonding pad and the surface metal layer and the probe needle and the bonding wire will be described.

まず、図27に基づいて、正方形パッドによるプローブ・テスト215(図2)について説明する。図27に示すように、平面的に言うと、表面メタル層115とボンディング・パッド118は、ほぼ相似形(この場合はボンディング・パッド118が若干大きい)をした同心配置(中心をほぼ共有する)となっている。ここで、表面メタル層115とボンディング・パッド118以外の部分は、ほとんどプラズマSiN119(パッド上の無機ファイナル・パッシベーション)等によって被覆されている。プローブ・テスト215の際には、複数のプローブ針221を対応する複数の表面メタル層115にコンタクトさせる。表面メタル層115が金系メタル材料(高純度金または金を主要な成分とするメタル)であるときは、コンタクト性に優れている。これは、金系メタル材料は、表面に自然酸化膜をほとんど生成しないことによる。従って、必然的にコンタクト・ダメージも小さい(コンタクト荷重およびオーバ・ドライブ量も比較的小さい値とすることができる)。このことは、例えばパッド下の配線層間絶縁膜に機械的に脆弱なLow−k層膜等を用いた場合において有効である。   First, the probe test 215 (FIG. 2) using a square pad will be described with reference to FIG. As shown in FIG. 27, in plan view, the surface metal layer 115 and the bonding pad 118 are concentrically arranged (in this case, the bonding pad 118 is slightly larger) (the center substantially shares the center). It has become. Here, most parts other than the surface metal layer 115 and the bonding pad 118 are covered with plasma SiN 119 (inorganic final passivation on the pad) or the like. In the probe test 215, the plurality of probe needles 221 are brought into contact with the corresponding plurality of surface metal layers 115. When the surface metal layer 115 is a gold-based metal material (high-purity gold or metal containing gold as a main component), the contact property is excellent. This is because the gold-based metal material hardly generates a natural oxide film on the surface. Therefore, the contact damage is inevitably small (the contact load and the overdrive amount can be relatively small values). This is effective when, for example, a mechanically fragile Low-k layer film or the like is used for the wiring interlayer insulating film under the pad.

次に、図28に基づいて、正方形パッドによるワイヤ・ボンディング工程219について説明する。図28に示すように、この場合は、プローブ・テスト215の際にプローブ針221がコンタクトしたのと同じ場所で、ボンディング・ワイヤ132(ボンディング・ボール134)との接合を形成することになるが、表面メタル層115の存在により、Alパッドの表面がめくれて、コンタクト痕が残るような場合と違って、コンタクト・ダメージが小さい(ほとんどコンタクト痕が残らない)ので、ボンディング特性に悪影響を及ぼさないメリットがある。   Next, the wire bonding step 219 using a square pad will be described with reference to FIG. As shown in FIG. 28, in this case, a bond with the bonding wire 132 (bonding ball 134) is formed at the same location where the probe needle 221 contacts during the probe test 215. Unlike the case where the surface of the Al pad is turned over due to the presence of the surface metal layer 115 and the contact trace remains, the contact damage is small (almost no contact trace remains), so that the bonding characteristics are not adversely affected. There are benefits.

次に、図29および図30に基づいて、正規型長方形パッドによるプローブ・テスト215およびワイヤ・ボンディング工程219(図2)について説明する。図29および図30に示すように、平面的に言うと、表面メタル層115とボンディング・パッド118は、ほぼ相似形(この場合はボンディング・パッド118が若干大きい)をした同心配置(中心をほぼ共有する)となっている。しかし、この例では、表面メタル層115とボンディング・パッド118が長方形を呈しているので、プローブ針221がコンタクトした部分と異なる場所に、ワイヤ・ボンディングを実行することができる。このため、各種のプローブ・テストにおいて、例えば検査の繰り返し(再検査)等が実施され、コンタクト・ダメージが比較的大きくなるような場合においても、そのワイヤ・ボンディングへの影響を回避することができる。   Next, a probe test 215 and a wire bonding step 219 (FIG. 2) using a regular rectangular pad will be described with reference to FIGS. 29 and 30. FIG. As shown in FIG. 29 and FIG. 30, in a plan view, the surface metal layer 115 and the bonding pad 118 are concentrically arranged (in the center, the bonding pad 118 is slightly larger in this case). Share). However, in this example, since the surface metal layer 115 and the bonding pad 118 have a rectangular shape, wire bonding can be performed at a location different from the portion where the probe needle 221 contacts. Therefore, in various probe tests, for example, repeated inspection (re-inspection) is performed, and even when contact damage becomes relatively large, the influence on the wire bonding can be avoided. .

次に、図31および図32に基づいて、変形型長方形パッドによるプローブ・テスト215およびワイヤ・ボンディング工程219(図2)について説明する。図31および図32に示すように、平面的に言うと、表面メタル層115は長方形を呈しており、ボンディング・パッド118の方は、ほぼ正方形を呈している。また、配向又は位置関係については、一部重なっているが、相互にずれて配置されている。ボンディング・パッド118のない部分等では、表面メタル層115は、アンダ・バンプ・メタル層(バリア&シード・メタル層)67を介して、プラズマSiN(パッド上の無機ファイナル・パッシベーション)119上に形成されている。従って、前述の正規型長方形パッドと同様のメリットを得ることができる。通常、プローブする部分の下方には、ボンディング・パッド118のようなクッション材(衝撃緩和層)が存在することが望ましいが、表面メタル層115が金系メタル材料である場合は硬度を確保でき、コンタクト・ダメージを比較的小さくできる場合が多いので、図31のような下にボンディング・パッド118がない部分で、プローブ針221をコンタクトさせても、下層のプラズマSiN(パッド上の無機ファイナル・パッシベーション)119へ与えるダメージを小さくすることができる。なお、ワイヤ・ボンディング点は、表面メタル層115上のボンディング可能な位置に設定可能であるが、図32に示すように、ボンディング・パッド118がある部分に設定することにより、ダメージが発生する確率を低減することができる。   Next, a probe test 215 and a wire bonding step 219 (FIG. 2) using a deformed rectangular pad will be described with reference to FIGS. 31 and 32. FIG. As shown in FIGS. 31 and 32, in a plan view, the surface metal layer 115 has a rectangular shape, and the bonding pad 118 has a substantially square shape. In addition, the orientations or positional relationships are partially overlapped but are shifted from each other. The surface metal layer 115 is formed on the plasma SiN (inorganic final passivation on the pad) 119 via an under bump metal layer (barrier and seed metal layer) 67 in a portion without the bonding pad 118 or the like. Has been. Therefore, the same merit as the regular rectangular pad described above can be obtained. Normally, it is desirable that a cushioning material (impact mitigation layer) such as a bonding pad 118 exists below the probed portion, but when the surface metal layer 115 is a gold-based metal material, hardness can be secured, Since contact damage can be made relatively small in many cases, even if the probe needle 221 is contacted at a portion where the bonding pad 118 is not present as shown in FIG. 31, the underlying plasma SiN (inorganic final passivation on the pad) ) Damage to 119 can be reduced. The wire bonding point can be set at a position where bonding can be performed on the surface metal layer 115. However, as shown in FIG. 32, by setting the bonding pad 118 at a portion, the probability of occurrence of damage. Can be reduced.

