JP2013110338A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
JP2013110338A
JP2013110338A JP2011255867A JP2011255867A JP2013110338A JP 2013110338 A JP2013110338 A JP 2013110338A JP 2011255867 A JP2011255867 A JP 2011255867A JP 2011255867 A JP2011255867 A JP 2011255867A JP 2013110338 A JP2013110338 A JP 2013110338A
Authority
JP
Japan
Prior art keywords
solder
film
integrated circuit
bump
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011255867A
Other languages
Japanese (ja)
Inventor
Shinji Yokogawa
慎二 横川
Tetsushi Uno
哲史 宇野
Hideaki Tsuchiya
秀昭 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011255867A priority Critical patent/JP2013110338A/en
Publication of JP2013110338A publication Critical patent/JP2013110338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05176Ruthenium [Ru] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/05186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13006Bump connector larger than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/1312Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/81455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To ensure electromigration resistance which is important for achieving micro bump pitch and lead-free bumps because flip-chip mounting is executed in various configurations with increase in the number of terminals per chip.SOLUTION: A flip-chip semiconductor integrated circuit device of an embodiment comprises a metal barrier which is provided in the middle of each of solder bumps respectively provided on a plurality of UBM pads formed on a first principal surface of a chip, which divides the solder bump into two in a vertical direction, and which is composed of a material different from that of the solder bump.

Description

本発明は、半導体集積回路装置(または半導体装置)におけるバンプ電極技術に適用して有効な技術に関する。   The present invention relates to a technique effective when applied to a bump electrode technique in a semiconductor integrated circuit device (or a semiconductor device).

日本特開2010−251741号公報(特許文献1)または、これに対応する米国特許公開2010−258335号公報(特許文献2)には、半田バンプ接続におけるUBM(Under Bump Metal)部への電流集中を回避するために、UBM部の付着層とバリア層の間に比較的厚い銅層を挿入する技術が開示されている。   Japanese Patent Application Laid-Open No. 2010-251741 (Patent Document 1) or US Patent Publication No. 2010-258335 (Patent Document 2) corresponding thereto discloses a current concentration at an UBM (Under Bump Metal) portion in solder bump connection. In order to avoid this, a technique of inserting a relatively thick copper layer between the adhesion layer and the barrier layer of the UBM portion is disclosed.

日本特開2006−295109号公報(特許文献3)には、銅やニッケル等の金属を柱状に形成した非溶融型メタルバンプが有する応力を半導体基板等に伝えやすいという弱点を回避するために、非溶融型メタルバンプの周辺を半田バンプで覆う技術が開示されている。   In Japanese Unexamined Patent Publication No. 2006-295109 (Patent Document 3), in order to avoid the weak point that the stress of the non-melting type metal bump formed by columnar metal such as copper or nickel is easily transmitted to a semiconductor substrate or the like. A technique for covering the periphery of a non-melting type metal bump with a solder bump is disclosed.

Chih−ming Chen外1名、”Electromigration effect upon the Sn−0.7wt% Cu/Ni and Sn−3.5w% Ag/Ni interfacial reactions”,Journal of Applied Physics,Vol.90,No.3,1 August 2001,pp1208−1214(非特許文献1)には、鉛フリー半田とニッケル層との界面における金属間化合物の形成とエレクトロマイグレーションの関係が論議されている。   Chih-ming Chen and one other, "Electromigration effect up the the Sn-0.7wt% Cu / Ni and Sn-3.5w% Ag / Ni interfacial reactions", Journal of Applied Physics, V. 90, no. 3,1 August 2001, pp1208-1214 (Non-Patent Document 1) discusses the relationship between the formation of an intermetallic compound and electromigration at the interface between a lead-free solder and a nickel layer.

J.Shen外2名、”Growth mechanism of NiSn in a Sn/Ni liquid/solid interfacial reaction”,Acta Materialia 57(2009),pp5196−5206(非特許文献2)には、鉛フリー半田とニッケル層との界面における金属間化合物の成長について、種々の論議がなされている。 J. et al. Two names other than Shen, “Growth mechanism of Ni 3 Sn 4 in a Sn / Ni liquid / solid interface reaction”, Acta Materialia 57 (2009), pp5196-5206, lead layer (Non-Patent Document 2) Various discussions have been made on the growth of intermetallic compounds at the interface.

Minhua Lu外3名、”Blech effect in Pb−free flip chip solder joint”,Applied Physics Letters 94, 011912(2009)(非特許文献3)には、電子流方向とは逆方向に生じる応力勾配が駆動力となって生じるエレクトロマイグレーションの抑制効果に関する論議がなされている。   In Minhua Lu 3 names, “Blech effect in Pb-free flip chip solder joint”, Applied Physics Letters 94, 011912 (2009) (Non-patent Document 3), a stress gradient is generated in the direction opposite to the electron flow direction. Discussions have been made on the effect of suppressing electromigration that occurs as a force.

特開2010−251741号公報JP 2010-251741 A 米国特許公開2010−258335号公報US Patent Publication No. 2010-258335 特開2006−295109号公報JP 2006-295109 A

Chih−ming Chen外1名、”Electromigration effect upon the Sn−0.7wt% Cu/Ni and Sn−3.5w% Ag/Ni interfacial reactions”,Journal of Applied Physics,Vol.90,No.3,1 August 2001,pp1208−1214Chih-ming Chen and one other, "Electromigration effect up the the Sn-0.7wt% Cu / Ni and Sn-3.5w% Ag / Ni interfacial reactions", Journal of Applied Physics, V. 90, no. 3,1 August 2001, pp1208-1214 J.Shen外2名、”Growth mechanism of Ni3Sn4 in a Sn/Ni liquid/solid interfacial reaction”,Acta Materialia 57(2009),pp5196−5206J. et al. Two people outside of Shen, “Growth mechanism of Ni3Sn4 in a Sn / Ni liquid / solid interface reaction”, Acta Materialia 57 (2009), pp 5196-5206 Minhua Lu外3名、”Blech effect in Pb−free flip chip solder joint”,Applied Physics Letters 94, 011912(2009)Minhua Lu 3 people, “Blech effect in Pb-free flip chip solder joint”, Applied Physics Letters 94, 011912 (2009)

チップあたりの端子数の増大に伴って、フリップチップ実装が種々の形態で実施されている。しかし、バンプピッチの微細化およびバンプの鉛フリー化によって、エレクトロマイグレーション耐性の確保がますます重要となっている。   As the number of terminals per chip increases, flip chip mounting is implemented in various forms. However, it is increasingly important to ensure electromigration resistance by reducing the bump pitch and making the bump lead-free.

本願発明は、これらの課題を解決するためになされたものである。   The present invention has been made to solve these problems.

本発明の目的は、信頼性の高い半導体集積回路装置を提供することにある。   An object of the present invention is to provide a highly reliable semiconductor integrated circuit device.

本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。   The following is a brief description of an outline of typical inventions disclosed in the present application.

すなわち、本願の一つの発明は、フリップチップ型の半導体集積回路装置において、チップの第1の主面上に形成された多数のUBMパッド状の各々に設けられた半田バンプの中間部には、上下を分割する前記半田バンプとは異なる材質の金属隔壁が設けられているものである。   That is, according to one aspect of the present invention, in the flip-chip type semiconductor integrated circuit device, an intermediate portion of the solder bumps provided on each of a large number of UBM pad shapes formed on the first main surface of the chip includes: A metal partition made of a material different from the solder bumps that divide the upper and lower sides is provided.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、フリップチップ型の半導体集積回路装置において、チップの第1の主面上に形成された多数のUBMパッド状の各々に設けられた半田バンプの中間部には、上下を分割する前記半田バンプとは異なる材質の金属隔壁が設けられているので、半田バンプ内におけるエレクトロマイグレーション等に起因するボイドの発生を低減することができる。   That is, in the flip-chip type semiconductor integrated circuit device, the solder bumps divided into upper and lower parts are arranged in the middle part of the solder bumps provided on each of a large number of UBM pads formed on the first main surface of the chip. Since the metal partition made of a material different from the above is provided, generation of voids due to electromigration or the like in the solder bumps can be reduced.

本願の一実施の形態の半導体集積回路装置のデバイス構造の一例を示す半導体ウエハまたはチップの模式断面図である。1 is a schematic cross-sectional view of a semiconductor wafer or chip showing an example of a device structure of a semiconductor integrated circuit device according to an embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関する製造プロセスのアウトラインを説明するためのプロセスブロックフロー図である。It is a process block flowchart for demonstrating the outline of the manufacturing process regarding the semiconductor integrated circuit device of the said one Embodiment of this application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(半導体基板上の配線層WSの形成完了時点)である。FIG. 3 is a partial schematic cross-sectional view of a semiconductor wafer (at the time when the formation of the wiring layer WS on the semiconductor substrate is completed) for explaining a bump formation process and the like related to the semiconductor integrated circuit device of the embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(無機系ファイナルパッシベーション膜の開口形成完了時点)である。FIG. 3 is a partial schematic cross-sectional view of a semiconductor wafer (at the time of completion of opening of an inorganic final passivation film) for explaining a bump formation process and the like related to the semiconductor integrated circuit device of the one embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(有機系ファイナルパッシベーション膜の開口形成完了時点)である。FIG. 3 is a partial schematic cross-sectional view of a semiconductor wafer (at the time of completion of opening of an organic final passivation film) for explaining a bump formation process and the like related to the semiconductor integrated circuit device of the embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(UBM膜成膜完了時点)である。It is a partial schematic cross section (at the time of completion of UBM film formation) of a semiconductor wafer for explaining the bump formation process etc. concerning the semiconductor integrated circuit device of the one embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(半田メッキ完了時点)である。FIG. 3 is a partial schematic cross-sectional view (at the time of completion of solder plating) of a semiconductor wafer for explaining a bump formation process and the like related to the semiconductor integrated circuit device of the one embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(UBM膜最下層膜加工完了時点)である。It is a partial schematic cross section (at the time of completion of UBM film bottom layer film processing) for explaining the bump formation process etc. concerning the semiconductor integrated circuit device of the one embodiment of the present application. 本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(リフロー完了時点)である。It is a partial schematic cross section (at the time of reflow completion) of the semiconductor wafer for demonstrating the bump formation process etc. regarding the semiconductor integrated circuit device of the said one Embodiment of this application. 本願の前記一実施の形態の半導体集積回路装置に対応するチップ領域(バンプ形成プロセス完成時点)のウエハ上に置ける配置を示すウエハの上面全体図である。FIG. 3 is an overall top view of the wafer showing an arrangement that can be placed on the wafer in a chip region (at the time of completion of the bump formation process) corresponding to the semiconductor integrated circuit device of the embodiment of the present application. 図10の部分拡大上面図である。FIG. 11 is a partially enlarged top view of FIG. 10. 本願の前記一実施の形態の半導体集積回路装置に対応する完成形態の一例であるFCBGA(Flip Chip Ball Grid Array)の模式断面図である。It is a schematic cross section of FCBGA (Flip Chip Ball Grid Array) which is an example of a completed form corresponding to the semiconductor integrated circuit device of the one embodiment of the present application. 図1に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)を示す半導体ウエハまたはチップの模式断面図である。FIG. 7 is a schematic cross-sectional view of a semiconductor wafer or chip showing a modification (multilayer laminated solder bump) relating to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. 1. 図7に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)のバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(半田メッキ完了時点)である。FIG. 7 is a partial schematic cross-sectional view of a semiconductor wafer (solder plating completed) for explaining a bump forming process and the like of a modified example (multilayer laminated solder bump) related to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. Time). 図8に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)のバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(UBM膜最下層膜加工完了時点)である。FIG. 8 is a partial schematic cross-sectional view of a semiconductor wafer (UBM film top view) for explaining a bump formation process and the like of a modification (multilayer laminated solder bump) related to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. (When the underlayer processing is completed). 図9に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)のバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(リフロー完了時点)である。FIG. 9 is a partial schematic cross-sectional view of a semiconductor wafer for explaining a bump formation process and the like of a modified example (multilayer laminated solder bump) related to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. ). 本願の各実施の形態(変形例を含む)の原理を説明するためのチップ上UBM(Under Bump Metal)側ニッケル層表面の金属間化合物層と半田界面のイオン等の流れを説明する半田バンプのチップ端部の模式断面図(バンプ中間部に金属隔壁を有さないものであって、金属間化合物層成長完了前)である。Solder bumps for explaining the flow of ions, etc. on the intermetallic compound layer and the solder interface on the UBM (Under Bump Metal) side nickel layer on the chip for explaining the principle of each embodiment (including modifications) of the present application FIG. 2 is a schematic cross-sectional view of a chip end portion (without a metal partition wall at a bump intermediate portion and before completion of growth of an intermetallic compound layer). 本願の各実施の形態(変形例を含む)の原理を説明するためのチップ上UBM(Under Bump Metal)側ニッケル層表面の金属間化合物層と半田界面のイオン等の流れを説明する半田バンプのチップ端部の模式断面図(バンプ中間部に金属隔壁を有さないものであって、金属間化合物層成長完了後)である。Solder bumps for explaining the flow of ions, etc. on the intermetallic compound layer and the solder interface on the UBM (Under Bump Metal) side nickel layer on the chip for explaining the principle of each embodiment (including modifications) of the present application FIG. 2 is a schematic cross-sectional view of a chip end portion (without a metal partition wall at a bump intermediate portion and after completion of growth of an intermetallic compound layer). 本願の各実施の形態(変形例を含む)の原理を説明するためのチップ上UBM(Under Bump Metal)側ニッケル層表面の金属間化合物層と半田界面のイオン等の流れを説明する半田バンプのチップ端部の模式断面図(バンプ中間部に金属隔壁を有するものであって、金属間化合物層成長完了後)である。Solder bumps for explaining the flow of ions, etc. on the intermetallic compound layer and the solder interface on the UBM (Under Bump Metal) side nickel layer on the chip for explaining the principle of each embodiment (including modifications) of the present application FIG. 2 is a schematic cross-sectional view of a chip end portion (having a metal partition wall at a bump intermediate portion and after completion of growth of an intermetallic compound layer). バンプ径と本願の各実施の形態(変形例を含む)のエレクトロマイグレーション抑制効果が著しくなるクリティカル半田厚さの関係を示す曲線グラフである。It is a curve graph which shows the relationship between bump diameter and critical solder thickness from which the electromigration suppression effect of each embodiment (a modification is included) of this application becomes remarkable.

