JP2015025168A - Magnesium alloy coil material and production method of magnesium alloy coil material - Google Patents

Magnesium alloy coil material and production method of magnesium alloy coil material Download PDF

Info

Publication number
JP2015025168A
JP2015025168A JP2013155144A JP2013155144A JP2015025168A JP 2015025168 A JP2015025168 A JP 2015025168A JP 2013155144 A JP2013155144 A JP 2013155144A JP 2013155144 A JP2013155144 A JP 2013155144A JP 2015025168 A JP2015025168 A JP 2015025168A
Authority
JP
Japan
Prior art keywords
magnesium alloy
plate
coil material
rolling
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013155144A
Other languages
Japanese (ja)
Other versions
JP6274483B2 (en
Inventor
大石 幸広
Yukihiro Oishi
幸広 大石
北村 貴彦
Takahiko Kitamura
貴彦 北村
龍一 井上
Ryuichi Inoue
龍一 井上
森 信之
Nobuyuki Mori
信之 森
河部 望
Nozomi Kawabe
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013155144A priority Critical patent/JP6274483B2/en
Publication of JP2015025168A publication Critical patent/JP2015025168A/en
Application granted granted Critical
Publication of JP6274483B2 publication Critical patent/JP6274483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide magnesium alloy coil material capable of forming a plastic working member excellent in morphological stability, and a production method of the magnesium alloy coil material.SOLUTION: Magnesium alloy coil material is formed by spirally winding plate material composed of magnesium alloy. Over the entire length of the plate material, variation in residual stress is within 20 MPa. A production method of the magnesium alloy coil material comprises the steps of: preparing material coil formed by spirally winding material plate which is composed of magnesium alloy and has been subjected to rolling; unwinding the material coil, traveling the material plate, and continuously performing heat treatment at 150°C or more and 300°C or less in a state where tensile stress of more than 5 MPa and 25 MPa or less is applied to the material plate; and spirally winding the plate material which is composed of magnesium alloy and has been subjected to the heat treatment.

Description

本発明は、マグネシウム合金からなる板材が渦巻き状に巻き取られたマグネシウム合金コイル材及びその製造方法に関するものである。特に、プレス加工といった塑性加工後において形状安定性に優れる塑性加工部材を成形可能なマグネシウム合金コイル材及びその製造方法に関する。   The present invention relates to a magnesium alloy coil material in which a plate material made of a magnesium alloy is wound in a spiral shape, and a method for manufacturing the same. In particular, the present invention relates to a magnesium alloy coil material capable of forming a plastic working member having excellent shape stability after plastic working such as press working, and a manufacturing method thereof.

軽量で比強度、比剛性に優れるマグネシウム合金が、携帯電話やノート型パーソナルコンピュータといった携帯用電気・電子機器類の筐体や自動車部品などの各種の部材の構成材料に利用されてきている。   A magnesium alloy that is lightweight and excellent in specific strength and specific rigidity has been used as a constituent material of various members such as a casing of a portable electric / electronic device such as a mobile phone and a notebook personal computer, and an automobile part.

マグネシウム合金は、金属のなかでも軽量で、比強度が高く、優れた衝撃吸収性を有する上に、活性なマグネシウムに種々の元素が添加されていることで耐食性にも優れており、上記各種の部材の構成材料に好ましい。具体的なマグネシウム合金として、例えば、Alを含有するMg−Al系合金、より具体的には、ASTM規格において展伸用合金として規定されるAZ31合金や、鋳造用合金として規定されるAZ91合金などがある。   Magnesium alloys are lightweight among metals, have high specific strength, have excellent shock absorption properties, and have excellent corrosion resistance due to the addition of various elements to active magnesium. It is preferable for the constituent material of the member. As a specific magnesium alloy, for example, an Mg-Al alloy containing Al, more specifically, an AZ31 alloy defined as an alloy for extension in the ASTM standard, an AZ91 alloy defined as an alloy for casting, etc. There is.

しかし、マグネシウム合金は、六方晶の結晶構造(hcp構造)を有するため、一般に室温といった低温での塑性加工性に劣ることから、ある程度温度が高い状態で加工を行う。特に、添加元素の含有量が多いマグネシウム合金は、添加元素の含有量が少ないマグネシウム合金よりも塑性加工性に劣ることから、加工にあたり、加熱が必要である。特許文献1は、AZ91合金からなる素材に特定の温度制御を行って圧延を施すことで、塑性加工性に優れるマグネシウム合金コイル材が得られることを開示している。このマグネシウム合金コイル材は、加工歪みが存在した組織を有し、プレス加工といった塑性加工時に動的再結晶化を生じることで、塑性加工性に優れる。   However, since the magnesium alloy has a hexagonal crystal structure (hcp structure), it is generally inferior in plastic workability at a low temperature such as room temperature, and thus is processed at a certain high temperature. In particular, a magnesium alloy having a high content of additive elements is inferior in plastic workability to a magnesium alloy having a low content of additive elements, and thus heating is required for processing. Patent document 1 is disclosing that the magnesium alloy coil material which is excellent in plastic workability is obtained by performing rolling by performing specific temperature control to the raw material which consists of AZ91 alloy. This magnesium alloy coil material has a structure in which processing strain exists, and is excellent in plastic workability by causing dynamic recrystallization during plastic processing such as press processing.

特開2011−131274号公報JP 2011-131274 A

塑性加工後において形状安定性に優れる塑性加工部材を成形可能なマグネシウム合金コイル材の開発が望まれる。   It is desired to develop a magnesium alloy coil material capable of forming a plastic working member having excellent shape stability after plastic working.

プレス加工などの塑性加工を施してマグネシウム合金部材(塑性加工部材)を製造する場合、素材として、連続した長尺な板や、更に広幅である長尺な板を利用すると、所定の長さに切断したシート板を利用する場合と比較して、歩留まりを低減でき、生産性を高められると期待される。従って、長尺な板や更には広幅な板を巻き取ったマグネシウム合金コイル材は、マグネシウム合金部材(塑性加工部材)の量産に寄与することができるといえる。また、寸法精度や形状精度に優れる塑性加工部材を成形可能な素材であると、不良品を低減でき、生産性を高められる。   When manufacturing a magnesium alloy member (plastic working member) by performing plastic working such as press working, if a continuous long plate or a wide plate having a wider width is used as a material, the length becomes a predetermined length. Compared with the case of using a cut sheet plate, it is expected that the yield can be reduced and the productivity can be improved. Therefore, it can be said that a magnesium alloy coil material obtained by winding a long plate or a wider plate can contribute to mass production of a magnesium alloy member (plastic working member). Moreover, if it is a raw material which can shape | mold the plastic processing member which is excellent in dimensional accuracy and shape accuracy, a defective product can be reduced and productivity can be improved.

上述のようにある程度温度が高い状態(代表的には200℃以上)とすることで、塑性加工性を高められて、塑性加工部材を良好に製造できる。しかし、本発明者らが調べた結果、プレス加工といった塑性加工を行うにあたり、素材を加熱すると、素材に反りなどの変形が局所的に生じることがある、との知見を得た。具体的には、コイル材を巻き戻して所定の長さに切断したシート片を加熱した場合、シート片の縁部が反り上がることがある。このように素材が部分的に変形した場合、プレス加工といった塑性加工を行う装置に備える成形型の所定の位置に素材が精度よく配置されなかったり、成形型内で素材の位置がずれたり、安定しなかったりする。そのため、所定の形状に精度よく加工できず、塑性加工後に得られた成形体の形状や寸法が安定せずばらつきが生じ、不良率が上がる。その結果、塑性加工部材の生産性の低下を招く。   As described above, by making the temperature somewhat high (typically 200 ° C. or higher), the plastic workability can be improved and the plastic work member can be manufactured satisfactorily. However, as a result of investigations by the present inventors, it has been found that, when performing plastic working such as press working, when the material is heated, deformation such as warping may locally occur in the material. Specifically, when a sheet piece that has been unwound and cut to a predetermined length is heated, the edge of the sheet piece may be warped. If the material is partially deformed in this way, the material may not be accurately placed at a predetermined position on the mold provided in a device that performs plastic processing such as press work, or the material may be misaligned in the mold. I do not. For this reason, it cannot be accurately processed into a predetermined shape, the shape and dimensions of the molded body obtained after plastic processing are not stable and vary, and the defect rate increases. As a result, the productivity of the plastic working member is reduced.

そこで、本発明の目的の一つは、形状安定性に優れる塑性加工部材を成形可能なマグネシウム合金コイル材を提供することにある。また、本発明の他の目的は、形状安定性に優れる塑性加工部材を成形可能なマグネシウム合金コイル材を製造できるマグネシウム合金コイル材の製造方法を提供することにある。   Then, one of the objectives of this invention is providing the magnesium alloy coil material which can shape | mold the plastic working member excellent in shape stability. Another object of the present invention is to provide a method for producing a magnesium alloy coil material capable of producing a magnesium alloy coil material capable of forming a plastic working member having excellent shape stability.

本発明のマグネシウム合金コイル材は、マグネシウム合金からなる板材が渦巻き状に巻き取られてなるマグネシウム合金コイル材であって、
前記板材の全長に亘って、残留応力のばらつきが20MPa以内である。
The magnesium alloy coil material of the present invention is a magnesium alloy coil material formed by winding a plate material made of a magnesium alloy in a spiral shape,
The variation in residual stress is within 20 MPa over the entire length of the plate material.

本発明のマグネシウム合金コイル材の製造方法は、以下の準備工程と、熱処理工程と、巻き取り工程とを備える。
準備工程 マグネシウム合金からなり、圧延が施された素材板が渦巻き状に巻き取られた素材コイル材を準備する工程。
熱処理工程 前記素材コイル材を巻き戻して前記素材板を走行させて、前記素材板に5MPa超25MPa以下の引張応力を付与した状態で、150℃以上300℃以下の熱処理を連続的に施す工程。
巻き取り工程 前記熱処理が施されたマグネシウム合金からなる板材を渦巻き状に巻き取る工程。
The manufacturing method of the magnesium alloy coil material of the present invention includes the following preparation process, heat treatment process, and winding process.
Preparation step A step of preparing a material coil material made of a magnesium alloy and rolled up in a spiral shape.
Heat treatment step: A step of continuously performing a heat treatment at 150 ° C. or more and 300 ° C. or less in a state where the material coil material is rewound and the material plate is run and a tensile stress of 5 MPa to 25 MPa is applied to the material plate.
Winding process The process which winds up the board | plate material which consists of a magnesium alloy in which the said heat processing was performed in the shape of a spiral.

本発明のマグネシウム合金コイル材は、形状安定性に優れる塑性加工部材を成形できる。本発明のマグネシウム合金コイル材の製造方法は、形状安定性に優れる塑性加工部材を成形可能なマグネシウム合金コイル材を製造できる。   The magnesium alloy coil material of the present invention can form a plastic working member having excellent shape stability. The method for producing a magnesium alloy coil material of the present invention can produce a magnesium alloy coil material capable of forming a plastic working member having excellent shape stability.

実施の形態に係るマグネシウム合金コイル材の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the magnesium alloy coil material which concerns on embodiment.

[本発明の実施の形態の説明]
本発明者らは、上述の温間塑性加工を行うための加熱時に生じる局所的な変形を低減するための対策、好ましくは実質的に無くすための対策を検討した結果、上述の加熱によって局所的な変形が生じる素材は、コイル材の全長でみると、残留応力のばらつきが大きい、との知見を得た。また、この残留応力のばらつきを低減するには、上述の温間塑性加工のための加熱を行う前に、素材に特定の条件で別途熱処理を施すことが好ましい、との知見を得た。本発明は、上記の知見に基づくものである。最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
As a result of studying measures for reducing local deformation that occurs during heating for performing the above-mentioned warm plastic working, preferably measures for substantially eliminating the above, It was found that a material that causes a large deformation has a large variation in residual stress when viewed over the entire length of the coil material. Moreover, in order to reduce the dispersion | variation in this residual stress, the knowledge that it was preferable to heat-process separately on a raw material on specific conditions before performing the heating for the above-mentioned warm plastic working was acquired. The present invention is based on the above findings. First, the contents of the embodiment of the present invention will be listed and described.