7.本願の一実施の形態の半導体集積回路装置の各種の表面メタル層下メタル層構造(またはアンダ・バンプ・メタル構造)の説明(主に図45から図47)
ここでは、以上説明した各種の表面メタル層下メタル層構造について更に説明する。
7). Description of various surface metal layer lower metal layer structures (or under bump metal structures) of the semiconductor integrated circuit device of one embodiment of the present application (mainly FIGS. 45 to 47)
Here, the various metal layer structures below the surface metal layer described above will be further described.

図45は本願の一実施の形態の半導体集積回路装置における各種のアンダ・バンプ・メタル構造(2層構造)を説明するためのパッド周辺断面図である。図46は図45の変形例のパッド周辺断面図である。図47は、本願の一実施の形態の半導体集積回路装置における各種のアンダ・バンプ・メタル構造(3層以上の多層構造)を説明するためのパッド周辺断面図である。   FIG. 45 is a pad peripheral cross-sectional view for explaining various under-bump metal structures (two-layer structure) in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 46 is a cross-sectional view of the periphery of the pad of the modified example of FIG. FIG. 47 is a pad peripheral cross-sectional view for explaining various under-bump metal structures (multilayer structure of three or more layers) in the semiconductor integrated circuit device of one embodiment of the present application.

まず、図45に基づいて、本願の一実施の形態の半導体集積回路装置の基本的表面メタル層下メタル層構造について説明する。この場合は、図45に示すように、たとえば、アルミニウム系ボンディング・パッド118上にチタンを主要な成分とするバリア・メタル膜121(スパッタリング成膜により、厚さは、たとえば、0.175マイクロ・メートル程度)、その上に、パラジウムを主要な成分とするシード・メタル膜122(スパッタリング成膜により、厚さは、たとえば、0.175マイクロ・メートル程度)、および更にその上に金を主要な成分とする電解メッキ金系バンプ電極115(金バンプ、表面メタル層、またはオーバ・パッド・メタル)を積層している(厚さは、たとえば、2.8マイクロ・メートル程度、範囲としては、たとえば、1マイクロ・メートルから3マイクロ・メートル程度)。ここで、チタン膜121は、アルミニウムおよび金に対する相互拡散バリアである。パラジウム膜122は電解メッキ金系表面メタル層115の形成のためのシード膜である。   First, a basic surface metal layer-under-metal layer structure of a semiconductor integrated circuit device according to an embodiment of the present application will be described with reference to FIG. In this case, as shown in FIG. 45, for example, a barrier metal film 121 containing titanium as a main component on an aluminum-based bonding pad 118 (thickness is 0.175 micro · In addition, a seed metal film 122 containing palladium as a main component (with a thickness of about 0.175 μm, for example, by sputtering film formation), and gold on the main metal film 122 Electrolytic plating gold-based bump electrode 115 (gold bump, surface metal layer, or over pad metal) as a component is laminated (thickness is about 2.8 micrometers, for example, as a range, for example, 1 to 3 micrometers). Here, the titanium film 121 is an interdiffusion barrier for aluminum and gold. The palladium film 122 is a seed film for forming the electroplated gold-based surface metal layer 115.

次に、図46に基づいて、図45の例の変形例を説明する。図46に示すように、この構造は、シード・メタル膜122と電解メッキ金系表面メタル層115の間に、電解ニッケル・メッキ層127(厚さは、たとえば、2マイクロ・メートル程度)を介在させたものである。ニッケルは金等に比べて硬いのでワイヤ・ボンディングによるダメージの低減に有効である。   Next, a modification of the example of FIG. 45 will be described based on FIG. As shown in FIG. 46, in this structure, an electrolytic nickel plating layer 127 (thickness is, for example, about 2 micrometers) is interposed between the seed metal film 122 and the electrolytic plating gold surface metal layer 115. It has been made. Nickel is harder than gold and is effective in reducing damage caused by wire bonding.