〔実施の形態の概要〕
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。
[Outline of Embodiment]
First, an outline of a typical embodiment of the invention disclosed in the present application will be described.

1.以下を含む半導体集積回路装置:
(a)第1の主面を有する半導体基板;
(b)前記半導体基板の前記第1の主面上に設けられた多数のUBMパッド;
(c)前記多数のUBMパッドの各UBMパッド上に設けられ、主に半田部材から構成されたほぼ球状の半田バンプ;
(d)前記半田バンプの中間部において、前記半田バンプを上部と下部に区画する、前記半田バンプとは異なる材質の第1の金属隔壁。
1. Semiconductor integrated circuit devices including:
(A) a semiconductor substrate having a first main surface;
(B) a number of UBM pads provided on the first main surface of the semiconductor substrate;
(C) a substantially spherical solder bump provided on each UBM pad of the multiple UBM pads and mainly composed of a solder member;
(D) A first metal partition made of a material different from the solder bump, which divides the solder bump into an upper part and a lower part in an intermediate part of the solder bump.

2.前記項1の半導体集積回路装置において、前記第1の金属隔壁は、半田濡れ性を有する第1の隔壁金属膜および、この隔壁金属膜を構成する主要成分と錫を主要な構成要素とする第1の金属間化合物層から、基本的に構成されている。   2. In the semiconductor integrated circuit device according to Item 1, the first metal partition includes a first partition metal film having solder wettability, a main component constituting the partition metal film, and tin as main components. It is basically composed of one intermetallic compound layer.

3.前記項2の半導体集積回路装置において、前記第1の隔壁金属膜の前記主要成分は、ニッケル又は銅である。   3. In the semiconductor integrated circuit device according to Item 2, the main component of the first partition wall metal film is nickel or copper.

4.前記項2の半導体集積回路装置において、前記第1の隔壁金属膜の前記主要成分は、ニッケルである。   4). In the semiconductor integrated circuit device according to Item 2, the main component of the first partition metal film is nickel.

5.前記項1から4のいずれか一つの半導体集積回路装置において、前記半田バンプの前記半田部材は、鉛フリー半田である。   5. In the semiconductor integrated circuit device according to any one of Items 1 to 4, the solder member of the solder bump is lead-free solder.

6.前記項5の半導体集積回路装置において、前記鉛フリー半田は、錫−銀系鉛フリー半田である。   6). In the semiconductor integrated circuit device according to Item 5, the lead-free solder is a tin-silver based lead-free solder.

7.前記項1から6のいずれか一つの半導体集積回路装置において、前記半導体基板は、半導体チップである。   7). In the semiconductor integrated circuit device according to any one of Items 1 to 6, the semiconductor substrate is a semiconductor chip.

8.前記項1から6のいずれか一つの半導体集積回路装置において、前記半導体基板は、半導体ウエハである。   8). In the semiconductor integrated circuit device according to any one of Items 1 to 6, the semiconductor substrate is a semiconductor wafer.

9.前記項1から7のいずれか一つの半導体集積回路装置において、前記半田バンプは、BGAの内部バンプである。   9. In the semiconductor integrated circuit device according to any one of Items 1 to 7, the solder bump is an internal bump of a BGA.

10.前記項1から9のいずれか一つの半導体集積回路装置において、更に、以下を含む:
(e)前記半田バンプの前記上部の中間部に於いて、前記上部を更に上下に区画する、前記第1の金属隔壁と同一材料の第2の金属隔壁。
10. The semiconductor integrated circuit device according to any one of Items 1 to 9, further including:
(E) A second metal partition made of the same material as the first metal partition, which further divides the upper part in the middle part of the upper part of the solder bump.

〔本願における記載形式、基本的用語、用法の説明〕
1.本願において、実施の態様の記載は、必要に応じて、便宜上複数のセクションに分けて記載する場合もあるが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しを省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
[Description format, basic terms, usage in this application]
1. In the present application, the description of the embodiment may be divided into a plurality of sections for convenience, if necessary, but these are not independent from each other unless otherwise specified. Each part of a single example, one part is the other part of the details, or part or all of the modifications. Moreover, as a general rule, the same part is not repeated. In addition, each component in the embodiment is not indispensable unless specifically stated otherwise, unless it is theoretically limited to the number, and obviously not in context.

更に、本願において、「半導体装置」または「半導体集積回路装置」というときは、主に、各種トランジスタ(能動素子)単体、および、それらを中心に、抵抗、コンデンサ等を半導体チップまたはウエハ上の複数のチップ領域等(たとえば単結晶シリコン基板)の上に集積したものをいう。ここで、各種トランジスタの代表的なものとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に代表されるMISFET(Metal Insulator Semiconductor Field Effect Transistor)を例示することができる。このとき、集積回路構成の代表的なものとしては、Nチャネル型MISFETとPチャネル型MISFETを組み合わせたCMOS(Complemetary Metal Oxide Semiconductor)型集積回路に代表されるCMIS(Complemetary Metal Insulator Semiconductor)型集積回路を例示することができる。   Further, in the present application, the term “semiconductor device” or “semiconductor integrated circuit device” mainly refers to various transistors (active elements) alone, and a plurality of resistors, capacitors, etc. on a semiconductor chip or wafer, centering on them. That are integrated on a chip region or the like (for example, a single crystal silicon substrate). Here, as a representative of various transistors, a MISFET (Metal Insulator Semiconductor Effect Transistor) typified by a MOSFET (Metal Oxide Field Effect Transistor) can be exemplified. At this time, as a typical integrated circuit configuration, a CMIS (Complementary Metal Insulator Semiconductor) integrated circuit represented by a CMOS (Complementary Metal Oxide Semiconductor) integrated circuit combining an N-channel MISFET and a P-channel MISFET. Can be illustrated.

今日の半導体集積回路装置、すなわち、LSI(Large Scale Integration)のウエハ工程は、通常、原材料としてのシリコンウエハの搬入からプリメタル(Premetal)工程(M1配線層下端とゲート電極構造の間の層間絶縁膜等の形成、コンタクトホール形成、タングステンプラグ、埋め込み等からなる工程)あたりまでのFEOL(Front End of Line)工程と、M1配線層形成から始まり、パッド電極上のファイナルパッシベーション膜へのパッド開口の形成あたりまでのBEOL(Back End of Line)工程に大別できる。なお、フリップチップ製品やウエハレベルパッケージプロセスにおいては、UBM(Under Bump Metal)形成プロセス、バンプ形成プロセス等も含む。   A semiconductor process of today's semiconductor integrated circuit device, that is, a LSI (Large Scale Integration) wafer process, is usually performed by carrying a silicon wafer as a raw material to a premetal process (an interlayer insulating film between the lower end of the M1 wiring layer and the gate electrode structure). Etc., a contact hole formation, a tungsten plug, a process consisting of embedding, etc.) and an M1 wiring layer formation, and formation of a pad opening to the final passivation film on the pad electrode It can be roughly divided into a BEOL (Back End of Line) process. Note that flip chip products and wafer level package processes include UBM (Under Bump Metal) forming processes, bump forming processes, and the like.

2.同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかに、そうでない場合を除き、A以外の要素を主要な構成要素のひとつとするものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。同様に、「酸化シリコン膜」、「酸化シリコン系絶縁膜」等と言っても、比較的純粋な非ドープ酸化シリコン(Undoped Silicon Dioxide)だけでなく、FSG(Fluorosilicate Glass)、TEOSベース酸化シリコン(TEOS-based silicon oxide)、SiOC(Silicon Oxicarbide)またはカーボンドープ酸化シリコン(Carbon-doped Silicon oxide)またはOSG(Organosilicate glass)、PSG(Phosphorus Silicate Glass)、BPSG(Borophosphosilicate Glass)等の熱酸化膜、CVD酸化膜、SOG(Spin ON Glass)、ナノクラスタリングシリカ(Nano-Clustering Silica:NCS)等の塗布系酸化シリコン、これらと同様な部材に空孔を導入したシリカ系Low-k絶縁膜(ポーラス系絶縁膜)、およびこれらを主要な構成要素とする他のシリコン系絶縁膜との複合膜等を含むことは言うまでもない。   2. Similarly, in the description of the embodiment and the like, the material, composition, etc. may be referred to as “X consisting of A”, etc., except when clearly stated otherwise and clearly from the context, except for A It does not exclude what makes an element one of the main components. For example, as for the component, it means “X containing A as a main component”. For example, “silicon member” is not limited to pure silicon, but also includes SiGe alloys, other multi-component alloys containing silicon as a main component, and members containing other additives. Needless to say. Similarly, “silicon oxide film”, “silicon oxide insulating film”, etc. are not only relatively pure undoped silicon oxide (FS), but also FSG (Fluorosilicate Glass), TEOS-based silicon oxide ( Thermal oxide films such as TEOS-based silicon oxide), SiOC (Silicon Oxicarbide) or Carbon-doped Silicon oxide or OSG (Organosilicate glass), PSG (Phosphorus Silicate Glass), BPSG (Borophosphosilicate Glass), CVD Oxide film, SOG (Spin ON Glass), nano-clustering silica (Nano-Clustering Silica: NCS) and other coating-type silicon oxide, silica-based low-k insulating film (porous insulating) Needless to say, a film) and a composite film with other silicon-based insulating films including these as main constituent elements are included.

また、酸化シリコン系絶縁膜と並んで、半導体分野で常用されているシリコン系絶縁膜としては、窒化シリコン系絶縁膜がある。この系統の属する材料としては、SiN,SiCN,SiNH,SiCNH等がある。ここで、「窒化シリコン」というときは、特にそうでない旨明示したときを除き、SiNおよびSiNHの両方を含む。同様に、「SiCN」というときは、特にそうでない旨明示したときを除き、SiCNおよびSiCNHの両方を含む。   In addition to silicon oxide insulating films, silicon nitride insulating films that are commonly used in the semiconductor field include silicon nitride insulating films. Materials belonging to this system include SiN, SiCN, SiNH, SiCNH, and the like. Here, “silicon nitride” includes both SiN and SiNH unless otherwise specified. Similarly, “SiCN” includes both SiCN and SiCNH, unless otherwise specified.

なお、SiCは、SiNと類似の性質を有するが、SiONは、むしろ、酸化シリコン系絶縁膜に分類すべき場合が多い。   Note that SiC has similar properties to SiN, but SiON is often rather classified as a silicon oxide insulating film.

窒化シリコン膜は、SAC(Self−Aligned Contact)技術におけるエッチストップ膜、すなわち、CESL(Contact Etch−Stop Layer)として、多用されるほか、SMT(Stress Memorization Technique)における応力付与膜としても使用される。   A silicon nitride film is frequently used as an etch stop film in SAC (Self-Aligned Contact) technology, that is, CESL (Contact Etch-Stop Layer), and also as a stress applying film in SMT (Stress Measurement Technique). .

3.同様に、図形、位置、属性等に関して、好適な例示をするが、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、厳密にそれに限定されるものではないことは言うまでもない。   3. Similarly, suitable examples of graphics, positions, attributes, and the like are given, but it is needless to say that the present invention is not strictly limited to those cases unless explicitly stated otherwise, and unless otherwise apparent from the context.

4.さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。   4). In addition, when a specific number or quantity is mentioned, a numerical value exceeding that specific number will be used unless specifically stated otherwise, unless theoretically limited to that number, or unless otherwise clearly indicated by the context. There may be a numerical value less than the specific numerical value.

5.「ウエハ」というときは、通常は半導体集積回路装置(半導体装置、電子装置も同じ)をその上に形成する単結晶シリコンウエハを指すが、エピタキシャルウエハ、SOI基板、LCDガラス基板等の絶縁基板と半導体層等の複合ウエハ等も含むことは言うまでもない。   5. “Wafer” usually refers to a single crystal silicon wafer on which a semiconductor integrated circuit device (same as a semiconductor device and an electronic device) is formed, but an insulating substrate such as an epitaxial wafer, an SOI substrate, an LCD glass substrate and the like. Needless to say, a composite wafer such as a semiconductor layer is also included.

6.「フリップチップ型半導体素子」は、通常、略円形(円形、8角形、6角形等)のメタルパッドの上層(再配線を利用する場合は、水平にシフトする)にバンプ電極を形成するが、このメタルパッドとしては、主に「アルミニウム系メタルパッド」(アルミニウム系メタルパッド方式)または「非アルミニウム系メタルパッド」(非アルミニウム系メタルパッド方式)が使用される。「アルミニウム系メタルパッド方式」は、ワイヤボンディング製品とウエハを共用できる等のメリットがあるが、その分、工程は複雑となる。一方、「非アルミニウム系メタルパッド方式」は、銅系埋め込み配線上では構造を簡単にできるメリットが在り、特にUBM(UNder Bump Metal)自体をメタルパッドとする方式(「UBMパッド方式」という)では、構造が非常に簡単になる。以下の実施形態に於いては、主にUBMパッド方式について説明するが、本願発明は、アルミニウム系メタルパッド方式や、UBMパッド方式以外の非アルミニウム系メタルパッド方式にも適用できることは言うまでもない。   6). The “flip chip type semiconductor device” usually has bump electrodes formed on the upper layer of a substantially circular (circular, octagonal, hexagonal, etc.) metal pad (shifted horizontally when using rewiring). As this metal pad, an “aluminum metal pad” (aluminum metal pad method) or a “non-aluminum metal pad method” (non-aluminum metal pad method) is mainly used. The “aluminum-based metal pad method” has the merit that the wire bonding product and the wafer can be shared, but the process is complicated accordingly. On the other hand, the “non-aluminum-based metal pad method” has an advantage that the structure can be simplified on a copper-based embedded wiring, and in particular, a method using a UBM (Under Bump Metal) itself as a metal pad (referred to as “UBM pad method”). The structure becomes very simple. In the following embodiments, the UBM pad method will be mainly described. However, it goes without saying that the present invention can be applied to an aluminum metal pad method and a non-aluminum metal pad method other than the UBM pad method.

なお、フリップチップ型半導体素子には、WLP(Wafer Level Package)型と、以下で主に説明するベアチップ(Bare Chip)型があるが、本願発明は、WLP型にも適用できることは言うまでもない。   The flip chip type semiconductor element includes a WLP (Wafer Level Package) type and a bare chip type which will be mainly described below, but it goes without saying that the present invention can also be applied to the WLP type.