(1) 実施形態に係るマグネシウム合金コイル材は、マグネシウム合金からなる板材が渦巻き状に巻き取られてなるものであり、上記板材の全長に亘って、残留応力のばらつきが20MPa以内である。上記板材の全長に亘る残留応力のばらつきは、以下のように測定する。   (1) The magnesium alloy coil material according to the embodiment is obtained by winding a plate material made of a magnesium alloy in a spiral shape, and variation in residual stress is within 20 MPa over the entire length of the plate material. The variation of the residual stress over the entire length of the plate material is measured as follows.

マグネシウム合金コイル材を巻き戻して、所定の長さごとにサンプル板材を切り出し、複数枚のサンプル板材を用意する。上記所定の長さは、コイル材の全長×0.1以上、100m以下とする。例えば、コイル材の全長が10mである場合、所定の長さは1m以上とする。例えば、コイル材の全長が1000m超(1km超)である場合、100mとする。サンプル板材の数は、5枚以上、好ましくは8枚以上とする。1枚のサンプル板材の長さは、少なくともX線回折による残留応力の測定が可能なサイズとする。そして、各サンプル板材の一面において、幅方向の中心位置であって長手方向の任意の1点以上について、残留応力を測定する。各サンプル板材において残留応力を測定する一面とは、巻き取られていたときに外側に配置されていた面、即ち、巻きの外周側の面(表面)とする。測定した残留応力(合計5点以上の残留応力)について、最大値と最小値との差を残留応力のばらつきとする。   The magnesium alloy coil material is rewound, a sample plate material is cut out for each predetermined length, and a plurality of sample plate materials are prepared. The predetermined length is the total length of the coil material × 0.1 to 100 m. For example, when the total length of the coil material is 10 m, the predetermined length is 1 m or more. For example, when the total length of the coil material is more than 1000 m (more than 1 km), it is set to 100 m. The number of sample plates is 5 or more, preferably 8 or more. The length of one sample plate is set to a size at which the residual stress can be measured by at least X-ray diffraction. Then, on one surface of each sample plate, the residual stress is measured at one or more arbitrary points in the longitudinal direction, which is the center position in the width direction. One surface for measuring the residual stress in each sample plate material is a surface arranged outside when being wound, that is, a surface (surface) on the outer peripheral side of the winding. Regarding the measured residual stress (residual stress of 5 points or more in total), the difference between the maximum value and the minimum value is defined as the variation of the residual stress.

実施形態に係るマグネシウム合金コイル材は、全長に亘って、残留応力のばらつきが十分に小さく、均一的な状態である。そのため、実施形態に係るマグネシウム合金コイル材にプレス加工などの塑性加工を施すにあたり、適宜な長さに切断したシート材を所定の温度に加熱した場合でも、反りといった局所的な変形が生じ難い、又は実質的に生じない。また、この塑性加工のための加熱に斑があった場合でも、変形が生じ難い。そのため、実施形態に係るマグネシウム合金コイル材は、このコイル材を構成する板材(切断したものも含む)に塑性加工のための加熱がなされた場合でも、塑性加工用の成形型の適切な位置に精度よく配置できる上に、その配置位置がずれ難く、安定して塑性加工を施すことができる。従って、実施形態に係るマグネシウム合金コイル材を塑性加工部材の素材に用いることで、寸法精度・形状精度に優れる塑性加工部材を連続的に、安定して成形できる。このことから、実施形態に係るマグネシウム合金コイル材は、寸法精度・形状精度に優れる高品位な塑性加工部材、つまり形状安定性に優れる塑性加工部材の量産に寄与することができる。また、実施形態に係るマグネシウム合金コイル材は、残留応力が均一的であることから、塑性加工を施した場合に板材が均一的に伸びることができ、塑性加工性にも優れる。   The magnesium alloy coil material according to the embodiment is in a uniform state with a sufficiently small variation in residual stress over the entire length. Therefore, in performing plastic working such as press working on the magnesium alloy coil material according to the embodiment, even when the sheet material cut to an appropriate length is heated to a predetermined temperature, local deformation such as warpage is unlikely to occur. Or substantially does not occur. Moreover, even if there is unevenness in the heating for this plastic working, deformation hardly occurs. Therefore, in the magnesium alloy coil material according to the embodiment, even when a plate material (including a cut material) constituting the coil material is heated for plastic processing, the magnesium alloy coil material is positioned at an appropriate position of the molding die for plastic processing. In addition to being able to arrange with high precision, it is difficult to shift the arrangement position, and plastic working can be performed stably. Therefore, by using the magnesium alloy coil material according to the embodiment as the raw material of the plastic working member, the plastic working member having excellent dimensional accuracy and shape accuracy can be continuously and stably formed. From this, the magnesium alloy coil material according to the embodiment can contribute to mass production of a high-quality plastic working member excellent in dimensional accuracy and shape accuracy, that is, a plastic working member excellent in shape stability. Further, since the magnesium alloy coil material according to the embodiment has a uniform residual stress, the plate material can be uniformly stretched when plastic working is performed, and is excellent in plastic workability.

(2) 実施形態に係るマグネシウム合金コイル材として、上記板材の残留応力が−25MPaから+25MPaの範囲である形態が挙げられる。−(マイナス)は、圧縮残留応力、+(プラス)は、引張残留応力を意味する。   (2) The magnesium alloy coil material according to the embodiment includes a form in which the residual stress of the plate material is in the range of −25 MPa to +25 MPa. -(Minus) means compressive residual stress, and + (plus) means tensile residual stress.

上記形態は、板材の残留応力(絶対値)自体が小さいことから、上述のように温間塑性加工にあたり加熱した場合に、局所的な変形が更に生じ難く、塑性加工性に優れる。また、上記形態は、形状安定性に優れる塑性加工部材の量産に寄与することができる。   In the above-mentioned form, since the residual stress (absolute value) of the plate material itself is small, when it is heated during the warm plastic working as described above, local deformation is less likely to occur and the plastic workability is excellent. Moreover, the said form can contribute to the mass production of the plastic processing member excellent in shape stability.

(3) 実施形態に係るマグネシウム合金コイル材として、上記マグネシウム合金がAlを含有するMg−Al系合金である形態が挙げられる。   (3) The magnesium alloy coil material according to the embodiment includes a form in which the magnesium alloy is an Mg-Al alloy containing Al.

添加元素にAlを含有するMg−Al系合金は、強度、硬度(剛性)といった機械的特性や、耐食性に優れることから、上記形態のマグネシウム合金コイル材を素材に用いることで、機械的特性や耐食性に優れる塑性加工部材や板材を製造できる。   Mg-Al based alloy containing Al as an additive element is excellent in mechanical properties such as strength and hardness (rigidity) and corrosion resistance. Therefore, by using the magnesium alloy coil material of the above form as a material, mechanical properties and It is possible to manufacture plastic working members and plate materials having excellent corrosion resistance.

(4) 実施形態に係るマグネシウム合金コイル材として、上記マグネシウム合金の平均結晶粒径が10μm以下である形態が挙げられる。   (4) The magnesium alloy coil material according to the embodiment includes a form in which the average crystal grain size of the magnesium alloy is 10 μm or less.

上記形態は、板材が微細な結晶組織で構成されることで、塑性加工性に優れる。   The said form is excellent in plastic workability because a board | plate material is comprised with a fine crystal structure.

上述の実施形態に係るマグネシウム合金コイル材は、例えば、以下の実施形態に係るマグネシウム合金コイル材の製造方法によって得られる。
(5) 実施形態に係るマグネシウム合金コイル材の製造方法は、以下の準備工程と、熱処理工程と、巻き取り工程とを備える。
準備工程 マグネシウム合金からなり、圧延が施された素材板が渦巻き状に巻き取られた素材コイル材を準備する工程。
熱処理工程 上記素材コイル材を巻き戻して上記素材板を走行させて、上記素材板に5MPa超25MPa以下の引張応力を付与した状態で、150℃以上300℃以下の熱処理を連続的に施す工程。
巻き取り工程 上記熱処理が施されたマグネシウム合金からなる板材を渦巻き状に巻き取る工程。
The magnesium alloy coil material according to the above-described embodiment is obtained by, for example, a method for manufacturing a magnesium alloy coil material according to the following embodiment.
(5) The manufacturing method of the magnesium alloy coil material which concerns on embodiment is equipped with the following preparatory processes, a heat treatment process, and a winding process.
Preparation step A step of preparing a material coil material made of a magnesium alloy and rolled up in a spiral shape.
Heat treatment step A step of continuously performing a heat treatment at 150 ° C. or more and 300 ° C. or less in a state in which the material coil material is rewound and the material plate is run and a tensile stress of 5 MPa to 25 MPa is applied to the material plate.
Winding process The process which winds up the board | plate material which consists of a magnesium alloy to which the said heat processing was performed in the shape of a spiral.

温間圧延などの圧延といった塑性加工が施された、マグネシウム合金からなる素材板は、上述のように残留応力を有する。この残留応力を有する素材板に上述の特定の引張応力の付与を伴う熱処理を行うことで、実施形態に係るマグネシウム合金コイル材の製造方法は、上記特定の熱処理後に得られるマグネシウム合金からなる板材(熱処理板)の残留応力を低減できる。かつ、実施形態に係るマグネシウム合金コイル材の製造方法は、連続する素材板(端的にいえば、長尺な板)に対して、特定の低い引張応力を加えた状態で、かつ特定の温間域に素材板を保持するため、熱処理前後における板厚を実質的に変えることなく、素材板の残留応力を低減できる、好ましくは実質的に無くすことができる。つまり、実施形態に係るマグネシウム合金コイル材の製造方法は、温間圧延などの圧延によって調整された板厚を実質的に維持した熱処理板を製造できる。そして、得られた板材(熱処理板)は、上述のように温間塑性加工にあたり加熱した場合にも、局所的な変形が生じ難く、又は実質的に生じず、形状安定性に優れる塑性加工部材を成形できる。従って、実施形態に係るマグネシウム合金コイル材の製造方法は、高精度・高品位な塑性加工部材を生産性よく製造できるマグネシウム合金コイル材を製造することができる。特に、実施形態に係るマグネシウム合金コイル材の製造方法において上記マグネシウム合金がAlを含有するMg−Al系合金である形態では、機械的特性や耐食性に優れるマグネシウム合金コイル材を製造できる。   A material plate made of a magnesium alloy that has been subjected to plastic working such as rolling such as warm rolling has residual stress as described above. By performing the heat treatment accompanied by the application of the specific tensile stress on the material plate having the residual stress, the manufacturing method of the magnesium alloy coil material according to the embodiment provides a plate material made of a magnesium alloy obtained after the specific heat treatment ( The residual stress of the heat treatment plate can be reduced. And the manufacturing method of the magnesium alloy coil material which concerns on embodiment is the state which applied specific low tensile stress with respect to the continuous raw material board (in short, a long board), and a specific warm. Since the material plate is held in the region, the residual stress of the material plate can be reduced, preferably substantially eliminated, without substantially changing the plate thickness before and after the heat treatment. That is, the manufacturing method of the magnesium alloy coil material according to the embodiment can manufacture a heat-treated plate that substantially maintains the plate thickness adjusted by rolling such as warm rolling. The obtained plate material (heat-treated plate) is a plastically processed member that is hardly deformed or is substantially free of deformation even when heated during warm plastic processing as described above, and has excellent shape stability. Can be molded. Therefore, the manufacturing method of the magnesium alloy coil material according to the embodiment can manufacture a magnesium alloy coil material capable of manufacturing a highly accurate and high-quality plastic working member with high productivity. In particular, in the magnesium alloy coil material manufacturing method according to the embodiment, in the form in which the magnesium alloy is an Mg-Al alloy containing Al, a magnesium alloy coil material excellent in mechanical properties and corrosion resistance can be manufactured.

[本発明の実施形態の詳細]
以下、実施形態に係るマグネシウム合金コイル材、及び実施形態に係るマグネシウム合金コイル材の製造方法をより詳細に説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、後述する試験例において、コイル材の仕様(材質、厚さ、長さ、幅など)、製造条件(圧延条件(圧延温度、圧下率など)、熱処理条件(加熱温度、応力など))などを適宜変更することができる。
[Details of the embodiment of the present invention]
Hereinafter, the magnesium alloy coil material according to the embodiment and the manufacturing method of the magnesium alloy coil material according to the embodiment will be described in more detail. In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included. For example, in the test examples described later, coil material specifications (material, thickness, length, width, etc.), manufacturing conditions (rolling conditions (rolling temperature, rolling reduction, etc.), heat treatment conditions (heating temperature, stress, etc.)), etc. Can be changed as appropriate.