次に、図47に基づいて、3層以上の多層構造を有するアンダ・バンプ・メタル構造の一例を説明する。この場合は、図47に示すように、たとえば、アルミニウム系ボンディング・パッド118上にクロムを主要な成分とするバリア・メタル膜124(スパッタリング成膜により、厚さは、たとえば、0.075マイクロ・メートル程度)、その上に、銅を主要な成分とするシード・メタル膜125(スパッタリング成膜により、厚さは、たとえば、0.25マイクロ・メートル程度)、更にその上に、銅を主要な成分とする電解銅メッキ層126(厚さは、たとえば、2マイクロ・メートル程度、範囲としては、必要に応じて、たとえば、1マイクロ・メートルから10マイクロ・メートル程度)、更にその上に、ニッケルを主要な成分とする電解ニッケル・メッキ層127(厚さは、たとえば、2マイクロ・メートル程度)、および更にその上に金を主要な成分とする電解メッキ金系バンプ電極115(金バンプ、表面メタル層、またはオーバ・パッド・メタル)を積層している(厚さは、たとえば、2.8マイクロ・メートル程度、範囲としては、たとえば、1マイクロ・メートルから3マイクロ・メートル程度)。ここで、クロム膜124は、アルミニウムおよび銅に対する相互拡散バリアである。銅膜125は銅電解メッキ膜126の形成のためのシード膜である。   Next, an example of an under bump metal structure having a multilayer structure of three or more layers will be described with reference to FIG. In this case, as shown in FIG. 47, for example, a barrier metal film 124 containing chromium as a main component on an aluminum-based bonding pad 118 (the thickness is 0.075 micro- In addition, a seed metal film 125 containing copper as a main component (with a thickness of about 0.25 micrometer, for example, by sputtering), and copper as a main component. Electrolytic copper plating layer 126 as a component (thickness is, for example, about 2 micrometer, range is, for example, about 1 micrometer to 10 micrometer as required), and further nickel Electrolytic nickel plating layer 127 (thickness is, for example, about 2 micrometers), and the like. An electroplated gold-based bump electrode 115 (gold bump, surface metal layer, or over pad metal) containing gold as a main component is laminated thereon (thickness is about 2.8 micrometers, for example). The range is, for example, about 1 to 3 micrometers). Here, the chromium film 124 is an interdiffusion barrier for aluminum and copper. The copper film 125 is a seed film for forming the copper electrolytic plating film 126.

この構造の特徴は、電解メッキ金系バンプ電極115の下に、比較的厚く、かつ、硬いニッケル層および銅層があるので、ワイヤ・ボンディングによるダメージの低減に有効であるほか、ニッケル層および銅層からなる高信頼性の再配線(低抵抗再配線)としての活用も可能である。また、外部端子の低抵抗化においても有効である。   This structure is characterized by a relatively thick and hard nickel layer and copper layer under the electroplated gold bump electrode 115, which is effective in reducing damage caused by wire bonding. It can also be used as a highly reliable rewiring (low resistance rewiring) consisting of layers. It is also effective in reducing the resistance of the external terminal.

8.各種実施形態に関する考察(主に図26および図33から図37)
このセクションでは、各実施の形態に共通な、または、各実施の形態に固有な特徴、技術的効果等の説明または、その他の補足的説明を行う。
8). Discussion on various embodiments (mainly FIG. 26 and FIGS. 33 to 37)
In this section, explanations of features, technical effects, etc. common to each embodiment or unique to each embodiment, or other supplementary explanations will be given.

図26はニッケル表面上における無電界金メッキの問題点を説明するための説明断面図である。図33はアルミニウム金接合に現れるカーケンダル・ボイド(Kirkendall Void)を説明するためのアルミニウム・パッドおよびボンディング・ワイヤの局部模式断面図である。図34は本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合状態の各種の例(正規モード)を示す局部断面図である。図35は本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合状態の各種の例(横ずれモード1)を示す局部断面図である。図36は本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合状態の各種の例(横ずれモード2)を示す局部断面図である。図37は本願の一実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合構造の各種寸法の関係を説明するための局部断面図である。   FIG. 26 is an explanatory sectional view for explaining a problem of electroless gold plating on the nickel surface. FIG. 33 is a local schematic cross-sectional view of an aluminum pad and a bonding wire for explaining a Kirkendall Void appearing in an aluminum gold joint. FIG. 34 is a local sectional view showing various examples (normal mode) of bonding states of bonding wires on pads in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 35 is a local cross-sectional view showing various examples (lateral shift mode 1) of bonding states of bonding wires on pads in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 36 is a local cross-sectional view showing various examples (lateral shift mode 2) of bonding states of bonding wires on pads in the semiconductor integrated circuit device of one embodiment of the present application. FIG. 37 is a local cross-sectional view for explaining the relationship of various dimensions of the bonding structure of the bonding wire on the pad in the semiconductor integrated circuit device of one embodiment of the present application.

まず、図26に基づいて、電解金メッキの代わりに無電界金メッキ(金に限らず、銅、ニッケルについてもほぼ同じ)を用いた場合の問題点を、ニッケル表面301上に無電界金メッキ(置換金メッキ)する場合を例に説明する。図26に示すように、無電界金メッキは、下地金属であるニッケルが抜けた303の部分に金部材302が付着することにより形成される。金メッキ領域302は、表面を覆った段階でメッキ反応が停止するため、金メッキ領域302自体はポーラス(多孔)な状態である。そのため、このポーラス部分からニッケルが析出し易く、析出したニッケルは酸化され、酸化ニッケル(NiO)が形成される。この酸化ニッケルが金メッキ領域302上に存在すると、ボンディング・ワイヤが付きづらく、例え付いたとしても剥がれ易くなる。また、金メッキ領域302が一旦表面を覆った段階でメッキ反応は停止するため、一般に100nm程度(0.1マイクロ・メートル程度)以上のメッキ厚を確保することは困難である。更に、ニッケル表面301と金メッキ領域302との界面には、ボイドが形成されているため十分な接着(密着)が確保できず、金層の剥がれ(界面剥離)が起きやすい。   First, based on FIG. 26, the problem in the case of using electroless gold plating (substantially the same for copper and nickel as well as gold) in place of electrolytic gold plating is the problem of electroless gold plating (replacement gold plating) on the nickel surface 301. ) Will be described as an example. As shown in FIG. 26, electroless gold plating is formed by attaching a gold member 302 to a portion 303 from which nickel as a base metal has been removed. Since the plating reaction stops in the stage where the gold plating region 302 is covered, the gold plating region 302 itself is in a porous state. Therefore, nickel is easily deposited from the porous portion, and the deposited nickel is oxidized to form nickel oxide (NiO). When this nickel oxide is present on the gold plating region 302, it is difficult to attach the bonding wire, and even if it is attached, it is easy to peel off. In addition, since the plating reaction stops when the gold plating region 302 once covers the surface, it is generally difficult to ensure a plating thickness of about 100 nm (about 0.1 micrometer) or more. Furthermore, since a void is formed at the interface between the nickel surface 301 and the gold plating region 302, sufficient adhesion (adhesion) cannot be ensured, and the gold layer is likely to be peeled off (interfacial separation).