また、本願に於いて、FCBGA(Flip Chip Ball Grid Array)とは、主に、BGA(Ball Grid Array)の主配線基板の上面に半導体チップを、バンプ電極を介してフリップチップボンディングしたものである。このとき、特に区別する必要のあるときは、半導体チップ上のバンプ電極を「内部バンプ」とよび、主配線基板の下面のバンプ電極を外部バンプと呼ぶ。   Further, in this application, FCBGA (Flip Chip Ball Grid Array) is mainly a semiconductor chip on the upper surface of a main wiring board of BGA (Ball Grid Array) and flip chip bonded via a bump electrode. . At this time, when it is particularly necessary to distinguish, the bump electrodes on the semiconductor chip are called “internal bumps”, and the bump electrodes on the lower surface of the main wiring board are called external bumps.

7.「半田」は、一般に錫を主要成分の一つとする低融点(摂氏250度未満程度)の金属材料である。「半田」には、鉛を含む「鉛含有半田」と、鉛を含まない「鉛フリー半田」がある。本願では、錫を主要成分とする鉛フリー半田を特に「錫系鉛フリー半田」と呼ぶ。   7). "Solder" is a metal material having a low melting point (less than about 250 degrees Celsius) generally containing tin as one of main components. “Solder” includes “lead-containing solder” containing lead and “lead-free solder” not containing lead. In the present application, lead-free solder containing tin as a main component is particularly referred to as “tin-based lead-free solder”.

また、錫系鉛フリー半田には、銀添加錫系鉛フリー半田、ビスマス添加錫系鉛フリー半田、銀−銅添加錫系鉛フリー半田、銀−アンチモン−ビスマス添加錫系鉛フリー半田、ビスマス−銀−銅添加錫系鉛フリー半田等がある。以下の実施形態では、一例として、銀1.5重量%程度添加した銀添加錫系鉛フリー半田(融点:摂氏221度程度)を例に取り具体的に説明するが、他の銀添加錫系鉛フリー半田(銀3.5重量%程度添加)や、その他の2元系錫系鉛フリー半田、3元系錫系鉛フリー半田、または4元系錫系鉛フリー半田でもよいことはいうまでもない。なお、「鉛フリー」といっても、実際上は、微量の鉛を含有するのが普通である。   Tin-based lead-free solder includes silver-added tin-based lead-free solder, bismuth-added tin-based lead-free solder, silver-copper-added tin-based lead-free solder, silver-antimony-bismuth-added tin-based lead-free solder, bismuth- Silver-copper-added tin-based lead-free solder. In the following embodiments, as an example, a silver-added tin-based lead-free solder (melting point: about 221 degrees Celsius) added with about 1.5% by weight of silver will be specifically described as an example. Needless to say, lead-free solder (addition of about 3.5% by weight of silver), other binary tin-based lead-free solder, ternary tin-based lead-free solder, or quaternary tin-based lead-free solder may be used. Nor. It should be noted that even if “lead-free” is used, in practice, a small amount of lead is usually contained.

〔実施の形態の詳細〕
実施の形態について更に詳述する。各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。
[Details of the embodiment]
The embodiment will be further described in detail. In the drawings, the same or similar parts are denoted by the same or similar symbols or reference numerals, and description thereof will not be repeated in principle.

また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するために、ハッチングを付すことがある。   In the accompanying drawings, hatching or the like may be omitted even in a cross section when it becomes complicated or when the distinction from the gap is clear. In relation to this, when it is clear from the description etc., the contour line of the background may be omitted even if the hole is planarly closed. Furthermore, even if it is not a cross section, it may be hatched to clearly indicate that it is not a void.

1.本願の一実施の形態の半導体集積回路装置のデバイス構造の一例等の説明(主に図1)
このセクションでは、半導体集積回路チップとして、40nmテクノロジノードのMISFET等を多数集積したCMIS型集積回路を例にとり、具体的に説明するが、以下の実施の形態は、MIS型集積回路に限らず、バイポーラ型集積回路でも、単体デバイスでもよいことはいうまでもない。また、以下の例は、40nmテクノロジノードのデバイスに限定されるものではなく、これよりも微細なテクノロジノードのデバイスにも適用できるし、これよりも微細でないテクノロジノードのデバイスにも適用できることは言うまでもない。なお、これらの半導体集積回路チップは、回路システムとしては、たとえば、SOC(System on Chip)型のチップ、マイクロコンピュータおよびその周辺チップ等に対応する。
1. Description of an example of a device structure of a semiconductor integrated circuit device according to an embodiment of the present application (mainly FIG. 1)
In this section, a CMIS type integrated circuit in which a large number of 40 nm technology node MISFETs and the like are integrated will be specifically described as an example of a semiconductor integrated circuit chip. However, the following embodiments are not limited to MIS type integrated circuits. Needless to say, it may be a bipolar integrated circuit or a single device. In addition, the following example is not limited to a device of a 40 nm technology node, but can be applied to a device of a technology node smaller than this, and can also be applied to a device of a technology node smaller than this. Yes. Note that these semiconductor integrated circuit chips correspond to, for example, SOC (System on Chip) type chips, microcomputers, and peripheral chips thereof as circuit systems.

また、このセクションでは、8層の銅系埋め込み配線を有する集積回路を例に取り具体的に説明するが、本願の実施の形態は、これと異なる層数の配線システムを有する集積回路にも適用できることは言うまでもない。   In this section, an integrated circuit having eight layers of copper-based embedded wiring will be described as an example, but the embodiment of the present application is also applicable to an integrated circuit having a wiring system having a different number of layers. Needless to say, you can.

図1は本願の一実施の形態の半導体集積回路装置のデバイス構造の一例を示す半導体ウエハまたはチップの模式断面図である。これに基づいて、本願の一実施の形態の半導体集積回路装置のデバイス構造の一例等を説明する。   FIG. 1 is a schematic cross-sectional view of a semiconductor wafer or chip showing an example of a device structure of a semiconductor integrated circuit device according to an embodiment of the present application. Based on this, an example of the device structure of the semiconductor integrated circuit device according to the embodiment of the present application will be described.

図1に示すように、たとえば、STI(Shallow Trench Isolation)型の素子分離フィールド絶縁膜37で分離されたP型単結晶シリコン基板1s(ウエハ1または半導体チップ2)のデバイス面1a(裏面1bの反対側の面)上には、PチャネルMOSFETまたはNチャネルMOSFET(8)が形成されている。それらの上には、エッチストップ膜である窒化シリコンライナー膜4(たとえば約30nm)が形成されている。その上には、たとえば、窒化シリコンライナー膜4よりもずっと厚く、下層の熱CVD法によるオゾンTEOS酸化シリコン膜(たとえば約200nm)および上層のプラズマTEOS酸化シリコン膜(たとえば約270nm)等からなるプリメタル(Premetal)層間絶縁膜5が形成されている。また、これらのプリメタル絶縁膜を貫通して、タングステンプラグ3が形成されている。窒化シリコンライナー膜4とプリメタル層間絶縁膜5が存在する層がプリメタル領域PMである。   As shown in FIG. 1, for example, a device surface 1a (on the back surface 1b) of a P-type single crystal silicon substrate 1s (wafer 1 or semiconductor chip 2) separated by an STI (Shallow Trench Isolation) type element isolation field insulating film 37. A P-channel MOSFET or an N-channel MOSFET (8) is formed on the opposite surface. A silicon nitride liner film 4 (for example, about 30 nm) which is an etch stop film is formed thereon. On top of this, for example, a premetal made of an ozone TEOS silicon oxide film (for example, about 200 nm) as a lower layer by a thermal CVD method and a plasma TEOS silicon oxide film (for example, about 270 nm) as an upper layer is much thicker than the silicon nitride liner film 4. A (Premetal) interlayer insulating film 5 is formed. A tungsten plug 3 is formed through these premetal insulating films. A layer in which the silicon nitride liner film 4 and the premetal interlayer insulating film 5 are present is a premetal region PM.

その上の第1配線層M1は、たとえば、下層のSiC膜(たとえば約50nm)等の絶縁性バリア膜14および主層間絶縁膜であるプラズマシリコン酸化膜15(たとえば約150nm)等およびそれらに形成された配線溝に埋め込まれた銅配線13等から構成されている。この層は、いわゆるシングルダマシン(Single Damascene)構造の銅系埋め込み配線である。   The first wiring layer M1 thereabove is formed on, for example, an insulating barrier film 14 such as a lower SiC film (for example, about 50 nm), a plasma silicon oxide film 15 (for example, about 150 nm) which is a main interlayer insulating film, and the like. The copper wiring 13 is embedded in the wiring groove formed. This layer is a copper-based embedded wiring having a so-called single damascene structure.

その上の第2配線層から第6配線層M2,M3,M4,M5,M6は、相互にほぼ同様の構造をしており、いわゆるデュアルダマシン(Dual Damascene)構造の銅系埋め込み配線である。各層は、たとえば、下層のSiC膜(たとえば約50nm)等からなる絶縁性バリア膜(ライナー膜)24、34,44、54,64、および上層のほとんどの領域を占める主層間絶縁膜25,35,45,55,65等から構成されている。この主層間絶縁膜25,35,45,55,65は、たとえば、カーボンドープ酸化シリコン膜、すなわち、SiOC膜(たとえば約400nm)等からなる。これらの層間絶縁膜を貫通して、銅プラグおよび銅配線を含む銅埋め込み配線23,33,43,53,63が形成されている。なお、第1配線層から第6配線層M1,M2,M3,M4,M5,M6は、たとえば、この例ではローカル配線である。   The second to sixth wiring layers M2, M3, M4, M5, and M6 on the second wiring layer have substantially the same structure as each other, and are copper-based embedded wirings having a so-called dual damascene structure. Each layer is made of, for example, an insulating barrier film (liner film) 24, 34, 44, 54, 64 made of a lower SiC film (for example, about 50 nm) or the like, and main interlayer insulating films 25, 35 occupying most of the upper layer region. , 45, 55, 65, etc. The main interlayer insulating films 25, 35, 45, 55, 65 are made of, for example, a carbon-doped silicon oxide film, that is, a SiOC film (for example, about 400 nm). Copper embedded wirings 23, 33, 43, 53, 63 including copper plugs and copper wirings are formed through these interlayer insulating films. Note that the first to sixth wiring layers M1, M2, M3, M4, M5, and M6 are local wirings in this example, for example.

その上の第7配線層から第8配線層M7,M8は、相互にほぼ同様の構造をしており、いわゆるデュアルダマシン構造の銅系埋め込み配線である。すなわち、グローバル下層配線層層間絶縁膜19は、たとえば、下層のSiC膜(たとえば約70nm)等の絶縁性バリア膜74、上層のプラズマTEOSシリコン酸化膜75a,85a(たとえば約850nm)等からなる。これらの層間絶縁膜を貫通して、銅プラグおよび銅配線を含む銅埋め込み配線73が形成されている。なお、ここでは、説明を省略したが、銅埋め込み配線73の側面および底面は、たとえば、TaN膜(Ta膜との積層膜を含む)等のバリアメタル膜で囲まれている(以下の銅埋め込み配線について同じ)。   The seventh wiring layer M8 to the eighth wiring layer M8 on the seventh wiring layer M7 and M8 have substantially the same structure as each other, and are copper-based embedded wirings having a so-called dual damascene structure. That is, the global lower wiring layer interlayer insulating film 19 is made of, for example, an insulating barrier film 74 such as a lower SiC film (for example, about 70 nm), an upper plasma TEOS silicon oxide film 75a, 85a (for example, about 850 nm), or the like. A copper buried wiring 73 including a copper plug and a copper wiring is formed through these interlayer insulating films. Although not described here, the side surface and the bottom surface of the copper embedded wiring 73 are surrounded by a barrier metal film such as a TaN film (including a laminated film with a Ta film), for example (the following copper embedded) Same for wiring).

一方、グローバル上層配線層層間絶縁膜18は、たとえば、下層のSiC膜(たとえば約70nm)等の絶縁性バリア膜84、上層のプラズマTEOSシリコン酸化膜85(たとえば約1200nm)等からなる。これらの層間絶縁膜を貫通して、銅プラグおよび銅配線を含む銅埋め込み配線83が形成されている。銅埋め込み配線83上をキャップしているのが、埋め込み型第8配線層上バリアメタル膜(たとえば、厚さ200nm程度のTiN膜)である。ここまでが、埋め込み型多層配線層DWである。なお、この例では、グローバル配線を2層としたが、グローバル配線の層数は、必要に応じて、3層以上とすることもできるし、1層とすることもできる。   On the other hand, global upper wiring layer interlayer insulating film 18 is made of, for example, an insulating barrier film 84 such as a lower SiC film (for example, about 70 nm), an upper plasma TEOS silicon oxide film 85 (for example, about 1200 nm), or the like. A copper buried wiring 83 including a copper plug and a copper wiring is formed through these interlayer insulating films. The copper embedded wiring 83 is capped with a buried-type eighth wiring layer barrier metal film (for example, a TiN film having a thickness of about 200 nm). Up to this point is the embedded multilayer wiring layer DW. In this example, the global wiring has two layers. However, the number of global wiring layers may be three or more as needed, or may be one layer.

この上にあるのが、たとえば、下層の無機系ファイナルパッシベーション膜11(たとえば、厚さ300nm程度のSiON膜)および上層の有機系ファイナルパッシベーション膜9(たとえば、厚さ1.5マイクロメートル程度のポリイミド系膜)等から構成されたファイナルパッシベーション膜17である。なお、無機系ファイナルパッシベーション膜としては、SiON膜に限らず、他の酸化シリコン系絶縁膜、窒化シリコン系絶縁膜、これらの複合膜等が好適である。また、有機系ファイナルパッシベーション膜としては、ポリイミド系絶縁膜のほか、たとえば、BCB(Benzocyclobutene)絶縁膜等の耐熱性高分子樹脂膜等が好適である。   On top of this, for example, a lower inorganic final passivation film 11 (for example, a SiON film having a thickness of about 300 nm) and an upper organic final passivation film 9 (for example, a polyimide having a thickness of about 1.5 micrometers) This is a final passivation film 17 composed of a system film) or the like. The inorganic final passivation film is not limited to the SiON film, but other silicon oxide insulating films, silicon nitride insulating films, composite films of these, and the like are suitable. Further, as the organic final passivation film, in addition to the polyimide insulating film, for example, a heat-resistant polymer resin film such as a BCB (Bencyclocyclene) insulating film is preferable.