(マグネシウム合金コイル材)
実施形態のマグネシウム合金コイル材は、Mgに種々の添加元素を含有した種々の組成のマグネシウム合金(Mgを50質量%以上及び添加元素を含有し、残部不可避不純物)から構成される長尺な板材が渦巻き状に多層に巻き取られて構成される。
(Magnesium alloy coil material)
The magnesium alloy coil material of the embodiment is a long plate material composed of magnesium alloys of various compositions containing various additive elements in Mg (50% by mass or more of Mg and additive elements, the remainder being inevitable impurities). Is wound and wound in multiple layers.

・組成
マグネシウム合金の添加元素は、例えば、Al,Zn,Mn,Si,Be,Ca,Sr,Y,Cu,Ag,Sn,Li,Zr,Ce,Ni,Au及び希土類元素(Y,Ceを除く)から選択された1種以上の元素が挙げられる。特に、Alを含有するMg−Al系合金は、耐食性や機械的特性に優れて好ましい。Alの含有量は、0.1質量%以上が挙げられ、多いほど耐食性や機械的特性に優れる傾向にある。Alの含有量は、12質量%を超えると塑性加工性の低下を招くことから、12質量%以下、更に11質量%以下が好ましい。
Composition The additive elements of the magnesium alloy include, for example, Al, Zn, Mn, Si, Be, Ca, Sr, Y, Cu, Ag, Sn, Li, Zr, Ce, Ni, Au, and rare earth elements (Y, Ce) 1 or more elements selected from (except for). In particular, an Mg-Al alloy containing Al is preferable because of its excellent corrosion resistance and mechanical properties. Examples of the Al content include 0.1% by mass or more, and the more the Al content, the better the corrosion resistance and mechanical properties. If the Al content exceeds 12% by mass, the plastic workability is deteriorated, so that it is preferably 12% by mass or less, and more preferably 11% by mass or less.

Al以外の各元素の含有量は、例えば、0.01質量%以上10質量%以下、更に0.1質量%以上5質量%以下が挙げられる。特に、Si,Sn,Y,Ce,Ca及び希土類元素(Y,Ceを除く)から選択される少なくとも1種の元素を合計0.001質量%以上、好ましくは合計0.1質量%以上5質量%以下含有するマグネシウム合金は、耐熱性や難燃性に優れる。マグネシウム合金中の不純物は、例えば、Feなどが挙げられる。   Examples of the content of each element other than Al include 0.01% by mass to 10% by mass, and further 0.1% by mass to 5% by mass. In particular, a total of at least one element selected from Si, Sn, Y, Ce, Ca and rare earth elements (excluding Y and Ce) is 0.001% by mass or more, preferably a total of 0.1% by mass or more and 5% by mass. % Or less of the magnesium alloy is excellent in heat resistance and flame retardancy. Examples of the impurities in the magnesium alloy include Fe.

Mg−Al系合金のより具体的な組成は、例えば、ASTM規格におけるAZ系合金(Mg−Al−Zn系合金。Znを0.2質量%以上1.5質量%以下含むもの。例えば、AZ31合金、AZ61合金、AZ80合金、AZ91合金など)、AM系合金(Mg−Al−Mn系合金。Mnを0.05質量%以上、更に0.15質量%以上0.5質量%以下含有するもの。例えば、AM60、AM100など)、AS系合金(Mg−Al−Si系合金。Siを0.2質量%以上6.0質量%以下含有するもの。例えば、AS41など)、AX系合金(Mg−Al−Ca系合金。Caを0.1質量%以上、更に0.2質量%以上6.0質量%以下、更に4.0質量%以下含有するもの。)、AZX系合金(Mg−Al−Zn−Ca系合金。Zn,Caの含有量はAZ系合金、AX系合金と同様。)、AJ系合金(Mg−Al−Sr系合金。Srを0.2質量%以上7.0質量%以下含有するもの。)などが挙げられる。その他、Mg−Al−RE系合金(REは希土類元素であり、REを0.001質量%以上、好ましくは0.1質量%以上、5質量%以下含有するもの。)などが挙げられる。   A more specific composition of the Mg—Al-based alloy is, for example, an AZ-based alloy (Mg—Al—Zn-based alloy according to the ASTM standard, containing 0.2 to 1.5% by mass of Zn. For example, AZ31 Alloy, AZ61 alloy, AZ80 alloy, AZ91 alloy, etc.), AM alloy (Mg—Al—Mn alloy, containing 0.05 mass% or more, and further 0.15 mass% or more and 0.5 mass% or less) For example, AM60, AM100, etc.), AS alloys (Mg—Al—Si alloys, containing Si by 0.2 mass% or more and 6.0 mass% or less, eg, AS41, etc.), AX alloys (Mg -Al-Ca-based alloy containing 0.1% by mass or more of Ca, 0.2% by mass or more and 6.0% by mass or less, and further 4.0% by mass or less), AZX-based alloy (Mg-Al -Zn-Ca alloy.Zn The content of Ca is the same as that of AZ-based alloys and AX-based alloys.), AJ-based alloys (Mg—Al—Sr-based alloys; those containing 0.2 to 7.0 mass% Sr), and the like. Can be mentioned. In addition, Mg-Al-RE alloys (RE is a rare earth element and contains RE in an amount of 0.001% by mass or more, preferably 0.1% by mass or more and 5% by mass or less).

Mg−Al系合金のうち、Alを7.2質量%超含有する合金、特にAlを8.3質量%以上9.5質量%以下、Znを0.5質量%以上1.5質量%以下含有するMg−Al系合金、代表的にはAZ91合金やAZX911合金、AZ91合金相当のAl及びZnを含むマグネシウム合金は、耐食性及び機械的特性に更に優れる。   Among Mg-Al based alloys, alloys containing Al in excess of 7.2% by mass, particularly Al in the range of 8.3% to 9.5% by mass, and Zn in the range of 0.5% to 1.5% by mass The Mg—Al based alloy, typically the AZ91 alloy, the AZX911 alloy, and the magnesium alloy containing Al and Zn corresponding to the AZ91 alloy are further excellent in corrosion resistance and mechanical properties.

・厚さ
実施形態のマグネシウム合金コイル材を構成する板材の厚さは、適宜選択することができる。このコイル材を塑性加工部材の素材に利用する場合、塑性加工部材の厚さは、コイル材を構成する板材の厚さを実質的に維持することから、板材の厚さが薄いほど、塑性加工部材の薄型化、小型化を図ることができる。そのため、板材の厚さは、2.5mm以下、更に2mm以下、特に1.5mm以下が挙げられる。板材の厚さの下限は0.1mmが挙げられる。特に板材の厚さが0.3mm以上1.2mm以下である形態が挙げられる。後述するように、圧延を施すことで、このような薄板を容易に製造できる。
-Thickness The thickness of the plate material constituting the magnesium alloy coil material of the embodiment can be selected as appropriate. When this coil material is used as a material for a plastic working member, the thickness of the plastic working member substantially maintains the thickness of the plate material constituting the coil material. It is possible to reduce the thickness and size of the member. Therefore, the thickness of a board | plate material is 2.5 mm or less, Furthermore, 2 mm or less, Especially 1.5 mm or less is mentioned. The lower limit of the thickness of the plate material is 0.1 mm. In particular, a form in which the thickness of the plate material is 0.3 mm to 1.2 mm is mentioned. As will be described later, such a thin plate can be easily manufactured by rolling.

・幅及び長さ
上記板材の幅及び長さは、適宜選択することができる。例えば、長さが50m以上、更に100m以上、1000m以上(1km以上)といった長尺板から構成されるコイル材は、上述の塑性加工部材の素材に利用すると、上記素材を塑性加工装置に連続供給でき、塑性加工部材を量産できる。例えば、幅が100mm以上、更に200mm以上、特に1000mm以上(1m以上)といった広幅板から構成されるコイル材は、上述の塑性加工部材の素材に利用すると、携帯用機器の部品といった小型なものから、輸送機器の部品といった大型なものまで、種々の大きさの塑性加工部材を製造できる。実施形態のマグネシウム合金コイル材の巻き取り径(内径)も適宜選択することができる。
-Width and length The width | variety and length of the said board | plate material can be selected suitably. For example, when a coil material composed of a long plate having a length of 50 m or more, further 100 m or more, 1000 m or more (1 km or more) is used as a material for the above-mentioned plastic working member, the above material is continuously supplied to the plastic working device. It is possible to mass-produce plastic processed members. For example, a coil material composed of a wide plate having a width of 100 mm or more, further 200 mm or more, particularly 1000 mm or more (1 m or more) is used as a material for the above-mentioned plastic working member, and is a small component such as a portable device component. It is possible to manufacture plastic working members of various sizes up to large ones such as parts of transportation equipment. The winding diameter (inner diameter) of the magnesium alloy coil material of the embodiment can also be selected as appropriate.

又は、実施形態のマグネシウム合金コイル材は、その重さが100kg以上、更に1000kg以上である大重量のものとすることができる。このコイル材は、板材の幅や厚さにもよるが、厚さが薄いほど(例えば、1mm以下)、長さが200m以上、更に1000m以上といった長尺板から構成されたコイル材になる。このようなコイル材を上述の塑性加工部材の素材に利用すると、上述のように種々の大きさの塑性加工部材を製造できたり、塑性加工部材の量産に寄与したりすることができる。   Alternatively, the magnesium alloy coil material of the embodiment can have a large weight of 100 kg or more, and further 1000 kg or more. Although this coil material is dependent on the width | variety and thickness of a board | plate material, it becomes a coil material comprised from the elongate board whose length is 200 m or more, and also 1000 m or more, so that thickness is thin (for example, 1 mm or less). When such a coil material is used as a material for the above-mentioned plastic working member, it is possible to produce plastic working members of various sizes as described above, or to contribute to mass production of the plastic working member.

・形態
上記板材は、製造工程によって種々の形態をとり得る。代表的には、後述の圧延工程を経た後、後述の特定の熱処理を施した熱処理材が挙げられる。その他、圧延後、後述の熱処理前までに、後述する矯正加工や研磨などが施された平坦性に優れる形態や表面性状に優れる形態、又は、後述の熱処理後に、矯正加工や研磨、化成処理や陽極酸化処理といった防食処理、表面装飾加工(ダイヤカットやヘアラインといった切削加工や、エッチング、ショットブラストなど)、塗装などが施された形態、つまり、矯正材、研磨材、防食処理材、表面加工材、塗装材などが挙げられる。
-Form The said board | plate material can take a various form with a manufacturing process. Typically, a heat treatment material that has been subjected to a specific heat treatment described later after undergoing a rolling step described later is given. In addition, after rolling, before the heat treatment described later, a form with excellent flatness and surface properties that have been subjected to correction processing and polishing described later, or a form excellent in surface properties, or after heat treatment described later, correction processing, polishing, chemical conversion treatment, Anti-corrosion treatment such as anodizing treatment, surface decoration processing (cutting processing such as diamond cut and hairline, etching, shot blasting, etc.), painting, etc., that is, correction materials, abrasives, anti-corrosion treatment materials, surface treatment materials And coating materials.

・組織
上記板材は、代表的には、圧延後に特定の熱処理が施されて製造されるものの、圧延工程を経ていることで、微細な結晶組織から構成された形態とすることができる。例えば、上記板材を構成するマグネシウム合金の結晶粒径が、平均で10μm以下を満たす形態が挙げられる。結晶粒径が小さいほど、塑性加工性を高められる傾向にあり、平均結晶粒径が6μm以下、更に4μm以下を満たす形態とすることができる。
-Structure Although the said board | plate material is typically manufactured by performing specific heat processing after rolling, it can be set as the form comprised from the fine crystal structure by passing through the rolling process. For example, the crystal grain size of the magnesium alloy constituting the plate material may satisfy an average of 10 μm or less. As the crystal grain size is smaller, the plastic workability tends to be improved, and the average crystal grain size can satisfy 6 μm or less, and more preferably 4 μm or less.