これに対して、電解メッキでは、メッキ反応は外部からの電界により進行するので、緻密なメッキ膜を形成することが可能であり、無電解金メッキより厚い膜厚を形成することも容易である。このことは、下地がニッケルである場合に限られたものではないことは言うまでもない。   On the other hand, in electrolytic plating, the plating reaction proceeds by an external electric field, so that it is possible to form a dense plating film, and it is easy to form a film thickness thicker than electroless gold plating. Needless to say, this is not limited to the case where the base is nickel.

次に、図33に基づいて、アルミニウム系パッド上に金系などの表面メタル層115を介在させることなく、直接、金系等のボンディング・ワイヤ(またはボンディング・ボール)を接合したときの問題点について説明する。アルミニウム系パッド上に直接、金系等のボンディング・ワイヤを接合した状態で、長時間比較的降温状態(たとえば、摂氏150度程度)に保持すると、図33に示すように、アルミニウムと金の界面近傍に、Au−Al系金属間化合物層140、141、142、143(たとえば、AuAl層140,AuAl層141,AuAl層142,AuAl層143)が出現する。それに伴って、ボンディング・ボール134側にボイド139(カーケンダル・ボイド)が形成され、接合の破断の原因となる。これは、Au−Al系金属間化合物層140、141、142、143中における金の拡散速度が、Au−Al系金属間化合物層140、141、142、143中におけるアルミニウムの拡散速度に比較して、はるかに速いことに起因している。すなわち、金イオンが高速でアルミニウム系パッド118側へ移動する結果、その後に空孔(Vacancy)が多数生成し、徐々に凝集してボイドとなったものである。 Next, based on FIG. 33, there is a problem when a bonding wire (or bonding ball) such as a gold-based material is directly bonded without interposing a metal-based surface metal layer 115 on the aluminum-based pad. Will be described. If the temperature is kept at a relatively low temperature (for example, about 150 degrees Celsius) for a long time with a bonding wire such as a gold-based bonding wire bonded directly on the aluminum-based pad, as shown in FIG. In the vicinity, Au—Al-based intermetallic compound layers 140, 141, 142, and 143 (for example, Au 4 Al layer 140, Au 2 Al layer 141, Au 5 Al 2 layer 142, and AuAl 2 layer 143) appear. Along with this, a void 139 (kirkendall void) is formed on the bonding ball 134 side, causing breakage of the joint. This is because the gold diffusion rate in the Au—Al intermetallic compound layers 140, 141, 142, 143 is compared with the aluminum diffusion rate in the Au—Al intermetallic compound layers 140, 141, 142, 143. Because it ’s much faster. That is, as a result of gold ions moving to the aluminum-based pad 118 side at a high speed, a large number of vacancies are formed thereafter, and gradually agglomerate into voids.

これに対して、アルミニウム系パッド118上に、バリア層を挟んで金系などの表面メタル層115を介在させることにより、ボンディング特性を確保しつつ、ボイドの発生を有効に防止することができる。   On the other hand, by interposing a gold-based surface metal layer 115 on the aluminum-based pad 118 with a barrier layer in between, the generation of voids can be effectively prevented while securing bonding characteristics.

次に、図34から図36に基づいて、金系などの表面メタル層115への金系(または銅系)ボンディング・ワイヤ132(またはボンディング・ボール134)の接合の各種モードについて説明する。図34には、正常モードを示す。すなわち、ここにおいては、ボンディング・ボール134が、表面メタル層115の上面内に収まっている。図35の例は、ずれモードの一つであり、ボンディング・ボール134の主要接合部(ボールの中心部)が表面メタル層115の上面内に収まっているので、特性的には問題のないものである。図36の例は、ずれモードの他の一つであり、ボンディング・ボール134の主要接合部(ボールの中心部)が表面メタル層115の上面内に収まっているものの、ボール134自体が変形もしくはボール134が表面メタル層115の端部を変形させて、ボール134の下端がプラズマSiN(パッド上の無機ファイナル・パッシベーション)119の表面に達しているものである。この場合も、表面メタル層115の衝撃吸収力のために、プラズマSiN(パッド上の無機ファイナル・パッシベーション)119等にクラック等が発生することは稀であり、製品特性としても問題が発生する場合は少ない。このように、これまで説明してきた主な特徴は、図34から図36に示すような場合においても適用可能であり、言い換えると、図34から図36に示すような場合は、総じてワイヤ・ボンディング部の主要部が、ボンディング・パッドのほぼ直上領域にあるということができる。   Next, various modes of bonding of the gold-based (or copper-based) bonding wire 132 (or bonding ball 134) to the surface metal layer 115 such as a gold-based material will be described with reference to FIGS. FIG. 34 shows the normal mode. That is, here, the bonding ball 134 is within the upper surface of the surface metal layer 115. The example of FIG. 35 is one of the shift modes, and the main joint portion (ball center portion) of the bonding ball 134 is within the upper surface of the surface metal layer 115, so that there is no problem in characteristics. It is. The example of FIG. 36 is another one of the shift modes, where the main joint portion (ball center portion) of the bonding ball 134 is within the upper surface of the surface metal layer 115, but the ball 134 itself is deformed or The ball 134 deforms the end of the surface metal layer 115, and the lower end of the ball 134 reaches the surface of plasma SiN (inorganic final passivation on the pad) 119. Also in this case, it is rare that cracks or the like occur in plasma SiN (inorganic final passivation on the pad) 119 or the like due to the impact absorbing ability of the surface metal layer 115, and there is a problem in terms of product characteristics. There are few. As described above, the main features described so far are also applicable to the cases shown in FIGS. 34 to 36. In other words, the cases shown in FIGS. It can be said that the main part of the part is in a region almost immediately above the bonding pad.