これらのファイナルパッシベーション膜17の開口内および上面には、下部UBM膜16a(たとえば、厚さ200nm程度のTiW膜)が設けられており、この上には、下部銅膜16b(たとえば、厚さ200nm程度)が設けられている。なお、下部UBM膜としては、TiW膜のほか、クロム、チタン、タングステン又はこれらの複合膜等が好適である。   A lower UBM film 16a (for example, a TiW film having a thickness of about 200 nm) is provided in an opening and an upper surface of these final passivation films 17, and a lower copper film 16b (for example, a thickness of 200 nm is formed thereon). Degree) is provided. As the lower UBM film, in addition to the TiW film, chromium, titanium, tungsten, or a composite film thereof is preferable.

この下部銅膜16bの上には、半田に対するバリア膜として、ニッケル膜16c(たとえば、厚さ3マイクロメートル程度)が設けられている。なお、この上に、更に、半田との接続面として、上部銅膜(たとえば、厚さ400nm程度)を設けてもよい。これらの下部UBM膜16a、下部銅膜16bおよびニッケル膜16cより、UBM膜16が構成されており、これらの全体は、メタルパッド12でもある。   On the lower copper film 16b, a nickel film 16c (for example, about 3 micrometers in thickness) is provided as a barrier film against solder. In addition, an upper copper film (for example, a thickness of about 400 nm) may be further provided thereon as a connection surface with solder. The lower UBM film 16 a, the lower copper film 16 b and the nickel film 16 c constitute the UBM film 16, which is also the metal pad 12.

更に、メタルパッド12上には、半田バンプ7が形成されている。なお、この例では、バンプ高さHは、たとえば、80マイクロメートル程度(バンプ径にほぼ等しい)である。この半田バンプ7は、ここでは、鉛フリー半田であり、たとえば、錫系鉛フリー半田の一例として、Sn−Ag系鉛フリー半田(その組成は、具体的には、たとえば、錫98.5重量%、銀1.5重量%;融点は、摂氏221度程度)を好適なものとして例示することができる。なお、錫系鉛フリー半田としては、Sn−Ag系,Sn−Bi系等の2元系に限らず、この例では、摂氏200度以上の融点を有するものであれば、Sn−Ag−Cu系等の3元系でも、Sn−Bi−Ag−Cu系,Sn−Ag−Bi−Sb系等の4元系等でもよい。ここでは、鉛フリー半田を主に説明するが、環境的に問題がないのであれば、鉛含有半田を使用してもよい。   Furthermore, solder bumps 7 are formed on the metal pads 12. In this example, the bump height H is, for example, about 80 micrometers (approximately equal to the bump diameter). Here, the solder bump 7 is a lead-free solder. For example, as an example of a tin-based lead-free solder, Sn-Ag-based lead-free solder (specifically, the composition is, for example, 98.5 wt. %, Silver 1.5% by weight; melting point is about 221 degrees Celsius). The tin-based lead-free solder is not limited to a binary system such as a Sn-Ag system and a Sn-Bi system. In this example, any Sn-Ag-Cu solder having a melting point of 200 degrees Celsius or more is used. It may be a ternary system such as a quaternary system or a quaternary system such as a Sn-Bi-Ag-Cu system or a Sn-Ag-Bi-Sb system. Here, lead-free solder is mainly described, but lead-containing solder may be used if there is no environmental problem.

半田バンプ7の中間部において、前記半田バンプを上部と下部に区画しているのは、エレクトロマイグレーションを抑制するための半田バンプとは異なる材質の金属隔壁38(第1の金属隔壁)である。この第1の金属隔壁は、半田濡れ性を有する第1の隔壁金属膜および、この隔壁金属膜を構成する主要成分と錫を主要な構成要素とし、この金属隔壁38の周辺を覆う第1の金属間化合物層(たとえば、NiSn層)から、基本的に構成されている。第1の隔壁金属膜の主要成分としては、ニッケルを好適なものとして例示することができる。これは、銅その他と比較して金属間化合物として消費される量が少ないからである。なお、第1の隔壁金属膜の主要成分としては、ニッケルのほか、銅等を上げることができる。 In the middle portion of the solder bump 7, the solder bump is partitioned into an upper portion and a lower portion by a metal partition wall 38 (first metal partition wall) made of a material different from the solder bump for suppressing electromigration. The first metal partition wall includes a first partition wall metal film having solder wettability, a main component constituting the partition wall metal film, and tin as main components, and the first metal partition wall covering the periphery of the metal partition wall 38. It is basically composed of an intermetallic compound layer (for example, Ni 3 Sn 4 layer). As a main component of the first partition metal film, nickel can be exemplified as a suitable component. This is because the amount consumed as an intermetallic compound is smaller than that of copper or the like. In addition, as a main component of the first partition wall metal film, copper or the like can be raised in addition to nickel.

第1の隔壁金属膜の厚さとしては、たとえば、3マイクロメートル程度(範囲としては、1.5マイクロメートルから7マイクロメートル程度)を好適なものとして例示することができる。なお、ここでいう厚さは、便宜上、リフロー前の厚さとする。第1の隔壁金属膜の厚さの下限は、複数回のリフロー後にもコアとなるニッケル膜が十分に残存する条件である。一方、上限は、金属間化合物層の生成による1割程度の体積減少を許容範囲にとどめる条件から決定される。この例では、金属隔壁38を単数としたが、複数としてもよいことはいうまでもない。ただし、単数の方が、構造的安定性は高い。まお、金属隔壁38は、区分されえる各半田層が相互に同等の厚さとなるように配置するのが好適である。   As a thickness of the first partition metal film, for example, about 3 micrometers (as a range, about 1.5 micrometers to 7 micrometers) can be exemplified as a preferable one. In addition, the thickness here is a thickness before reflow for convenience. The lower limit of the thickness of the first partition wall metal film is a condition that a nickel film as a core remains sufficiently even after a plurality of reflows. On the other hand, the upper limit is determined from the condition that the volume reduction of about 10% due to the formation of the intermetallic compound layer is kept within an allowable range. In this example, the number of the metal partition walls 38 is singular, but it goes without saying that the number may be plural. However, the singular has higher structural stability. The metal partition 38 is preferably arranged so that the solder layers that can be divided have the same thickness.

以上説明したように、この例では、メタルパッド12は、非アルミニウム系メタルパッドであり、UBM膜16の中には、金膜がないのが特徴となっている。もちろん、非アルミニウム系メタルパッドに代えて、アルミニウム系メタルパッドを形成しても良い。また、UBM膜16の中に金膜を設けても良い。しかし、非アルミニウム系メタルパッドにすることで、デバイス構造は非常に簡単になるメリットがある。また、高価な金膜を使用しないことは、コスト上のメリットとなる。   As described above, in this example, the metal pad 12 is a non-aluminum metal pad, and the UBM film 16 has no gold film. Of course, an aluminum metal pad may be formed instead of the non-aluminum metal pad. Further, a gold film may be provided in the UBM film 16. However, using a non-aluminum metal pad has the advantage that the device structure becomes very simple. Also, not using an expensive gold film is a cost advantage.

2.本願の前記一実施の形態の半導体集積回路装置に関する製造プロセスのアウトライン並びにバンプ形成プロセス等の説明(主に図2から図12)
半田バンプの形成方式には、ポリイミド系ファイナルパッシベーション膜(有機系ファイナルパッシベーション膜)のエッジでバンプの両側を規定するいわゆるSMD(Solder Mask Defined)型と、ポリイミド系ファイナルパッシベーション膜のエッジでバンプの両側を規定しないnon−SMD(non−Solder Mask Defined)型がある。このセクションでは、一例として、non−SMD型を説明するが、本願の実施の形態は、SMD型にも適用できることは言うまでもない。
2. Description of manufacturing process outline and bump formation process and the like related to the semiconductor integrated circuit device of the embodiment of the present application (mainly FIGS. 2 to 12)
The solder bump formation method includes a so-called SMD (Solder Mask Defined) type in which both sides of the bump are defined by the edge of the polyimide final passivation film (organic final passivation film), and both sides of the bump at the edge of the polyimide final passivation film. There is a non-SMD (non-Solder Mask Defined) type. In this section, a non-SMD type will be described as an example, but it goes without saying that the embodiment of the present application can also be applied to an SMD type.

図2は本願の前記一実施の形態の半導体集積回路装置に関する製造プロセスのアウトラインを説明するためのプロセスブロックフロー図である。図3は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(半導体基板上の配線層WSの形成完了時点)である。図4は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(無機系ファイナルパッシベーション膜の開口形成完了時点)である。図5は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(有機系ファイナルパッシベーション膜の開口形成完了時点)である。図6は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(UBM膜成膜完了時点)である。図7は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(半田メッキ完了時点)である。図8は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(UBM膜最下層膜加工完了時点)である。図9は本願の前記一実施の形態の半導体集積回路装置に関するバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(リフロー完了時点)である。これらに基づいて、本願の前記一実施の形態の半導体集積回路装置に関する製造プロセスのアウトライン並びにバンプ形成プロセス等を説明する。   FIG. 2 is a process block flow diagram for explaining the outline of the manufacturing process relating to the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 3 is a partial schematic cross-sectional view of a semiconductor wafer (at the time when the formation of the wiring layer WS on the semiconductor substrate is completed) for explaining a bump formation process and the like related to the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 4 is a partial schematic cross-sectional view of a semiconductor wafer (at the time when the opening of the inorganic final passivation film is completed) for explaining a bump forming process and the like related to the semiconductor integrated circuit device of the one embodiment of the present application. FIG. 5 is a partial schematic cross-sectional view of a semiconductor wafer (at the time of completing the opening of the organic final passivation film) for explaining a bump formation process and the like related to the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 6 is a partial schematic cross-sectional view (at the time of completion of UBM film formation) of the semiconductor wafer for explaining a bump formation process and the like related to the semiconductor integrated circuit device of the one embodiment of the present application. FIG. 7 is a partial schematic cross-sectional view of a semiconductor wafer (at the time of completion of solder plating) for explaining a bump forming process and the like related to the semiconductor integrated circuit device of the one embodiment of the present application. FIG. 8 is a partial schematic cross-sectional view of a semiconductor wafer (at the time of completion of UBM film bottom layer film processing) for explaining a bump formation process and the like related to the semiconductor integrated circuit device according to the embodiment of the present application. FIG. 9 is a partial schematic cross-sectional view (at the time of reflow completion) of a semiconductor wafer for explaining a bump formation process and the like related to the semiconductor integrated circuit device of the embodiment of the present application. Based on these drawings, an outline of a manufacturing process and a bump forming process regarding the semiconductor integrated circuit device according to the embodiment of the present application will be described.

たとえば、300ファイのP型単結晶シリコンウエハ1(図1参照)を準備する(ウエハの直径については、450ファイでも、220ファイでも、必要に応じて、その他もよい)。このウエハ1に対して、図2に示すように、多数のMISFET(8)等を形成する等のFEOLプロセス201を実行する。続いて、たとえば、8層からなる銅埋め込み配線(半導体基板1s上の配線層WS)を形成するBEOLプロセス202を実行する。   For example, a 300-phi P-type single crystal silicon wafer 1 (see FIG. 1) is prepared (the diameter of the wafer may be 450 phi, 220 phi, or other as required). As shown in FIG. 2, an FEOL process 201 such as forming a large number of MISFETs (8) is performed on the wafer 1. Subsequently, for example, a BEOL process 202 for forming an eight-layer copper embedded wiring (wiring layer WS on the semiconductor substrate 1s) is executed.

このようにして、埋め込み型第8配線層M8まで形成した時点の断面構造を図3に示す。図3に示すように、埋め込み型第7配線層M7上に埋め込み型第8配線層M8が形成されており、たとえばSiC系絶縁性バリア膜84およびプラズマTEOS系主層間絶縁膜85等から構成されたグローバル配線上層配線層間絶縁膜18中に、第8層銅埋め込み配線83が埋め込まれている。ここで、ウエハのデバイス面1a(第1の主面)側に於いて、第8層銅埋め込み配線83上を被覆しているのは、埋め込み型第8配線層上バリアメタル膜10(たとえばTiN膜)である。   FIG. 3 shows a cross-sectional structure when the buried eighth wiring layer M8 is formed in this way. As shown in FIG. 3, an embedded eighth wiring layer M8 is formed on the embedded seventh wiring layer M7, and is composed of, for example, an SiC-based insulating barrier film 84 and a plasma TEOS-based main interlayer insulating film 85. An eighth-layer copper embedded wiring 83 is embedded in the global wiring upper-layer wiring interlayer insulating film 18. Here, on the device surface 1a (first main surface) side of the wafer, the eighth-layer copper buried wiring 83 is covered with the buried-type eighth wiring layer barrier metal film 10 (for example, TiN). Membrane).

次に、図4に示すように、ウエハのデバイス面1a側のほぼ全面に、たとえば、プラズマCVD(Chemical Vapor Deposition)により、無機系ファイナルパッシベーション膜11(たとえば、SiON膜)を成膜する。この無機系ファイナルパッシベーション膜11を、たとえば、通常のリソグラフィにより、パターニングすることにより、下部ファイナルパッシベーション開口30を形成する。   Next, as shown in FIG. 4, an inorganic final passivation film 11 (for example, a SiON film) is formed on almost the entire surface on the device surface 1a side of the wafer by, for example, plasma CVD (Chemical Vapor Deposition). The inorganic final passivation film 11 is patterned by, for example, ordinary lithography to form the lower final passivation opening 30.

次に、図5に示すように、ウエハのデバイス面1a側のほぼ全面に、たとえば、感光性ポリイミド膜等を塗布し、パターニングすることにより、有機系ファイナルパッシベーション膜9(たとえばポリイミド系膜)および上部ファイナルパッシベーション開口31を形成する。これらの無機系ファイナルパッシベーション膜11および上部ファイナルパッシベーション開口31でファイナルパッシベーション膜17を構成する。なお、ファイナルパッシベーション膜17の構成は、このほかに各種の構成が可能であるが、有機系ファイナルパッシベーション膜は、リフロー処理等の際の応力の吸収等に有効である。   Next, as shown in FIG. 5, for example, a photosensitive polyimide film or the like is applied and patterned on almost the entire surface of the wafer on the device surface 1 a side, thereby forming an organic final passivation film 9 (for example, a polyimide film) and Upper final passivation opening 31 is formed. The inorganic final passivation film 11 and the upper final passivation opening 31 constitute a final passivation film 17. The final passivation film 17 can have various other configurations, but the organic final passivation film is effective in absorbing stress during reflow processing or the like.