・機械的特性
上記板材は、後述するように圧延(少なくとも1パスは温間圧延)が施されていることで、例えば、同じ組成の鋳造板と比較して、機械的特性にも優れる。例えば、AZ91合金といったAlを7.2質量%超含有するマグネシウム合金から構成される板材では、引張強さが280MPa以上450MPa以下、0.2%耐力が230MPa以上350MPa以下、破断伸びが1%以上15%以下を満たす形態が挙げられる。
Mechanical properties The plate material is excellent in mechanical properties as compared with a cast plate having the same composition, for example, by being subjected to rolling (at least one pass is warm rolling) as described later. For example, in a plate material made of a magnesium alloy containing Al in excess of 7.2% by mass such as AZ91 alloy, the tensile strength is 280 MPa to 450 MPa, the 0.2% proof stress is 230 MPa to 350 MPa, and the elongation at break is 1% or more. The form which satisfy | fills 15% or less is mentioned.

・残留応力
そして、上記板材は、全長に亘って残留応力のばらつきが小さい。具体的には上述した残留応力の最大値と残留応力の最小値との差が20MPa以内である。つまり、コイル材を構成する板材について板材の長手方向の任意の位置における残留応力を比較した場合、その差が小さい。このように残留応力のばらつきが小さく、全長に亘って残留応力の大きさが均一的な状態であることで、板材を加熱しても、残留応力が局所的に異なる箇所が存在することに起因する部分的な反りなどの変形が生じ難く、上述のように形状安定性に優れて高精度な塑性加工部材を成形できる。残留応力のばらつきが小さいほど、局所的な変形を防止できることから、残留応力のばらつきは15MPa以内、更に10MPa以内がより好ましく、ばらつきが無いことが理想である。残留応力の測定条件の詳細は、後述する。
-Residual stress And the said board | plate material has the dispersion | variation in a residual stress small over the full length. Specifically, the difference between the aforementioned maximum value of residual stress and the minimum value of residual stress is within 20 MPa. That is, when the residual stresses at arbitrary positions in the longitudinal direction of the plate material are compared for the plate material constituting the coil material, the difference is small. Because the residual stress variation is small and the residual stress is uniform over the entire length, there are places where the residual stress differs locally even when the plate is heated. As described above, it is possible to form a highly accurate plastic working member having excellent shape stability. Since the smaller the variation in the residual stress, the more local deformation can be prevented, the variation in the residual stress is preferably within 15 MPa, more preferably within 10 MPa, and ideally there is no variation. Details of the residual stress measurement conditions will be described later.

また、上記板材の残留応力(絶対値)自体も小さいほど、上述の局所的な変形が生じ難く好ましい。具体的には、板材の残留応力は、−25MPaから+25MPaの範囲、更に−15MPaから+15MPaの範囲を満たすことが好ましい。なお、コイルの内周側に位置する板材(コイルの巻径が小さい部分の板材)は、外周側に位置する板材よりも、引張応力を有する場合がある。しかし、上記残留応力の範囲(0超から+25MPa)を満たすことで、局所的な変形が生じ難い。   Further, the smaller the residual stress (absolute value) itself of the plate material, the less likely the above-mentioned local deformation occurs. Specifically, the residual stress of the plate material preferably satisfies the range of −25 MPa to +25 MPa, and more preferably the range of −15 MPa to +15 MPa. In addition, the board | plate material located in the inner peripheral side of a coil (plate material of the part with a small coil | winding diameter of a coil) may have a tensile stress rather than the board | plate material located in an outer peripheral side. However, when the residual stress range (over 0 to +25 MPa) is satisfied, local deformation hardly occurs.

コイルを構成する板材について、板材の幅方向の任意の位置における残留応力を比較した場合にその差が小さいこと、即ち、ばらつきが小さいことが好ましい。また、上記板材の幅方向の任意の位置における残留応力(絶対値)が上記の範囲を満たすと、局所的な変形が生じ難くて好ましい。更に、コイルを構成する板材において巻きの外周側の面(表面)と巻きの内周側の面(裏面)とについて、残留応力が実質的に等しいことが好ましい。しかし、コイルの巻径などによって表裏面の残留応力が異なる場合がある。この場合にも、表裏面の双方の残留応力(絶対値)が上記の範囲を満たすことで、局所的な変形が生じ難い。   Regarding the plate material constituting the coil, when the residual stress at an arbitrary position in the width direction of the plate material is compared, the difference is preferably small, that is, the variation is small. Further, it is preferable that the residual stress (absolute value) at an arbitrary position in the width direction of the plate material satisfies the above range because local deformation hardly occurs. Further, in the plate material constituting the coil, it is preferable that the residual stress is substantially equal for the outer peripheral surface (front surface) of the winding and the inner peripheral surface (back surface) of the winding. However, the residual stresses on the front and back surfaces may differ depending on the winding diameter of the coil. Also in this case, when the residual stress (absolute value) on both the front and back surfaces satisfies the above range, local deformation hardly occurs.

(コイル材の製造方法)
・準備工程
実施形態のマグネシウム合金コイル材の製造方法では、まず、所望の組成のマグネシウム合金からなる素材板であって、渦巻き状に巻き取られてなる素材コイル材を準備する。この素材コイル材は、圧延が施されたもの、好ましくは1パス以上の温間圧延が施されたものとする。このような素材コイル材は、圧延が施された圧延コイル材、圧延後に矯正加工が施された矯正コイル材、圧延後に研磨が施された研磨コイル材、圧延後に矯正及び研磨の双方が施されたコイル材などが挙げられる。
(Manufacturing method of coil material)
-Preparation process In the manufacturing method of the magnesium alloy coil material of embodiment, first, the raw material coil material which is a raw material board which consists of magnesium alloys of desired composition, and is wound up in the shape of a spiral is prepared. This material coil material has been subjected to rolling, and preferably has been subjected to warm rolling for one pass or more. Such a coil material is a rolled coil material that has been rolled, a straightened coil material that has been straightened after rolling, a polished coil material that has been ground after rolling, and both straightened and ground after rolling. Coil material and the like.

上記圧延コイル材は、代表的には、マグネシウム合金からなる鋳造材に圧延(温間圧延を1パス以上含む)を施すことで得られる。鋳造材は、例えば、所望の形状の鋳型で製造したインゴットを利用することができる。鋳造材として、マグネシウム合金を双ロール鋳造法といった連続鋳造法によって製造した長尺な鋳造板を巻き取った鋳造コイル材を利用すると、長尺な圧延コイル材を製造し易い。   The rolled coil material is typically obtained by rolling a cast material made of a magnesium alloy (including one or more passes of warm rolling). As the casting material, for example, an ingot manufactured with a mold having a desired shape can be used. When a cast coil material obtained by winding a long cast plate made of a magnesium alloy by a continuous casting method such as a twin roll casting method is used as a cast material, a long rolled coil material can be easily manufactured.

圧延加工を行う前の素材に、溶体化処理といった熱処理を施すことができる。溶体化条件は、組成にもよるが、例えば、加熱温度が350℃以上420℃以下、保持時間が1時間以上40時間以下、が挙げられる。この熱処理によって、割れの起点となり得る析出物を固溶させて機械的特性や圧延性の向上などを図ることができる。Alといった添加元素の含有量が多いほど、析出物が多く析出する傾向にあるため、保持時間を長くすることが好ましい。   A heat treatment such as a solution treatment can be performed on the material before the rolling process. Although the solution treatment conditions depend on the composition, for example, the heating temperature is 350 ° C. or higher and 420 ° C. or lower, and the holding time is 1 hour or longer and 40 hours or shorter. By this heat treatment, precipitates that can be the starting point of cracking can be dissolved to improve mechanical properties and rollability. As the content of additive elements such as Al increases, more precipitates tend to precipitate, so it is preferable to increase the holding time.

圧延用素材(上述の鋳造材や溶体化処理を施した溶体化材など)に1パス以上の圧延を施す。圧延を施すことで、所望の厚さの素材板が得られる上に、巣などの鋳造欠陥(内部欠陥)が少ない、又は小さい、又は実質的に存在しない組織とすることができる。また、圧延によって加工硬化による強度の向上などが望める。更に、圧延によって結晶粒の微細化を図ることができる。   The rolling material (such as the above cast material or solution treated material subjected to solution treatment) is rolled for one pass or more. By rolling, a raw material plate having a desired thickness can be obtained, and a structure in which casting defects (internal defects) such as nests are small, small, or substantially absent can be obtained. Moreover, the improvement of the intensity | strength by work hardening, etc. can be expected by rolling. Furthermore, the crystal grains can be refined by rolling.

温間圧延を行う場合、その条件は、圧延を施す圧延ロールに供される直前の素材の温度が150℃以上400℃以下(好ましくは350℃以下、更に300℃以下、特に280℃以下)、1パスあたりの圧下率が5%以上40%以下、が挙げられる。上述の特定の温度範囲とすることで、(i)添加元素の含有量が多い高濃度合金からなる素材板であっても、塑性加工性を高めて、縁部の割れを低減して良好な圧延板が得られる、(ii)1パスあたりの圧下率を大きくでき(例えば、10%以上30%以下程度)、コイル材の生産性を高められる、(iii)焼付きなどによる表面性状の劣化を抑制できる、(iv)圧延ロールの熱劣化を抑制できる、といった効果を奏する。また、素材だけでなく圧延ロールも加熱すると、素材の温度低下を抑制したり、縁部の割れをより低減したりし易い(特許文献1参照)。その他、公知の圧延条件を利用して、温間圧延を行うことができる。仕上げ圧延などで圧下率が小さい圧延を行う場合には、冷間圧延を行うことができる。   When performing warm rolling, the condition is that the temperature of the material immediately before being supplied to the rolling roll to be rolled is 150 ° C. or higher and 400 ° C. or lower (preferably 350 ° C. or lower, more preferably 300 ° C. or lower, particularly 280 ° C. or lower). The rolling reduction per pass is 5% or more and 40% or less. By setting the specific temperature range as described above, (i) even a material plate made of a high-concentration alloy with a high content of additive elements can improve plastic workability and reduce edge cracking. A rolled sheet can be obtained. (Ii) The rolling reduction per pass can be increased (for example, about 10% or more and about 30% or less), and the productivity of the coil material can be improved. (Iii) Deterioration of surface properties due to seizure or the like. (Iv) It is possible to suppress the thermal deterioration of the rolling roll. Moreover, when not only a raw material but a rolling roll is heated, it is easy to suppress the temperature fall of a raw material or to reduce the crack of an edge part more (refer patent document 1). In addition, warm rolling can be performed using known rolling conditions. When performing rolling with a small rolling reduction, such as finish rolling, cold rolling can be performed.

温間圧延を行う場合に上述の素材の加熱は、種々の加熱手段を利用することができる。例えば、特許文献1に記載されるように、ヒートボックスといった雰囲気炉を備える圧延ラインを利用することができる。加熱時間はコイルの重量、大きさ(幅、厚さ)、巻き数などに応じて適宜設定することができる。   When performing the warm rolling, various heating means can be used for heating the above-described material. For example, as described in Patent Document 1, a rolling line having an atmospheric furnace such as a heat box can be used. The heating time can be appropriately set according to the weight, size (width, thickness), number of turns, and the like of the coil.

圧延にあたり潤滑剤を利用すると、素材と圧延ロールとの摩擦を低減して、圧延を良好に行える。   When a lubricant is used for rolling, the friction between the material and the rolling roll can be reduced and rolling can be performed satisfactorily.

好ましくは1パス以上の温間圧延を行う。圧延工程において複数パスの圧延を行う場合、全パスを温間圧延としたり、一部の圧延を熱間又は室温としたりすることができる。いずれにしても、マグネシウム合金に対して圧延といった塑性加工を行うことで、圧延後のマグネシウム合金(圧延板)には、残留応力が存在する。特に、少なくとも1パスの圧延を温間圧延とすると、つまり、圧延用素材が加熱された状態で圧延を行うと、圧延用素材における幅方向の縁部分は、温度が低下し易く、幅方向の中央部分は、温度が高くなり易い。この温度のばらつきによって、圧下度合いのばらつきが不可避的に生じ得ることから、圧延材に残留応力のばらつきが生じ得る。しかし、実施形態のマグネシウム合金コイル材の製造方法では、圧延後(直後でなくてもよい)に後述する特定の条件で熱処理を行うことで、残留応力のばらつきを低減できる。   Preferably, one or more passes of warm rolling are performed. When performing a plurality of passes in the rolling step, all passes can be made warm, or some of the passes can be made hot or at room temperature. In any case, residual stress exists in the magnesium alloy after rolling (rolled sheet) by performing plastic working such as rolling on the magnesium alloy. In particular, when at least one pass of rolling is warm rolling, that is, when rolling is performed in a state in which the rolling material is heated, the edge portion in the width direction of the rolling material is liable to decrease in temperature, The central part tends to be hot. This variation in temperature inevitably causes a variation in the degree of reduction, so that a variation in residual stress can occur in the rolled material. However, in the manufacturing method of the magnesium alloy coil material of the embodiment, variation in residual stress can be reduced by performing heat treatment under a specific condition to be described later after rolling (not immediately after).