次に、図37(図28、図30、図32および図45から図47を参照)に基づいて、本願の各実施の形態の半導体集積回路装置におけるパッド上のボンディング・ワイヤの接合構造、すなわち、オーバ・パッド・メタル(Over Pad Metal)構造の各種寸法の関係を説明する。図37に示すように、標準的なレイアウト(正規構造)では、パッドの幅LPが全方位において最も広く、パッド開口の幅LWが全方位において最も狭く、表面メタル層の幅LBは全方位においてそれらの中間である。従って、平面的に言って、表面メタル層115がボンディング・パッド118の内部に含まれ(表面メタル層115の方が面積的に小さい)、同様に、ボンディング・パッド開口163は表面メタル層115の内部に含まれる(ボンディング・パッド開口163の方が面積的に小さい)。   Next, based on FIG. 37 (see FIGS. 28, 30, 32, and 45 to 47), the bonding structure of the bonding wires on the pads in the semiconductor integrated circuit device of each embodiment of the present application, that is, The relationship between various dimensions of the Over Pad Metal structure will be described. As shown in FIG. 37, in the standard layout (normal structure), the pad width LP is the widest in all directions, the pad opening width LW is the narrowest in all directions, and the surface metal layer width LB is in all directions. Between them. Therefore, in a plan view, the surface metal layer 115 is included in the bonding pad 118 (the surface metal layer 115 is smaller in area), and similarly, the bonding pad opening 163 is formed in the surface metal layer 115. It is contained inside (the bonding pad opening 163 is smaller in area).

しかし、図32のような不正規構造では、横方向の特定の方位について、このような大小関係および包含関係を満たすに過ぎない。縦方向では、このような関係を全て満たすわけではない。   However, the irregular structure as shown in FIG. 32 only satisfies such a magnitude relationship and an inclusion relationship for a specific lateral direction. Not all such relationships are satisfied in the vertical direction.

同様に、図37に示すように、標準的な構造においては、表面メタル層の厚さ(又は、それに等価な厚さ)TBは、バリア・メタル層の厚さTU(通常は、バリア・メタル膜121の厚さ)よりも厚い。このように表面メタル層115が、比較的厚いのは、実質的なボンディング・パッドとしての特性を確保するためである。しかし、周辺のパラメータの変更等により、表面メタル層の厚さTBとバリア・メタル層の厚さTUが同程度となる場合も、当然考えられ、また、両者の関係が逆転する場合も考えられる。従って、表面メタル層は、電解メッキばかりでなく、たとえば、薄い場合または一部分のみの場合は、スパッタリング成膜や無電界メッキによって形成することもできる。特に、スパッタリング成膜は、ウエハのほぼ全体に成膜した後にフォト・エッチする加工方法となるので、無駄な(捨てる)部分が発生してしまうことや、膜の内部ストレスが強くウエハの反りの原因となる場合が多い、といったデメリットはあるが、メッキ膜に比べて非常に清浄な膜を形成できるメリットがある。   Similarly, as shown in FIG. 37, in the standard structure, the surface metal layer thickness (or equivalent thickness) TB is equal to the barrier metal layer thickness TU (usually barrier metal). It is thicker than the thickness of the film 121. The reason why the surface metal layer 115 is relatively thick is to secure a substantial characteristic as a bonding pad. However, it is naturally conceivable that the thickness TB of the surface metal layer and the thickness TU of the barrier metal layer are approximately the same due to changes in peripheral parameters or the like, and the relationship between the two may be reversed. . Therefore, the surface metal layer can be formed not only by electrolytic plating, but also by sputtering film formation or electroless plating, for example, when it is thin or only partially. In particular, sputtering film formation is a processing method of photo-etching after film formation on almost the entire wafer, so that unnecessary (discarded) parts are generated, the internal stress of the film is strong, and warping of the wafer is caused. Although there is a demerit that it is often the cause, there is an advantage that a very clean film can be formed compared to the plating film.

なお、図46および図47のように、バリア・メタル層121(またはバリア&シード・メタル層67)上の電解メッキ層が複数存在するときは、表面メタル層の厚さTBとしては、それらの電解メッキ層全体の厚さをとった方が理論的に整合する。また、シード・メタル層(たとえば、銅)と上層の電解メッキ層(たとえば、銅)のように、同質の層である場合は、シード・メタル層は、電解メッキ層の厚さの一部を構成するとした方が実際上妥当である。   46 and 47, when there are a plurality of electrolytic plating layers on the barrier metal layer 121 (or the barrier & seed metal layer 67), the thickness TB of the surface metal layer is determined as It is theoretically consistent to take the thickness of the entire electrolytic plating layer. In addition, in the case of a homogeneous layer such as a seed metal layer (for example, copper) and an upper electrolytic plating layer (for example, copper), the seed metal layer has a part of the thickness of the electrolytic plating layer. It is actually more appropriate to configure.

また、図37において、図32のように一定の方位または方向において、表面メタル層の幅LBをパッドの幅LPよりも広くすることができる。そのようにすることで、ボンディング・ポイント(ワイヤ・ボンディングする場所)の自由度を増大させることができる。同様に、全方位又は方向において、表面メタル層の幅LBをパッドの幅LPよりも広くすることも可能である。更に、一定の方位または方向(あるいは全方位又は方向)において、表面メタル層の幅LBをパッド開口の幅LWよりも小さくすることができる。そのようにすることで、金の消費量を低減することができるほか、種々のレイアウト自由度が増加するメリットがある。   In FIG. 37, the width LB of the surface metal layer can be made wider than the width LP of the pad in a fixed orientation or direction as shown in FIG. By doing so, the freedom degree of a bonding point (place to wire-bond) can be increased. Similarly, the width LB of the surface metal layer can be made wider than the width LP of the pad in all directions or directions. Furthermore, the width LB of the surface metal layer can be made smaller than the width LW of the pad opening in a certain direction or direction (or all directions or directions). By doing so, not only can the consumption of gold be reduced, but also there are merits that various layout flexibility increases.

9.サマリ
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
9. Summary The invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited thereto, and it goes without saying that various changes can be made without departing from the scope of the invention.

例えば、前記実施の形態では、銅ダマシン配線等のダマシン配線(銅、銀等を主要な配線要素とする埋め込み配線)を有する半導体チップについて、具体的に説明したが、本願発明はそれに限定されるものではなく、アルミニウム系通常配線(非埋め込み配線)を有する半導体チップを用いたものにも適用できることは言うまでもない。   For example, in the above-described embodiment, the semiconductor chip having damascene wiring (embedded wiring having copper, silver, etc. as a main wiring element) such as copper damascene wiring has been specifically described, but the present invention is limited thereto. Needless to say, the present invention can be applied to a semiconductor chip having an aluminum-based normal wiring (non-embedded wiring).