次に、半田バンプ形成工程203(図2)を説明する。図6に示すように、ウエハのデバイス面1a側のほぼ全面に、たとえば、スパッタリング成膜により、接着層(Adhesion Layer)として下部UBM膜16a(たとえばTiW膜)を成膜する。次に、下部UBM膜16a上のほぼ全面に、たとえば、スパッタリング成膜により、シード層として、下部銅膜16bを成膜する。次に、ウエハのデバイス面1a側に、たとえば、通常のリソグラフィにより、UBMめっき用レジスト膜36を形成する。次に、下部銅膜16b上に、たとえば電気メッキにより、バリア膜として、たとえばニッケル膜16cを選択的に成膜する。その後、不要になったレジスト膜36を、例えば、アッシング等により、全面除去する。次に、下部銅膜16bを、たとえば、ウエットエッチング(たとえば硫酸および過酸化水素水混合溶液等)等により、自己整合的に、パターニングする(図7参照)。   Next, the solder bump forming process 203 (FIG. 2) will be described. As shown in FIG. 6, a lower UBM film 16a (for example, a TiW film) is formed as an adhesive layer (Adhesion Layer) on almost the entire surface of the wafer on the device surface 1a side by, for example, sputtering. Next, a lower copper film 16b is formed as a seed layer on almost the entire surface of the lower UBM film 16a by, for example, sputtering. Next, a UBM plating resist film 36 is formed on the device surface 1a side of the wafer by, for example, ordinary lithography. Next, for example, a nickel film 16c is selectively formed as a barrier film on the lower copper film 16b by, for example, electroplating. Thereafter, the resist film 36 that is no longer needed is entirely removed by, for example, ashing. Next, the lower copper film 16b is patterned in a self-aligning manner, for example, by wet etching (for example, a mixed solution of sulfuric acid and hydrogen peroxide solution) (see FIG. 7).

次に、図7に示すように、ウエハのデバイス面1a側に、たとえば、通常のリソグラフィにより、半田めっき用レジスト膜32を形成する。次に、たとえば電気メッキにより、半田バンプの下部7a(リフロー前)を形成する。次に、半田バンプの下部7a上に、たとえば電気メッキにより、第1の金属隔壁38となるニッケル膜(例えば、厚さ3マイクロメートル程度)を形成する。次に、たとえば電気メッキにより、半田バンプの上部7bを形成する。その後、不要になったレジスト膜32を、例えば、アッシング等により、全面除去する。なお、半田バンプの形成は、メッキ法のほか、各種の印刷法等でも可能である。しかし、バンプピッチの微細化に於いては、メッキ法が有利である。   Next, as shown in FIG. 7, a solder plating resist film 32 is formed on the device surface 1a side of the wafer by, for example, ordinary lithography. Next, the lower part 7a (before reflow) of the solder bump is formed by, for example, electroplating. Next, a nickel film (for example, a thickness of about 3 micrometers) to be the first metal partition wall 38 is formed on the lower portion 7a of the solder bump by, for example, electroplating. Next, the upper part 7b of the solder bump is formed by, for example, electroplating. Thereafter, the resist film 32 that has become unnecessary is entirely removed by, for example, ashing. The solder bumps can be formed by various printing methods in addition to the plating method. However, the plating method is advantageous in reducing the bump pitch.

次に、図8に示すように、下部UBM膜16aを、たとえば、ウエットエッチング(たとえばアンモニアおよび過酸化水素水混合溶液等の過酸化水素系のエッチング液)等により、自己整合的に、パターニングする。   Next, as shown in FIG. 8, the lower UBM film 16a is patterned in a self-aligning manner, for example, by wet etching (for example, a hydrogen peroxide-based etching solution such as a mixed solution of ammonia and hydrogen peroxide solution). .

次に、図9に示すように、第1リフロー処理(たとえば、摂氏240度から260度程度)することにより、半田バンプ7(たとえば、鉛フリー半田)を略球形(主に半田部材からなるほぼ球状の半田バンプ)に整形する。TiW膜16aは、半田に濡れず、銅膜16bおよびニッケル膜16c、38は、半田に濡れるので、整形は、自律的に行われる。   Next, as shown in FIG. 9, by performing a first reflow process (for example, about 240 to 260 degrees Celsius), the solder bumps 7 (for example, lead-free solder) are substantially spherical (mainly made of a solder member). (Spherical solder bump). Since the TiW film 16a does not get wet with the solder, and the copper film 16b and the nickel films 16c and 38 get wet with the solder, the shaping is performed autonomously.

3.本願の前記一実施の形態の半導体集積回路装置に関する製造プロセスのアウトラインにおけるウエハプローブテストプロセス以降の説明(主に図10から図12、および図2を参照)
このセクションでは、パッケージ工程として、標準的な個別樹脂封止方式を例に取り具体的に説明するが、本願発明は、これに限定されるものではなく、セラミック封止方式、キャン封止方式等や、全体を一括して樹脂封止した後、パッケージダイシングによって個々のデバイスに分離するMAP(Mold Array Package)方式にも適用できることは言うまでもない。
3. Description after the wafer probe test process in the outline of the manufacturing process relating to the semiconductor integrated circuit device according to the embodiment of the present application (mainly refer to FIGS. 10 to 12 and FIG. 2)
In this section, a standard individual resin sealing method will be specifically described as an example of the packaging process. However, the present invention is not limited to this, and the ceramic sealing method, the can sealing method, etc. Of course, the present invention can also be applied to a MAP (Mold Array Package) method in which the entire device is sealed with resin and then separated into individual devices by package dicing.

また、ここでは、フリップチップ方式で、直接、パッケージ配線基板の上面にダイボンディング(フリップチップボンディング)する例を具体的に説明したが、パッケージ配線基板の下面にダイボンディング(フリップチップボンディング)してもよい。更に、パッケージ配線基板の上面にダイボンディングされた他のチップのデバイス面等にダイボンディング(フリップチップボンディング)してもよい。   In addition, here, an example in which die bonding (flip chip bonding) is directly performed on the upper surface of the package wiring board by the flip chip method has been specifically described, but die bonding (flip chip bonding) is performed on the lower surface of the package wiring board. Also good. Further, die bonding (flip chip bonding) may be performed on a device surface or the like of another chip die bonded to the upper surface of the package wiring board.

図10は本願の前記一実施の形態の半導体集積回路装置に対応するチップ領域(バンプ形成プロセス完成時点)のウエハ上に置ける配置を示すウエハの上面全体図である。図11は図10の部分拡大上面図である。図12は本願の前記一実施の形態の半導体集積回路装置に対応する完成形態の一例であるFCBGA(Flip Chip Ball Grid Array)の模式断面図である。これらに基づいて、本願の前記一実施の形態の半導体集積回路装置に関する製造プロセスのアウトラインにおけるウエハプローブテストプロセス以降を説明する。   FIG. 10 is an overall top view of the wafer showing the arrangement of the chip region (at the time of completion of the bump formation process) corresponding to the semiconductor integrated circuit device of the embodiment of the present application that can be placed on the wafer. FIG. 11 is a partially enlarged top view of FIG. FIG. 12 is a schematic cross-sectional view of an FCBGA (Flip Chip Ball Grid Array) which is an example of a completed form corresponding to the semiconductor integrated circuit device according to the embodiment of the present application. Based on these, the wafer probe test process and subsequent steps in the outline of the manufacturing process relating to the semiconductor integrated circuit device of the one embodiment of the present application will be described.

図2の半田バンプ形成工程203が完了したウエハ1の全体上面図を図10に示す。図10に示すように、たとえば、ノッチ21を有するシリコン単結晶ウエハ1の上面1aまたはデバイス面(第1の主面)には、格子状に多数のチップ領域2が形成されている。なお、ここでは、ノッチ21を有するウエハを例示したが、オリエンテーションフラットを有するウエハでもよいことは言うまでもない。   FIG. 10 shows an overall top view of the wafer 1 after the solder bump forming step 203 of FIG. 2 is completed. As shown in FIG. 10, for example, a large number of chip regions 2 are formed in a lattice shape on the upper surface 1a or device surface (first main surface) of the silicon single crystal wafer 1 having the notches 21. Although the wafer having the notch 21 is illustrated here, it goes without saying that the wafer may have an orientation flat.

図11に図2の部分拡大図を示す。図11に示すように、各チップ領域2には、たとえばマトリクス状に半田バンプ7が配列されており、各チップ領域2間は、ダイシング領域20(スクライブ領域)によって相互に隔てられている。なお、この状態で製品として出荷される場合もある。次に、この状態で、たとえば、図2のウエハプローブテスト工程204、バンプ高さ検査工程205(必要に応じて省略する)およびウエハダイシング工程206が実行され、ウエハ1は、各チップ2に分割される。   FIG. 11 shows a partially enlarged view of FIG. As shown in FIG. 11, solder bumps 7 are arranged in each chip area 2 in a matrix, for example, and the chip areas 2 are separated from each other by a dicing area 20 (scribe area). In this state, the product may be shipped as a product. Next, in this state, for example, the wafer probe test process 204, the bump height inspection process 205 (omitted if necessary) and the wafer dicing process 206 shown in FIG. Is done.

次に、図12に示すように、図2のフリップチップボンディング工程211、アンダーフィル工程212、樹脂封止工程213および外部半田バンプ形成工程214が実行される。すなわち、図12に示すように、例えば、エポキシ系有機配線基板であって、上面に内部バンプ用メタルランド40(Niランド)を有し、下面に外部バンプ用メタルランド部27を有するBGA用主配線基板26を準備する。ここで、内部バンプ用メタルランド40としては、たとえば銅系メタルランド上にニッケル膜等を被覆したものを好適なものとして例示することができる。   Next, as shown in FIG. 12, the flip chip bonding step 211, the underfill step 212, the resin sealing step 213, and the external solder bump forming step 214 shown in FIG. That is, as shown in FIG. 12, for example, an epoxy organic wiring board, which has an internal bump metal land 40 (Ni land) on the upper surface and an external bump metal land portion 27 on the lower surface, is a main body for BGA. A wiring board 26 is prepared. Here, as the internal bump metal land 40, for example, a copper-based metal land coated with a nickel film or the like can be exemplified as a suitable one.

次に、BGA用主配線基板26の上面に内部バンプ7を下に向けて、チップ2を搭載する。このとき、図12に示すように、各内部バンプ7の水平位置は、各内部バンプ用メタルランド40の水平位置とほぼ一致している。この状態で、例えば、摂氏240度から摂氏260度程度で、第2リフロー工程を実施する。これで、フリップチップボンディング工程211は完了する。   Next, the chip 2 is mounted on the upper surface of the BGA main wiring board 26 with the internal bumps 7 facing downward. At this time, as shown in FIG. 12, the horizontal position of each internal bump 7 substantially coincides with the horizontal position of each internal bump metal land 40. In this state, the second reflow process is performed at, for example, about 240 degrees Celsius to 260 degrees Celsius. This completes the flip chip bonding step 211.

次に、図12に示すように、チップ2とBGA用主配線基板26の上面との間に、アンダーフィル樹脂28を充填する(図2のアンダーフィル工程212)。   Next, as shown in FIG. 12, an underfill resin 28 is filled between the chip 2 and the upper surface of the BGA main wiring board 26 (underfill process 212 in FIG. 2).

次に、図12に示すように、チップ2とBGA用主配線基板26の上面を、たとえば、エポキシ系封止樹脂体29で封止する(図2の樹脂封止工程213)。   Next, as shown in FIG. 12, the upper surfaces of the chip 2 and the BGA main wiring board 26 are sealed with, for example, an epoxy sealing resin body 29 (resin sealing step 213 in FIG. 2).

次に、図12に示すように、外部半田バンプ22(図2の外部半田バンプ形成工程214)を形成する。半田バンプ22の材料としては、内部半田バンプ7と同一の材料を好適なものとして例示することができる。なお、異なる材料でもよいことはいうまでもない。なお、外部半田バンプ22の径は、内部半田バンプ7の径に比べてはるかに大きいので、金属隔壁の適用は一般的には不要である。ただし、必要があれば適用しても良い。   Next, as shown in FIG. 12, external solder bumps 22 (external solder bump forming step 214 in FIG. 2) are formed. As a material of the solder bump 22, the same material as that of the internal solder bump 7 can be exemplified as a suitable material. Needless to say, different materials may be used. In addition, since the diameter of the external solder bump 22 is much larger than the diameter of the internal solder bump 7, application of a metal partition is generally unnecessary. However, it may be applied if necessary.

4.本願の前記一実施の形態の半導体集積回路装置に関する変形例の説明(主に図13から図16)
このセクションでは、セクション1のデバイス構造に対する変形例および、それに対応するセクション2の製造プロセスに関する変更を説明する。なお、基本的には、図1から図9と変わるところがないので、このセクションでは、原則として異なる部分のみを説明する。
4). Description of Modifications Related to Semiconductor Integrated Circuit Device of One Embodiment of the Present Application (Mainly FIGS. 13 to 16)
In this section, variations on the device structure of section 1 and corresponding changes to the manufacturing process of section 2 are described. Basically, there is no difference from FIG. 1 to FIG. 9, so in this section, only different parts will be described in principle.

図13は図1に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)を示す半導体ウエハまたはチップの模式断面図である。図14は図7に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)のバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(半田メッキ完了時点)である。図15は図8に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)のバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(UBM膜最下層膜加工完了時点)である。図16は図9に対応する本願の前記一実施の形態の半導体集積回路装置のデバイス構造に関する変形例(多層積層半田バンプ)のバンプ形成プロセス等を説明するための半導体ウエハの部分模式断面図(リフロー完了時点)である。これらに基づいて、本願の前記一実施の形態の半導体集積回路装置に関する変形例を説明する。   FIG. 13 is a schematic cross-sectional view of a semiconductor wafer or chip showing a modification (multilayer laminated solder bump) relating to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. FIG. 14 is a partial schematic cross-sectional view of a semiconductor wafer for explaining a bump forming process and the like of a modified example (multilayer laminated solder bump) related to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. (When solder plating is completed). FIG. 15 is a partial schematic cross-sectional view of a semiconductor wafer for explaining a bump forming process and the like of a modified example (multilayer laminated solder bump) relating to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. (When the UBM film bottom layer film processing is completed). FIG. 16 is a partial schematic cross-sectional view of a semiconductor wafer for explaining a bump forming process and the like of a modified example (multilayer laminated solder bump) related to the device structure of the semiconductor integrated circuit device of the embodiment of the present application corresponding to FIG. When reflow is completed). Based on these, a modification of the semiconductor integrated circuit device according to the embodiment of the present application will be described.