複数パスの圧延を行うことで、圧延板の厚さを更に薄くしたり、圧延板を構成する組織の結晶粒径を小さくしたり(例えば、平均結晶粒径が10μm以下、好ましくは5μm以下)することができる。実施形態のマグネシウム合金コイル材の製造方法では、圧延後に特定の熱処理を行うことで、この熱処理によって再結晶化した結晶粒がある程度成長し得る。しかし、圧延工程においてある程度微細な結晶粒としておくと、圧延後の熱処理において、結晶の過度な成長を防止でき、上述のように微細な結晶組織(例えば、平均結晶粒径が10μm以下)を満たすマグネシウム合金コイル材を製造することができる。粗大な結晶粒は、割れの起点となり、塑性加工性の低下を招く。そのため、上述のようにある程度微細な結晶組織であると、塑性加工性の低下を抑制できる。所望の厚さの圧延板や所望の大きさの結晶粒を有する圧延板が得られるように、パス数、各パスの圧下率、及び総圧下率を適宜選択することができる。例えば、1パスあたりの圧下率は10%以上40%以下程度、総圧下率は75%以上85%以下程度が挙げられる。また、複数パスの圧延を行う場合、特許文献1に記載されるように、一対のリールと、これらリール間に配置される圧延ローラとを備える圧延ラインを構築し、1パスごとにリールの回転方向を逆転してリバース圧延を行うと、圧延を効率よく行える。   By rolling a plurality of passes, the thickness of the rolled plate is further reduced, or the crystal grain size of the structure constituting the rolled plate is reduced (for example, the average crystal grain size is 10 μm or less, preferably 5 μm or less). can do. In the manufacturing method of the magnesium alloy coil material of the embodiment, by performing a specific heat treatment after rolling, crystal grains recrystallized by this heat treatment can grow to some extent. However, if crystal grains are made fine to some extent in the rolling process, excessive crystal growth can be prevented in the heat treatment after rolling, and the fine crystal structure (for example, the average crystal grain size is 10 μm or less) is satisfied as described above. A magnesium alloy coil material can be manufactured. Coarse crystal grains serve as starting points for cracks and cause a decrease in plastic workability. Therefore, when the crystal structure is fine to some extent as described above, it is possible to suppress a decrease in plastic workability. The number of passes, the rolling reduction of each pass, and the total rolling reduction can be appropriately selected so that a rolled plate having a desired thickness or a rolled plate having crystal grains of a desired size can be obtained. For example, the rolling reduction per pass is about 10% to 40%, and the total rolling reduction is about 75% to 85%. In addition, when performing multi-pass rolling, as described in Patent Document 1, a rolling line including a pair of reels and a rolling roller disposed between the reels is constructed, and the reels are rotated for each pass. If reverse rolling is performed with the direction reversed, rolling can be performed efficiently.

上記圧延が施された圧延板を最終的に渦巻き状に巻き取ることで、素材コイル材の一形態である圧延コイル材が得られる。この巻き取りも温間とすると、巻き取り時の割れの発生を抑制して、容易に巻き取れる。   The rolled coil material which is one form of a raw material coil material is obtained by finally winding up the rolled sheet in which the said rolling was performed in the shape of a spiral. If this winding is also warm, the occurrence of cracks during winding can be suppressed and winding can be performed easily.

その他、上述の圧延コイル材に、更に、矯正や研磨を施すことができる。矯正は、複数のローラが千鳥状に配置され、これらローラ間に素材を通過させて、素材に繰り返し曲げを付与可能なローラレベラ(特許文献1参照)を好適に利用できる。特に、素材を100℃以上300℃以下に加熱した状態にして温間矯正を行うと、割れなどが生じ難い。素材を室温以上100℃未満の状態で冷間矯正を行うと、矯正装置の部品の熱劣化を低減できる。矯正だけでは、素材において残留応力の十分な低減が難しい。一方、矯正加工(温間加工、冷間加工)を行った後、後述するように、素材板に特定の低い応力を加えた状態で加熱を行う特定の熱処理を行うことで、残留応力のばらつきを低減しつつ、平坦性を維持することができる。つまり、実施形態のマグネシウム合金コイル材の製造方法は、素材板が矯正材である場合に平坦性を損なうことがなく、平坦性にも優れる熱処理材を製造できる。   In addition, the rolling coil material described above can be further corrected and polished. For the correction, a roller leveler (see Patent Document 1) in which a plurality of rollers are arranged in a staggered manner, and a material can be repeatedly bent by passing the material between the rollers can be suitably used. In particular, when warm correction is performed in a state where the material is heated to 100 ° C. or higher and 300 ° C. or lower, cracks and the like are unlikely to occur. When cold straightening is performed in a state where the material is at room temperature or higher and lower than 100 ° C., thermal deterioration of parts of the straightening device can be reduced. It is difficult to sufficiently reduce the residual stress in the material only by correction. On the other hand, after corrective processing (warm processing, cold processing), as will be described later, by performing a specific heat treatment in which a specific low stress is applied to the material plate, the residual stress varies. The flatness can be maintained while reducing the above. That is, the manufacturing method of the magnesium alloy coil material according to the embodiment can manufacture a heat treatment material that is excellent in flatness without impairing flatness when the material plate is an orthodontic material.

上記矯正や研磨は、後述する特定の熱処理後に行うこともできる。この場合、後述する特定の熱処理後に素材に残存する熱を利用して矯正加工を行うことができる。その他、後述する特定の熱処理後に、上述した防食処理(陽極酸化処理や化成処理など)、塗装、表面装飾加工などを行ったりすると、耐食性の向上、装飾性や金属質感の向上などを図ることができる。   The correction and polishing can be performed after a specific heat treatment described later. In this case, correction processing can be performed using heat remaining in the material after a specific heat treatment described later. In addition, if the above-described anticorrosion treatment (anodizing treatment, chemical conversion treatment, etc.), painting, surface decoration processing, etc. are performed after a specific heat treatment described later, it is possible to improve the corrosion resistance, the decorativeness, and the metal texture it can.

・熱処理工程
上述の温間圧延を含む圧延工程を経て得られた素材コイル材は、上述のように圧延といった塑性加工によって残留応力が存在しており、かつ、残留応力にばらつきがあり得る。実施形態のマグネシウム合金コイル材の製造方法では、上記残留応力のばらつきの是正(低減)を目的として、この素材コイル材に熱処理を施す。特に、この熱処理は、素材コイル材を巻き戻した素材板を走行させた状態で行うと共に、特定の応力を付与した状態で行う。この応力は、引張応力とする。
-Heat treatment process The raw material coil material obtained through the rolling process including the above-mentioned warm rolling has residual stress due to plastic working such as rolling as described above, and the residual stress may vary. In the manufacturing method of the magnesium alloy coil material of the embodiment, the material coil material is subjected to heat treatment for the purpose of correcting (reducing) the variation in the residual stress. In particular, this heat treatment is performed in a state where a material plate on which the material coil material has been rewound is run and a state where a specific stress is applied. This stress is a tensile stress.

代表的には、図1に示すように、素材コイル材100をリール200に取り付けて、マグネシウム合金からなる素材板10を順次繰り出し、別のリール210で順次巻き取る。つまり、両リール200,210間に素材板10及び素材板10に繋がり熱処理された板材11を掛け渡すことで、素材板10及び板材11を走行させることができる。走行速度の調整は、両リール200,210の回転速度を調整することで行える。この素材板10及び板材11の走行ライン上に加熱手段20を設けることで、素材板10を加熱できる。   Typically, as shown in FIG. 1, the material coil material 100 is attached to a reel 200, and the material plate 10 made of magnesium alloy is sequentially fed out, and is sequentially wound around another reel 210. That is, the material plate 10 and the plate material 11 can be run by passing the material plate 10 and the heat-treated plate material 11 between the reels 200 and 210. The traveling speed can be adjusted by adjusting the rotational speeds of both reels 200 and 210. By providing the heating means 20 on the travel lines of the material plate 10 and the plate material 11, the material plate 10 can be heated.

この熱処理時の加熱温度は、150℃以上とすることで、残留応力を解放することができる。上記加熱温度が高いほど、残留応力(絶対値)を低減し易く、200℃以上がより好ましい。しかし、上記加熱温度が高いほど、素材板10が変形し易くなり、かつ実施形態のマグネシウム合金コイル材の製造方法では特定の応力が付与されているため、熱処理後の板材11の厚さが減少する恐れがある。また、上記加熱温度が高いほど、結晶粒や析出物が成長し、塑性加工時に割れの起点となるような粗大な粒が存在して、塑性加工性の低下を招く恐れがある。従って、上記加熱温度は、300℃以下とし、250℃以下がより好ましい。   Residual stress can be released by setting the heating temperature during this heat treatment to 150 ° C. or higher. The higher the heating temperature, the easier it is to reduce the residual stress (absolute value), and 200 ° C. or higher is more preferable. However, as the heating temperature is higher, the material plate 10 is more easily deformed, and the specific stress is applied in the manufacturing method of the magnesium alloy coil material of the embodiment, so that the thickness of the plate material 11 after the heat treatment decreases. There is a fear. Further, as the heating temperature is higher, crystal grains and precipitates grow, and there are coarse grains that become the starting point of cracking during plastic processing, which may lead to a decrease in plastic workability. Therefore, the heating temperature is 300 ° C. or less, and more preferably 250 ° C. or less.

具体的な加熱手段20は、例えば、複数の加熱ロールが挙げられる。この形態では、複数の加熱ロールを素材板10の走行方向に並列に配置し、これらの加熱ロールに素材板10を接触させることで、素材板10を所定の温度に加熱する。加熱ロールは、ヒータといった加熱手段を内蔵したもの、加熱された流体が流通される循環機構を内蔵したものなど、素材板10を加熱可能な構成を備えるものが挙げられる。加熱ロールの材質は、耐熱性に優れる鋼などが挙げられる。複数の加熱ロールは、素材板10の表裏面に接触してこれら表裏面を加熱できるように、素材板10の表面側(図1の上側)、及び素材板10の裏面側(図1の下側)の双方に配置することが好ましい。但し、素材板10の表裏面に配置された加熱ロールに挟まれることで加熱された素材板10の厚さが変化しない(薄くならない)ように、複数の加熱ロールは、素材板10の走行方向に沿ってずれた位置に配置する、例えば、千鳥状に配置することが挙げられる。   Specific heating means 20 includes, for example, a plurality of heating rolls. In this embodiment, a plurality of heating rolls are arranged in parallel in the travel direction of the material plate 10, and the material plate 10 is heated to a predetermined temperature by bringing the material plate 10 into contact with these heating rolls. Examples of the heating roll include those equipped with a structure capable of heating the material plate 10 such as a built-in heating means such as a heater and a built-in circulation mechanism through which a heated fluid is circulated. Examples of the material of the heating roll include steel having excellent heat resistance. The plurality of heating rolls are in contact with the front and back surfaces of the material plate 10 so that the front and back surfaces can be heated, so that the front side of the material plate 10 (upper side in FIG. 1) and the back side of the material plate 10 (lower side in FIG. 1). It is preferable to arrange them on both sides. However, the plurality of heating rolls are in the traveling direction of the material plate 10 so that the thickness of the heated material plate 10 is not changed (not thinned) by being sandwiched between the heating rolls arranged on the front and back surfaces of the material plate 10. It arrange | positions in the position shifted along, for example, arrange | positions in zigzag form.