なお、前記実施の形態では、ボンディング・ワイヤまたはボンディング・ボール(スタッド・バンプを含む)の材料となるボンディング・ワイヤとしては主に、金系ワイヤを例にとり説明したが、ボンディング・ワイヤとしては、金系ワイヤ(高純度金または、それに各種の添加物を添加したもの)のほか、銅系ワイヤ(高純度銅、無酸素銅、または、それに各種の添加物を添加したもの)、パラジウム系ワイヤ(パラジウムを主要な成分とする金属材料)等も、同様に適用できることは言うまでもない。   In the above-described embodiment, the description has been given mainly using the gold-based wire as an example of the bonding wire used as the material of the bonding wire or the bonding ball (including the stud bump). However, as the bonding wire, In addition to gold-based wires (high-purity gold or those added with various additives), copper-based wires (high-purity copper, oxygen-free copper, or those added with various additives), palladium-based wires Needless to say, (a metal material containing palladium as a main component) or the like can also be applied.

1 半導体基板部(P型単結晶シリコン基板)
2 素子分離フィールド絶縁膜
3 タングステン・プラグ
4 窒化シリコン・ライナー膜
5 プリ・メタル層間絶縁膜
8 ゲート電極
12 レジスト膜
13 銅配線
14 絶縁性バリア膜
15 プラズマシリコン酸化膜
23 銅埋め込み配線
24 複合絶縁性バリア膜
25 主層間絶縁膜
33 銅埋め込み配線
34 複合絶縁性バリア膜
35 主層間絶縁膜
43 銅埋め込み配線
44 複合絶縁性バリア膜
45 主層間絶縁膜
53 銅埋め込み配線
54 複合絶縁性バリア膜
55 主層間絶縁膜
63 銅埋め込み配線
64 複合絶縁性バリア膜
65 主層間絶縁膜
66 レジスト開口
67 アンダ・バンプ・メタル層(バリア&シード・メタル層)
73 銅埋め込み配線
74 絶縁性バリア膜
75 主層間絶縁膜
83 銅埋め込み配線
84 絶縁性バリア膜
85 主層間絶縁膜
93 銅埋め込み配線
94a、94b 絶縁性バリア膜
95a、95b FSG膜
96a、96b USG膜
101 (パッド下の配線を含む)半導体基板、デバイス・チップ、または半導体ウエハ
101b 他のデバイス・チップ
103 銅埋め込み配線
104a、104b 絶縁性バリア膜
105a、105b FSG膜
106a、106b USG膜
113 タングステン・プラグ
114 SiCN膜
115 金系バンプ電極(金バンプ、表面メタル層、またはオーバ・パッド・メタル)
117 USG膜
118 ボンディング・パッド
119 プラズマSiN(パッド上の無機ファイナル・パッシベーション)
120 ポリイミド塗布膜
121 チタン・バリア膜(バリア・メタル膜)
122 パラジュウム・シード膜(シード・メタル膜)
123 ポリイミド膜開口
124 クロム・バリア膜
125 銅シード膜
126 銅電解メッキ膜
127 ニッケル電解メッキ膜
130 接着剤層(ダイ・アタッチ・フィルム)
131 外部リード(リード)
132 ボンディング・ワイヤ
133 配線基板
134 ボンディング・ボール
135 1次ボンディング部
136 2次ボンディング部
137 半田バンプ
138 半田バンプ用ランド電極
139 ボイド(カーケンダル・ボイド)
140、141、142、143 Au−Al系金属間化合物層
145 ダイ・パッド
146 ダイ・パッド・サポート・バー
148 アンダ・フィル・レジン
151 チタン接着層
152 窒化チタン・バリアメタル層
153 窒化チタン層
155 ランド・パッド
156 半田層
157 金系スタッド・バンプ(金ボンディング・ボール)
163 ボンディング・パッド開口(ボンディング・パッド直上の絶縁膜開口)
171 ボンディング・キャピラリ
181 レジン封止体(封止レジン)
201 パッド開口
202 スパッタ・エッチ
203 チタン・スパッタ
204 Pdスパッタ
205 レジスト塗布
206 露光
207 現像
208 Oアッシング
209 金電解メッキ
210 レジスト除去
211 Oアッシング
212 Pdウエット・エッチ
213 チタン・ウエット・エッチ
214 Oアッシング
215 プローブ検査(ウエハ検査)
216 BG(バック・グラインディング)
217 ダイシング(ペレタイズ)
218 ダイ・ボンディング
219 ワイヤ・ボンディング
221 プローブ針
301 ニッケル層
302 金メッキ領域
303 ニッケル露出領域
AP 最上層配線層(パッド層)
LB 表面メタル層の幅
LP パッドの幅
LW パッド開口の幅
M1 第1配線層
M2 第2配線層
M3 第3配線層
M4 第4配線層
M5 第5配線層
M6 第6配線層
M7 第7配線層
M8 第8配線層
M9 第9配線層
M10 第10配線層
TB 表面メタル層の厚さ
TU バリア・メタル層の厚さ
1 Semiconductor substrate (P-type single crystal silicon substrate)
2 Device isolation field insulating film 3 Tungsten plug 4 Silicon nitride liner film 5 Pre-metal interlayer insulating film 8 Gate electrode 12 Resist film 13 Copper wiring 14 Insulating barrier film 15 Plasma silicon oxide film 23 Copper embedded wiring 24 Composite insulating property Barrier film 25 Main interlayer insulating film 33 Copper embedded wiring 34 Composite insulating barrier film 35 Main interlayer insulating film 43 Copper embedded wiring 44 Composite insulating barrier film 45 Main interlayer insulating film 53 Copper embedded wiring 54 Composite insulating barrier film 55 Main interlayer Insulating film 63 Copper embedded wiring 64 Composite insulating barrier film 65 Main interlayer insulating film 66 Resist opening 67 Under bump metal layer (barrier and seed metal layer)
73 Copper embedded wiring 74 Insulating barrier film 75 Main interlayer insulating film 83 Copper embedded wiring 84 Insulating barrier film 85 Main interlayer insulating film 93 Copper embedded wiring 94a, 94b Insulating barrier film 95a, 95b FSG film 96a, 96b USG film 101 Semiconductor substrate (including wiring under pad) Semiconductor substrate, device chip, or semiconductor wafer 101b Other device chip 103 Copper embedded wiring 104a, 104b Insulating barrier film 105a, 105b FSG film 106a, 106b USG film 113 Tungsten plug 114 SiCN film 115 Gold bump electrode (Gold bump, surface metal layer, or over pad metal)
117 USG film 118 Bonding pad 119 Plasma SiN (Inorganic final passivation on the pad)
120 Polyimide coating film 121 Titanium barrier film (barrier metal film)
122 Palladium seed film (seed metal film)
123 Polyimide film opening 124 Chromium barrier film 125 Copper seed film 126 Copper electroplating film 127 Nickel electroplating film 130 Adhesive layer (die attach film)
131 External lead (lead)
132 Bonding Wire 133 Wiring Board 134 Bonding Ball 135 Primary Bonding Part 136 Secondary Bonding Part 137 Solder Bump 138 Solder Bump Land Electrode 139 Void (Carkendall Void)
140, 141, 142, 143 Au-Al intermetallic compound layer 145 Die pad 146 Die pad support bar 148 Underfill resin 151 Titanium adhesive layer 152 Titanium nitride / barrier metal layer 153 Titanium nitride layer 155 Land・ Pad 156 Solder layer 157 Gold stud ・ Bump (gold bonding ball)
163 Bonding pad opening (insulating film opening just above the bonding pad)
171 Bonding Capillary 181 Resin Sealed Body (Sealing Resin)
201 Pad Opening 202 Sputter Etch 203 Titanium Sputter 204 Pd Sputter 205 Resist Application 206 Exposure 207 Development 208 O 2 Ashing 209 Gold Electroplating 210 Resist Removal 211 O 2 Ashing 212 Pd Wet Etch 213 Titanium Wet Etch 214 O 2 Ashing 215 Probe inspection (wafer inspection)
216 BG (Back Grinding)
217 Dicing (Pelletize)
218 Die bonding 219 Wire bonding 221 Probe needle 301 Nickel layer 302 Gold plating area 303 Nickel exposed area AP Top layer wiring layer (pad layer)
LB Surface metal layer width LP pad width LW pad opening width M1 first wiring layer M2 second wiring layer M3 third wiring layer M4 fourth wiring layer M5 fifth wiring layer M6 sixth wiring layer M7 seventh wiring layer M8 8th wiring layer M9 9th wiring layer M10 10th wiring layer TB Surface metal layer thickness TU Barrier metal layer thickness