変形例のバンプ構造は、基本的に図1に示すものと同じであるが、図13に示すように、半田バンプ7を上下方向に分割する金属隔壁(第1の金属隔壁38、第2の金属隔壁39)が複数になっている点が異なっている。これは、金属隔壁を挿入することによる半田内におけるエレクトロマイグレーション抑制効果が、半田層の厚さが薄くなるほど大きくなるからである。   The bump structure of the modified example is basically the same as that shown in FIG. 1, but as shown in FIG. 13, a metal partition (first metal partition 38, second partition) that divides the solder bump 7 in the vertical direction. The difference is that there are a plurality of metal partitions 39). This is because the effect of suppressing electromigration in the solder by inserting the metal partition wall increases as the solder layer thickness decreases.

次に、バンプ形成プロセスをセクション2の図2から図9を参照しながら、説明する。   Next, the bump formation process will be described with reference to FIGS.

図3から図6は、セクション2と同じであり、図6の状態のウエハに対して、図14(図7に対応)のように処理する。すなわち、ウエハのデバイス面1a側に、たとえば、通常のリソグラフィにより、半田めっき用レジスト膜32を形成する。次に、たとえば電気メッキにより、半田バンプの下部7aを形成する。次に、半田バンプの下部7a上に、たとえば電気メッキにより、第1の金属隔壁38となるニッケル膜(例えば、厚さ2.5マイクロメートル程度)を形成する。次に、たとえば電気メッキにより、半田バンプの中央部7bを形成する。次に、半田バンプの中央部7b上に、たとえば電気メッキにより、第2の金属隔壁39となるニッケル膜(例えば、厚さ2.5マイクロメートル程度)を形成する。次に、たとえば電気メッキにより、半田バンプの上部7cを形成する。その後、不要になったレジスト膜32を、例えば、アッシング等により、全面除去する。   3 to 6 are the same as those in section 2, and the wafer in the state shown in FIG. 6 is processed as shown in FIG. 14 (corresponding to FIG. 7). That is, a resist film 32 for solder plating is formed on the device surface 1a side of the wafer by, for example, ordinary lithography. Next, the lower portion 7a of the solder bump is formed by, for example, electroplating. Next, a nickel film (for example, a thickness of about 2.5 micrometers) to be the first metal partition wall 38 is formed on the lower portion 7a of the solder bump by, for example, electroplating. Next, the central portion 7b of the solder bump is formed by electroplating, for example. Next, a nickel film (for example, a thickness of about 2.5 micrometers) to be the second metal partition 39 is formed on the central portion 7b of the solder bump by, for example, electroplating. Next, the upper part 7c of the solder bump is formed by, for example, electroplating. Thereafter, the resist film 32 that has become unnecessary is entirely removed by, for example, ashing.

次に、図15に示すように、下部UBM膜16aを、たとえば、ウエットエッチング(たとえばアンモニアおよび過酸化水素水混合溶液等の過酸化水素系のエッチング液)等により、自己整合的に、パターニングする。   Next, as shown in FIG. 15, the lower UBM film 16a is patterned in a self-aligning manner, for example, by wet etching (for example, a hydrogen peroxide-based etchant such as a mixed solution of ammonia and hydrogen peroxide solution). .

次に、図16に示すように、第1リフロー処理(たとえば、摂氏240度から260度程度)することにより、半田バンプ7(たとえば、鉛フリー半田)を略球形に整形する。TiW膜16aは、半田に濡れず、銅膜16bおよびニッケル膜16c、38、39は、半田に濡れるので、整形は、自律的に行われる。   Next, as shown in FIG. 16, the first reflow process (for example, about 240 to 260 degrees Celsius) is performed to shape the solder bump 7 (for example, lead-free solder) into a substantially spherical shape. Since the TiW film 16a is not wetted by the solder, and the copper film 16b and the nickel films 16c, 38, and 39 are wetted by the solder, the shaping is performed autonomously.

5.前記実施の形態(変形例を含む)に関する補足的説明並びに全般についての考察(主に図17から図20)
図17は本願の各実施の形態(変形例を含む)の原理を説明するためのチップ上UBM(Under Bump Metal)側ニッケル層表面の金属間化合物層と半田界面のイオン等の流れを説明する半田バンプのチップ端部の模式断面図(バンプ中間部に金属隔壁を有さないものであって、金属間化合物層成長完了前)である。図18は本願の各実施の形態(変形例を含む)の原理を説明するためのチップ上UBM(Under Bump Metal)側ニッケル層表面の金属間化合物層と半田界面のイオン等の流れを説明する半田バンプのチップ端部の模式断面図(バンプ中間部に金属隔壁を有さないものであって、金属間化合物層成長完了後)である。図19は本願の各実施の形態(変形例を含む)の原理を説明するためのチップ上UBM(Under Bump Metal)側ニッケル層表面の金属間化合物層と半田界面のイオン等の流れを説明する半田バンプのチップ端部の模式断面図(バンプ中間部に金属隔壁を有するものであって、金属間化合物層成長完了後)である。図20はバンプ径と本願の各実施の形態(変形例を含む)のエレクトロマイグレーション抑制効果が著しくなるクリティカル半田厚さの関係を示す曲線グラフである。これらに基づいて、前記実施の形態(変形例を含む)に関する補足的説明並びに全般についての考察を行う。
5. Supplementary explanation about the above-described embodiment (including modifications) and general consideration (mainly FIGS. 17 to 20)
FIG. 17 illustrates the flow of ions between the intermetallic compound layer on the surface of the nickel layer on the UBM (Under Bump Metal) side on the chip and the solder interface, for explaining the principle of each embodiment of the present application (including modifications). FIG. 2 is a schematic cross-sectional view of a chip end portion of a solder bump (having no metal partition wall in the bump middle portion and before completion of growth of an intermetallic compound layer). FIG. 18 illustrates the flow of ions, etc., between the intermetallic compound layer on the surface of the nickel layer on the UBM (Under Bump Metal) side on the chip and the solder interface for explaining the principle of each embodiment (including modifications) of the present application. FIG. 3 is a schematic cross-sectional view of a chip end portion of a solder bump (after a growth of an intermetallic compound layer is completed without a metal partition wall at a bump intermediate portion). FIG. 19 illustrates the flow of ions, etc., between the intermetallic compound layer on the surface of the nickel layer on the UBM (Under Bump Metal) on the chip and the solder interface for explaining the principle of each embodiment (including modifications) of the present application. FIG. 3 is a schematic cross-sectional view of a chip end portion of a solder bump (having a metal partition wall at the bump intermediate portion and after completion of growth of an intermetallic compound layer). FIG. 20 is a curve graph showing the relationship between the bump diameter and the critical solder thickness at which the electromigration suppression effect of each embodiment (including the modification) of the present application becomes significant. Based on these, a supplementary explanation regarding the above-described embodiment (including modifications) and a general consideration will be given.

車載用電子機器などでは、エンジンに近い部位へ半導体装置を設置し動作させる必要がある。この場合、高い温度において、十分な信頼性を満足することが必須となる。ところが、環境負荷低減のための鉛フリー半田を使用した場合には、目標とする接合信頼性を確保することが難しくなる。一方で、集積化の進行により製品の端子数は増加する傾向にある。同一のチップサイズで端子数を増加させるには、フリップチップ実装技術が広く用いられているが、信頼性上の課題も多い。その一つが、エレクトロマイグレーション耐性の確保である。チップと基板を接続する半田バンプが、端子数の確保のために小径化される傾向にあるため、電気信号を伝える際の電流密度が高くなる傾向にある。エレクトロマイグレーションは、金属中を伝導する電子が金属原子との衝突によって起こる運動量交換を駆動力とする原子輸送現象であるため、電流密度が高くなるとより加速されてしまう。さらに、融点の低い金属ほど原子輸送を起こしやすい傾向があるため、無鉛半田を用いた半田バンプのエレクトロマイグレーション耐性を確保する必要性は非常に高まっている。   In an in-vehicle electronic device or the like, it is necessary to install and operate a semiconductor device near the engine. In this case, it is essential to satisfy sufficient reliability at a high temperature. However, when lead-free solder for reducing the environmental load is used, it is difficult to ensure the target joint reliability. On the other hand, the number of product terminals tends to increase with the progress of integration. In order to increase the number of terminals with the same chip size, flip-chip mounting technology is widely used, but there are many reliability problems. One of them is securing electromigration resistance. Since the solder bumps connecting the chip and the substrate tend to be reduced in diameter to ensure the number of terminals, the current density when transmitting an electrical signal tends to increase. Electromigration is an atomic transport phenomenon whose driving force is momentum exchange caused by collision of electrons conducted in a metal with a metal atom, and therefore is accelerated as the current density increases. Furthermore, since a metal having a lower melting point tends to cause atomic transport, the necessity of ensuring electromigration resistance of solder bumps using lead-free solder is greatly increased.

一般的な構造でチップと基板を接続するような場合においても、ポリイミドの開口径や、半田バンプの直径が十分に大きい場合には、長期信頼性におけるリスクは低い。ところが、微細化のニーズにより回路規模や機能が増加するにつれて、単位チップ面積あたりに配置される信号、および電源の入出力端子、すなわち半田バンプによる基板との接続部位の数が増加する傾向にある。その際には、ポリイミド開口径や半田バンプの直径は縮小化されることとなるが、入出力端子に流れる信号、いいかえると電流値はさほど低下しない。したがって、単位面積あたりに流れる電流、すなわち電流密度が増加することとなる。   Even when the chip and the substrate are connected with a general structure, the risk of long-term reliability is low if the opening diameter of the polyimide and the diameter of the solder bump are sufficiently large. However, as the circuit scale and functions increase due to the need for miniaturization, the number of signals arranged per unit chip area and the number of input / output terminals of the power supply, that is, the number of connection parts to the substrate by solder bumps tend to increase. . At that time, the polyimide opening diameter and the solder bump diameter are reduced, but the signal flowing to the input / output terminal, in other words, the current value does not decrease so much. Therefore, the current flowing per unit area, that is, the current density is increased.

一般に、LSIに用いられる配線は電流経路に対する断面積が小さく、日常生活に用いられる配線と比べて過大な電流密度の状態で用いられる。たとえば、家庭に電力を供給されるために用いられている市販の電線は10A/cm程度の電流密度を上限として、実際にはそれよりもかなり小さな電流密度で使われている。一方でLSIの配線は、バンプ接合部を配線と見なした場合で10〜10A/cm2、Siチップ内のCuやAlなどで形成される配線では10〜10A/cmの電流密度で用いられることが多い。これは、LSIの配線が非常に微細で表面積比が高いことや、周囲を二酸化ケイ素などの放熱性の良い物質で覆われていることから、ジュール発熱などによる温度上昇が抑制され、それによる溶断が発生しにくいためである。 In general, wiring used in LSI has a small cross-sectional area with respect to a current path, and is used in a state of excessive current density as compared with wiring used in daily life. For example, a commercially available electric wire used for supplying electric power to a home is used with a current density of about 10 3 A / cm 2 as an upper limit, and actually a much lower current density. On the other hand, the wiring of the LSI is 10 3 to 10 4 A / cm 2 when the bump bonding portion is regarded as the wiring, and 10 5 to 10 6 A / cm 2 in the wiring formed of Cu or Al in the Si chip. It is often used at a current density of. This is because the LSI wiring is very fine and has a high surface area ratio, and the surrounding area is covered with a material with good heat dissipation such as silicon dioxide, so temperature rise due to Joule heat generation is suppressed, resulting in fusing It is because it is hard to generate | occur | produce.

ところが、電流密度が高い状態では、エレクトロマイグレーションと呼ばれる原子輸送現象が発生することが知られている。一般的に金属に電流を流すという事象は、金属結合状態を形成している原子群の場に電位差が生じることにより、放出された最外殻の電子が自由電子となって陰極側から陽極側に移動する現象である。このとき、電界によって加速された電子は、金属原子(最外殻の電子を放出しているので、イオン状態にある)に衝突することによって加速が抑制され、移動速度が平均化される。このとき、衝突から衝突までの電子の移動距離の平均値は平均自由行程と呼ばれ、この距離が短いほど電気抵抗が高いことを示している。同時に、この電子と金属原子の衝突は、運動量交換を伴う。比較的早い速度で移動してきた電子と、ほぼ同じ場所で静止していると見なされる金属原子が衝突した場合には、電子の運動量が金属原子へ伝達する。電子と金属原子では、その大きさが数桁も異なるので、1回あたりの衝突による運動量交換はさほど大きいものではない。したがって、単位時間当たりの衝突回数が少ない場合、言い換えると電流密度が低い状態では、金属原子を移動させる運動量には成りえない。ところが、電流密度が増加することにより、単位時間当たりの衝突回数は増加し、それによって金属原子が受け取る運動量も増加し、原子輸送の駆動力となりうる。また、この運動量は電子流の方向に働くため、金属原子は陰極側から陽極側に向かって移動する。この力は電子風力と呼ばれる。   However, it is known that an atomic transport phenomenon called electromigration occurs when the current density is high. In general, the phenomenon of flowing a current through a metal is caused by a potential difference in the field of atomic groups forming a metal-bonded state, so that the emitted outermost electrons become free electrons and change from the cathode side to the anode side. It is a phenomenon that moves to. At this time, the electrons accelerated by the electric field collide with a metal atom (which is in an ionic state since the outermost electrons are emitted), thereby suppressing the acceleration and averaging the moving speed. At this time, the average value of the movement distance of electrons from collision to collision is called the mean free path, and the shorter the distance, the higher the electric resistance. At the same time, this collision between electrons and metal atoms involves momentum exchange. When an electron that has moved at a relatively high speed collides with a metal atom that is considered to be stationary at almost the same location, the momentum of the electron is transferred to the metal atom. Since the size of electrons and metal atoms differ by several orders of magnitude, the exchange of momentum per collision is not very large. Therefore, when the number of collisions per unit time is small, in other words, when the current density is low, the momentum for moving the metal atoms cannot be achieved. However, as the current density increases, the number of collisions per unit time increases, thereby increasing the momentum received by the metal atoms, which can be a driving force for atom transport. Moreover, since this momentum works in the direction of the electron flow, the metal atoms move from the cathode side toward the anode side. This force is called electronic wind.