上記加熱ロールの軸方向の長さは、素材板10の幅に応じて選択することができる。加熱ロールの径や加熱ロールの配置数も、適宜選択することができる。配置数が多いほど、保持時間を長くし易い。その他、走行する素材板10において加熱ロールの配置箇所を覆って、素材板10の温度を保温可能な恒温槽を設けることができる。   The length of the heating roll in the axial direction can be selected according to the width of the material plate 10. The diameter of the heating roll and the number of heating rolls can also be selected as appropriate. The greater the number of arrangements, the longer the holding time. In addition, a constant temperature bath capable of keeping the temperature of the material plate 10 by covering the location where the heating roll is disposed in the traveling material plate 10 can be provided.

又は、加熱手段20は、素材板10を所定の温度に加熱可能な加熱炉が挙げられる。この形態は、加熱炉に走行する素材板10を通過させて、素材板10を所定の温度に加熱する。加熱炉は、雰囲気炉(所定の温度の熱風を循環可能なものや、ヒータといった加熱手段を備えて、所定の温度の雰囲気を保持可能なものなど)、抵抗加熱炉(素材板に通電して抵抗加熱により素材板を加熱するもの)、誘導加熱炉(高周波数の電力を供給して電磁誘導により素材板を加熱するもの)などが挙げられる。加熱炉は、加熱時に素材板10に曲げを実質的に与えず、平坦性に優れる板材からなるマグネシウム合金コイル材1を得易い。   Alternatively, the heating means 20 may be a heating furnace capable of heating the material plate 10 to a predetermined temperature. In this embodiment, the material plate 10 traveling through the heating furnace is passed and the material plate 10 is heated to a predetermined temperature. The heating furnace can be an atmosphere furnace (such as one that can circulate hot air at a predetermined temperature or one that can be equipped with a heating means such as a heater and can maintain an atmosphere at a predetermined temperature), a resistance heating furnace (such as energizing a material plate) And an induction heating furnace (which heats the material plate by electromagnetic induction by supplying high frequency power). The heating furnace does not substantially bend the material plate 10 during heating, and it is easy to obtain the magnesium alloy coil material 1 made of a plate material having excellent flatness.

加熱炉の仕様(通電可能な電流値、雰囲気炉の容積や素材板の走行方向に沿った炉の長さなど)は、走行速度や素材板10の厚さなどに応じて、素材板10が所定の温度に所望の時間だけ保持可能なように選択するとよい。雰囲気炉内の雰囲気は、大気でもよいが、アルゴンや窒素といった非酸素含有雰囲気とすると、素材板10の酸化を防止できて好ましい。大気雰囲気とすると、設備の構築が容易である。   The specifications of the heating furnace (the current value that can be energized, the volume of the atmosphere furnace, the length of the furnace along the travel direction of the material plate, etc.) are determined depending on the traveling speed, the thickness of the material plate 10 and the like. It may be selected so that it can be held at a predetermined temperature for a desired time. The atmosphere in the atmosphere furnace may be air, but a non-oxygen-containing atmosphere such as argon or nitrogen is preferable because oxidation of the material plate 10 can be prevented. If it is an atmospheric atmosphere, the construction of the equipment is easy.

又は、上述の複数の加熱ロールと加熱炉との双方を備える加熱手段とすることができる。   Or it can be set as the heating means provided with both the above-mentioned several heating roll and heating furnace.

熱処理時に素材板10に付与する引張応力の調整は、種々の方法を利用できる。例えば、両リール200,210の回転速度を調整する方法が挙げられる。この形態は、別途、調整設備が不要である。又は、ピンチロールなどを適宜配置して、素材板10及び板材11の少なくとも一方を挟持することで、素材板10に付与される張力を調整する方法が挙げられる。又は、ダンサ装置といった張力調整装置を別途設けることが挙げられる。いずれにしても、素材板10及び板材11の少なくとも一方に張力測定装置30を取り付けておき、素材板10に加わる張力を確認しながら、応力を調整するとよい。   Various methods can be used to adjust the tensile stress applied to the blank 10 during the heat treatment. For example, a method of adjusting the rotational speeds of both reels 200 and 210 can be mentioned. This form does not require any additional adjustment equipment. Or the method of adjusting the tension | tensile_strength provided to the raw material board 10 by arrange | positioning a pinch roll etc. suitably and clamping at least one of the raw material board 10 and the board | plate material 11 is mentioned. Alternatively, a tension adjusting device such as a dancer device may be provided separately. In any case, it is preferable to adjust the stress while attaching the tension measuring device 30 to at least one of the material plate 10 and the plate material 11 and confirming the tension applied to the material plate 10.

熱処理時に素材板10に付与する引張応力は、大き過ぎると、板厚を減少させたり、最悪の場合、破断したりするため、25MPa以下とする。付与する引張応力が小さ過ぎると、素材板10の残留応力の低減を十分に行えないため、5MPa超とする。引張応力が5MPa超25MPa以下の範囲内では、素材板の板厚が大きいほど、付与する引張応力を大きくすることが好ましい。また、熱処理時の温度が高い場合(例えば、250℃以上300℃以下)には、上記の範囲内で付与する引張応力を小さくしても(例えば、5MPa超10MPa以下)、素材板10の残留応力を十分に低減できる。付与する引張応力のより好ましい値は、10MPa以上20MPa以下、更に15MPa以下である。板材11の残留応力は、上述の熱処理条件によって変化する。例えば、150℃以上300℃以下の範囲において加熱温度が高いほど、又は5MPa超25MPa以下の範囲において付与する引張応力が大きいほど、ばらつきや絶対値が小さくなる傾向にある。   If the tensile stress applied to the material plate 10 during heat treatment is too large, the plate thickness is reduced or, in the worst case, the material is broken, so that it is 25 MPa or less. If the tensile stress to be applied is too small, the residual stress of the material plate 10 cannot be sufficiently reduced. In the range where the tensile stress is more than 5 MPa and not more than 25 MPa, it is preferable to increase the applied tensile stress as the thickness of the material plate increases. Further, when the temperature during the heat treatment is high (for example, 250 ° C. or more and 300 ° C. or less), even if the tensile stress applied within the above range is reduced (for example, more than 5 MPa and 10 MPa or less), the material plate 10 remains. Stress can be reduced sufficiently. A more preferable value of the tensile stress to be applied is 10 MPa or more and 20 MPa or less, and further 15 MPa or less. The residual stress of the plate 11 varies depending on the above heat treatment conditions. For example, the higher the heating temperature in the range of 150 ° C. or higher and 300 ° C. or lower, or the greater the tensile stress applied in the range of 5 MPa or higher and 25 MPa or lower, the smaller the variation or absolute value.

・巻き取り工程
上述の低い応力を付与しながら、上述の加熱手段20によって素材板10を加熱する熱処理が施された板材11をリール210で巻き取ることで、マグネシウム合金からなり、全長に亘って残留応力のばらつきが小さい板材11が渦巻き状に巻き取られてなるマグネシウム合金コイル材1が得られる。巻き取り直前の板材の温度が200℃以下、好ましくは100℃以下といった低温で巻き取ると、板材に巻癖がつき難く、平坦性に優れるコイル材1を得易い。上記低温は、例えば、素材板10の走行速度を調整し、自然放冷によって達成してもよいし、衝風や水冷手段などの強制冷却手段を用いて達成してもよい。
-Winding process While applying the above-mentioned low stress, the reel 11 is used to wind the plate material 11 that has been subjected to the heat treatment for heating the material plate 10 by the heating means 20 described above. A magnesium alloy coil material 1 is obtained in which a plate material 11 having a small variation in residual stress is wound up in a spiral shape. If the temperature of the plate material immediately before winding is 200 ° C. or less, preferably 100 ° C. or less, the plate material is less likely to be curled and the coil material 1 having excellent flatness can be easily obtained. The low temperature may be achieved, for example, by adjusting the traveling speed of the material plate 10 and naturally cooling, or may be achieved using forced cooling means such as blast or water cooling means.

実施形態のマグネシウム合金コイル材の製造方法は、素材板が多層に積み重なった状態ではなく、一枚に広げられた状態で上述の熱処理を行うため、素材板の全長に亘って均一的な熱処理条件に制御し易い。そのため、得られたコイル材は、全長に亘って、結晶粒の大きさが均一的であったり(粒径のばらつきが小さい)、添加元素の含有量が多い組成では温間圧延によって生じた析出物(主として金属間化合物)が再固溶されて、全長に亘って析出物が小さかったりする(析出物が微細でばらつきが小さかったりする)組織にすることができる。従って、実施形態のマグネシウム合金コイル材の製造方法によって、全長に亘って均一的な組織からなるマグネシウム合金コイル材を製造することができる。   In the manufacturing method of the magnesium alloy coil material of the embodiment, the heat treatment is performed in a state where the raw material plates are spread in a single sheet, not in a multi-layered state. Easy to control. Therefore, the obtained coil material has a uniform crystal grain size over the entire length (small variation in grain size), or precipitation caused by warm rolling in a composition with a high content of additive elements. An object (mainly intermetallic compound) is re-dissolved to form a structure in which precipitates are small over the entire length (precipitates are fine and variation is small). Therefore, the magnesium alloy coil material having a uniform structure over the entire length can be manufactured by the method for manufacturing the magnesium alloy coil material of the embodiment.

[試験例1]
マグネシウム合金からなるマグネシウム合金コイル材を作製し、このコイル材を素材として塑性加工部材を作製して、形状安定性を評価した。
[Test Example 1]
A magnesium alloy coil material made of a magnesium alloy was produced, and a plastic working member was produced using the coil material as a raw material, and the shape stability was evaluated.

素材として圧延コイル材を用意した。圧延コイル材は、一対のリール間に圧延ロール(対向配置されたロール対)を備える圧延ラインを利用して製造した。一方の繰り出しリールに以下の圧延用素材を取り付け、繰り出した圧延用素材の一端を他方の巻き取りリールで巻き取って、両リールの回転によって圧延用素材を走行可能とし、走行途中に圧延ロールを通過することで、圧延用素材に圧延を施す。以下の条件で複数パスの温間圧延を施した後(リバース圧延を使用)、最終的に巻き取って圧延コイル材を得た。圧延用素材の加熱には、上述のヒートボックスなどが好適に利用できる。   A rolled coil material was prepared as a material. The rolled coil material was manufactured by using a rolling line provided with a rolling roll (a pair of opposed rolls) between a pair of reels. The following rolling material is attached to one feeding reel, one end of the rolled material is taken up by the other winding reel, and the rolling material can be run by rotating both reels. By passing, the material for rolling is rolled. A plurality of passes of warm rolling were performed under the following conditions (using reverse rolling), and finally rolled up to obtain a rolled coil material. The above heat box or the like can be suitably used for heating the rolling material.

(圧延用素材)
表1に示す組成からなる双ロール鋳造法によって作製した鋳造コイル材
板厚:4.0mm 長さ:100m
鋳造後に溶体化:400℃×20時間
(圧延条件)
圧延温度:250℃
圧延後の板厚:0.8mm
総圧下率:80%(各パスの圧下率:10%/パス〜25%/パス)
(Rolling material)
Cast coil material produced by a twin roll casting method having the composition shown in Table 1 Thickness: 4.0 mm Length: 100 m
Solution treatment after casting: 400 ° C x 20 hours (rolling conditions)
Rolling temperature: 250 ° C
Plate thickness after rolling: 0.8mm
Total reduction rate: 80% (reduction rate of each pass: 10% / pass to 25% / pass)

得られた圧延コイル材に、矯正を行った後(ここでは、ローラレベラ装置を使用。素材温度を200℃とした温間矯正)、表1に示す処理条件で、引張応力の付与を行った。表1に示す処理条件の加熱温度が200℃〜280℃の試料は、上述の引張応力の付与時に加熱されたことを意味し、引張応力の付与を伴う熱処理を施したことになる。上記加熱や引張応力の付与は、繰り出し用のリールに巻き取られている矯正コイル材(素材コイル材)を巻き戻し、巻き戻した矯正板(素材板)を巻き取り用のリールで巻き取って、二つのリール間に素材板を掛け渡し、両リール間を素材板(及び素材板に繋がる板材)が走行できるようにして行った。上記処理を施した板材を巻き取って、マグネシウム合金コイル材を作製した。   The obtained rolled coil material was straightened (here, a roller leveler device was used. Warm straightening with a material temperature of 200 ° C.), and tensile stress was applied under the processing conditions shown in Table 1. A sample having a heating temperature of 200 ° C. to 280 ° C. under the processing conditions shown in Table 1 means that the sample was heated at the time of applying the above-described tensile stress, and was subjected to a heat treatment accompanying the application of the tensile stress. The heating and the application of tensile stress are performed by rewinding the correction coil material (material coil material) wound around the reel for feeding, and winding the rewound correction plate (material plate) with the reel for winding. The material plate was hung between the two reels so that the material plate (and the plate material connected to the material plate) can travel between the two reels. The plate material subjected to the above treatment was wound up to produce a magnesium alloy coil material.