Claims (13)

パッド電極が配置された主面を有する半導体チップと、
前記半導体チップの前記パッド電極と電気的に接続された金属ワイヤと、を有し、
前記半導体チップの前記パッド電極の表面上には表面金属膜が形成され、
前記半導体チップの前記主面側からの平面視において、前記表面金属膜は1組の長辺と1組の短辺とを備えた長方形形状であり、かつ第1部分と第2部分とを有し、
前記金属ワイヤの一端は、前記表面金属膜の前記第1部分に電気的に接続されている、半導体装置。
A semiconductor chip having a main surface on which pad electrodes are disposed;
A metal wire electrically connected to the pad electrode of the semiconductor chip,
A surface metal film is formed on the surface of the pad electrode of the semiconductor chip,
In a plan view of the semiconductor chip from the main surface side, the surface metal film has a rectangular shape having a pair of long sides and a pair of short sides, and has a first portion and a second portion. And
One end of the metal wire is a semiconductor device electrically connected to the first portion of the surface metal film.
請求項1に記載の半導体装置において、
前記表面金属膜の前記第2部分は、プローブ針をコンタクトすることが可能な部分である、半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the second portion of the surface metal film is a portion capable of contacting a probe needle.
請求項1に記載の半導体装置において、
前記平面視において、前記パッド電極は、1組の長辺と1組の短辺とを備えた長方形形状である、半導体装置。
The semiconductor device according to claim 1,
In the plan view, the pad electrode has a rectangular shape having a set of long sides and a set of short sides.
請求項3に記載の半導体装置において、
前記パッド電極下にはLow−k層膜を含む配線層間絶縁膜が形成されている、半導体装置。
The semiconductor device according to claim 3.
A semiconductor device in which a wiring interlayer insulating film including a low-k layer film is formed under the pad electrode.
請求項3に記載の半導体装置において、
前記表面金属膜の平面積は、前記パッド電極の前記表面の平面積よりも小さい、半導体装置。
The semiconductor device according to claim 3.
The semiconductor device, wherein a planar area of the surface metal film is smaller than a planar area of the surface of the pad electrode.
請求項1に記載の半導体装置において、
前記半導体チップの前記主面上には、開口部が形成された絶縁膜が配置され、
前記絶縁膜の前記開口部から前記パッド電極の前記表面の前記一部が露出している、半導体装置。
The semiconductor device according to claim 1,
On the main surface of the semiconductor chip, an insulating film in which an opening is formed is disposed,
The semiconductor device, wherein the part of the surface of the pad electrode is exposed from the opening of the insulating film.
請求項6に記載の半導体装置において、
前記パッド電極の前記第1部分と前記表面金属膜との間には、バリアメタル膜が配置され、
前記バリアメタル膜は、前記絶縁膜の前記開口部の周囲の上面と接している、半導体装置。
The semiconductor device according to claim 6.
A barrier metal film is disposed between the first portion of the pad electrode and the surface metal film,
The barrier metal film is a semiconductor device in contact with an upper surface around the opening of the insulating film.
請求項7に記載の半導体装置において、
前記バリアメタル膜と前記表面金属膜との間にはシードメタル膜が配置されている、半導体装置。
The semiconductor device according to claim 7,
A semiconductor device, wherein a seed metal film is disposed between the barrier metal film and the surface metal film.
請求項8に記載の半導体装置において、
前記表面金属膜の膜厚は、前記バリアメタル膜およびシードメタル膜のそれぞれの膜厚よりも厚い、半導体装置。
The semiconductor device according to claim 8,
The semiconductor device, wherein the surface metal film is thicker than each of the barrier metal film and the seed metal film.
請求項1に記載の半導体装置において、
前記金属ワイヤの前記一端にはボール部が形成され、前記ボール部が前記表面金属膜と電気的に接続されている、半導体装置。
The semiconductor device according to claim 1,
A semiconductor device, wherein a ball portion is formed at the one end of the metal wire, and the ball portion is electrically connected to the surface metal film.
請求項1に記載の半導体装置において、
前記パッド電極はアルミニウム系のパッド電極であり、前記表面金属膜は金系の金属膜であり、前記金属ワイヤは銅系のワイヤである、半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the pad electrode is an aluminum-based pad electrode, the surface metal film is a gold-based metal film, and the metal wire is a copper-based wire.
請求項7に記載の半導体装置において、
前記バリアメタル膜は、チタン、クロム、窒化チタン、および窒化タングステンの内の少なくとも1つを含む、半導体装置。
The semiconductor device according to claim 7,
The barrier metal film is a semiconductor device including at least one of titanium, chromium, titanium nitride, and tungsten nitride.
請求項8に記載の半導体装置において、
前記シードメタル膜は、銅、金、ニッケル、白金、ロジウム、モリブデン、タングステン、クロム、タンタル、およびパラジウムの内の少なくとも1つを含む、半導体装置。
The semiconductor device according to claim 8,
The seed metal film is a semiconductor device including at least one of copper, gold, nickel, platinum, rhodium, molybdenum, tungsten, chromium, tantalum, and palladium.
JP2014193557A 2008-12-03 2014-09-24 Semiconductor device Active JP5901719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193557A JP5901719B2 (en) 2008-12-03 2014-09-24 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008308585 2008-12-03
JP2008308585 2008-12-03
JP2014193557A JP5901719B2 (en) 2008-12-03 2014-09-24 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013156382A Division JP5820437B2 (en) 2008-12-03 2013-07-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015029127A true JP2015029127A (en) 2015-02-12
JP5901719B2 JP5901719B2 (en) 2016-04-13