前述のように、半田バンプ7はSnAgなどの半田とNiなどのUBM(16)によって形成されるが、SnとNi、もしくはSnとCuなどの組み合わせでは、熱拡散によって金属間化合物が形成される。たとえば、CuSn,CuSn,NiSnなどであり、それぞれ7.7%,5.1%,11.4%の体積収縮を伴う。前述のエレクトロマイグレーションによる原子輸送と金属間化合物の形成によって、原子が疎となる部分にはボイドとよばれる欠損が発生する。これが成長することによって接続部の抵抗が増加し、終には断線が生じてしまう。 As described above, the solder bumps 7 are formed by solder such as SnAg and UBM (16) such as Ni. However, in the combination of Sn and Ni, or Sn and Cu, an intermetallic compound is formed by thermal diffusion. . For example, Cu 3 Sn, Cu 6 Sn 5 , Ni 3 Sn 4, etc., with volume shrinkage of 7.7%, 5.1%, and 11.4%, respectively. Due to the above-described atomic transport by electromigration and the formation of an intermetallic compound, a defect called a void occurs in a portion where atoms are sparse. As this grows, the resistance of the connecting portion increases, and eventually disconnection occurs.

この原子の輸送を、図を用いて説明する。図17は基板への実装が完了し、電流が流れ始めた初期の状態と原子輸送を模したものである。UBM(16)はNi、半田はSnAgとした。NiとSnAg(半田層7)の接合部には金属間化合物(Intermetalic Compound)としてNiSnが形成される。すなわち、金属間化合物層41の形成である。ボイドは金属間化合物層41とSnAg(7)の界面で発生、成長することが知られており、この界面に対していくつかの駆動力によって原子が移動する。なお、+記号は界面への原子の流入を、−記号は界面からの原子の流出を表現している。Niが陰極側、Snが陽極側の場合を示す。半田側では、体積が比較的大きいことから界面からのSn,Niの流出が主の原子輸送となる。このとき、移動した原子と交換に原子空孔(Vacancy)が逆方向に移動する。この輸送をJemとする。一方で、金属間化合物層41の内部では、濃度勾配による拡散を駆動力としてNiが界面に向けて移動する。この輸送をJchemとする。同時に、電子風力によるエレクトロマイグレーションでNiが界面に向けて移動する。この輸送をJ’emとする。このとき、金属間化合物層41内部では陽極側で原子が密となり、陰極側で原子が疎となる。これによって陰極側は引張応力、陽極側は圧縮応力の状態となるために、応力勾配が電子流方向とは逆方向への駆動力となって輸送が生じる。この輸送をJsとする。これらの原子輸送の収支Jimc/snは、図17に示すようなものとなる。 This transport of atoms will be described with reference to the drawings. FIG. 17 illustrates the initial state in which mounting on the substrate is completed and current starts to flow, and atom transport. UBM (16) was Ni and the solder was SnAg. Ni 3 Sn 4 is formed as an intermetallic compound at the joint between Ni and SnAg (solder layer 7). That is, formation of the intermetallic compound layer 41. It is known that voids are generated and grow at the interface between the intermetallic compound layer 41 and SnAg (7), and atoms move to this interface by some driving force. The + symbol represents the inflow of atoms to the interface, and the − symbol represents the outflow of atoms from the interface. The case where Ni is the cathode side and Sn is the anode side is shown. On the solder side, since the volume is relatively large, the outflow of Sn and Ni from the interface is the main atomic transport. At this time, the atomic vacancy moves in the opposite direction in exchange for the moved atom. This transport is called Jem. On the other hand, in the intermetallic compound layer 41, Ni moves toward the interface using diffusion due to the concentration gradient as a driving force. This transport is called Jchem. At the same time, Ni moves toward the interface by electromigration caused by electronic wind. This transport is J'em. At this time, inside the intermetallic compound layer 41, atoms are dense on the anode side and atoms are sparse on the cathode side. As a result, since the cathode side is in a tensile stress state and the anode side is in a compressive stress state, the stress gradient becomes a driving force in the direction opposite to the electron flow direction, and transport occurs. This transport is Js. These atomic transport balances Jimc / sn are as shown in FIG.

図17の状態から時間が経過すると、金属間化合物の生成がほぼ飽和状態となる。この状態における原子輸送を図18(たとえば、基板等への実装後の状態)にて説明する。濃度勾配による拡散が消失するため、原子輸送の収支Jimc/snは図18に示すようなものとなる。なお、金属間化合物は、1次リフロー、2次リフローおよび、その後の基板等への実装等の熱処理により、形成される。   When time elapses from the state of FIG. 17, the production of the intermetallic compound is almost saturated. Atom transport in this state will be described with reference to FIG. 18 (for example, a state after mounting on a substrate or the like). Since the diffusion due to the concentration gradient disappears, the atomic transport balance Jimc / sn is as shown in FIG. The intermetallic compound is formed by heat treatment such as primary reflow, secondary reflow, and subsequent mounting on a substrate or the like.

すなわち、濃度勾配による化学ポテンシャルを駆動力とした原子輸送が寄与しなくなるため、流出の寄与度が高まる。したがって、ボイドが成長し始める箇所が金属間化合物層41とSnAg(半田層7)の界面となることが説明される。   In other words, since the atomic transport using the chemical potential due to the concentration gradient as a driving force does not contribute, the contribution of outflow increases. Therefore, it is explained that the place where the void starts to grow becomes the interface between the intermetallic compound layer 41 and SnAg (solder layer 7).

前記のような過程で、バンプの中に半田と金属間化合物層41が積層した構造が実現する。その結果、金属間化合物層41で積層化することによって、SnAg層7a内にも有意な応力勾配とそれによる逆流J’sが生じる。図19にその概念を示す。図17および図18に示した界面の原子流束と比較して、SnAg(半田層7a)中の逆流分だけ総流束が低下する。たとえば、UBM(16)と半田の界面の原子輸送の収支Jimc/snは図19(下部)に示すようなものとなる。図19図の時点は、図18と同じであり、金属間化合物層41は、1次リフロー、2次リフローおよび、その後の基板等への実装等の熱処理により、形成される。従って、少なくとも、1次リフロー後には、図1、図9、図12、および図16の第1の金属隔壁38、第2の金属隔壁39、内部バンプ用メタルランド40(Niランド)およびメタルパッド12と半田層の間には、図19に示すように、金属間化合物層41が形成されている。   Through the above-described process, a structure in which the solder and the intermetallic compound layer 41 are stacked in the bump is realized. As a result, by laminating with the intermetallic compound layer 41, a significant stress gradient and resulting backflow J's are also generated in the SnAg layer 7a. FIG. 19 shows the concept. Compared with the atomic flux at the interface shown in FIGS. 17 and 18, the total flux is reduced by the amount of reverse flow in SnAg (solder layer 7 a). For example, the atomic transport balance Jimc / sn at the interface between the UBM (16) and the solder is as shown in FIG. 19 (lower part). 19 is the same as FIG. 18, and the intermetallic compound layer 41 is formed by heat treatment such as primary reflow, secondary reflow, and subsequent mounting on a substrate or the like. Therefore, at least after the first reflow, the first metal partition wall 38, the second metal partition wall 39, the internal bump metal land 40 (Ni land), and the metal pad in FIGS. 1, 9, 12, and 16 are used. As shown in FIG. 19, an intermetallic compound layer 41 is formed between 12 and the solder layer.

また、バンプ中の金属間化合物層41と陽極側の半田の界面における収支は、図19(上部)に示すようなものとなる。図18等と比較して、逆流分の原子輸送が生じることが分かる。すなわち、空孔の蓄積によるボイド発生、成長が抑制されると期待される。これは、エレクトロマイグレーションによって電子流方向に移動した原子によって、単一の膜内には濃度勾配、言い換えると応力勾配が生じることになり、その勾配を緩和するために電子流と逆方向に原子が移動する駆動力となることを応用したものである。これまで広く用いられてきた半田バンプでは、SnAg(半田層)などの半田部は大きな体積を有していたため、この応力勾配による逆流は無視できるほど小さかった。そこで、SnAg(半田層)などの半田層とNiなどの金属層を複数回積み重ねることにより、SnAg部(半田層7,7a,7b,7c)にもエレクトロマイグレーション起因の応力勾配を誘起することによって期待する抑制効果が得られる。積層の際の各層の膜厚は、逆流応力が有意になる膜厚に最適化すればよい。   Further, the balance at the interface between the intermetallic compound layer 41 in the bump and the solder on the anode side is as shown in FIG. 19 (upper part). Compared with FIG. 18 etc., it turns out that the atomic transport of a backflow arises. That is, it is expected that void generation and growth due to accumulation of vacancies are suppressed. This is because a concentration gradient, in other words, a stress gradient, is generated in a single film due to atoms that have moved in the direction of electron flow due to electromigration. This is an application of moving driving force. In solder bumps that have been widely used so far, the solder portion such as SnAg (solder layer) has a large volume, and therefore the backflow due to this stress gradient is negligibly small. Therefore, by stacking a solder layer such as SnAg (solder layer) and a metal layer such as Ni multiple times, a stress gradient caused by electromigration is also induced in the SnAg portion (solder layers 7, 7a, 7b, 7c). The expected suppression effect is obtained. What is necessary is just to optimize the film thickness of each layer in the case of lamination | stacking to the film thickness from which a back flow stress becomes significant.

この逆流応力によるエレクトロマイグレーション発生のしきい値は、各種のデータから、30A/cm程度と考えられる。これは、電子風力による陰極から陽極に向けたエレクトロマイグレーション起因の原子輸送と、応力勾配による陽極から陰極に向けた逆流が均衡し、実効的な原子輸送が生じないと見なされる条件を示している。具体的には、配線長と電流密度の積がこの数値よりも小さければ、ボイドの発生、成長は起こらない。たとえば、500mAの電流が流れる場合を考える。バンプを直径80マイクロメートル程度の円柱と考えると、断面積は約5x10−5cmとなる。したがって、電流密度は10000A/cm2程度となる。30A/cmのしきい条件を満足するには、3x10−3cmの配線長、いいかえると半田長となる必要がある。したがって、半田層の厚さが30マイクロメートル以下となるように、複数回積層化すればよい。また、バンプ径が小さくなり、UBM(16)と半田界面の金属間化合物層41と基板と半田界面の金属間化合物層41で挟まれる半田が、前述のように求めた厚さを下回る場合には同様な効果が顕著になると考えられる。 The threshold value for the occurrence of electromigration due to the backflow stress is considered to be about 30 A / cm from various data. This shows the condition that the atom transport due to electromigration from the cathode to the anode by electron wind and the back flow from the anode to the cathode due to the stress gradient are balanced and that effective atom transport does not occur. . Specifically, when the product of the wiring length and the current density is smaller than this value, void generation and growth do not occur. For example, consider a case where a current of 500 mA flows. Considering the bump as a cylinder having a diameter of about 80 micrometers, the cross-sectional area is about 5 × 10 −5 cm 2 . Therefore, the current density is about 10,000 A / cm2. In order to satisfy the threshold condition of 30 A / cm, the wiring length needs to be 3 × 10 −3 cm, in other words, the solder length. Therefore, the solder layer may be laminated a plurality of times so that the thickness of the solder layer is 30 micrometers or less. Also, when the bump diameter is reduced and the solder sandwiched between the UBM (16) and the intermetallic compound layer 41 at the solder interface and the intermetallic compound layer 41 at the substrate and the solder interface is less than the thickness obtained as described above. Is considered to have a similar effect.

なお、500mAの電流が流れることを前提とした場合、バンプ径と逆流効果が期待される半田層の厚さの関係は図20のようになる。バンプに流れる電流は、チップ側の入出力端子の能力によって決まるので、チップ側の製造プロセステクノロジーによって変わるものではないため、電流値は変わらないと考えて差し支えない。このとき、電流密度が増大するため、逆流応力が顕著となる半田厚も小さくなる。したがって、バンプの微細化が進むにつれて、UBM(16)と半田界面の金属間化合物層41と基板と半田界面の金属間化合物層41で挟まれる半田の厚さが図20に示した数値と同等か、または、これよりも小さくなるように、厚さを調整することが有効である。   If it is assumed that a current of 500 mA flows, the relationship between the bump diameter and the thickness of the solder layer expected to have a backflow effect is as shown in FIG. Since the current flowing through the bumps is determined by the ability of the input / output terminals on the chip side, it does not change depending on the manufacturing process technology on the chip side, so it can be considered that the current value does not change. At this time, since the current density increases, the solder thickness at which the backflow stress becomes significant is also reduced. Accordingly, as the bumps become finer, the thickness of the solder sandwiched between the UBM (16), the intermetallic compound layer 41 at the solder interface, and the intermetallic compound layer 41 at the substrate and the solder interface is equivalent to the numerical value shown in FIG. Alternatively, it is effective to adjust the thickness so as to be smaller than this.

6.サマリ
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
6). Summary The invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited thereto, and it goes without saying that various changes can be made without departing from the scope of the invention.

例えば、前記実施の形態では、主に銅系埋め込み配線を有するデバイスを対象に具体的に説明したが、本発明はそれに限定されるものではなく、アルミニウム系非埋め込み配線、銀系埋め込み配線その他のメタル系埋め込み配線を有するデバイスにも適用できることは言うまでもない。   For example, in the above-described embodiment, the description has been given specifically for the device mainly having the copper-based embedded wiring. However, the present invention is not limited thereto, and the aluminum-based non-embedded wiring, the silver-based embedded wiring, and the like. Needless to say, the present invention can also be applied to a device having a metal embedded wiring.

また、銅に対するバリアメタルとして、窒化タンタル系バリアメタルを例にとり具体的に説明したが、本発明はそれに限定されるものではなく、窒化チタン系バリアメタル(Ti/TiNの多層バリアを含む)、ルテニウム系バリアメタル等のその他のバリアメタルでも良いことは、言うまでもない。また、ここでは、TaN膜単層のバリアメタルの例をとり具体的に説明したが、本発明はそれに限定されるものではなく、Ta/TaNの多層バリアでも良いことは、言うまでもない。   Further, as a barrier metal against copper, a tantalum nitride-based barrier metal has been specifically described as an example, but the present invention is not limited thereto, and a titanium nitride-based barrier metal (including a Ti / TiN multilayer barrier), It goes without saying that other barrier metals such as ruthenium-based barrier metals may be used. In addition, although an example of a TaN film single-layer barrier metal has been specifically described here, it is needless to say that the present invention is not limited thereto and may be a Ta / TaN multilayer barrier.

更に、絶縁性銅拡散バリア膜として、主にSiC等を用いた例を具体的に説明したが、本発明はそれに限定されるものではなく、SiCN,SiN等、その他の膜であってもよいことは言うまでもない。   Furthermore, although the example which mainly used SiC etc. was specifically demonstrated as an insulating copper diffusion barrier film, this invention is not limited to it, Other films, such as SiCN and SiN, may be sufficient Needless to say.