上述の引張応力の付与を伴う熱処理を行う試料No.2〜No.4,No.12〜No.14,No.22〜No.24では、加熱手段として、加熱炉(ここでは、熱風循環炉)を用意して、上記二つのリール間に配置し(図1参照)、この加熱炉に素材板を通過させることで、素材板を加熱して熱処理を施した。   Sample No. which is subjected to heat treatment accompanied by application of the tensile stress described above. 2-No. 4, no. 12-No. 14, no. 22-No. In 24, as a heating means, a heating furnace (here, a hot air circulating furnace) is prepared, arranged between the two reels (see FIG. 1), and the material plate is passed through the heating furnace, whereby the material plate Was heated for heat treatment.

かつ、試料No.2〜No.4,No.12〜No.14,No.22〜No.24では、表1に示す引張応力が素材板に負荷されるように、上記両リールの回転速度を調整して上述の熱処理を行った。一方、表1に示す処理条件の加熱温度が室温である試料No.1,No.11,No.21では、表1に示す引張応力が素材板に負荷されるように、上記両リールの回転速度を調整して、繰り出し及び巻き取りを行い、素材板の加熱を行わなかった。   And sample no. 2-No. 4, no. 12-No. 14, no. 22-No. In No. 24, the above heat treatment was performed by adjusting the rotation speeds of both reels so that the tensile stress shown in Table 1 was applied to the material plate. On the other hand, the sample No. 1 in which the heating temperature under the processing conditions shown in Table 1 is room temperature. 1, No. 1 11, no. In No. 21, the rotation speeds of both reels were adjusted so that the tensile stress shown in Table 1 was applied to the material plate, and the reel was fed and wound, and the material plate was not heated.

得られたマグネシウム合金コイル材(熱処理材又は応力付与材)の残留応力の分布を調べた。具体的には、以下のように調べた。上記コイル材(長さ500m以上、幅230mm)を巻き戻して、両端から5mを切断した残りについて、長さ50mごとに長さ1mのシート片を切り出し、このシート片をサンプル板材とした。ここでは、8枚のシート片を用意した。各シート片(ここでは切り出した1mのシート片から更に長さ300mmの短い片に切断したもの)についてそれぞれ残留応力を測定した。ここでは、各シート片の表面(巻き取られた状態において外周側に配置されていた面)における幅方向の中心位置をとり、この中心位置における長さ方向の任意の1点について残留応力を測定した。残留応力は、以下の微小部X線応力測定装置を用いて、(104)面を測定面とし、sinΨ法にて測定を行った。そして、8枚のシート片における合計8点の残留応力(絶対値)のうち、最大値と最小値とを抽出し、その差を全長のばらつきとした。結果を表1に示す。また、各試料において測定した合計8点の残留応力のうち、最大値を表1に示す。表1に示す最大値について「マイナス」が付された値は、圧縮残留応力を意味し、「マイナス」が付されていない値は、引張残留応力を意味する。 The distribution of residual stress of the obtained magnesium alloy coil material (heat treatment material or stress applying material) was examined. Specifically, it investigated as follows. The coil material (500 m or more in length and 230 mm in width) was rewound, and a sheet piece having a length of 1 m was cut out every 50 m for the remainder obtained by cutting 5 m from both ends, and this sheet piece was used as a sample plate. Here, eight sheet pieces were prepared. The residual stress was measured for each sheet piece (here, the cut 1 m sheet piece was further cut into a short piece having a length of 300 mm). Here, the center position in the width direction on the surface of each sheet piece (the surface disposed on the outer periphery side in the wound state) is taken, and the residual stress is measured at any one point in the length direction at this center position. did. The residual stress was measured by the sin 2 Ψ method using the following micro-part X-ray stress measurement apparatus with the (104) plane as the measurement plane. And the maximum value and the minimum value were extracted from the residual stress (absolute value) of a total of 8 points in the 8 sheet pieces, and the difference was defined as the variation in the total length. The results are shown in Table 1. In addition, Table 1 shows the maximum value among the total of 8 residual stresses measured in each sample. Regarding the maximum value shown in Table 1, a value with “minus” means a compressive residual stress, and a value without “minus” means a tensile residual stress.

使用装置:微小部X線応力測定装置(株式会社リガク製 MSF−SYSTEM)
使用X線:Cr−Kα(V フィルター)
励起条件:30kV 20mA
測定領域:φ2mm(使用コリメータ径)
測定法 :sinΨ法(並傾法、揺動有り)
Ψ=0゜,10゜,15゜,20゜,25゜,30゜,35゜,40゜,45゜
測定面 :Mg(104)面
使用定数:ヤング率=45,000MPa、ポアソン比=0.306
測定箇所:シート片の表面の中央部(幅方向の中心位置)
測定方向:シート片の圧延方向
Equipment used: Microscopic X-ray stress measurement device (MSF-SYSTEM, manufactured by Rigaku Corporation)
X-ray used: Cr-Kα (V filter)
Excitation conditions: 30 kV 20 mA
Measurement area: φ2mm (use collimator diameter)
Measurement method: sin 2 Ψ method (parallel tilt method, with oscillation)
Ψ = 0 °, 10 °, 15 °, 20 °, 25 °, 30 °, 35 °, 40 °, 45 ° Measurement surface: Mg (104) surface Usage constant: Young's modulus = 45,000 MPa, Poisson's ratio = 0 .306
Measurement location: center of the surface of the sheet piece (center position in the width direction)
Measurement direction: Sheet strip rolling direction

得られたマグネシウム合金コイル材(熱処理材又は応力付与材)を所定の長さに切断して、塑性加工用の試験片(矩形状のシート材)を作製した。この塑性加工用の試験片に温間プレス加工を行い、加工時の状態、及び加工後の状態を調べて、形状安定性を評価した。   The obtained magnesium alloy coil material (heat treatment material or stress applying material) was cut into a predetermined length to prepare a test piece (rectangular sheet material) for plastic working. The test piece for plastic working was subjected to warm press working, and the state during processing and the state after processing were examined to evaluate the shape stability.

この試験では、250℃に加熱した成形型を用意して、この成形型に塑性加工用の試験片を配置して加熱し、反りによる周縁の浮き上がり状態を確認する。成形型の表面と上記試験片との間の間隔(浮き上がりによる隙間の大きさ)を隙間ゲージによって測定し、この間隔の最大値が10mm超であるか、10mm以下であるかを調べた。ここでは、試料ごとに20枚の塑性加工用の試験片を用意して、上記間隔を測定し、20枚全ての間隔が10mm以下である場合をGood、20枚のうち間隔が10mm超のものがある場合をBと評価して、表1に加工時の状態の評価を示す。   In this test, a mold heated to 250 ° C. is prepared, a test piece for plastic working is placed on the mold and heated, and the rising state of the periphery due to warpage is confirmed. The distance between the surface of the mold and the test piece (the size of the gap due to lifting) was measured with a gap gauge, and it was examined whether the maximum value of this distance was greater than 10 mm or less than 10 mm. Here, 20 specimens for plastic working are prepared for each sample, the above-mentioned interval is measured, and the case where the interval of all 20 sheets is 10 mm or less is Good. Among the 20 sheets, the interval is more than 10 mm The case where there is is evaluated as B, and Table 1 shows the evaluation of the state during processing.

上記250℃に加熱した成形型を用いて温間プレス加工を行った。得られた成形体(200mm×300mm×深さ5mm、内側角R=1mm)の加工後の状態は、以下のように評価した。得られた成形体の平面部(200mm×300mmの面)を定盤に置き、平面部の浮き上がりを隙間ゲージで測定し、定盤と平面部との間の隙間が1mm超であるか、1mm以下であるかを調べた。ここでは、試料ごとに20個の成形体を作製して、上記浮き上がり(隙間)を測定し、20個全ての隙間が1mm以下である場合をGood、20個のうち隙間が1mm超のものがある場合をBと評価して、表1に加工後の状態の評価を示す。   Warm pressing was performed using the mold heated to 250 ° C. The state after processing of the obtained molded body (200 mm × 300 mm × depth 5 mm, inner angle R = 1 mm) was evaluated as follows. The flat part (200 mm × 300 mm surface) of the obtained molded body is placed on a surface plate, and the lift of the flat surface portion is measured with a gap gauge, and the gap between the surface plate and the flat surface portion is more than 1 mm or 1 mm. The following was investigated. Here, 20 molded bodies are prepared for each sample, and the above-mentioned lifting (gap) is measured. When all the 20 gaps are 1 mm or less, Good, and among 20 pieces, the gap is more than 1 mm. A case is evaluated as B, and Table 1 shows an evaluation of the state after processing.

Figure 2015025168
Figure 2015025168

表1に示すように、温間圧延が施された素材板に、特定の大きさの引張応力を付与した状態で特定の加熱温度で熱処理を施した試料No.2,No.3,No.12,No.13,No.22,No.23はいずれも、全長に亘って、残留応力のばらつきが小さいことが分かる。具体的には、これらの試料はいずれも、残留応力の最大値と最小値との差が20MPa以内である(ここでは19MPa未満、更に10MPa以内である)。また、これらの試料はいずれも、残留応力自体も小さい。具体的には、これらの試料はいずれも、表1に示す残留応力の最大値が−25MPaから+25MPaの範囲を満たす。つまり、各試料について測定した合計8点の残留応力のいずれもが、−25MPaから+25MPaの範囲を満たすといえる。更に、上述の特定の熱処理が施された試料No.2,No.3,No.12,No.13,No.22,No.23はいずれも、温間塑性加工を施す際の加熱を行ったとき、反りといった変形が生じ難いことが分かる。そのため、これらの試料はいずれも、熱処理前に行った矯正加工による平坦性が維持されている、といえる。そして、試料No.2,No.3,No.12,No.13,No.22,No.23のマグネシウム合金コイル材を用いて得られたプレス成形体(塑性加工部材)は、いずれも浮き上がりなどの形状不良が小さく、又は実質的に無く、高精度に成形されており、プレス加工後の形状安定性に優れていることが分かる。   As shown in Table 1, sample No. 1 was subjected to heat treatment at a specific heating temperature in a state in which a tensile stress having a specific size was applied to a blank plate subjected to warm rolling. 2, no. 3, No. 12, no. 13, no. 22, no. It can be seen that all of Nos. 23 have small variations in residual stress over the entire length. Specifically, in any of these samples, the difference between the maximum value and the minimum value of the residual stress is within 20 MPa (here, less than 19 MPa, and further within 10 MPa). In addition, any of these samples has a small residual stress itself. Specifically, all of these samples satisfy the range of the maximum residual stress shown in Table 1 in the range of −25 MPa to +25 MPa. That is, it can be said that any of the total of 8 residual stresses measured for each sample satisfies the range of −25 MPa to +25 MPa. Furthermore, the sample No. subjected to the specific heat treatment described above was used. 2, no. 3, No. 12, no. 13, no. 22, no. It can be seen that No. 23 hardly undergoes deformation such as warping when heated during the warm plastic working. Therefore, it can be said that all of these samples maintain the flatness by the correction processing performed before the heat treatment. And sample no. 2, no. 3, No. 12, no. 13, no. 22, no. Each of the press-formed bodies (plastically processed members) obtained using the magnesium alloy coil material of No. 23 is formed with high accuracy with little or substantially no shape defect such as lifting, It can be seen that the shape stability is excellent.

このように試料No.2,No.3,No.12,No.13,No.22,No.23のマグネシウム合金コイル材が形状安定性に優れる塑性加工部材を成形可能である理由は、塑性加工前において全長に亘って残留応力が均一的に存在していたことで、上述の加熱によって残留応力のバランスが崩れ難く、バランスの崩れに起因する局所的な変形(反りなど)を低減できたため、と考えられる。   Thus, sample No. 2, no. 3, No. 12, no. 13, no. 22, no. The reason why the magnesium alloy coil material of No. 23 is capable of forming a plastic working member having excellent shape stability is that the residual stress is uniformly present over the entire length before the plastic working. This is thought to be because the local deformation (warping, etc.) due to the balance loss could be reduced.