Family

ID=49849903

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013156382A Active JP5820437B2 (en) 2008-12-03 2013-07-29 Semiconductor device
JP2014193557A Active JP5901719B2 (en) 2008-12-03 2014-09-24 Semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013156382A Active JP5820437B2 (en) 2008-12-03 2013-07-29 Semiconductor device

Country Status (1)

Country Link
JP (2) JP5820437B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109980A (en) * 2017-12-01 2018-06-01 中芯长电半导体(江阴)有限公司 Chip scale package structure and preparation method thereof
CN112670278B (en) * 2020-12-23 2023-04-18 成都海光集成电路设计有限公司 Chip packaging structure and chip packaging method
CN115101473B (en) * 2022-08-29 2024-01-26 成都探芯科技有限公司 Delayering method for aluminum through hole chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183104A (en) * 1998-12-15 2000-06-30 Texas Instr Inc <Ti> Method and system for bonding on integrated circuit
JP2001308139A (en) * 2000-04-27 2001-11-02 Matsushita Electric Ind Co Ltd Structure of electrode of semiconductor device
JP2003068738A (en) * 2001-08-29 2003-03-07 Seiko Epson Corp Semiconductor device and its manufacturing method, and semiconductor chip and its packaging method
JP2005527968A (en) * 2002-03-13 2005-09-15 フリースケール セミコンダクター インコーポレイテッド Semiconductor device having bond pad and method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674567B2 (en) * 1995-05-31 1997-11-12 日本電気株式会社 Semiconductor device
JP3859403B2 (en) * 1999-09-22 2006-12-20 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2005019493A (en) * 2003-06-24 2005-01-20 Renesas Technology Corp Semiconductor device
JP5331610B2 (en) * 2008-12-03 2013-10-30 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183104A (en) * 1998-12-15 2000-06-30 Texas Instr Inc <Ti> Method and system for bonding on integrated circuit
JP2001308139A (en) * 2000-04-27 2001-11-02 Matsushita Electric Ind Co Ltd Structure of electrode of semiconductor device
JP2003068738A (en) * 2001-08-29 2003-03-07 Seiko Epson Corp Semiconductor device and its manufacturing method, and semiconductor chip and its packaging method
JP2005527968A (en) * 2002-03-13 2005-09-15 フリースケール セミコンダクター インコーポレイテッド Semiconductor device having bond pad and method therefor

Also Published As

Publication number Publication date
JP5820437B2 (en) 2015-11-24
JP2013251566A (en) 2013-12-12
JP5901719B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5331610B2 (en) Semiconductor integrated circuit device
JP5559775B2 (en) Semiconductor device and manufacturing method thereof
JP6100569B2 (en) Semiconductor device and manufacturing method thereof
KR100580970B1 (en) Semiconducotor device
JP2002164437A (en) Integrated power circuit with dispersed bonding and current distribution and its method
JP2002016069A (en) Semiconductor device and its manufacturing method
JP2011071317A (en) Semiconductor device
US8742584B2 (en) Semiconductor device
CN102148204A (en) Multi-direction design for bump pad structures
JP5901719B2 (en) Semiconductor device
TWI471958B (en) Chip package and method for fabricating the same
JP2005223123A (en) Semiconductor device and manufacturing method thereof
JP2016152328A (en) Semiconductor device and manufacturing method of the same
JP2010147051A (en) Semiconductor integrated circuit device, and method of manufacturing the same
JP2007258381A (en) Semiconductor apparatus and manufacturing method thereof
JPS63293930A (en) Electrode in semiconductor device
JP2005038932A (en) Semiconductor device, and method for manufacturing the same
CN103681595B (en) Semiconductor device
US11830806B2 (en) Semiconductor structure and method of manufacturing the same
JP2001135795A (en) Semiconductor device
TWI479617B (en) Semiconductor structure and method of fabricating the same
JP2013110338A (en) Semiconductor integrated circuit device
JP2010165970A (en) Semiconductor integrated circuit apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150