前記実施の形態では、主に単結晶シリコンウエハをスターティングマテリアルとして、半導体集積回路装置を形成する例を示したが、本発明はそれに限定されるものではなく、SOIウエハ、エピタキシウエハ等をスターティングマテリアルとして、半導体集積回路装置を形成する場合にも適用できることは言うまでもない。また、ウエハの母材としては、シリコン系半導体のほか、SiGe,GaAs,SiC,GaN,InP等の化合物半導体にも適用できることは言うまでもない。   In the above embodiment, an example in which a semiconductor integrated circuit device is formed mainly using a single crystal silicon wafer as a starting material has been described. However, the present invention is not limited thereto, and an SOI wafer, an epitaxy wafer, or the like is used as a star material. Needless to say, the present invention can also be applied to forming a semiconductor integrated circuit device as a ting material. Needless to say, the base material of the wafer can be applied to a compound semiconductor such as SiGe, GaAs, SiC, GaN, InP as well as a silicon-based semiconductor.

1 半導体ウエハ(半導体基板)
1a 基板又はウエハのデバイス面(第1の主面)
1b 基板又はウエハの裏面(第2の主面)
1s 基板又はウエハのP型単結晶シリコン基板部
2 半導体基板又は集積回路チップ(半導体チップ領域)
3 タングステンプラグ
4 窒化シリコンライナー膜(エッチストップ膜)
5 プリメタル層間絶縁膜
6 基板コンタクト領域
7 (チップ上の)半田バンプ
7a (チップ上の)半田バンプの下部
7b (チップ上の)半田バンプの上部(または中央部)
7c (チップ上の)半田バンプの上部
8 MISFET
9 有機系ファイナルパッシベーション膜(ポリイミド系膜)
10 埋め込み型第8配線層上バリアメタル膜(TiN膜)
11 無機系ファイナルパッシベーション膜(SiON膜)
12 メタルパッド
13 埋め込まれた銅配線
14 SiC系絶縁性バリア膜
15 プラズマTEOS系主層間絶縁膜
16 UBM膜(UBMパッド)
16a 下部UBM膜(TiW膜)
16b 下部銅膜
16c ニッケル膜
17 ファイナルパッシベーション膜
18 グローバル配線上層配線層間絶縁膜
19 グローバル配線下層配線層間絶縁膜
20 ダイシング領域(スクライブ領域)
21 ノッチ
22 外部の半田バンプ
23 銅埋め込み配線
24 SiC系絶縁性バリア膜
25 SiOC系主層間絶縁膜
26 パッケージ配線基板
27 外部バンプ用メタルランド部
28 アンダーフィル樹脂
29 封止樹脂体
30 下部ファイナルパッシベーション開口
31 上部ファイナルパッシベーション開口
32 半田めっき用レジスト膜
33 銅埋め込み配線
34 SiC系絶縁性バリア膜
35 SiOC系主層間絶縁膜
36 UBMめっき用レジスト膜
37 素子分離領域(STI絶縁膜領域)
38 第1の金属隔壁
39 第2の金属隔壁
40 配線基板上の内部バンプ用メタルランド(Niランド)
41 金属間化合物層
43 銅埋め込み配線
44 SiC系絶縁性バリア膜
45 SiOC系主層間絶縁膜
53 銅埋め込み配線
54 SiC系絶縁性バリア膜
55 SiOC系主層間絶縁膜
63 銅埋め込み配線
64 SiC系絶縁性バリア膜
65 SiOC系主層間絶縁膜
73 第7層銅埋め込み配線
74 SiC系絶縁性バリア膜
75 プラズマTEOS系主層間絶縁膜
83 第8層銅埋め込み配線
84 SiC系絶縁性バリア膜
85 プラズマTEOS系主層間絶縁膜
201 FEOL工程
202 BEOL工程
203 半田バンプ形成工程
204 ウエハプローブ検査工程
205 バンプ高さ検査工程
206 ウエハダイシング工程
211 フリップチップボンディング工程
212 アンダーフィル工程
213 樹脂封止工程
214 外部半田バンプ形成工程
H バンプ高さ
Jchem 金属間化合物層における濃度勾配による流れ
Jem 半田内におけるエレクトロマイグレーションによる流れ
Jimc/sn 金属間化合物層/半田界面の流量収支
Js 金属間化合物層における応力勾配による流れ
J’em 金属間化合物層におけるエレクトロマイグレーションによる流れ
J’s 半田内における応力勾配による流れ
M1 埋め込み型第1配線層
M2 埋め込み型第2配線層
M3 埋め込み型第3配線層
M4 埋め込み型第4配線層
M5 埋め込み型第5配線層
M6 埋め込み型第6配線層
M7 埋め込み型第7配線層
M8 埋め込み型第8配線層
PM プリメタル領域
WS 半導体基板上の配線層
1 Semiconductor wafer (semiconductor substrate)
1a Device surface of substrate or wafer (first main surface)
1b Back surface of substrate or wafer (second main surface)
1s P-type single crystal silicon substrate portion of substrate or wafer 2 Semiconductor substrate or integrated circuit chip (semiconductor chip region)
3 Tungsten plug 4 Silicon nitride liner film (etch stop film)
5 Premetal interlayer insulating film 6 Substrate contact area 7 Solder bump (on chip) 7a Lower part of solder bump (on chip) 7b Upper part (or center part) of solder bump (on chip)
7c Upper part of solder bump (on chip) 8 MISFET
9 Organic final passivation film (polyimide film)
10 Barrier metal film (TiN film) on embedded type 8th wiring layer
11 Inorganic final passivation film (SiON film)
12 Metal Pad 13 Embedded Copper Wiring 14 SiC Insulating Barrier Film 15 Plasma TEOS Main Interlayer Insulating Film 16 UBM Film (UBM Pad)
16a Lower UBM film (TiW film)
16b Lower copper film 16c Nickel film 17 Final passivation film 18 Global wiring upper layer wiring interlayer insulating film 19 Global wiring lower layer wiring interlayer insulating film 20 Dicing region (scribe region)
21 Notch 22 External solder bump 23 Copper embedded wiring 24 SiC insulating barrier film 25 SiOC main interlayer insulating film 26 Package wiring board 27 External bump metal land 28 Underfill resin 29 Sealing resin body 30 Lower final passivation opening 31 Upper final passivation opening 32 Resist film for solder plating 33 Copper embedded wiring 34 SiC insulating barrier film 35 SiOC main interlayer insulating film 36 UBM plating resist film 37 Element isolation region (STI insulating film region)
38 1st metal partition wall 39 2nd metal partition wall 40 Metal land for internal bump (Ni land) on wiring board
41 Intermetallic compound layer 43 Copper embedded wiring 44 SiC-based insulating barrier film 45 SiOC main interlayer insulating film 53 Copper embedded wiring 54 SiC-based insulating barrier film 55 SiOC main insulating interlayer 63 Copper embedded wiring 64 SiC-based insulating Barrier film 65 SiOC main interlayer insulating film 73 Seventh layer copper embedded wiring 74 SiC insulating barrier film 75 Plasma TEOS main interlayer insulating film 83 Eighth layer copper embedded wiring 84 SiC insulating barrier film 85 Plasma TEOS main Interlayer insulating film 201 FEOL process 202 BEOL process 203 Solder bump formation process 204 Wafer probe inspection process 205 Bump height inspection process 206 Wafer dicing process 211 Flip chip bonding process 212 Underfill process 213 Resin sealing process 214 External solder bump Formation process H Bump height Jchem Flow due to concentration gradient in intermetallic compound layer Jem Flow due to electromigration in solder Jim / sn Flow rate balance at intermetallic compound layer / solder interface Js Flow due to stress gradient in intermetallic compound layer J'em Flow due to electromigration in intermetallic compound layer J's Flow due to stress gradient in solder M1 Embedded first wiring layer M2 Embedded second wiring layer M3 Embedded third wiring layer M4 Embedded fourth wiring layer M5 Embedded type 5th wiring layer M6 Embedded type 6th wiring layer M7 Embedded type 7th wiring layer M8 Embedded type 8th wiring layer PM Premetal region WS The wiring layer on a semiconductor substrate

Claims (10)

以下を含む半導体集積回路装置:
(a)第1の主面を有する半導体基板;
(b)前記半導体基板の前記第1の主面上に設けられた多数のUBMパッド;
(c)前記多数のUBMパッドの各UBMパッド上に設けられ、主に半田部材から構成されたほぼ球状の半田バンプ;
(d)前記半田バンプの中間部において、前記半田バンプを上部と下部に区画する、前記半田バンプとは異なる材質の第1の金属隔壁。
Semiconductor integrated circuit devices including:
(A) a semiconductor substrate having a first main surface;
(B) a number of UBM pads provided on the first main surface of the semiconductor substrate;
(C) a substantially spherical solder bump provided on each UBM pad of the multiple UBM pads and mainly composed of a solder member;
(D) A first metal partition made of a material different from the solder bump, which divides the solder bump into an upper part and a lower part in an intermediate part of the solder bump.
請求項1の半導体集積回路装置において、前記第1の金属隔壁は、半田濡れ性を有する第1の隔壁金属膜および、この隔壁金属膜を構成する主要成分と錫を主要な構成要素とする第1の金属間化合物層から、基本的に構成されている。     2. The semiconductor integrated circuit device according to claim 1, wherein the first metal partition includes a first partition metal film having solder wettability, and main components and tin constituting the partition metal film as main components. It is basically composed of one intermetallic compound layer. 請求項2の半導体集積回路装置において、前記第1の隔壁金属膜の前記主要成分は、ニッケル又は銅である。     3. The semiconductor integrated circuit device according to claim 2, wherein the main component of the first partition wall metal film is nickel or copper. 請求項2の半導体集積回路装置において、前記第1の隔壁金属膜の前記主要成分は、ニッケルである。     3. The semiconductor integrated circuit device according to claim 2, wherein the main component of the first partition wall metal film is nickel. 請求項4の半導体集積回路装置において、前記半田バンプの前記半田部材は、鉛フリー半田である。     5. The semiconductor integrated circuit device according to claim 4, wherein the solder member of the solder bump is lead-free solder. 請求項5の半導体集積回路装置において、前記鉛フリー半田は、錫−銀系鉛フリー半田である。     6. The semiconductor integrated circuit device according to claim 5, wherein the lead-free solder is tin-silver based lead-free solder. 請求項6の半導体集積回路装置において、前記半導体基板は、半導体チップである。     7. The semiconductor integrated circuit device according to claim 6, wherein the semiconductor substrate is a semiconductor chip. 請求項6の半導体集積回路装置において、前記半導体基板は、半導体ウエハである。     7. The semiconductor integrated circuit device according to claim 6, wherein the semiconductor substrate is a semiconductor wafer. 請求項7の半導体集積回路装置において、前記半田バンプは、BGAの内部バンプである。     8. The semiconductor integrated circuit device according to claim 7, wherein the solder bumps are BGA internal bumps. 請求項9の半導体集積回路装置において、更に、以下を含む:
(e)前記半田バンプの前記上部の中間部に於いて、前記上部を更に上下に区画する、前記第1の金属隔壁と同一材料の第2の金属隔壁。
10. The semiconductor integrated circuit device according to claim 9, further comprising:
(E) A second metal partition made of the same material as the first metal partition, which further divides the upper part in the middle part of the upper part of the solder bump.
JP2011255867A 2011-11-24 2011-11-24 Semiconductor integrated circuit device Pending JP2013110338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255867A JP2013110338A (en) 2011-11-24 2011-11-24 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011255867A JP2013110338A (en) 2011-11-24 2011-11-24 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JP2013110338A true JP2013110338A (en) 2013-06-06

Family

ID=48706798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011255867A Pending JP2013110338A (en) 2011-11-24 2011-11-24 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2013110338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216350A (en) * 2014-04-23 2015-12-03 ソニー株式会社 Semiconductor device, and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216350A (en) * 2014-04-23 2015-12-03 ソニー株式会社 Semiconductor device, and manufacturing method
CN105981160A (en) * 2014-04-23 2016-09-28 索尼公司 Semiconductor device and method of manufacturing thereof
KR20160143640A (en) * 2014-04-23 2016-12-14 소니 주식회사 Semiconductor device and method of manufacturing thereof
CN109637992A (en) * 2014-04-23 2019-04-16 索尼公司 Semiconductor device and its manufacturing method
US10600838B2 (en) 2014-04-23 2020-03-24 Sony Corporation Semiconductor device and method of manufacturing thereof
CN109637992B (en) * 2014-04-23 2020-07-21 索尼公司 Semiconductor device and method for manufacturing the same
KR102370046B1 (en) * 2014-04-23 2022-03-04 소니그룹주식회사 Semiconductor device and method of manufacturing thereof
US11476291B2 (en) 2014-04-23 2022-10-18 Sony Corporation Semiconductor device and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
US10818620B2 (en) Semiconductor integrated circuit device
CN102142418B (en) Semiconductor structure and manufacturing method of semiconductor device
TWI502667B (en) Joint structure of semiconductor device and method of forming semiconductor device
CN102332435B (en) Electronic component and manufacturing method of same
US9230935B2 (en) Package on package structure and method of manufacturing the same
CN109786315A (en) Form the method and packaging part of semiconductor devices
US9997480B2 (en) Method of forming a semiconductor device including strain reduced structure
TWI404183B (en) Packaging assembly and interated circuit device using the same
CN103579114A (en) Integrated semiconductor device and wafer level method of fabricating the same
KR20130129068A (en) Three-dimensional chip stack and method of forming the same
JPWO2010125682A1 (en) Semiconductor device and manufacturing method thereof
KR20160040928A (en) Integrated circuit device and method of manufacturing the same
US11145613B2 (en) Method for forming bump structure
CN112447684A (en) Three-dimensional stacked structure and method for manufacturing the same
US20150262954A1 (en) Solder stud structure and method of fabricating the same
JP5901719B2 (en) Semiconductor device
TWI419285B (en) Bump structure on a substrate and method for manufacturing the same
JP2013110338A (en) Semiconductor integrated circuit device
CN113658932A (en) Semiconductor device and method of forming the same
JP2010147051A (en) Semiconductor integrated circuit device, and method of manufacturing the same
TWI812143B (en) Package structure and method of forming the same
TWI559482B (en) Package structure and manufacturing method thereof
CN103681595B (en) Semiconductor device