また、上述の特定の熱処理が施された試料No.2,No.3,No.12,No.13,No.22,No.23のコイル材の平均結晶粒径を測定した。その結果を表1に示す。測定は、「鋼−結晶粒度の顕微鏡試験方法 JIS G 0551(2005)、直線試験線による切断法」に基づいて行った。表1に示すようにこれらの試料はいずれも、平均結晶粒径が10μm以下である(ここではいずれも5μm以下である)。これらの試料はいずれも、素材板の全長に亘って均一的な条件で熱処理が施されたことで、上述のような全長に亘って均一的な結晶組織(再結晶組織)を有しており、この点からも、塑性加工性を高められた、と考えられる。なお、試料No.2,No.3,No.12,No.13,No.22,No.23のそれぞれについて、上述の8枚のシート片のうち、任意の1枚を選択して、幅方向の残留応力のばらつきを調べた。具体的には、選択したシート片について、上述の残留応力を測定した幅方向の中心位置を含むように、幅方向に沿って5点〜10点の残留応力を上述の条件(測定方向は圧延方向)で同様にして測定した。その結果、幅方向の残留応力のばらつきが20MPa以内であることを確認した。   In addition, the sample No. subjected to the specific heat treatment described above was used. 2, no. 3, No. 12, no. 13, no. 22, no. The average crystal grain size of 23 coil materials was measured. The results are shown in Table 1. The measurement was performed based on “steel-crystal grain size microscopic test method JIS G 0551 (2005), cutting method using linear test line”. As shown in Table 1, these samples all have an average crystal grain size of 10 μm or less (here, all are 5 μm or less). All of these samples have a uniform crystal structure (recrystallized structure) over the entire length as described above by being heat-treated under uniform conditions over the entire length of the material plate. From this point, it is considered that the plastic workability was improved. Sample No. 2, no. 3, No. 12, no. 13, no. 22, no. For each of 23, an arbitrary one of the above-described eight sheet pieces was selected, and the variation in the residual stress in the width direction was examined. Specifically, with respect to the selected sheet piece, the residual stress of 5 to 10 points along the width direction so as to include the center position in the width direction in which the above-described residual stress is measured is measured according to the above-described conditions (the measurement direction is rolled). Direction). As a result, it was confirmed that the variation in the residual stress in the width direction was within 20 MPa.

一方、引張応力を付与しただけの試料No.1,No.11,No.21は、残留応力のばらつきが大きく、更には残留応力の最大値も大きく、温間塑性加工を施す際の加熱を行ったとき、反りといった変形が生じ得ることが分かる。他方、非常に低い引張応力を負荷した状態で熱処理を施した試料No.4,No.14,No.24も、残留応力のばらつきが大きく、更には残留応力の最大値も大きい。この理由は、引張応力が低過ぎることで、残留応力のばらつきを十分に改善できなかったため、と考えられる。そして、試料No.4,No.14,No.24は残留応力のばらつきが大きいことで、温間塑性加工を施す際の加熱を行ったとき、反りなどが生じ得ることが分かる。   On the other hand, sample No. 1, No. 1 11, no. No. 21 has a large variation in residual stress, and the maximum value of the residual stress is also large, and it can be seen that deformation such as warping can occur when heating is performed during warm plastic working. On the other hand, Sample No. 2 was subjected to heat treatment in a state where a very low tensile stress was applied. 4, no. 14, no. 24 also has a large variation in residual stress, and the maximum value of the residual stress is also large. The reason for this is considered that the variation in residual stress could not be sufficiently improved because the tensile stress was too low. And sample no. 4, no. 14, no. It can be seen that No. 24 has a large variation in residual stress, and warping or the like may occur when heating is performed during warm plastic working.

以上説明したように、マグネシウム合金板の全長に亘って、残留応力のばらつきが小さいマグネシウム合金コイル材は、塑性加工後における形状安定性に優れるマグネシウム合金部材を成形可能であることが確認された。また、圧延(好ましくは1パス以上の温間圧延)が施された素材コイル材を巻き戻した状態で特定の温度及び特定の引張応力を負荷した状態で熱処理を施すことで、全長に亘って残留応力のばらつきが小さいマグネシウム合金板から構成されたマグネシウム合金コイル材が得られることが確認された。   As described above, it was confirmed that the magnesium alloy coil material with small variation in residual stress over the entire length of the magnesium alloy plate can form a magnesium alloy member having excellent shape stability after plastic working. In addition, by applying a heat treatment in a state where a specific temperature and a specific tensile stress are applied in a state where the material coil material that has been rolled (preferably warm rolling of one pass or more) is rewound, the entire length is obtained. It was confirmed that a magnesium alloy coil material composed of a magnesium alloy plate with small variations in residual stress was obtained.

本発明のマグネシウム合金コイル材は、プレス加工、曲げ、鍛造、据え込みなどの種々の塑性加工が施される塑性加工部材の素材に好適に利用できる。特に、このマグネシウム合金コイル材、及びこのコイル材を適宜切断したシート材は、軽量や薄型、高強度、制振性などの特性が望まれる部材、例えば、各種の電子・電気機器類(パーソナルコンピュータ(PC)、タブレット型PC、スマートフォンや折り畳み式携帯電話などの携帯電話、デジタルカメラなど)の筐体やカバーなどの外装部材、自動車や航空機といった輸送機器の構成部材、骨格部材、カバン、種々の保護ケースなどの素材に好適に利用できる。本発明のマグネシウム合金コイル材の製造方法は、マグネシウム合金部材(塑性加工部材)の素材などに利用されるマグネシウム合金コイル材の製造に好適に利用できる。   The magnesium alloy coil material of the present invention can be suitably used as a material for plastic working members to which various plastic workings such as press working, bending, forging and upsetting are performed. In particular, the magnesium alloy coil material and the sheet material obtained by appropriately cutting the coil material are members that are desired to have characteristics such as light weight, thinness, high strength, and vibration damping properties, such as various electronic and electric devices (personal computers). (PC), tablet PCs, mobile phones such as smartphones and foldable mobile phones, digital cameras, etc.) exterior members such as housings and covers, components of transport equipment such as automobiles and aircraft, skeleton members, bags, various It can be suitably used for a material such as a protective case. The method for producing a magnesium alloy coil material of the present invention can be suitably used for producing a magnesium alloy coil material used as a material for a magnesium alloy member (plastic working member).

1 マグネシウム合金コイル材
10 素材板 11 板材 100 素材コイル材
20 加熱手段 30 張力測定装置 200,210 リール
DESCRIPTION OF SYMBOLS 1 Magnesium alloy coil material 10 Material plate 11 Plate material 100 Material coil material 20 Heating means 30 Tension measuring device 200,210 Reel

Claims (5)

マグネシウム合金からなる板材が渦巻き状に巻き取られてなるマグネシウム合金コイル材であって、
前記板材の全長に亘って、残留応力のばらつきが20MPa以内であるマグネシウム合金コイル材。
A magnesium alloy coil material obtained by winding a plate material made of a magnesium alloy in a spiral shape,
A magnesium alloy coil material in which variation in residual stress is within 20 MPa over the entire length of the plate material.
前記板材の残留応力が−25MPaから+25MPaの範囲である請求項1に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to claim 1, wherein a residual stress of the plate material is in a range of -25 MPa to +25 MPa. 前記マグネシウム合金は、Alを含有するMg−Al系合金である請求項1又は請求項2に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to claim 1 or 2, wherein the magnesium alloy is an Mg-Al alloy containing Al. 前記マグネシウム合金の平均結晶粒径が10μm以下である請求項1〜請求項3のいずれか1項に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to any one of claims 1 to 3, wherein an average crystal grain size of the magnesium alloy is 10 µm or less. マグネシウム合金からなり、圧延が施された素材板が渦巻き状に巻き取られた素材コイル材を準備する工程と、
前記素材コイル材を巻き戻して前記素材板を走行させて、前記素材板に5MPa超25MPa以下の引張応力を付与した状態で、150℃以上300℃以下の熱処理を連続的に施す工程と、
前記熱処理が施されたマグネシウム合金からなる板材を渦巻き状に巻き取る工程とを備えるマグネシウム合金コイル材の製造方法。
A step of preparing a material coil material made of a magnesium alloy and rolled into a spiral shape;
Rewinding the material coil material and running the material plate, and continuously applying a heat treatment of 150 ° C. or more and 300 ° C. or less with a tensile stress of 5 MPa or more and 25 MPa or less applied to the material plate;
A method of manufacturing a magnesium alloy coil material, comprising: winding a plate material made of a magnesium alloy subjected to the heat treatment into a spiral shape.
JP2013155144A 2013-07-26 2013-07-26 Magnesium alloy coil material and method for producing magnesium alloy coil material Expired - Fee Related JP6274483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155144A JP6274483B2 (en) 2013-07-26 2013-07-26 Magnesium alloy coil material and method for producing magnesium alloy coil material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155144A JP6274483B2 (en) 2013-07-26 2013-07-26 Magnesium alloy coil material and method for producing magnesium alloy coil material

Publications (2)

Publication Number Publication Date
JP2015025168A true JP2015025168A (en) 2015-02-05
JP6274483B2 JP6274483B2 (en) 2018-02-07

Family

ID=52490063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155144A Expired - Fee Related JP6274483B2 (en) 2013-07-26 2013-07-26 Magnesium alloy coil material and method for producing magnesium alloy coil material

Country Status (1)

Country Link
JP (1) JP6274483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529028A (en) * 2015-07-07 2018-10-04 ワイアット−メアー,ギャビン,エフ. Heat treatment method for non-ferrous alloy feed materials outside the line
CN111088423A (en) * 2020-02-28 2020-05-01 辽宁科技大学 Magnesium alloy sheet coiled integral heat treatment device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126806A (en) * 2000-10-24 2002-05-08 Sumitomo Metal Ind Ltd Method for manufacturing magnesium alloy plate
JP2012007232A (en) * 2009-11-24 2012-01-12 Sumitomo Electric Ind Ltd Magnesium alloy coiled material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126806A (en) * 2000-10-24 2002-05-08 Sumitomo Metal Ind Ltd Method for manufacturing magnesium alloy plate
JP2012007232A (en) * 2009-11-24 2012-01-12 Sumitomo Electric Ind Ltd Magnesium alloy coiled material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529028A (en) * 2015-07-07 2018-10-04 ワイアット−メアー,ギャビン,エフ. Heat treatment method for non-ferrous alloy feed materials outside the line
CN111088423A (en) * 2020-02-28 2020-05-01 辽宁科技大学 Magnesium alloy sheet coiled integral heat treatment device and method
CN111088423B (en) * 2020-02-28 2023-02-10 辽宁科技大学 Magnesium alloy sheet coiled integral heat treatment device and method

Also Published As

Publication number Publication date
JP6274483B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5796730B2 (en) Magnesium alloy coil material, method for producing magnesium alloy coil material, and method for producing magnesium alloy member
JP5660374B2 (en) Magnesium alloy plate manufacturing method and magnesium alloy coil material
JP5757105B2 (en) Magnesium alloy material and manufacturing method thereof
JP5939382B2 (en) Magnesium alloy coil material manufacturing method
KR101799619B1 (en) Rolled magnesium alloy material, magnesium alloy structural member, and method for producing rolled magnesium alloy material
US20150152527A1 (en) Magnesium alloy sheet and magnesium alloy structural member
JP5757085B2 (en) Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method
JP5757104B2 (en) Magnesium alloy material and manufacturing method thereof
JP6274483B2 (en) Magnesium alloy coil material and method for producing magnesium alloy coil material
JP2012166232A (en) Method for manufacturing magnesium alloy material
JP5688674B2 (en) Magnesium alloy coil material, magnesium alloy plate, and method for producing magnesium alloy coil material
JP5776874B2 (en) Magnesium alloy rolled material, magnesium alloy member, and method for producing magnesium alloy rolled material
JP2015172252A (en) magnesium alloy coil material
JP2012020306A (en) Mg ALLOY-COILED MATERIAL AND METHOD FOR PRODUCTION THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6274483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees